Accredited Standards Committee*

NCITS, National Committee for Information Technology Standards

Doc. No.: Date: Project: Ref. Doc.: Reply to: T10/97-269r0 November 3, 1997 William C. Gintz

To: T10 Membership From: William C. Gintz Subject: Presentation to Fast-80 Study Group – 11/97

1 Overview

Fast-80 Amplitude and Jitter Budgets

Analytical Projections Worst Case Margins 2.5 ns/6.25 ns Multi-Drop Effect Reflections and ISI Hot Plug Simulation

Empirical Results

Reflections Dominate Jitter Multi-Drop Dominates Amplitude Skew and ISI Unwieldy Hot Plug Is Problematical

2 Analysis

Table 1 shows the Fast-80 amplitude budget

	Dual Edge at 40 MHz			
Signal Amplitudes	Nominal	Weak	Proposed	
Driver Vop	445	270	270	
Loaded Cable	64% or –3.8 db	Cable –3.0 db	85%	
Attenuation				
Receiver (at SCSI pin)	278	162	230	
First Pulse Vop	268	156	220	
Noise & Offsets				
Fail Safe Bias	-112	-125	100	
Receiver Offset	20	20	20	
Cable Crosstalk	5	3	4	
Reflections 10%	27	16	22	
Totals	144	144	146	
Margins				
Normal	114	2	74	
Transient			70	
Margin			-4	

Table 1 – Fast-80 Amplitude Budget

Figure 1 shows the relationship between amplitude and jitter.

Predicted Jitter Due Amplitude: Θ_{J} =26.4 deg.

Figure 1- Relationship between Amplitude and Jitter

Table 2 shows the timing budget for duel edge clocking.

Generic Cause	Common name	abbreviation	Received signal levels		Remarks
			440mv	220 mv	
System band limit and cable loss	Data Dependent Jitter	DDJ	0.5	0.5 *	Hitachi data pending
Thermal noise in trigger levels	Gausian or random noise	RJ	0.1	0.2	
DC offset at detection point	Bi-modal jitter	BMJ	0.2	0. 4	
Reflections 10% of incident (mis-termination)	Deterministic Noise		0.5	0.6	
2% Local signal	Random System Noise	RXT	0.2	0.2	
Cable Skew unequal length	0.03ns/ft= 2.4 ns!		1.0	1.0	recommend cable be trimmed
Creq-Cdat = 2pf pcb layout	0.34ns/ft		(1.3)	(1.3)	applies only to multi- drop
HOT PLUG	a) 200mv; 4ns pulse		(2.0)-	(4.0)	prohibitive effect on REQ/ACK
	b) (Fast-80as connectors ~50mv 10ns pulse)		0.75	1.5	assumes staged R conector or
Totals /margin	25 meter point to point		3.25/3.0	4.4/1.85	
	12 meter multi-drop		4.55/1.7	5.7/0.5	

Notes: i) 25 meter 28-gauge cable point to point or; ii) 12 meter 30-gauge cable multi-drop.

3 Empirical Data

Figure 2 is a block diagram of the hardware simulation. Figure 3 shows the instrumentation setup.

Figure 2 – Hardware Simulation of Fast-80

Figure 3 – Instrumentaion

Figure 4 shows a 25-meter 28-gauge point to point hardware simulation of timing margins. This is a 40-megatransfer single-edge simulating 80 megatransfers.

Figure 4 – 40 megatransfers Single Edge

Notes: i) duty cycle error 5%; ii) skew error is 1 ns. Figure 5 shows a 25-meter 28-gauge point to point hardware simulation of timing margins with inter-symbol interference (ISI). This shows a 40 MHz data edge with budget for ACK centering on errors

Figure 5 – 40 MHz Data Edges

Notes: i) "first pulse" adds 1.0 ns jitter to existing conditions of previous figure.

T10/97-269r0

Figure 6 shows the normal signal.

START (EVENT 157).	. START <even< th=""><th>IT 157>… CO</th><th>PY START<eoi></eoi></th></even<>	IT 157>… CO	PY START <eoi></eoi>
	Λ		A.
			$\sim / \Lambda \Lambda$
	$/ \langle \rangle$		
			$/ + \rangle$
200mV /div	\sim	V	\sim
	ст _о р.		1 19
		×	
trigʻd			
T			1
-1.395V			
Top 25.25mV Mean	546.2ns \u2014±10	· 34.293%	571.5ns Main Size
Btm 25.25mV RMSA	11.42ns µ±20	100%	5ns⁄div
Litt 525.4ns PkPk Rat 568ns Hits	38.8ns μ±3σ 5972 Wfme	100%	Main Pos 520,9ns
Persist/ Mask	Color Grad	Standard	Remove/C1r
Histograms Testing	g Scale	Masks User Mack	Trace 2 M1
Continuous		user nask	Main

Figure 6 – Normal Signal

Notes:

Figure 7 shows the normal signal with 2 million cumulative hits.

Figure 7 – Normal Signal with 2 million hits

Notes:

Figure 8 shows a simulated hot plugging with 2 million hits.

Figure 8 – Simulated hot-plugging with 2 million hits

Notes:

Figure 9 shows a hot-plugging induced failure.

Figure 9 – Hot-plugging induced failure

4 Summary and Recommendations

4.1 Summary

- 1. Dual-edge clock still seems to be the best solution
- 2. Cable skew and differential capacitance dominate offsets
- 3. Cable induced ISI still enigmatic more data is being taken
- 4. The next step is ISI dual-edge test silicon to verify margin analysis
- 5. Jitter margin with nominal driver and skew control expected to be 2-6 ns
- 6. Hot-plugging is problematical more test data is needed

4.2 Recommendations

- 1. Skew compensation or CRC for data signals
- 2. Staged resistance connector or ACK/REQ counters for hot-plugging