X31Tl6 /95-102

X3T10/98-16& 1.0
November 30, 1994 9:59 am

—

Proposal for Enhanced IDE 95
Features

ATA-3 & ATAPI

Devon Worrell
November 30, 1994

f

2 WESTERN DIGITAL .-

Proposal for Enhanced IDE 95 Features

1.0 Introduction

1.1 Purpose

The purpose of this document is to document a proposal from Western Digital. This proposal will add functionality to
the IDE Specifications.

The issue is that more people in the world are now aware that more is to be gained by enhancing IDE than by promot-
ing SCSI into the volume PC space. The obvious opportunity is to overlap the IDE channel, i.e. send one command
per device. The motivations for overlapped IDE is multi-tasking OS. The next obvious opportunity is to add queuing,
i.e. more than one command per device. This would allow for the DMA channels be multi-threaded.

We must realize that the existing single threaded dual channel DMA, single threaded dual channel IDE solution
hasn’t shipped and we need to get market focus behind it.....not focus all the interest on something that isn’t avail-
able...ie. SWAT...Sell What is Available Today. The multi-threaded thing is at best a 2H95 product, more likely a 1H96
product.

1.2 Scope

This document will cover the key architectural points and other design issues. It is intended that this document be the ba-
sis for industry discussion.

1.3 Audience

This document is intended for use by Western Digital Engineers and Managers and attendees of ATA and SFF.

1.4 Technical Terms

There are a number of technical terms being used today to describe the capabilities that will be added to the interface.
This of course is natural (Given that Marketing is involved), but could cause confusion when reading this proposal.

Multi-thread, Multi-threaded, Multi-threading This must be the most misused term used today. It is used to de-
scribe everything from operating systems to lines at the bank. For
the purposes of this document this term will be used to describe a
very general capability of the IDE interface only. When used to de-
scribe the IDE Interface then it will mean that the interface can be
used to transmit new commands to device(s) on the cable before
the completion of any previous (pre-existing) command(s). This
term will NOT be used to describe any capability of the Host or
Devices attached to the IDE Cable.

Singie Thread, Threaded or Threading This will be used to describe the opposite of Multi-thread and will
be used to describe a general capability of the IDE Interface only.

Overlap, Overlapped, Overlapping This will be used to describe a capability of Device(s) attached to
the IDE Cable.

Arbitration When used within the context of this proposal, this will refer to

the sharing of common signals or other resources (Registers)used

Enhanced IDE 95 2 Page 2

0754

Proposal for Enhanced IDE 95 Features

Command Queuing

Tagging

Controller

IDE

Semaphore

Task File, Task File Registers

Enhanced IDE 95

in conjunction with the IDE interface, Host computers or Devices
using the IDE interface.

Simply put, allowing more than one command at a time to be ac-
cepted by the IDE Device.

No not showing the world that you exist. This is synonymous with
Command Queuing and is used interchangeably.

The electronics on a peripheral, that provides the IDE functionality.

Integrated Drive Electronics. This is the only acronym that I will
use in this document. Although there are other names for the inter-
face, such as ATA, ATA-2, and ATA-3, I will not be using them in
this document. These are used by the Standards bodies as a pseud-
onym for the ubiquitous IDE Interface.

Used in the context of this proposal, a semaphore is any mecha-
nism that is used to lock access to a common resource.

This refers to he Registers that are used to control an IDE device.
For the purposes of this proposal only those registers and signals
that can be altered by either the Host or the Device are considered
part of the Task File Registers. e.g. BSY, DRDY, DREQ etc. are
NOT considered part of the Task File.

Page 3

Proposal for Enhanced IDE 95 Features

2.0 Goals

It is the intent of this proposal to provide some basic improvements to IDE. This package of improvements will be
known as Enhanced IDE 95. The most basic improvement will be to allow commands to be sent to each of the two devic-
es on one IDE Cable, independently. That is allowing commands to be processed in both devices at the same time. A fur-
ther improvement will be to allow multiple commands to be sent to each of the devices on the IDE Cable. Although this
may seem simple, the compatibility issues are extremely complicated.

2.1 Generic Goals

Keep it as simple as possible.

Allow Commands to be sent to each Device on the IDE cable independently.

Allow mixing of Legacy Devices and Newer capability Devices and still use the new capabilities.
Use DMA and independent commands as basis for greatest performance improvement.

