Fast Forward to the Future

- Ultra 2/LVD is the first major change to the mainstream SCSI physical interface since SCSI was introduced. It's a technological leap!

- Market expectations: SCSI is a desirable technology because it has built in backward compatibility. My investment is protected.

- Question: If I adopt this technology, does this stuff have headroom?

- First Order response: LVD technology is an excellent platform on which to build for the future. It appears to cure many of the ills of a single ended interface.
Is LVD SCSI Scaleable Beyond Ultra-2?

Adaptec believes that the present LVD SCSI works at 40MHz

Question: Do the tradeoffs made to produce Ultra 2 promote an easily scaleable technology?

Studies presented here a year ago and in November indicate adverse effects at higher speeds

- DC imbalance on symmetry of the signal.

- First pulse symmetry distortion

- Adverse effects of asymmetry on timing margins.

Multidrop studies have not been presented!

Characterization is not complete!
What Will Be Presented Today

- Adaptec has developed a test chip and conducted measurements in an Ultra 2 multidrop environment.

- A discussion of the test environment and the measurements made in an Ultra 2 compliant setup is offered.

- Supporting analysis will also be shared.

- A discussion of approaches to symmetric design and the practicality of their implementation.

- Review and comment on possible methods to extend current Ultra 2.

- A strawman proposal for Ultra-3.

- Compatibility considerations.
SCSI LVDS Testing

• Test Chip/Test Setup
• Empirical Results
• Analysis
• Conclusions on extensibility to higher frequency
• Ideas to obtain better margins at higher rates
Test Process

• Used test chip developed to verify Ultra 2 Design.

• Test chip provided way to evaluate margin of the REQ/ACK pulse in clocking data.

• Testing done at 80 Mtransfer and beyond to understand the extensibility of the current specification.
Test Chip/Board

Implements current Ultra 2 specification, but certain parameters can be varied.

• Can switch to symmetric or asymmetric drivers.

• Can be used with biased or non-biased terminator.

• Test setup allows clocking of data lines as well as REQ/ACK so the ability to strobe data successfully can be determined.

• Setup and hold time control allows detection of faults when sampling data.

• Test chip allows first pulse experiment to determine if a loaded line will cause errors.
DATA

CLK

Setup and Hold Variation

Data Patterns are CLK/2 = D0, CLK/3 = D1 etc
Can do bursts or continuous clocking

Pulse Generator

LVDS 0 Driver

LVDS 1 RCV

LVDS 2 RCV

……...

LVDS 13 RCV

LVDS 14 RCV

Termination

LVDS 15 RCV

Scope

ATN* Line Monitor

T10/97-146r0

Termination

……..
Testing done for:

- Different Cable lengths and speeds.
- Configurations run with symmetric/asymmetric drivers at 40 and higher.

Monitored:

- Level of first pulse amplitude after long period of constant
- Determination of the range of Setup/Hold times where no dat
First Pulse Testing

First pulse Vs second pulse voltage swings

<table>
<thead>
<tr>
<th>Cable Length</th>
<th># of Loads</th>
<th>Clock Frequency</th>
<th>First pulse swing</th>
<th>Second pulse swing</th>
</tr>
</thead>
<tbody>
<tr>
<td>8m</td>
<td>16</td>
<td>20 MHz</td>
<td>400 mV pp</td>
<td>468 mV pp</td>
</tr>
<tr>
<td>8m</td>
<td>16</td>
<td>40 MHz</td>
<td>295 mV pp</td>
<td>372 mV pp</td>
</tr>
<tr>
<td>8m</td>
<td>16</td>
<td>60 MHz</td>
<td>210 mV pp</td>
<td>240 mV pp</td>
</tr>
<tr>
<td>8m</td>
<td>16</td>
<td>80 MHz</td>
<td>65 mV pp</td>
<td>196 mV pp</td>
</tr>
<tr>
<td>12m</td>
<td>16</td>
<td>20 MHz</td>
<td>370 mV pp</td>
<td>428 mV pp</td>
</tr>
<tr>
<td>12m</td>
<td>16</td>
<td>40 MHz</td>
<td>240 mV pp</td>
<td>376 mV pp</td>
</tr>
<tr>
<td>12m</td>
<td>16</td>
<td>60 MHz</td>
<td>80 mV pp</td>
<td>225 mV pp</td>
</tr>
<tr>
<td>12m</td>
<td>16</td>
<td>80 MHz</td>
<td>Fail</td>
<td>Fail</td>
</tr>
</tbody>
</table>

Shows problem at 80 M transfers for first pulse detection.
Setup and Hold Time Margins with driver in different cable positions.

