X3T10/96-191R0
Editorial Conventions for SAM and Protocol Standards

Charles Monia
Digital Equipment Corp.
July 16, 1996
Issues:
- Relationships between SAM and other standards are not clear.
- Groundrules for SAM compliance are undefined.

Approach
- Use OSI methods to refine existing specs.
- Define compliance in terms of: a uniform SCSI service model and protocol.
Requirements model

- SCSI Command Standards
- Device Stuff Implementation reqmts
- "Device Stuff"
- Physical Device
- "Interconnect Stuff"
- SCSI Architecture Model
- SCSI Protocol and Interconnect Standards
- Spec Reqmts
- Spec Reqmts
- Spec Reqmts
- Goal of requirements
 - Interoperability.
 - All interconnects "look the same" to host and target application layer.
 - Testability

- Specification Requirement
 - Defines specification content.
 - Test for compliance:
 - Do the words in the spec comply with the requirement?

- Implementation requirement.
 - Applies to physical implementations
 - Defines observable or measurable characteristics.
 - Defines how measurement is made.
 - Test for compliance:
 - Does the measured characteristic comply with the requirement?
SAM Contains:
- Specification requirements for SCSI-3 protocol and command standards.
- Implementation requirements for
 - A SCSI I/O system
 - "Device Stuff"
 -- How queuing works
 -- Task Management functions
 -- How ACA works
 -- Unit Attention behavior
 -- Command Status values and definitions
 -- Hard reset
 -- General CDB format
 -- Etc.
- Device Model -- What "device stuff" gets implemented in the physical device.

Protocol Standards specify:
- Implementation requirements for "interconnect stuff"

Sam and the protocol standards define layers of functionality.
• OSI distributed system
 – Functional layers
 – Service interfaces between layers.
 – A good way to specify distributed systems
 with layered functions.
• Each Layer
 – Provides services to the layer above.
 – Communicates by invoking services
 provided by the layer below.
• Each layer is defined by:
 – The user services it provides.
 • Service Access Point: The service
 interface between two protocol layers.
 • Service primitives: the services to be
 provided by a layer
 – The protocol it implements.
 • Defined in the protocol specification
 document.
- OSI layers

Layer $N+1$
- User
- Correspondent User

Layer N
- Protocol entity
- Peer protocol entity

Layer $(N - 1)$

(Logical) exchange path of PDUs

Service access point

Service provider

Used services

Service user

Used services

- OSI Service Primitives
 - Request
 - Indication
 - Response
 - Confirmation
- OSI Service Types
 - Confirmed
 - Unconfirmed
SCSI Layered Model

- MSI -- Model Service Interface,
- SCSI-3 Model protocol
- Provided to complete the description of behavior and integrate the architecture with the protocol standards.
- Model Application Layer
 - Model service primitives.
 - Model Protocol.
 - Hook for specifying device-level implementation requirements
 - Defined to complete the description of behavior only.
 - Represents a generic protocol implementation
 - Not intended to be implemented.
- Specification requirement
 - Each protocol standard shall define the protocol-specific mapping of the model services.
- A SCSI protocol standard conforms to SAM if:
 - It correctly maps the model service primitives.
 - Complies with other SAM specification requirements.
SCSI Service Model
- Based on SIP, SPI
- 4-step Confirmed
- Unconfirmed
- SCSI Service Model
 - Two-step, confirmed
- Service Primitives
 - Request -- \texttt{nnnnn.request} (params)
 - Indication -- \texttt{nnnnn.indication} (params)
 - Response -- \texttt{nnnnn.response} (params)
 - Confirmation -- \texttt{nnnnn.confirm} (params)

- Each protocol standard defines the protocol-specific mapping of service primitives and parameters.
SCSI-3 Command Service Model
Command Service primitives

- Command execution
 - Exec_cmd.request (Task Address, CDB, [Task Attribute], [Data-out buffer], [Command Byte Count], [Autosense Request] ||)
 - Exec_cmd.indication (Task Identifier, [Task Attribute], CDB, [Autosense Request] ||)
 - Exec_cmd.response (Task Identifier, [Sense Data], Status, Service Response ||)
 - Exec_cmd.confirm (Task Address, [Data_In Buffer], [Sense Data])
- Command Service Primitives (con’t)
 - Data transfer services (invoked by logical unit).
 - Two-step, confirmed service
 - Data movement controlled by logical unit.
 - Transfer data from target to initiator
 - Data_in.request(Task Identifier, Device Server Buffer, Application Client Buffer offset, Request Byte Count ||)
 - Data_in.confirm(Task Identifier ||)
 - Transfer data from initiator to target
 - Data_out.request(Task Identifier, Device Server Buffer, Application Client Buffer Offset, Request Byte Count ||)
 - Data_out.confirm(Task Identifier||)
- SCSI-3 Task Management Service Model

![Diagram of SCSI-3 Task Management Service Model]

- Application Client
- EXEC_TMF.request
- EXEC_TMF.confirm
- Protocol Standards
- SAM
- Initiator Role Agent
- Target Role Agent
- Task Manager
- EXEC_TMF.indication
- EXEC_TMF.response
- Target

Charles Monia
Digital Equipment Corp.
July 15, 1996
Task management services

- Exec_tmr.request (Object Address, Function Identifier ||)
- Exec_tmr.indication (Object Identifier, Function Identifier)
- Exec_tmr.response (Object Identifier, Service Response||)
- Exec_tmr.confirm (Object Address, Service Response||)