LVD SCSI Driver Proposal

Richard S. Moore Adaptec

Existing Boundaries

- Test circuit (SPI-2 10.1.1):
 - 9.7 mA < Ia < 15.0 mA
 - 4.9 mA < In < 15.8 mA
 - -0.9 mA < Ia In < 7.5 mA
 - This describes a diagonal band across a rectangular region.
- Algebraically derived minimum requirements:
 - la >= 7.02 mA + .353 * In
 - In >= 1.61 mA + .353 * Ia
 - This describes a wedge-shaped region.

SPI-2 Test Circuit (10.1.1)

Algebraic Solution

Overlay of Both Regions

Points of Interest

Label	<u>In (mA)</u>	<u>la (mA)</u>	Significance
А	4.7	8.7	Tip of wedge
В	7.6	9.7	Intersection of wedge and bottom edge of rectangle
С	15.8	9.7	Lower right-hand corner of rectangle
D	15.8	15.0	Upper right-hand corner of rectangle
E	6.9	15.0	Intersection of wedge and top edge of rectangle

- Consider region ABCDE.
- Point C fails in Kevin Gingerich's spreadsheet model. Either move up or move left.
- Points B and E are unnecessarily strict. Eliminate B and move E to the left.

Points of Interest

<u>Label</u>	<u>In (mA)</u>	<u>la (mA)</u>	Significance
А	4.7	8.7	Tip of wedge
C'	10.1	9.7	Rightmost working point on bottom edge of rectangle
C''	15.8	10.8	Lowest working point on right-hand edge of rectangle
D	15.8	15.0	Upper right-hand corner of rectangle
Ε'	4.8	15.0	Leftmost working point on top edge of rectangle

- Consider AC'DE'. Boundary includes 3 diagonals and one horizontal segment.
- AC"DE' requires one less diagonal segment and is therefore easier to specify.
- The spreadsheet model shows that all four corners of AC'DE' or AC"DE' give sufficient assertion-to-negation and negation-to-assertion transitions under worst case conditions.

Modified Region of Operation

Objection: 4:1 Voltage Ratio

- Need to meet receiver input balance requirements.
- Derive an additional boundary condition:

$$\begin{split} |V_{N}| &<= 4^{*}|V_{+}| \\ -V_{N} &<= 4^{*}(V_{N} + (I_{A} + I_{N})^{*}Z_{L}/2) \\ 5^{*} V_{N} + 2^{*}(I_{A} + I_{N})^{*}Z_{L} >= 0 \\ 5^{*}(I_{N}^{*}R_{T}/2 + V_{B}) &<= 2^{*}(I_{A} + I_{N})^{*}Z_{L} \\ I_{A} &>= 3.8 \text{ mA} + .69^{*}I_{N} \\ \text{Similar derivation to ensure } |V_{A}| &<= 4^{*}|V_{-}| \text{ gives:} \\ I_{N} &>= -2.9 \text{ mA} + .69^{*}I_{A} \end{split}$$

$$I_A <= 4.2 \text{ mA} + 1.45*$$

or

Revised Region of Operation

New Boundaries

$$I_A \ge 7.8 \text{ mA} + 0.19 * I_N$$

$$I_N \le 15.8 \text{ mA}$$

$$I_A \le 15.0 \text{ mA}$$

$$I_N \ge 4.5 \text{ mA} + 0.02 * I_A$$

$$I_A \ge 3.8 \text{ mA} + 0.69 * I_N$$

$$I_N \ge -2.9 \text{ mA} + 0.69 * I_A$$

Proposed Test Conditions

Replace: 416 mV <= V_A <= 706 mV with: 309 mV + 0.19 * |V_N| <= V_A <= 706 mV
Replace: 381 mV <= |V_N| <= 977 mV with: 361 mV + 0.02 * V_A <= |V_N| <= 977 mV
Replace: -277 mV < |V_A| - |V_N| < 181 mV with:

91 mV + 0.69 * |V_N| <= V_A <= 113 mV + 1.45 * |V_N|

Further Improvements?

- Lowering the maximum termination resistance or the maximum bias voltage reduces the drive current requirement by about 0.5 to 1.0 mA. Minimum values for these parameters should not be changed.
- How much tightening of these parameters (if any) can be tolerated by terminator designers?