SPI-2 LVDS Driver Tests

SPI-2 LVDS Driver Z

SPI-2 LVDS Waveform

Communications Marketing
abc

SPI-2 LVDS Termination

Sourced from TERMPWR, Enabled Terminators only
Source $5<15 \mathrm{~mA}$
Sink < 200 uA (Noise Load)
Open Circuit on power off
or Open Circuit for a Disabled Terminator

* May Reflect the AC Impedance

Switches are up for Single Ended Switches are down for Low Voltage Differential

SPI-2 LVDS Diff Sense

SPI-2 LVDS Bus

June 21, 1995 Merrimack MTG

- Reviewed the document sections of SPI that will be effected by LVDF SPI.
- Studied the Diff Sense issues and set new values
- Reviewed common mode issues with each interface
- Reviewed the cost objectives of LVDS
- Defined the pinning for the based on Single ended, regenerated table done in Harrisburg, but not documented.
- Note: FAST-40 single ended would still be a longer distance than ATA. This should be a viable standard.
- FAST-40 and FAST-80 will require very low delta stub and capacitance for data, parity, ack and req signals. The additive effect of 7 or 15 devices will exceed the skew budget.
- Worked timing issues for FAST-40 and FAST-80, external drivers and receivers can not be used, there is no margin in the skew budget.

Agreements

- A single chip may work for both single ended (Async, 5, 10,20) or LVDS (FAST-40,80)
- No SE FAST-40
- No SE Signals in FAST-40
- Timing OK
- Diff sense is define with an autosense feature.
- low, (SE) all ground drivers shall be on.
- Pin outs OK
- Target of 15 pF maximum
- Current mode Driver, no Driver output impedance spec.
- Terminator bias with current limited, 100 mV at 250 microAmps maximum.
- No specified receiver hysteresis.

LVDS Power Calculations

- Transceiver power calculations for a 27 line device at 3.3 Volts + 10\%.
- Maximum 21 Active Drivers on a 27 line device.
- 27 Active Receivers
- Driver control current $1 \mathrm{~mA} * 3.6$ Volts, $3.6 \mathrm{~mW} * 21$ Lines $=75.6 \mathrm{~mW}$
- Driver power $4 \mathrm{~mA} *(3.6-.24)$ Volts, $13.6 \mathrm{~mW} * 21$ Lines $=285.6 \mathrm{~mW}$
- Receiver Power 2.5 mA *3.6 Volts, $9 \mathrm{~mW} * 27$ Lines $=243 \mathrm{~mW}$
- Total Transceiver current 604.2 mW

LVDS - 6 mA Power

- Transceiver power calculations for a 27 line device at 3.3 Volts + 10\%.
- Maximum 21 Active Drivers on a 27 line device.
- 6 Active Receivers
- Driver control current $1 \mathrm{~mA} * 3.6$ Volts, $3.6 \mathrm{~mW} * 21$ Lines $=75.6 \mathrm{~mW}$
- Driver power $6 \mathrm{~mA} *(3.6-.36)$ Volts, $19.44 \mathrm{~mW} * 21$ Lines $=408.24 \mathrm{~mW}$
- Receiver Power 2.5 mA *3.6 Volts, $9 \mathrm{~mW} * 6$ Lines $=54 \mathrm{~mW}$
- Total Transceiver current 537.84 mW

