X3T10/96-145 R0

LVD SCSI Assertion and Negation Currents

Richard S. Moore

Adaptec

Adaptec

Purpose

Define an operating region for driver assertion and negation currents (I_A and I_N) that will provide adequate DC voltage levels, incident wave voltage levels, and reflected wave voltage levels. I_A and I_N are defined such that both are positive quantities.

Constraints

- DC voltage levels:
 - » V_A >= 130 mV
 - » V_N <= -130 mV
- AC voltage levels (first transition):
 - » V₊ >= 150 mV
 - » V_ <= -150 mV
- Cable impedance:
 - » 85 ohms <= Z_L <= 135 ohms

Constraints (continued)

• Termination:

- » 100 mV <= V_B <= 130 mV
- » 100 ohms <= R_T <= 115 ohms
- » 0.87 mA <= I_T <= 1.3 mA (derived)
- Leakage and number of nodes:

DC Assertion Level

• $V_A \ge 130 \text{ mV}$ • $(I_A - 2 * I_T - N * I_L) * R_T / 2 \ge 130 \text{ mV}$ • $I_A \ge 2 * (130 \text{ mV} + V_B) / R_T + N * I_L$ • Maximum V_B , N, and I_L ; minimum R_T : $I_A \ge 5.52 \text{ mA}$

• $V_N \le -130 \text{ mV}$ • $-(I_N + 2 * I_T + N * I_L) * R_T / 2 \le -130 \text{ mV}$ • $I_N \ge 2 * (130 \text{ mV} - V_B) / R_T - N * I_L$ • Minimum V_B , I_L , and R_T ; maximum N: $I_N \ge 0.92 \text{ mA}$

Incident Wave Assertion

• $V_+ \ge 150 \text{ mV}$ • $V_N + (I_A + I_N) * Z_L / 2 \ge 150 \text{ mV}$ • $I_A + I_N \ge 100 \text{ mV} + (I_N + 2 * I_T + N * I_L) * R_T) / Z_L$

Incident Wave Assertion (cont.)

• $I_A >=$ <u>300 mV + $I_N * (R_T - Z_L) + 2 * V_B + N * I_L * R_T Z_L$ </u> • Maximum R_T , minimum Z_L : $I_A >= 7.02 \text{ mA} + .35 * I_N$

Reflected Wave Assertion

• $V_{R+} \ge 130 \text{ mV}$ • Let $Z_P = R_T * Z_L / (R_T + Z_L)$ • $V_N + (I_A + I_N) * Z_P \ge 130 \text{ mV}$ • $I_A + I_N \ge 130 \text{ mV} + (I_N + 2 * I_T + N * I_L) * R_T / 2) / Z_B$ • $I_A >=$ <u>130 mV + $I_N * (R_T/2 - Z_P) + V_B + N * I_L * R_T/2 Z_P$ </u> • Minimum R_T and Z_L : $I_A >= 6.01 \text{ mA} + .09 * I_N$ • Maximum R_T , minimum Z_L : $I_A >= 5.69 \text{ mA} + .18 * I_N$

Reflected Wave Assertion (cont.)

- Superposition of both reflected waves -let $Z_R = 2 * Z_P - Z_L / 2$
- $I_A >=$ <u>130 mV + $I_N * (R_T/2 - Z_R) + V_B + N * I_L * R_T/2</u>$ $<math>Z_R$ • Maximum Z_L , minimum R_T : $I_A >= 5.83 \text{ mA} + .055 * I_N$ </u>

Incident Wave Negation

• $V_{-} <= -150 \text{ mV}$ • $V_{A} - (I_{A} + I_{N}) * Z_{L} / 2 <= -150 \text{ mV}$ • $I_{A} + I_{N} >= ((I_{A} - 2 * I_{T} - N * I_{L}) * R_{T} + 300 \text{ mV}) / Z_{L}$

Incident Wave Negation (cont.)

• $I_N >= I_A * (R_T - Z_L) - 2 * V_B - N * I_L * R_T + 300 mV$ Z_L • Minimum Z_L , maximum R_T : $I_N >= 1.61 mA + .35 * I_A$

Reflected Wave Negation

•
$$V_{R-} \le -130 \text{ mV}$$

• $V_A - (I_A + I_N) * Z_P \le -130 \text{ mV}$
• $I_A + I_N \ge -130 \text{ mV}$
• $(I_A - 2 * I_T - N * I_L) * R_T / 2 + 130 \text{ mV}) / Z_P$

Reflected Wave Negation (cont.)

• $I_N >= I_A * (R_T/2 - Z_P) - V_B - N * I_L * R_T / 2 + 130 \text{ mV}$ Z_P • Minimum Z_L , maximum R_T : $I_N >= 0.99 \text{ mA} + .18 * I_A$

Reflected Wave Negation (cont.)

 Superposition of both reflected waves
 I_N >=
 I_A * (R_T/2 - Z_R) - V_B - N * I_L * R_T / 2 + 130 mV
 Z_R

 Minimum R_T, maximum Z_L:
 I_N >= 0.97 mA + .055 * I_A

Ideal Asymmetric Drivers

•
$$V_A = -V_N$$

• $(I_A - 2 * I_T) * R_T / 2 = (I_N + 2 * I_T) * R_T / 2$
• $I_A = I_N + 4 * I_T$
• I_T (mid-range) = 1.05 mA
• $I_A = I_N + 4.2$ mA

Symmetric and Asymmetric Drive

- Symmetric drivers with 10% mismatch: $I_A >= 0.9 * I_N$
- Asymmetric drivers with 10% mismatch: $I_A \le 1.1 * I_N + 4.6 \text{ mA}$

Allowed Region of Operation

Comments

- Analysis is for current-mode drivers and neglects driver and load impedances;
 i.e., R_s >> Z_L and R_L >> Z_L.
- A simple current source model for leakage is used. A better model would be a diode bridge with a current source.

Comments

- Worst case conditions arise from lowest loaded cable impedance combined with highest termination resistance.
- Incident wave amplitude is the dominant constraint for both assertion and negation drivers.

Comments

- Tightening range of R_T would provide relief by relaxing driver design constraints.
- If minimum negation current for DC conditions is positive, does this mean that the terminator bias is insufficient?