To: T10
From: Gene Milligan
3/10/98
Comparison of EIA-485 and ISO/IEC 8482 (Normative portions)

Parameter	EIA-485 April 1983	ISO/IEC 8482 December 1993
Data Rate (per pair)	$=<10 \mathrm{Mb} / \mathrm{S}$	$=<12 \mathrm{Mb} / \mathrm{S}$
Rise / Fall Time 10-90\%	$\begin{gathered} =<30 \% \text { half bit time }(50 \mathrm{pF} / 54 \\ \text { Ohms })+/-10 \% \text { of steady state } \end{gathered}$	$\begin{gathered} =<30 \% \text { half bit time }(50 \mathrm{pF} / 54 \\ \text { Ohms })+/-10 \% \text { of steady state } \end{gathered}$
Cable length	Not specified	= $<1,200$ meters
Stub length	Zero assumed	Short as possible and $=<1 \mathrm{~m}$
Operating common mode	$+/-7 \mathrm{~V}$ (lower if no generator offset)	-7 to +12 V (generator shorted) (includes noise) with ITU-T recommendation $+/-7 \mathrm{~V}$
Total loading	=<32 unit loads	= <32 unit loads
D.C. Unit load range (U.L.) (while V_{ib} or $\mathrm{V}_{\mathrm{ia}}=0 \mathrm{~V}$)	$\begin{gathered} \text { From }-0.8 \mathrm{~mA} \text { at }-7 \mathrm{~V} \text { to } \\ 1.0 \mathrm{~mA} \text { at }+12 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { From }-0.8 \mathrm{~mA} \text { at }-7 \mathrm{~V} \text { to } \\ 1.0 \mathrm{~mA} \text { at }+12 \mathrm{~V} \\ \hline \end{gathered}$
A.C. Loading	May be in a future revision. (Guidance in informative appendix.)	Application dependant - beyond the scope. (Guidance in informative annex.)
Effective total termination	$\begin{gathered} \text { => } 60 \text { Ohms }(120 \text { Ohms each } \\ \text { end) } \end{gathered}$	$\begin{gathered} \text { => } 60 \text { Ohms }(120 \text { Ohms each } \\ \text { end) } \end{gathered}$
Differential Driver output	1.5 to 5.0 V terminated at 54 Ohms	1.5 to 5.0 V terminated at 54 Ohm with binary state differences $=<0.2 \mathrm{~V}$ and ITU-T recommendation of 2.0 V to 6.0 V at 100 Ohms
Differential Driver output	=>1.5 V to $=<6.0 \mathrm{~V}$ Open circuit	=>1.5 V to $=<6.0 \mathrm{~V}$ Open circuit
Single ended Driver output	=<6.0 V Open circuit	=<6.0 V Open circuit
Receiver sensitivity	$=+/-0.2 \mathrm{~V}(-7$ to $+12 \mathrm{~V})$	$\begin{gathered} =+/-0.2 \mathrm{~V}(-7 \text { to }+12 \mathrm{~V}) \\ \text { Allows internal bias }=<5 \mathrm{~V} \\ \text { ITU-T recommendation }=<3.0 \mathrm{~V} \\ (-10 \text { to }+10 \mathrm{~V}) \end{gathered}$
Hysteresis	Allowed to prevent oscillation	Not mentioned
Balance	$=+/-0.4 \mathrm{~V}$ with matched 1500/nU.L. Ohms resistors	$\begin{gathered} =+/-0.4 \mathrm{~V} \text { with matched } 1500 \\ \text { Ohms resistors } \end{gathered}$
Generator current limiting	$=<250 \mathrm{~mA}$ with $1.2 \mathrm{~V} / \mu \mathrm{S}$	$\begin{gathered} =<250 \mathrm{~mA} \text { ITU-T } \\ \text { recommendation }=<150 \mathrm{~mA} \end{gathered}$
Short circuit pair	No damage	No damage
Transient over-voltage with no damage	$15 \mu \mathrm{~S}$ pulses at 1% duty cycle at +/- 25 V from 100 Ohms source	Transients included in the -7 to +12 V range
Generator offset	-1.0 to +3.0 V	$\begin{gathered} =<3.0 \mathrm{~V} \text { with binary state } \\ \text { difference }=<0.2 \mathrm{~V} \end{gathered}$

