# An Update on Distributed I/O at LLNL

Lansing Sloan Presented to SCSI Working Group July 11-12, 1995

Lawrence Livermore National Laboratory 7000 East Avenue, M/S L-60 Livermore, CA 94550-9900 USA

e-mail: ljsloan@llnl.gov phone: (510) 422-4356 fax: (510) 423-8715



### Overview

### Goals

- We are de-emphasizing SCSI: why?
- Emphasis now: third-party data over TCP/IP
- Alternative: "network attached secure discs"
- Comparison of approaches
- Security remarks

## Scalable I/O Facility (SIOF) Goals

- $\eta$  Hierarchical storage management (HSM) and high, scalable bandwidth
- $\eta$  Practical solution to the I/O bottleneck
  - $\eta$  Scalable parallel HSM I/O for MPPs and clusters
- $\eta$  Reduce storage cost
  - $\eta$  Mass-market components
  - $\eta$  Network attached peripherals (NAPs)
- $\eta$  Parallel WAN access to stored data

X3T10/95-262R0

### SIOF - Key Technologies



η Switched Fabric (<u>Fibre Channel</u>, ATM, Serial HIPPI, or FDDI)

 $\eta$  Parallelism and scalability

 $\eta$  Fast Date Rates

 $\eta$  Small form factor interconnect

η Network Attached Peripherals (NAP)

 $\eta$  Security for NAPs (and for WAN)



# Network Attached Peripheral (NAP)

- η Peripheral with <u>network interface</u>, <u>security</u>
  <u>mechanism</u> and <u>control protocol</u> to allow it to
  be fully controlled by a remote File Server.
- $\eta$  Advantages
  - η eliminates workstation server reduces cost and system administration
  - $\eta$  avoids unnecessary data copies global file system  $\eta$  scalable I/O performance if using switched fabric





### Deliverables for 1995



η Demonstrate at SuperComputing 1995 scalable parallel network-centric peripheral systems with a Meiko CS-2 MPP accessing  $\eta$  tapes in parallel (front-ended by workstations)  $\eta$  discs in parallel (front-ended by workstations emulating network attached peripherals) n Plan deliverable for HPSS Release 3

 $\eta$  Specify NAP behavior, start coding

# Problems with SCSI and Fibre Channel

- η Cannot use SCSI for SC95.
  - $\eta$  Class-2 FC switch not available in time
  - $\eta$  Class-1 FC SCSI support not available in time
  - $\eta$  Switched-FC SCSI support not ready in time
- η Long-term opportunity
  - η Industry support switched-FC SCSI with multiple vendor interoperability

# We are emphasizing TCP/IP now

- η HPSS already supports data transport over TCP/IP.
- η Meiko supports TCP/IP with switched Class 1 FC (tested) but needs obsolete FC version.
- $\eta$  We might have to use an IBM RS6000, which might not support the obsolete FC version.
- η Fall-backs are to use TCP/IP on ATM (tested with Meiko) or other media.

### **First Generation** Implementation



X3T10/95-262R0



10

### NAP Development Plans



- η Phase 1 SC '95
  - $\eta$  Workstation front-end NAP converter
  - $_{\eta}$  Investigate command protocols
  - $\eta$  Begin prototyping security mechanisms
- η Phase 2 FY95
  - $\eta$  NAP converter using off the shelf PCI board
- η Phase 3 FY96
  - $\eta$  Custom PCI board for maximum performance
  - $\eta$  Prototype hardware security mechanisms

### Embedded NAP Converter





VxWorks Real-time OS

# Other approach: Network Attached Secure Discs (NASD)

- η Proposed by Garth Gibson at National
  Storage Industry Consortium, May 1995
- $\eta$  Discs are directly on switched networks.
- $\eta$  A disc has its own file system.
- $\eta$  Discs include security for file systems.
- $\eta$  Applications access files directly.

### LLNL is interested in NASD

- + Real potential for secure NAPs
- + Should allow efficient application I/O
- Early to know what will result
- Early to know about industry support
- Direct access by applications interferes with hierarchical storage management
- Each disc must support site security policies
- Cost and performance for security?

## We remain interested in SCSI

- + Current direction of peripheral mass-market
- + High performance
- + Cost effective
- Current market supports no switches
- Need some security enhancements
- Limits physical layer not on ATM, FDDI, ....
- Probably need gateway to WAN environment

# For now, LLNL will continue with TCP/IP NAP

- + Supports almost all physical media
- + Provides WAN connectivity
- + Reduce current HPSS costs
- + Already supported by industry in NAP like devices - NFS & FTP servers
- + Easy to prototype, software implementations
- + Industry is working hard on TCP/IP security (big electronic commerce market) performance

X3T10/95-262R0

# TCP/IP has some disadvantages

- Possibly slower, less cost-effective than SCSI
- Might need WAN and/or security gateways to lower costs or optimize WAN use
- Cost and performance for security?
- If costs more than SCSI, TCP/IP may be a stopgap solution

### NAP security



- η Goal: Ensure storage server fully controls NAPs (secure reliable control path).
- η Objectives
  - $\eta$  Performance minimize latency
  - $_{\eta}$  Minimize modifications/additions to peripherals mass-market
  - $\eta$  Minimize configuration management
  - $\eta$  Portable not media dependent (desired)
  - η Extendible to WAN environment (desired)

### NAP security: control path



 $\eta$  Physically separate control net (current HPSS)  $\eta$  Simplest but costly - not mass-market  $\eta$  WAN environment?

 $\eta$  Use security features of fabrics (switch)

- $\eta$  Requires the least amount of change to peripheral
- $\eta$  Configuration management difficult
- η Encryption
  - $\eta$  Costly addition to peripheral not mass-market?
  - $\eta$  Performance?

### NAP security update



η Snooping may disclose parameters that can be used to mount attacks

- $\eta$  SCSI is vulnerable to forgery
- $\eta$  Solution: confine SCSI domain in safe area
- η Snooping facilitates "replay" attacks
- $\eta$  Rogue clients may pass address parameters
  - $\eta$  Hard to detect
- $\eta$  Site-specific security policies

### NAP security analysis is hard



- η System architecture not complete HPSS WAN
- η Security requirements not clearly defined
  η Exact needs vary from site to site
  η Need to prototype to effectively analyze solutions

# NAP security: some conclusions



- η Peripheral must participate placing more responsibility in peripheral simplifies security
  η Minimum: NAP must be fully controlled by server
  η Do not want site-specific policies in all peripherals: mass-market and cost to configure
- $\eta$  Distributed systems allow for more attacks

# Summary: LLNL's current efforts



- $\eta$  Focusing on TCP/IP NAP at present
- $\eta$  Investigating security issues
- η Plan to participate in Network Attached Secure Disc effort
- $\eta$  Seeking industry partners for secure NAP