ASSUMPTIONS:

26-JAN-96 Richard Uber Quantum Corp.

(not shown)

- Receiver sensitivity = +/- 30mv @ 40.0Mhz = +/- 20mv @ 0.1Mhz- Terminator offset = 100 - 130mv favoring negation - Terminator resistance = 100 - 115 ohms - Line impedence = 85 (loaded) = 110 - 135 ohms (unloaded) - Drive currents: Balanced is compared to unbalanced 2:1 - Incident wave voltages are calculated for attenuations of 0, -1, and -2 decibel. TRANSITION CASES: # start state end state Bus release 1 active negation passive bus 2 assertion passive bus Wired Or release 3 active negation high speed transition assertion 4 assertion active negation high speed transition 5 passive bus assertion Wired Or (not shown)

6 passive bus active negation

FAST-40 NOISE MARGIN CASES Incident wave transitions, case #1

DRIVEN NEGATION ---> HIGH IMPEDENCE NEGATION (Bus Release):

V1 = Quiescent Negated voltage----- ^ ^

				Î	Î	Vswing = Z	line * I	neg/2	
	Vdrv =	voltage Ineg *			v	noise marg			
					v 			Vdiff	= 20my
	termin offse	ator t= 100-1	30mv	v	rvcr	sensitivit			20111
Vdiff=0								Vc	diff = 0
worst c	Vswing V2 = V1	= Zline - Vswin Vterm Rterm	min min max	2 100 mv 100 ohm					
Vterm	Rterm	Zline	Ineg	V0	Vswl	Vl	-1 db	-2 db	Vfinal
-100	100	135	3.75	-287	253	- 34	-62	-86	-100
-100	100	135	4.5	-325	303	- 22**	-55	-84	-100
-100	100	135	9	-550	607	+ 57**	-9**	-68	-100
-100	100	135	16	-900	1080	+180**	+62**	-44	-100

Conclusions:

1 There is no margin for ringing or crosstalk when active negation is turned off.

2 Protocol chip logic must tolerate bus release glitches lasting for a bus round trip time.

3 Problem is worst near the source, and gets better with attenuation.

FAST-40 NOISE MARGIN CASES Incident wave transitions, case #2

ASSERTED --> PASSIVE NEGATED (WIRED OR Release):

Inc	ident wa	ve negat	ed volta	ge					
						noise m	-	* 	75
						crossta	lk allow	ance = 3	5mv
Vdiff 0		nator of	fset = 0			Rcvr se	nsitivit	y = 40mv V	diff =
			* Rterm/		Vswin	g			
Quiesc	ent Asse	rted vol	tage	v	_v				
V1 = Vterm + Iasr * Rterm / 2 Vsw = Zline * (Iasr / 2) V1 = V0 - Vswing									
		Worst c Vterm Rterm Zline Iassert	min max min	100 mv 115 ohm 85 ohm -	S	Best ca max min max min	se 130 mv 100 ohm 135 -	IS	
ASSERTI Vterm		assive N Zline		V0	Vsw	Vl	-1 db	-2 db	Vfinal
Worst c -100mv		85	7.5ma	331mv	-318mv	+ 13**	+ 48**	+ 78**	-100mv
-100	115	85	9.0	417	-382	+ 35**	+ 77**	+114**	-100
-100	115	85	16	820	-680	+140**	+216**	+280**	-100
Best ca	se:								
-130		135	7.5	245	-506	-261	-206	-157	-100
-130	100	135	9.0	320	-607	-287	-221	-162	-100
-130	100	135	16	670	-1080	-410	-292	-188	-100

Conclusions:

- 1 Best case and worst case bracket the threshold, so typical cases are indeterminate.
- 2 Wired OR release transitions are NOT guaranteed to cleanly negate on the incident wave.
- 3 Protocol chips must tolerate "Wired Or" releases which flutter about threshold for a bus round trip time.
- 4 The lack of hysteresis on the LVD receivers may create new issues to be dealt with in the protocolchip logic.
- 5 Attenuation aggravates this problem.

FAST-40 NOISE MARGIN CASES Incident wave transitions, case #3 DRIVEN NEGATED --> ASSERTED: ----- Quiescent Negated voltage = V1 driven voltage Vdrv = Ineg * Rterm/2 ----- 130mv terminator offset= 100-130mv Vdiff=0 ---------- Vdiff = 0 rcvr sensitivity = 30mv -----Vswing = -30 mv~ noise margin Incident asserted wave__v_ = V2 V0 = Vneq - Ineq * Rterm/2Vswing = Zline * (Iasr/2 + Ineg/2) Vfinal = (terminator offset) + Iasr * Rterm/2 Vincident_wave = V0 + Vswing 130mv 1150hm Vterm max Rterm max Worst case: Zline min 85ohm Idrive min -NEGATION --> ASSERTION Rterm Zline I+/-V0 Vinc -1.0db -2.0db Vfinal Vterm Vsw unbalanced: 1** -130 115 85 6/3 -303mv 383mv 80mv 38mv 215mv 80 85 7.5/3.75 -346 478 132 34 -130m 115 301 85 8/4 510 150 94 45 -130 115 -360 330 185 122 -130 115 85 9.4.5 -389 574 67 387 220 151 -130 85 10/5 -417 637 89 445 115 balanced: 85 9/9 765 117 34 -40** -130 115 -648 387 115 85 10/10 -705 850 145 52 -30** -130 445 115 85 200 -130 12/12 -820 1020 89 -10** 560 85 -130 115 14/14 -935 1190 255 125 10** 675 85 -130 115 16/16 -1050 1360 310 162 30 790

