T10/98-154r0

CRCProposal

Presentationto T 10
May 4th, 1998

Bruce Leshay

Quantum, Corp



T10/98-154r0

Why do we need CRC?

[1As speed increases, margins decrease, ISI
increases, parity becomes insufficient
solution

1 Parity also does not detect REQ/ACK
mismatch errors

[1Errors as likely, or more likely, to happen
on data lines as on REQ/ACK

[1Use CRC in double-edge implementations
only

Bruce Leshay Quantum

AAAAAAAAAAAAAAAAAAAAAAAAAAAA



T10/98-154r0

Which CRC?

[1Use Fibre Channel 32-bit CRC algorithm
proven standard

well documented

existing implementations

Bruce Leshay Quantum

AAAAAAAAAAAAAAAAAAAAAAAAAA



T10/98-154r0

When does CR C happen?

[0 Allow target to choose when CRC is transmitted
[0 Keeps interface target-driven
[0 Avoids problems with weird block sizes (mode pages, etc) & variable
block length devices (tapes)

[0 Parity[0] re-used as CRC Valid signal
[0 During Data phase, parity signals will always be driven from target to
initiator

[ parity
[0 not needed if using CRC
O nearly useless given error mechanism
O currently routed similar to data lines

[0 other potential signals
[0 might use up available bus phases (MSG)
[0 might cause unforeseen behavior by existing devices (SEL)
O routing is very different from data

Bruce Leshay Quantum

AAAAAAAAAAAAAAAAAAAAAAAAAAAA




T10/98-154r0

Example Dataln Phase

1. Target transfers data bytes
2. Target asserts CRC Valid

3. Target transfers CRC bytes
4. Target deasserts CRC Valid

5. Initiator checks CRC, reinitializes CRC
checker

6. Target ends transfer or returns to step 1

Bruce Leshay Quantum

AAAAAAAAAAAAAAAAAAAAAAAAAAAA



T10/98-154r0

CRCTiming

CRC Valid

Example for wide transfers

Bruce Leshay Quantum

AAAAAAAAAAAAAAAAAAAAAAAAAA



T10/98-154r0

DataQOut Phas e

1. Target asserts REQ’s for data bytes
2. Target qualifies REQ’s with CRC Valid

3. Initiator “marks” REQs which have CRC Valid
asserted

4. Initiator calculates CRC as it transfers data

5. When initiator reaches ACK count
corresponding to "CRC REQs”, initiator transfers
CRC and reinitializes CRC generator

6. Target counts ACKs, knows which bytes are
CRC bytes, checks CRC and reinitializes checker

Bruce Leshay . =UditUill



T10/98-154r0

Odd Byte Cases

[0 When target transfers a multiple of four bytes and then
asserts CRC valid, everything simple

[0 When target transfers something other than a four byte
multiple, both initiator and target append fill character
(0) up to 32 bit boundary in their internal CRC
calculation

[1 Features:

[0 No extra bandwidth for pad byte transfers

[0 Devices don't need to “know"” when to ignore pad bytes?

(Device might allocate exactly enough room in a buffer, and have no
place to put the pad)

Bruce Leshay Quantum

AAAAAAAAAAAAAAAAAAAAAAAAAAAA



T10/98-154r0

Why no CR C Interval?

[J Variable block size devices (tapes)

[1 Could need a different CRC interval for each
command

[J Tapes often disconnect at random points in the
transfer
[0 An interval would mean major restructuring

(1 If transfer is less than the interval:

O Initiator is unaware the last four bytes are CRC until
after phase change and status/message REQ
received

[0 CRC error reported during the Status/ Message

Phase, for the previous Data phase
Bruce Leshay Quantum

AAAAAAAAAAAAAAAAAAAAAAAAAA



T10/98-154r0

Double-E dged Clocking

[1Double-Edged Clocking Problem

[0 After odd number of transfers, REQ/ACK are
left in asserted state

[]Solution: Transfer extra "CRC symbol”

[0 Target issues additional REQ edge after last
CRC bytes, with CRC Valid asserted

[0 Devices know CRC is four bytes, symbol
easily ignored/discarded by hardware

Bruce Leshay Quantum

AAAAAAAAAAAAAAAAAAAAAAAAAAAA



T10/98-154r0

Error Handing

[1CRC error - treat same as parity errors

1 Additional protocol errors

Termination of data phase without CRC
Too few/too many CRC bytes

Similar to illegal phase change

Initiator reports as Initiator Detected Errors

Bruce Leshay Quantum

AAAAAAAAAAAAAAAAAAAAAAAAAA



