

KJG

1

•Bias does not affect average power in driver appreciably

- Integration requires about 50 mW avg per driver
- •Lower VCC and/or VOD are the only path(s) to power dissipation reduction and integration

λ LVDS stands for Low-Voltage Differential Signaling and is fundamentally RS-422 with reduced output signal levels, receiver sensitivities, and ground potential differences. It has been and is being standardized in IEEE and EIA/TIA.

LVDS

KJG

4

LVDS

260 ps \leq tr or tf \leq 1.5 ns

- λ >1Gbps (theoretical)
- λ 100 Mbps to 10 m overUTP in Laboratory
- λ Transmission line from the die on out
- λ Compatible with 3 V- or
 5 V-logic semiconductor
 processes allowing
 integration and reduction
 in skew.

Problems solved

KJG

6

- λ Point-to-point vs bus structure
 - » A multi-drop bus structure would require doubling the driver output currents (lowering the load impedance) of LVDS
 - » High-impedance driver output requirements
 - » Stubs and bus loading and noise margins
 - » Idle-line failsafe

- λ Backward Compatibility
 - » Not even close to the +/-7V ground potential difference capability of RS-485
 - » RS-485 signal can be attenuated to interface to LVDS receiver
 - » LVDS signal should be detectable by most RS-485 receivers but not assured
 - » Idle-line failsafe is not compatible