
T10/97-216r0

From Dave Guss SSI July 15, 1997

Background

• Configuration of a SCSI physical interface is typically not under the control of the device

manufacturers. Misconfigurations, and/or inferior components on the interface, can result in

a number of reliability problems, not the least of which is extra and/or missing REQ and/or

ACK pulses caused by reflections and ISI effects.

• Less than robust implementations of the Data Pacing and/or Error Detection circuitry can

compound this problem.

• The sharing of information concerning a robust implementation of this circuitry is in the

collective best interest of the industry and the committee is therefore interested in including

it in one of the SCSI documents.

• The following is my attempt to understand the effects of these errors and to identify a set of

recommendations for the robust implementation of the detection circuitry.

SCSI Synchronous Transfer Data Pacing Overview

• The Initiator commands the Target to move data by sending a CDB containing the

direction, length, etc. of the transfer.

• The Target orchestrates the movement of all data by sending the required number of REQ

pulses to the Initiator. The Initiator responds to each REQ pulse by sending a

corresponding ACK pulse back to the Target. This sequence is the same for read or write

operations.

• For a read operation, the data bus is driven by the Target and each word of data (1, 2 or 4

bytes) is strobed from the bus by the Initiator on the active edge of the received REQ pulse

(see Fig. 1).

T10/97-216r0

TargetInitiator

Q D

REQ
Generation

DataData

REQ

Data Bus

ACK

Figure 1 - SCSI Read Data Movement

Q D

• For a write operation, the data bus is driven by the Initiator and each word of data is

strobed from the bus by the Target on the active edge of the received ACK pulse (see Fig.

2).

TargetInitiator

QD

REQ
Generation

Data

REQ

Data Bus

ACK

Figure 2 - SCSI Write Data Movement

QD Data

T10/97-216r0

• If all Initiators and Targets had guaranteed immediate access to buffer resources (available

data to send or empty buffer space to receive data) during a Synchronous transfer,

REQ/ACK counting, at least for the purpose of flow control, would not be necessary.

However, this is not the case and a method of flow control is required to allow “throttling” of

the transfer by the Initiator or Target when they temporarily run out of these resources.

• The following discussion on flow control describes the functional requirements without

reference to specific hardware implementations (e.g. up counters, down counters, FIFO

control ranks, etc). This should yield a set of recommendations that can be used regardless

of the approach take in hardware.

• The method of flow control (a.k.a. "pacing mechanism") used in SCSI can be thought of as

the circular flow of “tokens” in a loop from the Target to the Initiator and back to the Target.

The Initiator and Target establish the number of tokens in the loop by negotiating the

"Maximum Offset" they can tolerate. The Target starts a transfer with the Maximum Offset

number of tokens available in its Available Token Count. When a word of data is to be

transferred, the Target “spends” a token to generate the REQ pulse. When certain

conditions in the Initiator are met it returns the token to the Target by sending an ACK

pulse. When the Target receives the ACK pulse, and certain condition are met, the token is

again made available to generate another REQ pulse. When no tokens are currently

available, the Target’s REQ generation circuit must suspend the sending of REQ pulses.

By this means, circuitry in the Initiator or in the Target can throttle the transfer by

withholding the flow of tokens around the loop.

• The conditions necessary in the Initiator or the Target for “advancing” a token are different

for read and write operations.

• For SCSI reads (see Fig. 3) a REQ pulse is generated by the Target when the

transfer count for this data phase has not been exhausted, there is data available to

send and the Available Token Count is not zero. The Available Token Count is then

decremented by the generated REQ pulse. That REQ pulse results in the transferred

word being placed in the buffer in the Initiator. When that buffer slot is again

emptied, the token is released to be used to generate an ACK pulse (the token may

be held in an Initiator Tokens Owed Count until the ACK can be generated at the

current data rate). The Target uses the received ACK pulse to increment the

Available Token Count, making the token available to generate another REQ.

