

Fault Tolerant Controller Configurations for SCSI

Steve Sicola Digital Equipment Corporation

Fault Tolerant Controller Configurations For SCSI

Overview

- Common Fault Tolerant Controller Configuration for SCSI Today
- Features and Drawbacks of Today's Configurations
- What Metrics of Fault Tolerance are Important to Customers?
- Why Standardize Fault Tolerant Controller Configurations? How?
- Options for Standardization & Conclusions

- Many System Customers today want high availability with their storage
- Controllers are part of the system, and must be made highly available using redundancy techniques
- Redudancy Techniques include:
 - Active + Hot Standby...
 - Active + Active...

A typical Fault Tolerant Controller Configuration:

A typical Dual Controller Configuration with two Controllers sharing access to attached devices, in this case with 3 buses being shared between the controllers.

This definition does NOT specify how the controllers are attached to the host or to the devices with parallel SCSI buses

- Fault Tolerant Controllers add new details to access of host data by:
 - allowing varying attachement to the host computers
 - with more than one host port per controller
 - with controllers attached on different host buses

- Fault Tolerant Controllers add new details to access of host data by:
 - Allowing various types of access to devices
 - by the shared topology to the devices between the controllers
 - by use of protocol policies such as Reserve & Release in SCSI.

- Fault Tolerant Controllers add new details to access of host data by:
 - Allowing Failover of device control from a failed controller to the survivor
 - without host operating system support
 - with host operating system support
 - Allowing Failback with and without host operating system support.

A block diagram of a controller incorporating all possible attributes:

- Current solutions in industry for the typical configurations shown include:
 - Vendor Unique host operating system support for single port per controller and/or multi-host bus attachment (Failover can be manual or automatic)
 - Target Failover with 2 host ports per controller (2nd idle until failover).
 Failback can be automatic or manual.
 - Target Failover with one host port, assuming hardware can act as >1 target.

Storage W k s

Features and Drawbacks of Today's Configurations

Features:

- Highly Available Storage achieved
- Single host port controllers with or without host support reduce product costs
- Multi-host port controllers without host OS support achieve redundancy more simply.

Features and Drawbacks of Today's Configurations

Drawbacks:

- Non-Standard Implementations leading to possible interoperability problems on different platforms in the same system.
- Cost
- Failvover Time is not bounded by several techniques used.
- Some techniques used don't adequately abort I/O's on failed controllers.

What Metrics of Fault Tolerance are Important to Customers?

- Active-Active Configurations to achieve greater availability with their overall system/cluster, as well as performance of two controllers accessing shared data.
- Failover/Failback time is critical in production environments.
- They want it for free...

Why Standardize Fault Tolerant Configurations in SCSI?

- To Reduce the cost of Solutions
- Because of the convergence of standards on many different interconnects that will have SCSI RAID controllers (FibreChannel, SSA, FAST 20 SCSI) coupled with customer desires of fault tolerance & interoperability with all their system boxes/software.

Why Standardize Fault Tolerant Configurations in SCSI? How?

- To Generalize the number of controllers in a fault tolerance configuration as well as the type of access allowed by hosts
- Increase speed of failover from current techniques
- Generalize the possible system topologies supported in simple terms

Why Standardize Fault Tolerant Configurations in SCSI? How?

- HOW:
- Support in SCSI for 'Registration' of multi-controller configurations sharing device access. This would be contained within 'conspiring' controllers and readable by all attached hosts.
- Support in SCSI for 'Supported Behaviors' of Controllers during failover/failback to meet the needs of different system topologies and operations

Options for Standardization

- Addition of Mode Page definition(s) in the Standard Controller Commands document.
 - To 'register' all controllers in a fault tolerant configuration as well as LUNs being served by each controller
 - TO 'register' behavior or controllers during failover/failback
- Additional ASC/ASCQ's for Failover/Failback Events

Options for Standardization

- A combination of a new SCC mode page and additions to the Exception handling page(s) in SCSI-3.
- Inquiry data additions for Controllers to give the 'registration' information (yuk).

Conclusions

- Controllers in Fault Tolerant Configurations are becoming widespread
- Many solutions to support for these configurations exist
- Standardization would generalize the problem and solution as well as give Operating Systems MUCH more control and visibility of attached storage subsystems.