<table>
<thead>
<tr>
<th>Driver position</th>
<th>UDT Receiver position</th>
<th>Cable length</th>
<th>frequency</th>
<th>Max. duty cycle</th>
<th>Min. duty cycle</th>
<th>Setup/Hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>74%</td>
<td>24%</td>
<td>12.5</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>70%</td>
<td>39%</td>
<td>9.75</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>65%</td>
<td>42%</td>
<td>5.75</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>56%</td>
<td>41%</td>
<td>3.75</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>39%</td>
<td>36%</td>
<td>0.75</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>78%</td>
<td>63%</td>
<td>3.75</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>78%</td>
<td>58%</td>
<td>7.5</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>65%</td>
<td>57%</td>
<td>2.0</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>79%</td>
<td>49%</td>
<td>7.5</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>73%</td>
<td>60%</td>
<td>3.25</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>77%</td>
<td>64%</td>
<td>3.25</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>79%</td>
<td>64%</td>
<td>3.75</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>68%</td>
<td>57%</td>
<td>2.75</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>64%</td>
<td>36%</td>
<td>7.0</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>12m</td>
<td>40 MHz</td>
<td>77%</td>
<td>39%</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Duty cycles not consistent.
Setup and Hold Time Margins at Increased Speed

<table>
<thead>
<tr>
<th>Cable Length</th>
<th># of Loads</th>
<th>Clock Frequency</th>
<th>Max. Duty Cycle</th>
<th>Min. Duty Cycle</th>
<th>Duty Cycle Range</th>
<th>Setup/Hold Margin</th>
<th>LVD signal-swing</th>
</tr>
</thead>
<tbody>
<tr>
<td>8m</td>
<td>16</td>
<td>40 MHz</td>
<td>74%</td>
<td>29%</td>
<td>45%</td>
<td>11.25 ns</td>
<td>456 mV pp</td>
</tr>
<tr>
<td>8m</td>
<td>16</td>
<td>60 MHz</td>
<td>see note 1</td>
<td>see note 1</td>
<td>see note 1</td>
<td>see note 1</td>
<td>240 mV pp</td>
</tr>
<tr>
<td>8m</td>
<td>16</td>
<td>80 MHz</td>
<td>failed</td>
<td>failed</td>
<td>failed</td>
<td>failed</td>
<td>208 mV pp</td>
</tr>
<tr>
<td>12m</td>
<td>16</td>
<td>40 MHz</td>
<td>74%</td>
<td>24%</td>
<td>50%</td>
<td>12.5 ns</td>
<td>456 mV pp</td>
</tr>
<tr>
<td>12m</td>
<td>16</td>
<td>60 MHz</td>
<td>58%</td>
<td>47%</td>
<td>11%</td>
<td>1.82 ns</td>
<td>252 mV pp</td>
</tr>
<tr>
<td>12m</td>
<td>16</td>
<td>80 MHz</td>
<td>49%</td>
<td>40%</td>
<td>9%</td>
<td>1.12 ns</td>
<td>200 mV pp</td>
</tr>
</tbody>
</table>

Table 1. Setup/Hold Time Data, fully-loaded configuration, asymmetrical outputs

Note 1: Data miscompare occurs at one point over the range of duty cycle adjustment.

- 38% to 45% : passed
- **46% to 53% : failed**
- 54% to 64% : passed
LVD Signals 40 MHZ, 8 Meter Cable, Asymmetrical Driver

LVD Signals 60 MHZ, 8 Meter Cable, Asymmetrical Driver

LVD Signals 80 MHZ, 8 Meter Cable, Asymmetrical Driver
Bias Terminator and Asymmetrical Drivers

- From testing it would appear asymmetric drivers may not be sufficient to compensate for bias in the terminator at higher speeds. This is caused by the cable and capacitance.

- An investigation into the effect bias has on the terminator shows this represents a noise source which causes distortion of the waveform, resulting in mis-clocking of the data (REQ/ACK).