Reduce the number of Interrupts to further improve performance.

Report Capabilities and Default to Legacy Mode.

Enable Capabilities that are backward compatible in Post, using Set Features.
Enable Capabilities that are not backward compatible on a command by command basis.
Single solution for ATA and ATAPI peripherals.

Use only the existing task file register space

Maintain compatibility with current silicon.

Support both PIO and DMA modes.

Support existing PCI Bus Master DMA

Support transfers of more than 512 bytes on any given DRQ Interrupt.

Allow error reporting after transfer on reads.

Allow for a minimum queue depth of 64.

Allow the drive to release the Task File Registers before command completion.
Support only simple queued commands.

Minimize Host polling requirements.

2.2 Other Possible Areas for Improvement

There are some other important improvements that Enhanced IDE 95 should address. Although these are important as-
pects of EIDE 95, this proposal goes no further than to point out the need.

One Interrupt for both Primary and Secondary Channels.
Parity on Data Transfers.

Reduced Command Set.

3.3v Interface.

Enhanced IDE 95 0 (5 Page 4

Proposal for Enhanced IDE 95 Features

3.0 Marketing considerations

Some would say that all these changes are not needed, after all there is the SCSI interface. Some would aiso say that
these changes are producing an IDE interface that is no different in complexity from SCSL

We all should realize the mistakes were made with SCSI. You must also realize that IDE runs to a different model. We
would not use the comparison Simple versus Complex, instead we would use: More Control and Cheap versus Less Con-
trol and not so Cheap. Clearly IDE has always been and always will be much closer to an implementable standard due to
it being a register based interface, whereas SCSI is a protocol based interface.

3.1 History
If you take a step back and realize that any interface is comprised of only four elements:
Physical: Connectors
Electrical: Signals. Voltages, Timings
Protocol: Sequence, Bits, Registers
Commands: Operations

If you apply this model against the 10 years since the original PC/AT hard disk controlier shipped and then transitioned
to IDE, you will see that progress had occurred where the PC market needed it to.

3.1.1 Physical
IDE has 3 physical interfaces:

e 3.5”:40 pin I/O connector, 4 pin power
e 2.5: 44 pin I/O that has 40 pins of I/O and 4 of power
e 1.8”:68 pin PCMCIA

3.1.2 Electrical

IDE has had a relatively constant electrical interface with the following areas of growth:

« PDIAG/DASP to address compatibility during transition from controller/ST-506 drives to IDE drives.
« DMARQ and DMACK to support DMA transfers.
¢ Faster PIO Data Register Timing.

Mode 0: 600 ns per word - 3.33 Mbyte/sec.

Mode 1: 383 ns per word - 5.22 Mbyte/sec.

Mode 2: 240 ns per word - 8.33 Mbyte/sec.

Mode 3: 180 ns per word - 11.1 Mbyte/sec.
Mode 4: 120 ns per word - 16.66 Mbyte/sec.

« Faster Multiword DMA Data Register Timing.

Mode O: 480 ns per word: 4.16 Mbyte/sec.
Mode 1: 150 ns per word: 13.33 Mbyte/sec.
Mode 2: 120 ns per word: 16.66 Mbyte/sec.

+ CSEL 10 ease installation and eliminate jumpers

-}

Enhanced IDE 95 07 Page 5

Proposal for Enhanced IDE 95 Features

3.1.3 Protocol

Until ATAPI, IDE has only added more advanced data transfer protocols and had relied upon the Command Register
write, BSY bit, DRQ bit, and IRQ protocol for almost everything:

e Multi-sector PIO Read/Write.
 DMA Read/Write.
« Packet Interface. (ATAPI)

3.1.4 Command Set

Since the AT controller first shipped in 1984, command functionality has been added in the areas of:

» IDENTIFY to report capabilities.
« SET FEATURES to enable advanced capabilities.
» Multi-Sector PIO Read/Write.
+« DMA Read/Write.
+ Power management.
« Download microcode.
+ Removability.
o Packet Interface. (ATAPI)
e CD-ROM command sets.

» Tape command sets.

