```
ASSUMPTIONS:
```

- Receiver sensitivity = +/- 30mv @ 40.0Mhz
$=+/-20 \mathrm{mv} @ 0.1 \mathrm{Mhz}$
- Terminator offset $=100$ - 130mv favoring negation
- Terminator resistance $=100$ - 115 ohms
- Line impedence = 85 (loaded)
$=110-135$ ohms (unloaded)
- Drive currents: Balanced is compared to unbalanced 2:1
- Incident wave voltages are calculated for attenuations
of $0,-1$, and -2 decibel.
TRANSITION CASES:
\# start state end state
1 active negation passive bus
2 assertion passive bus
Wired Or release
3 active negation assertion
4 assertion active negation
5 passive bus
assertion
Wired Or (not shown)
6 passive bus
active negation
(not shown)

$\begin{aligned} & \text { V1 = Vneg + Ineg * Rterm / } 2 \\ & \text { Vswing = Zline } * \text { Ineg / } 2 \\ & \text { V2 = V1 - Vswing } \end{aligned}$									
worst	case:	Vterm Rterm Zline Ineg	min min \max max	$\begin{array}{r} 100 \mathrm{~m} \\ 100 \\ 135 \\ - \end{array}$					
Vterm	Rterm	Zline	Ineg	V0	Vsw1	V1	$-1 \mathrm{db}$	$-2 \mathrm{db}$	Vfinal
-100	100	135	3.75	-287	253	- 34	-62	-86	-100
-100	100	135	4.5	-325	303	- 22**	-55	-84	-100
-100	100	135	9	-550	607	+ 57**	-9**	-68	-100
-100	100	135	16	-900	1080	+180**	+62**	-44	-100

Conclusions:

1 There is no margin for ringing or crosstalk when active negation is turned off.
2 Protocol chip logic must tolerate bus release glitches lasting for a bus round trip time.
3 Problem is worst near the source, and gets better with attenuation.

FAST-40 NOISE MARGIN CASES
Incident wave transitions, case \#2
ASSERTED --> PASSIVE NEGATED (WIRED OR Release):
Incident wave negated voltage \qquad

Conclusions:
1 Best case and worst case bracket the threshold, so typical cases are indeterminate.
2 Wired OR release transitions are NOT guaranteed to cleanly negate on the incident wave.
3 Protocol chips must tolerate "Wired Or" releases which flutter about threshold for a bus round trip time.
4 The lack of hysteresis on the LVD receivers may create new issues to be dealt with in the protocolchip logic.
5 Attenuation aggravates this problem.

FAST-40 NOISE MARGIN CASES
Incident wave transitions, case \#3
DRIVEN NEGATED --> ASSERTED:

FAST-40 NOISE MARGIN CASES
Incident wave transitions, case \#4
ASSERTED --> DRIVEN NEGATED:
Incident wave negated voltage \qquad


```
Problem:
            - Cable attenuation is only specified at 5Mhz, but the
            REQ/ACK pulses will run at 40Mhz.
            - Available lossy transmission line models for Spice
                do not give credible results.
Worst case cable:
            - 30 GA
            - Single strand
            - 110 ohms = minimum line impedence
            - 12 meters long = 40 feet.
Analysis:
                            - Only simple skin effect considered
                            - Calculated frequency dependent resistances for relevant
                harmonics to 440Mhz.
            - Used minimum unloaded cable impedence because loaded
                impedence of 85 ohms can only be achieved over a very
                short distance.
            - Ignored stubs
            - Assumed that terminators were far enough away to not be
                useful within the setup/hold window. (round trip time
                from either the driver or the receiver to a terminator
                is greater than 5ns)
            - Total bus length ~ 13 meters.
```

Network:


```
Rskin(freq)
The voltage ratio per unit length can be calculated as
Vout/Vin.
The voltage ratio for the entire cable can be calculated as:
Ratio = (Vout/Vin)^n , where n= number of unit lengths
The unit of length can be made smaller (R goes down, n goes up)
until the computed voltage ratio stops changing significantly.
The result is a table of attenuation ratios versus frequency.
INPUT PULSE:
An idealized input waveform is transformed into a Fourier Series,
resulting in a table of harmonic coefficients versus frequency.
A sine wave generator is used for each harmonic with an amplitude
equal to the product of the attenuation ratio and the harmonic
coefficients. All sine wave generators are summed into a single
node and then applied to the 85 ohm loaded line.
Three waveforms were studied:
    - 40Mhz REQ/ACK square wave
    - 20Mhz max data toggle rate
    -12.5ns REQ/ACK pulse at 10Mhz, to look at
        an isolated minimum width pulse
```


