
D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 1

D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 1

T10/98-149r0

Tape Error Recovery in Queued 
Environments



D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 2

D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 2

Objectives

• Detection of and recovery from errors without ULP timeout

• Don’t add protocol overhead for normal case
• Limit delays on sending next queued command

• OK to add overhead when things go wrong

• Implementable with existing protocol chips

• Compatible with existing devices

• Maintain command ordering

• Minimize data retention requirements in target
• Timely confirmation that exchange is complete

• Desirable to have Host-initiated rather than target-initiated recovery



D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 3

D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 3

Alternatives Evaluated - Command Ordering

• Recommend Dropped/Deferred:
• FCP_CONFIRM on FCP_CMD - before next command can be sent
• Keep info until X_ID reused, poll to confirm delivery of CMD

• Continuously increasing sequence count + flush
• Utilize parameter field of FC header
• Continuously increasing X_ID

• Continuously increasing SEQ_ID

• Recommended:
• "I/O identifier"/Command sequence number in FCP_CMND resvd field.



D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 4

D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 4

• Pros: Works, Synchronous interlock, simple to understand, implement 
• Maintains command ordering
• Compatible with existing devices

• Cons: Potentially breaks HW, breaks SW, Sync mode lowers performance 
• New IU at this point in command may break hardware assists
• Adds protocol overhead in normal case

• Interlock restricts rate of sending commands, especially through large fabrics
• precisely the cases we want more commands in queue for performance

• Recommendation: Defer

FCP_CONFIRM on FCP_CMD - before next 
command can be sent



D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 5

D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 5

• Pros: simple, works 
• Can be used to maintain command ordering
• Compatible with existing devices

• Implementable with existing protocol chips

• Cons: Memory/resource hog, inhibits performance, impairs the normal flow 
• Adds protocol overhead in normal case

• Interlock restricts rate of sending commands, especially through large fabrics
• precisely the cases we want more commands in queue for performance

• Does not allow release of resources in a timely manner after completion of exchange

• Recommendation: Defer

Keep info until X_ID reused, poll to confirm 
delivery of CMD



D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 6

D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 6

• Pros: Detects lost frames immediately
• Maintains command ordering
• Immediate error detection in in-order fabric

• Nightmarish in out-of-order
• No protocol overhead except in no-traffic case
• No interlocks to delay next command

• Minimizes data retention requirements in target, without requiring FCP_CONF

• Cons: 
• Will not work with existing protocol chips

• Need mechanism (ELS?) to identify missing frame to sequence initiator - IDs not known.
• Target equal participant in recovery

• Recommendation: Defer

Continuously Increasing Sequence Count + 
no_traffic Flush



D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 7

D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 7

• Pros: Simple, effective
• Maintains command ordering
• Does not add overhead for normal cases

• Non-interlocked
• Could be made compatible with existing targets
• May work with existing protocol chips

• In conjunction with FCP_CONF, could minimize target data retention requirements

• Cons: Could break HW, repugnant
• Wrong layer - embedding FCP behavior in FC-2

• An FC-2 fix for an FC-4 problem

• Recommendation: Drop

Utilize parameter field of FC header



D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 8

D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 8

• Pros: No change to standard
• Choice of OX_IDs is outside the standard
• Doesn’t add protocol overhead

• Non-interlocked
• Compatible with existing devices
• In conjunction with FCP_CONFIRM, minimizes target data retention

• Cons: 
• Can’t use with existing protocol chips
• Difficult to detect lost commands

• Difficult to maintain which OX_ID should be next, particularly at level that would need to 
generate them

• FC-2 fix for FC-4 problem

• Recommendation: Drop

Continuously Increasing X_ID



D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 9

D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 9

• Pros: No change to standard
• Choice of SEQ_IDs is outside the standard
• Doesn’t add protocol overhead

• Non-interlocked
• Compatible with existing devices
• In conjunction with FCP_CONFIRM, minimizes target data retention

• Cons: 
• Can’t use with existing protocol chips
• Difficult to detect lost commands

• Difficult to maintain which SEQ_ID should be next, particularly at level that would have to 
generate them

• FC-2 fix for FC-4 problem

• Recommendation: Drop

Continuously increasing SEQ_ID



D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 10

D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 10

• Pros: Meets Objectives
• Detects and facilitates recovery from lost/misordered commands
• Implementable with existing chips

• Implemented in FCP driver
• Compatible with existing targets
• Allows sending multiple commands without interlock 

• No additional frames unless an error condition or no traffic
• Use with FCP_CONF to allow timely release of resources by target
• Initiator-driven recovery

• Cons: 
• Need to ensure existing chips don’t check for reserved fields = 0.

• Recommendation: This should be adopted

"I/O identifier"/Command sequence number in 
FCP_CMND resvd field.



D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 11

D:\T10\1998\Apr\98-149r0.fm

April 22, 1998

Foil 11

• Enabled by PRLI
• Byte 3 bit 8 to employ Command Sequence Numbering

• Embed Command Sequence Number in Byte 0 of FCP_CNTL field of 
FCP_CMND
• Continuously increasing on an I-T-L nexus
• Target can detect out-of-order command & respond to it

• Initiator not to reuse sequence number until delivery confirmed

• Target presents Response Code for lost commands
• May elect to wait R_A_TOV for out-of-order command if FLOGI allowed OOO delivery

• RSP_CODE 06 to mean Command Received Out Of Order; all OOO commands aborted
• Initiator to abort lost command(s) with ABTS and reissue with correct sequence number, new 

OX_ID; Clear Queue resets sequence number to 0.