4

Conclusion:

For a bus with 1 decibel of loss and/or crosstalk, a "balanced current driver" will require 2 times as much power as an "unbalanced current driver" with a ratio of 2:1 for Assertion : Negation currents.

For a bus with 2 decibels of loss and/or crosstalk, a "balanced current driver" will require 3 times as much power as an "unbalanced current driver" with a ratio of 2:1 for Assertion : Negation currents.

Loss	2:1 ratio	Balanced
1 db	6.0/3.0 - 7.5/3.75mA	9/9 - 11/11mA
2 db	7.5/3.75 - 9.0/4.5mA	16/16 - 19/19mA

FAST-40 NOISE MARGIN CASES Incident wave transitions, case #4

ASSERTED --> DRIVEN NEGATED: Incident wave negated voltage _ • ~ noise margin v ----- 105mv crosstalk allowance = 35mv ----- 70mv Terminator offset = 0 ^ Rcvr sensitivity = 70mv Vdiff = 0 _____ Vdiff = 0 Vdrv = I * Rterm/2 Vswing Quiescent Asserted voltage ____ v V1 = Vterm + Iasr * Rterm/2 Vsw = Zline * (Iasr/2 + Ineg/2) V1 = V0 - VswingVincident_wave = V0 + Vswing Worst case: 100mv Vterm min Rterm max 115ohm Zline min 85ohm Idrive min _ ASSERT --> NEGATE Vterm Rterm Zline I+/- VO Vsw Vinc -1.0db -2.0db Vfinal unbalanced: 6/3 275mv -382mv -107mv - 65mv - 28** -272mv -100m 115 85 -100m 115 85 7.5/3.75 331mv -478mv -147mv - 95mv - 49 -316 -100 8/4 360 -150 - 94 - 45 115 85 -510 -330 -100 9/4.5 418 -574 -156 - 93 - 38 115 85 -359 -100 115 85 10/5 475 -637 -162 - 92 - 31 -387 balanced: -100 115 85 10/10 475 -850 -375 -282 -200 -675 -100 115 85 16/16 820 -1360 -540 -392 -260 -1020 Conclusion:

No problems at the drive current targets determined by the Negation -> Assertion transition:

Loss	2:1 ratio	Balanced
1 db	6.0/3.0 - 7.5/3.75mA	9/9 - 11/11mA
2 db	7.5/3.75 - 9.0/4.5mA	16/16 - 20/20mA

Problem:

- Cable attenuation is only specified at 5Mhz, but the REQ/ACK pulses will run at 40Mhz.
- Available lossy transmission line models for Spice do not give credible results.

Worst case cable:

- 30 GA
- Single strand
- 110 ohms = minimum line impedence
- 12 meters long = 40 feet.

Analysis:

- Only simple skin effect considered
- Calculated frequency dependent resistances for relevant harmonics to 440Mhz.
- Used minimum unloaded cable impedence because loaded impedence of 85 ohms can only be achieved over a very short distance.
- Ignored stubs
- Assumed that terminators were far enough away to not be useful within the setup/hold window. (round trip time from either the driver or the receiver to a terminator is greater than 5ns)
- Total bus length \sim 13 meters.

Network:

115 ohm ------ 115 ohm term. 110ohms 110 ohm, 12 meter differential cable 85 ohms term. 0.5m 0.5m 0.5m 0.5m 0.5m

The voltage ratio per unit length can be calculated as Vout/Vin.

The voltage ratio for the entire cable can be calculated as:

Ratio = (Vout/Vin)^n , where n= number of unit lengths

The unit of length can be made smaller (R goes down, n goes up) until the computed voltage ratio stops changing significantly.

The result is a table of attenuation ratios versus frequency.

INPUT PULSE: An idealized input waveform is transformed into a Fourier Series, resulting in a table of harmonic coefficients versus frequency.

A sine wave generator is used for each harmonic with an amplitude equal to the product of the attenuation ratio and the harmonic coefficients. All sine wave generators are summed into a single node and then applied to the 85 ohm loaded line.

Three waveforms were studied:

- 40Mhz REQ/ACK square wave

- 20Mhz max data toggle rate

-12.5ns REQ/ACK pulse at 10Mhz, to look at

an isolated minimum width pulse

