LVD SCSI SIGNALS

SIGNALS AT FAR TERMINATOR (NON-BIASING) (27 METERS POINT TO POINT)

NO SOURCE END TERMINATION

SOURCE AND FAR END TERMINATION

LVD SCSI BIASING TERMINATOR USED FOR TESTS

NOMINAL BIAS IS ~ 112 mV

DEVICE LEAKAGE HAS A SIGNIFICANT EFFECT ON THE ACTUAL BIAS VALUE: DRIVER LEAKAGE REDUCES BIAS VALUE TO ~ 82 mV (SHOWN BELOW)

BIAS LEVEL CAN BE CHANGED BY ADJUSTING VT HI AND VT LO

LVD SCSI WITH ~ 82 mV BIAS FROM TERMINATORS SINGLE CURRENT MODE DRIVER 9 METERS POINT TO POINT

NEAR DRIVER FAST 40

NEAR FAR TERMINATOR

EFFECT OF DIFFERENT TERMINATOR BIAS LEVELS

NOTE THAT LOWERING THE BIAS DRAMATICALLY INCREASES THE NOISE MARGIN FOR DRIVEN SIGNALS (NOT DESIRABLE FOR UNDRIVEN SIGNALS)

BIAS ~ 125 mV

BIAS ~ 10 mV

SINGLE STRENGTH DRIVERS; AT FAR END OF 9 METER BUS

EFFECTS OF INCREASING DRIVER STRENGTH DOUBLE DRIVERS USED

NOTE GOOD NOISE MARGIN EVEN WITH STRONG BIAS

NEAR DRIVER

NEAR FAR END

9 METER POINT TO POINT; 125 mV TERMINATOR BIAS

DOUBLE STRENGTH DRIVERS ON 27 METER CABLES

FAST 20 "CLOCK-LIKE" SIGNALS (100 NS/DIV)

FAST 40 "CLOCK-LIKE" SIGNALS (50 NS/DIV)

POINT TO POINT; 111 mV BIAS; NEAR FAR TERMINATOR

DOUBLE DRIVERS ON HEAVILY LOADED 27 METER BUS

FAST 20 "CLOCK-LIKE" SIGNALS (100 NS/DIV)

FAST 40 "CLOCK-LIKE" SIGNALS (50 NS/DIV)

DATA AT FAR TERMINATOR; BIAS 111 mV; 13 HPDF LOADS NEAR FAR TERMINATOR

FAST 80 ON HEAVILY LOADED 27 METER BUS

THIS CONDITION CANNOT WORK AT THIS LENGTH UNDER ANY TERMINATOR BIAS CONDITIONS UNLESS "CLOCK" IS MUCH MORE REGULAR

NEAR DRIVER

NEAR FAR END TERMINATOR

DOUBLE DRIVERS; 111 mV BIAS; 13 LOADS NEAR FAR TERMINATOR

EFFECTS OF TRANSITIONING FROM DRIVEN TO UNDRIVEN AND VICE VERSA: NEGATION TO HI Z

REFLECTION CAUSES FALSE ASSERTION

DOUBLE DRIVER; 111 mV BIAS; DATA NEAR DRIVER; 27 METERS HEAVILY LOADED NEAR FAR TERMINATOR

TRANSITIONS RELATED TO HIZ STATES

DOUBLE DRIVERS; 27 METERS LOADED BUS; 111 mV BIAS; NEAR DRIVER; SLOW SPEED DATA

MORE TRANSITIONS RELATED TO HIZ STATES

DOUBLE DRIVERS; 27 METERS LOADED BUS; 111 mV BIAS; NEAR DRIVER; SLOW SPEED DATA

CONCLUSIONS??

- BIAS TERMINATION REQUIRES EITHER A
 SIGNIFICANT SIGNAL INCREASE OVER THE TIA
 LVDS LEVELS OR ASYMMETRICAL DRIVERS
 TO MAKE EVEN 9 METERS
- WHEN USED WITH BIAS TERMINATORS
 ASYMMETRICAL DRIVERS OFFER A LARGE INCREASE IN NOISE MARGIN AND A SUBSTANTIAL REDUCTION IN POWER FOR EQUIVALENT CONFIGURATIONS
- THE DIFFERENCE BETWEEN CURRENT MODE AND VOLTAGE MODE DRIVERS NEEDS TO BE CAREFULLY CONSIDERED IN DEVELOPING THE SPECIFICATIONS
- REFLECTIONS AND UNPREDICTABLE BEHAVIOR AFTER NEGATION TO HI Z TRANSITIONS REQUIRE A BUS SETTLE DELAY -- WE SHOULD NOT TRY TO ELIMINATE THE GLITCHES
- IT APPEARS LIKELY THAT FAST 80 WILL BE LIMITED TO LESS THAN 25 METERS UNLESS WE CAN MAKE THE "CLOCKS" MORE REGUALAR