- Different current sources required for asymmetrical drive result in large tolerances and bias in terminator also result in large tolerances. These errors will affect timing margin.
Determination of Setup and Hold Time Margins.

0.5 Meter cable in continuous run mode

<table>
<thead>
<tr>
<th>Measurement Mode</th>
<th>80 MHz duty cycle</th>
<th>120 MHz duty cycle</th>
<th>160 MHz duty cycle</th>
<th>200 MHz duty cycle</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>no bias/ symmetrical</td>
<td>19 to 73%</td>
<td>26 to 63%</td>
<td>29 to 58%</td>
<td>35 to 47%</td>
<td>Proposed LVD Spec</td>
</tr>
<tr>
<td>no bias/ asymmetrical</td>
<td>19 to 73%</td>
<td>27 to 64%</td>
<td>29 to 59%</td>
<td>36 to 49%</td>
<td>0.1 V bias/ symmetrical</td>
</tr>
<tr>
<td>0.1 V bias/ asymmetrical</td>
<td>18 to 72%</td>
<td>24 to 60%</td>
<td>26 to 52%</td>
<td>30 to 40%</td>
<td>Current LVD Spec</td>
</tr>
</tbody>
</table>
Non-Biased Terminator and Symmetrical Drivers

- From testing, symmetric drivers with no bias can do as well at lower power. Could get more margin for same power.

- There is no tolerance problem with this setup since there is and no bias.

- Could more easily build a driver that provided an increased drive on the first transition to overcome any problems with sensing the first pulse after a delay.

- Symmetric drives with no bias is the way everyone else handles high speed line driving.

- Symmetric drivers will make future speed extensions easier.
Summary Of Predictions For Higher Speeds

Loss Of Signal Amplitude And Asymmetry As Shown In Test Data

Major Effects Contributing To Losses
- Capacitive loading of bus
- Conductor skin effect
- Lossy dielectric

Quantification Of Losses (40 to 80MT)
- 50% loss of asymmetry at receiver (short bus)
- Additional 50% loss; with a long bus - 25M (both symmetry and signal)
Evaluation Of PH Layer Improvement Alternatives

<table>
<thead>
<tr>
<th>More Signal</th>
<th>Results</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Drive Current 50%</td>
<td>More Power; Asymmetry % Same</td>
<td>Higher Power</td>
</tr>
<tr>
<td>Increase Load Spacing</td>
<td>2X Yields 140% Bandwidth</td>
<td>Legacy & Backplanes</td>
</tr>
<tr>
<td>Lower CIN</td>
<td>Cin< 10PF Yield 200% Bandwidth</td>
<td>Evolution of ASIC Design</td>
</tr>
</tbody>
</table>

Less Noise

<table>
<thead>
<tr>
<th>Less Noise</th>
<th>Results</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete Asymmetry At Drivers</td>
<td>Greater Margin; Must Change Receivers & Terminators</td>
<td>New Receiver Design</td>
</tr>
<tr>
<td>Improve Termination</td>
<td>Reduced Reflections; Must Change Spacing Rules And/Or Terminators</td>
<td>Legacy</td>
</tr>
</tbody>
</table>
LVD Bus - Amplitude vs Frequency

Graph Details

- **Log Amplitude (Millivolts)**: Ranges from 12% to 117% with peaks at 400 and 42 mV.
- **Log Frequency (Hz)**: Ranges from 20 to 640 Hz with peaks at 400 MHz.
- **4 ma @ 85 ohm**: Indicated at 4 mA.
- **1ST and 2ND Harmonics**: Marked at 10 PF loads.
- **10 PF 100 ohm**: Uses Ultra 3 pp.
- **10 PF 85 ohm**: Uses Ultra 3.
- **10 PF 20 PF loads**: Uses Ultra 2.

Table: Impedance, Load, Uses

<table>
<thead>
<tr>
<th>Impedance</th>
<th>Load</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ohm</td>
<td>10 PF loads</td>
<td>Ultra 3 pp</td>
</tr>
<tr>
<td>85 ohm</td>
<td>10 PF loads</td>
<td>Ultra 3</td>
</tr>
<tr>
<td>85 ohm</td>
<td>20 PF loads</td>
<td>Ultra 2</td>
</tr>
</tbody>
</table>
Even Harmonics
(2) Change in 80 to 150 MHz
Differential 120 MHz
Waveforms
(1) Current Probe
Waveforms
(2) Asymmetrical
Noise

Amplitude vs Frequency
Amplitude vs Time
Fundamental @ 40 MHz
Bus Current Waveforms
Issue: Ultra 2 uses a bias voltage on terminator, which has been found to be detrimental to high operation.