T10/97-216r0

TargetInitiator

REQ
Generation

REQ

ACK

Figure 3 - SCSI Read Pacing Functionality

Guaranteed
Available

Buffer
Space

ACK
Generation

Tokens
Owed
Count

Available
Token
Count

Token In

Token Out Token In

Token Out

Not
Empty

Not
Empty

Xfr Length
Data Avail

Data

Empty
Buffer
Slot

Load
Nogotiated
Maximum

Offset

• For SCSI writes (see Fig. 4) a REQ pulse is generated by the Target when the

transfer count for this data phase has not been exhausted and the Available Token

Count is not zero. The Initiator uses the received REQ pulse to increment the

Tokens Owed Count. When the Tokens Owed Count is not zero and data is

available to send, an ACK pulse is generated. The Tokens Owed Count is then

decremented by the generated ACK pulse That ACK pulse results in the transferred

word being placed in the buffer in the Target. When that buffer slot is again emptied,

the token is released to be used to increment the Available Token Count, making the

token available to generate another REQ.

T10/97-216r0

TargetInitiator

REQ
Generation

REQ

ACK

Figure 4 - SCSI Write Pacing Functionality

Guaranteed
Available

Buffer
Space

ACK
Generation

Xfr Length

Data

Empty
Buffer
Slot

Data Avail

Tokens
Owed
Count

Available
Token
Count

Token In

Token Out Token In

Token Out

Not
Empty

Not
Empty

Nogotiated
Maximum

Offset
Load

• The movement of a token around the loop is impeded by latencies. Examples are, the

round trip delay through cable and electronics, the time to empty the receiving buffer slot

and delays synchronizing events to Initiator and Target clock systems. It should be noted

that if the total latency incurred around the loop exceeds the Maximum Offset number of

word times, throttling (reduced data rate) will occur, even if adequate data bandwidth exists

at each end of the nexus.

Failure Modes

• The failures modes of interest are:

• Missing REQ or ACK active edges, typically caused by level shift due to ISI effects.

• Extra REQ or ACK active edges, typically caused by leading edge distortion due to

reflections or by induced noise.

• Of these, the dominate mode for any given transfer is undoubtedly a single type of failure

(missing REQ(s), missing ACK(s), extra REQ(s) or extra ACK(s)), but it is also possible that

any combination of these failures can happen with some reduced probability. To be

thorough, here is a look at all combinations.

1. Equal numbers of extra/missing REQs and/or equal numbers of extra/missing ACKs.

• These two combinations of errors are not detectable by REQ/ACK counting

because their net effect, at either end of the nexus, is zero. The effects of

T10/97-216r0

these errors can only be detected by some type of longitudinal redundancy on

the data itself.

2. Equal numbers of extra REQs and missing ACKs.

• This error combination is not detectable by REQ/ACK counting in the Target,

because its net effect at the Target is zero. It can be detected by the Initiator,

at Command Complete only, provided that the Initiator can count the REQs

received and detect that the count exceeded the total expected transfer

count. Otherwise it falls into the first category.

3. Equal numbers of missing REQs and extra ACKs.

• This error combination is also not detectable by REQ/ACK counting in the

Target, because its net effect at the Target is zero. It can be detected by the

Initiator, at Command Complete only, provided that the Initiator can count the

REQs received and detect that the count is less than the total expected

transfer count and provided that the expected transfer count is deterministic

(i.e. fixed block type device). Otherwise it falls into the first category.

4. All remaining errors, or combinations of errors, cause a net surplus or deficit of

returned ACK pulses at the Target and can be detected by the Target's Available

Token Count at the end of each Data Phase. A subset of these errors may also be

detectable in the Initiator but such detection is redundant and appears to be of little

incremental benefit.

Error Detecting Circuits

• The purpose of detecting extra or missing REQ/ACK edges is to prevent the undetected

corruption of data caused by the resulting dropped or inserted interface words. To

maximize the effectiveness of this error checking, care must be taken to ensure that the

circuitry used to detect the REQ/ACK edges for the purpose of error detection "see" the

same edges as the circuitry advancing the data path. This may be difficult if multiple circuits

are used to detect the same edge because the perceived REQ/ACK pulses are likely to

contain marginal energy and each circuit will have unique sensitivity to those pulses.