3.2 Issues with SCSI

The major issues with SCSI within the PC market were:

« No effort was made to standardize the hardware registers used to integrate it into the PC. What the PC OEMs want are
standard register sets, standard command sets, and embedded operating system support. This forced either:

e Vendor supplied drivers, or

« Layered device driver model with vendor supplied hardware driver (aka mini-port)
« A command set that was too complex and subject to too much interpretation.
« A protocol that was too complex for single-user machines.
» Acost point that was/is too high.

It should come as no surprise that the industry is trying to take the IDE cost benefits and extend the capabilities. The
beauty of IDE is that it defines a register set, protocol, a command set, an electrical interface, and a physical interface
all within one document. PCI Bus Master DMA is obvious, as is moving from the domain of a single threaded channel
to a multi-threaded channel to a queuing device.

3.3 Model for enhancing IDE

The obvious model is:

+ Power up to Legacy/Compatibility mode.
+ Report advanced capabilities via Identify Drive.

Enhanced IDE 95 Page 6

§7/C

Proposal for Enhanced IDE 95 Features

* Have the OS driver enable the advanced capabilities via Set Features command or use arguments to individual en-
hanced capability commands.

» Have the OS driver communicate with the IDE device via the advanced capabilities protocol/commands.

3.3.1 Timing Control

We all must admit that none of us like the BIOS controlled local bus IDE hardware, but a standard register set would
have been impossible due to these devices running at different clock frequencies and the requirement that they be pro-
grammed to support fixed Mode 0/1/2/3/4 PIO IDE timings. Fortunately, PCI DMA model is 100% register standard,
thus this will be easier for all.

3.4 ATAPI Disk

As long as IDE retains a single register set, it makes embedded OS integration much easier. With the advent of ATAPI
compliant IDE CD-ROM, ATAPI compliant IDE Tape, and ATA compliant ATA disk, it seems natural for the following
to occur:

+ Definition of ATAPI compliant IDE disk

« Move IDE support into the layered device driver model, with ATA/ATAPI handled via a mini-port. This allows the OS
to support Disk, Tape, and CD-ROM via a single TSD for SCSI or IDE.

3.5 Focus for this Proposal
Our impression is that PCI has killed VL.

Intel worked to get SFF to accept PCI Bus Master DMA IDE register level specification. The goal is a common register
set in order to facilitate embedded operating system (i.e. MS) support. Why? If $200 CPU uses 10% of bandwidth for
IDE PIO data transfer, then this cost is $20. Multimedia performance is shown to be directly related to amount of CPU
bandwidth that can be allocated to it. DMA frees the CPU to do muitimedia better.

PCI chipsets today are high pin-count, thus the die sizes are pad limited. This gives them lots of logic to work with as
long as the function doesn’t add pins. Lets just say that Intel is setting the PCI chipset feature bar and that their 486 and
Pentium PCI chipsets have embedded EIDE in the CPU to PCI bridge. The design multiplexes PCI and IDE onto the
same pins, thus it costs no pins, and uses up the excess die size...it is free! Unfortunately, SCSI can’t be done the same
way (i.e more gates, more pins) and I don’t see it ever getting integrated into the chipset for this reason and the reason of
embedded software support (i.e. Chicken/Egg situation... chipset vendor would want embedded OS support. Which
means they would have to license architecture/design from existing SCSI LSI supplier. The Intel Pentium chipset in-
cludes the PCI Bus Master DMA IDE capability.

Additionally, the world is trying to add IDE capabilities to issue one /O per IDE device, not one I/O per IDE channel.
The key issues have to do with philosophy (some now, some later versus all later) and where to arbitrate (host hardware/
software versus peripheral side) for control of the IDE task file, the IDE IRQ and the IDE DMARQ/DMACK. This topic
has started within a working group of ATA (ATA-3). Basically there is a WD proposal that takes a phased approach and
has host arbitration and a Quantum approach which takes a Big Bang approach and has peripheral arbitration.

» IDE is getting more capable and staying cheap.

« SCSI has become cheaper and easier, but it isn’t going to get anywhere near as cheap as IDE since it isn’t in the
chipsets.

« ATAPICD-ROM is now 2X and 4X. There are requests for ATAP1 HDCD, ATAPI CD-R, and ATAPI changer specs.
* ATAPI Tape is now starting to happen
e PCI Bus Master IDE is starting to happen (one command/channel)

Enhanced IDE 95 079 Page 7
A

SRS
{
FAS

Proposal for Enhanced IDE 95 Features

« The future direction for high speed IDE data transfer is DMA.
» A push is starting for Overlapped Commands and Queued Commands, which requires the host DMA engine go along.