But: Bias is required to assure the receivers will be in a non asserted state if bus is not driven.

And: We need to keep backwards compatibility between Ultra 2 and Ultra 3.
Ultra 3 Strawman Definition

- 80 M transfers per Second
- 12 Meter max length
- 16 Loads
- 25 Meter max length point to point
- Load Capacitance 10/10/5
- Terminator unbiased
- Drivers are symmetrical
Ultra 3 Proposed Receiver

To use no bias at high speed must assure undriven is detected as non-asserted.

Receiver with offset was proposed for Ultra 2 but deemed no better than biased terminator.

In this case offset receiver was only for protocol not data transfer. Therefore, have non-asserted state for arbitration and best possible situation for data transfer.
Dual Receiver Design Considerations

Primary Data Receiver, High Speed, Low Offset

Secondary Protocol Phase Receiver
- ~130mV +/- 20% built-in offset
- Low speed, ~50ns delay time will be fine
- A very low power design still has good speed with a multiple stage design
- Small area, Vt offset design can be ~3200 square micron in 0.6µ process. This is ~1-3% of pad area.
- Low input capacitance. Small input transistors can be used, they would add ~0.05pf to the pin capacitance
Design Examples
Compatibility Goal

Want to have compatibility between Ultra 2 and Ultra 3. Compatibility is defined as being able to have Ultra 2 device work on Ultra 3 and vice versa.
Compatibility Goal

Backward Compatibility - 2 Cases

Ultra 2 Configuration - Biased Bus

Init 40

Ultra 3 Configuration - non-Biased Bus

Init 80

T10/97-146r0
Compatibility Goal

Three Approaches:

A
• Keep Ultra 2 as is.
• Have Ultra 3 require a Ultra 2 mode.
• Use a Ultra 2 to Ultra 3 adapter.

B
• Define an Ultra 2A receiver design.
• Build Ultra 3 and Ultra 2A with support for a non-biased bus.

C
• Change Ultra 2 to an non-biased bus.
Approach A

Ultra 3/2 Receiver Design

In Ultra 3 mode the switch is open.

In Ultra 2 mode the switch is closed and use is made of the biased bus.

This receiver will work on current Ultra 2 (biased bus) system as well as Ultra 3 system.

Current Ultra 2 defined receivers would need an adapter on a non-biased bus.
Approach A

Backward Compatibility - 2 Cases

Ultra 2 Configuration - Biased Bus

Init 40

40 40 40 80

Ultra 3 Configuration - non-Biased Bus

Init 80

80 80 80 Adapter

Ultra 3/2 RCV

Va ≠ Vb

Va = Va

T10/97-146r0
Approach B

Ultra 2A Receiver Design

To make Ultra 2 device work on a non-Biased bus, the Ultra 2 receiver to be as follows.

In this configuration operating on Ultra 2 bus (with bias) switch is closed and terminator bias is used.

When operated on Ultra 3 bus with the switch is open, the offset assures the receiver sees a non-asserted state when the bus is not driven. Note the receiver at a maximum of 40 M transfers.
Approach B

Backward Compatibility - 2 Cases

Ultra 2 Configuration - Biased Bus

Init 40

40 40 40 80

Ultra 3 Configuration - non-Biased Bus

Init 80

80 80 80 40

Ultra 3/2 RCV

Ultra 2A RCV
Approach C

Change Ultra 2 to an non-biased bus. The new receiver both becomes as shown for Ultra 3 receiver.
Approach C

Backward Compatibility - 2 Cases

Ultra 2 Configuration - Biased Bus
- **Init 40**
 - 40
 - 40
 - 40
 - 80

Ultra 3 Configuration - non-Biased Bus
- **Init 80**
 - 80
 - 80
 - 80
 - 40

Adaptec
Summary

Changing LVDS to a non-biased bus provides additional margin for extending the bus more easily to higher speed operation.

Backward compatibility can be achieved using one of several different ideas presented.