• There are three areas of functionality that have been identified as useful in the detection of

extra or missing REQ/ACK edges:

T10/97-216r0

• Initiator's REQ counting mechanism - this optional function may already exist to

protect buffer boundaries, etc. It can be used to check the number of REQs received

and report if the number exceeds the requested transfer count. It can also be used

to check if less REQs were received than the transfer count, but only for devices

with deterministic block lengths. These checks can only be made at the end of an

entire transfer, and not at the end of each Data Phase. Using this counter to detect

missing/extra REQ pulses provides very little incremental benefit because the

Target's Available Token counting mechanism will detect all the same errors, except

for the very narrow case of equal and opposite REQ and ACK errors that cancel

each others effect.

• Initiator's Tokens Owed counting mechanism - proper implementation of this

required function is critical to the robust detection of extra REQs (detection of

missing REQs or ACKs is not problematic). It must be able, under all conditions, to

pass at least one extra token back to the Target as an extra ACK, so that the Target

can detect the error condition. It should never reduce its count (e.g. rollover) in

response to any number of extra REQ pulses. Using this circuit to detect extra REQs

(as opposed to passing that indication back to the Target) has little benefit because

it must be at the Maximum Offset count when the extra REQ arrives, giving very

narrow coverage. Using this counter to check for more ACKs sent than REQs

received is just a test of the Initiators internal circuitry and not part of this discussion.

• Target's Available Token counting mechanism - proper implementation of this

required function is also critical to the robust detection of extra REQs or ACKs. It

must be able to detect, under all conditions, that more ACKs were received than

REQs were sent during any Data Phase (i.e. one, or more, ACKs received while the

Available Token count was already equal to Max Offset). It should never decrease

its count (e.g. rollover) in response to any number of extra ACK pulses.

• The detection of less ACKs received is already done in properly implemented

devices because the Target must not exit the Data Phase until the Available

Token count is at Maximum Offset. Missing REQs or ACKs will then result in

an interface "hang" waiting for ACKs that will never be sent. Because the

maximum time to complete a SCSI Data Phase or a SCSI Command is not

T10/97-216r0

specified, this condition will typically be discovered by a system software

timeout which must then cause the Initiator to Reset the entire SCSI interface.

• The detection of more ACKs received has problems because the Target will

assume the transfer is over after the proper number of ACKs are received

and it will then leave the Data Phase. The remaining ACK(s) may come at

any time after this, leaving open the possibility that they will go undetected as

the Target moves on to send the Status or Message byte (see Figure 5). To

minimize expose to this problem the Initiator should be able to detect, and

report as an error, the condition of the interface leaving the Data Phase while

ACK(s) are still owed. It should also abort sending any remaining ACK(s) to

reduce the chance that they are confused with the subsequent Status or

Message Phase. The Target should continue to monitor the ACK signal after

it has left the Data Phase. Any active edges on ACK that occur before the

Target asserts REQ for the Status or Message byte, should be reported as an

error. The Target could wait longer before moving out of Data Phase or

before asserting REQ for the Status or Message Phase, in hopes of

increasing the chance of detecting this error. However, the increase in

detection probability would have to be understood and traded off carefully

against the reduced performance.

Status or Msg PhaseData Phase

Figure 5 - Extra ACKs at the end of the Data Phase

ACK

REQ

Extra ACK
pulse is seen by

Target

Bus Settle
delay (min)

Target leaves Data Phase
before last real ACK pulse(s)

Last ACK pulse(s) can come at any
time (e.g. Initiator could have been

waiting for buffer resource)

Recommendations

1. A single circuit should be used in the Initiator and Target to detect the active edges of

REQs or ACKs. This indication should be passed unambiguously to all other circuits

requiring notification.

T10/97-216r0

2. The Initiator's Tokens Owed counting mechanism must faithfully remember that at least one

extra ACK is owed, regardless of how many extra REQs are received.

3. The Initiator should detect that the interface has left Data Phase while it still owes ACK

pulses and report this as an error. It should also refrain from sending any remaining owed

ACK pulses after the interface leaves the Data Phase.

4. The Target's Available Tokens counting mechanism must faithfully detect that at least one

extra ACK was received while the Available Token Count was at Maximum Offset,

regardless of how many extra ACKs are received.

5. The Target should continue to monitor the ACK signal after leaving the Data Phase to

detect that additional ACK pulses have occurred. This monitoring should continue until as

close as possible to the assertion of the REQ signal for the subsequent Status or Message

Phase.