• Delivery confirmation via 
• FCP_XFER_RDY, FCP_DATA, or FCP_RSP, OR Acceptance of next command OR REC.

Implementation Details


	• Pros: Works, Synchronous interlock, simple to understand, implement
	• Maintains command ordering
	• Compatible with existing devices

	• Cons: Potentially breaks HW, breaks SW, Sync mode lowers performance
	• New IU at this point in command may break hardware assists
	• Adds protocol overhead in normal case
	• Interlock restricts rate of sending commands, especially through large fabrics
	• precisely the cases we want more commands in queue for performance

	• Recommendation: Defer
	Alternatives Evaluated - Command Ordering
	FCP_CONFIRM on FCP_CMD - before next command can be sent
	• Pros: simple, works
	• Can be used to maintain command ordering
	• Compatible with existing devices
	• Implementable with existing protocol chips

	• Cons: Memory/resource hog, inhibits performance, impairs the normal flow
	• Adds protocol overhead in normal case
	• Interlock restricts rate of sending commands, especially through large fabrics
	• precisely the cases we want more commands in queue for performance
	• Does not allow release of resources in a timely manner after completion of exchange


	• Recommendation: Defer

	Keep info until X_ID reused, poll to confirm delivery of CMD
	• Recommend Dropped/Deferred:
	• FCP_CONFIRM on FCP_CMD - before next command can be sent
	• Keep info until X_ID reused, poll to confirm delivery of CMD
	• Continuously increasing sequence count + flush
	• Utilize parameter field of FC header
	• Continuously increasing X_ID
	• Continuously increasing SEQ_ID

	• Recommended:
	• "I/O identifier"/Command sequence number in FCP_CMND resvd field.

	• Pros: Detects lost frames immediately
	• Maintains command ordering
	• Immediate error detection in in-order fabric
	• Nightmarish in out-of-order
	• No protocol overhead except in no-traffic case
	• No interlocks to delay next command
	• Minimizes data retention requirements in target, without requiring FCP_CONF


	• Cons:
	• Will not work with existing protocol chips
	• Need mechanism (ELS?) to identify missing frame to sequence initiator - IDs not known.
	• Target equal participant in recovery

	• Recommendation: Defer

	Continuously Increasing Sequence Count + no_traffic Flush
	• Pros: Simple, effective
	• Maintains command ordering
	• Does not add overhead for normal cases
	• Non-interlocked
	• Could be made compatible with existing targets
	• May work with existing protocol chips
	• In conjunction with FCP_CONF, could minimize target data retention requirements

	• Cons: Could break HW, repugnant
	• Wrong layer - embedding FCP behavior in FC-2
	• An FC-2 fix for an FC-4 problem

	• Recommendation: Drop

	Utilize parameter field of FC header
	• Pros: No change to standard
	• Choice of OX_IDs is outside the standard
	• Doesn’t add protocol overhead
	• Non-interlocked
	• Compatible with existing devices
	• In conjunction with FCP_CONFIRM, minimizes target data retention

	• Cons:
	• Can’t use with existing protocol chips
	• Difficult to detect lost commands
	• Difficult to maintain which OX_ID should be next, particularly at level that would need to gene...
	• FC-2 fix for FC-4 problem

	• Recommendation: Drop

	Continuously Increasing X_ID
	• Pros: No change to standard
	• Choice of SEQ_IDs is outside the standard
	• Doesn’t add protocol overhead
	• Non-interlocked
	• Compatible with existing devices
	• In conjunction with FCP_CONFIRM, minimizes target data retention

	• Cons:
	• Can’t use with existing protocol chips
	• Difficult to detect lost commands
	• Difficult to maintain which SEQ_ID should be next, particularly at level that would have to gen...
	• FC-2 fix for FC-4 problem

	• Recommendation: Drop

	Continuously increasing SEQ_ID
	• Pros: Meets Objectives
	• Detects and facilitates recovery from lost/misordered commands
	• Implementable with existing chips
	• Implemented in FCP driver
	• Compatible with existing targets
	• Allows sending multiple commands without interlock
	• No additional frames unless an error condition or no traffic
	• Use with FCP_CONF to allow timely release of resources by target
	• Initiator-driven recovery


	• Cons:
	• Need to ensure existing chips don’t check for reserved fields = 0.

	• Recommendation: This should be adopted

	"I/O identifier"/Command sequence number in FCP_CMND resvd field.
	• Enabled by PRLI
	• Byte 3 bit 8 to employ Command Sequence Numbering

	• Embed Command Sequence Number in Byte 0 of FCP_CNTL field of FCP_CMND
	• Continuously increasing on an I-T-L nexus
	• Target can detect out-of-order command & respond to it
	• Initiator not to reuse sequence number until delivery confirmed

	• Target presents Response Code for lost commands
	• May elect to wait R_A_TOV for out-of-order command if FLOGI allowed OOO delivery
	• RSP_CODE 06 to mean Command Received Out Of Order; all OOO commands aborted
	• Initiator to abort lost command(s) with ABTS and reissue with correct sequence number, new OX_I...

	• Delivery confirmation via
	• FCP_XFER_RDY, FCP_DATA, or FCP_RSP, OR Acceptance of next command OR REC.


	Implementation Details
	Tape Error Recovery in Queued Environments
	Objectives
	• Detection of and recovery from errors without ULP timeout
	• Don’t add protocol overhead for normal case
	• Limit delays on sending next queued command
	• OK to add overhead when things go wrong

	• Implementable with existing protocol chips
	• Compatible with existing devices
	• Maintain command ordering
	• Minimize data retention requirements in target
	• Timely confirmation that exchange is complete

	• Desirable to have Host-initiated rather than target-initiated recovery