Enhanced (DE 95 0C3s Page 8

Proposal for Enhanced IDE 95 Features

4.0 Overview

Rather than delve into the complexities of this proposal, a general overview of the Reasons, Concepts and Specific Pro-
posals is discussed in this section.

4.1 Key Points and General Approach
+ Phase in the Changes. Although the changes to the interface should be phased in, the actual definition of them shall
occur before any implementations are attempted.

Start in 19935.
More advanced capabilities in 1996.

e Provide solutions for the Customers of ANSI and SFF.

Host Silicon providers (e.g. Intel PCI and DMA)
BIOS (e.g. Phoenix)

Drivers (e.g. Microsoft, IBM)

System Vendors

» Focus on Overlapped operation
« Allow but de-emphasize more advanced Server and Array capabilities
« Obtain OS and Hardware solutions in a timely manor

Support in Win 95 Release 2.
Support in the PC’95 and/or PC*96 Hardware Design Guide.

4.2 Assumptions / Constraints used in the generation of this proposal

o Don’t alter the key value that IDE currently has (Cost, Performance, True Register Set Standard).

» Phase in the improvements.

e Allow first implementations without any hardware changes.

+ Always be backward compatible.

o ATAPI & IDE Features should be implemented identically where possible.

+ Improve Performance only where complexity and cost are not increased.

e Overlapped operations will be mainstream, Queuing will not within the 1995-96 timeframe.

o Reducing number of host interrupts will be beneficial.

System suppliers, Motherboard manufactures, BIOS and OS suppliers will decide what is acceptable and what is not.

4.3 Phased approach

The features should be phased in over one to two years. There are five distinct capabilities. Each of these can be used
when all of the previous capabilities are implemented.

+ ATAPI Overlapped Commands.

Allow CD-ROM and Tape Drives to release the Task File Registers and commands to be sent to the faster IDE
Disk Drives.

« IDE and ATAPI overlap using PIO and existing DMA.

Add Overlapped command capability to the IDE Drives.
« New Overlapped PCI DMA Capability (Reduced Host Interrupts).

Allow each Drive on the IDE cable to use the DMA Controller without any Host (Driver) intervention.
» Command Queuing and Tagging.

Multiple commands for each Drive on the IDE cable.

Enhanced IDE 95 082 Page 9

Proposal for Enhanced IDE 95 Features

+ Advanced DMA for Servers and Arrays.
Allow Tag information to be processed by the DMA Controller.

4.4 Basic Building Blocks

« Arbitration of the Task File Registers.

« Release of Task File Registers. A new wrinkle in the protocol will allow the peripherals to clear
the BSY signal before the completion of the command, thus allowing the registers to be used for
sending command(s) to another device.

e Selection Command (A2h). This allows the registers to be given back to the Device when needed.
« Arbitration of Interrupt Request (INTRQ) line.

* Shared Interrupts.

o Service Status bit for detecting who interrupted.
¢ Overlap Capable PCI DMA Drive.

+ DMA Ready Status.
« Arbitration of DMA Control (DMARQ, DMACK) signals.

« Overlap PCI DMA Bridge Logic reads & writes Task File Registers directly.

« Interlock function in PCI DMA Bridge Logic controls access to IDE Registers.
« Command Queuing

« Communication of Tags (IDE Feature Register / ATAPI Tag Register.)

* Advanced PCIDMA.
« Pointer to memory block used to select DMA control information for each Tagged command.

Overlapped S
PCI DM o |
Host } Count Mg
_PCIDMA .
Overlap :
Command PCI DMAN sequence
‘ Controlier
Queuin et
Arbitrated
Task File
Device
Shared
Interrupt
DMARQ/DMACK

Figure 1 - Building Blocks

Enhanced IDE 95 0no Page 10
[

Proposal for Enhanced IDE 95 Features

4.5 Capabilities

Overlap Capable Driver
Overlapped PCI DMA

Advanced DMA

Tag Capable
PCI DMA

Command Tags Command Queuing

Queuing Firmware

Queuing Capable Driver

Overlapped DMA
One interrupt per Command

PCIDMA IDE Overlap Commands

Shared Interrupt Overlapped IDE & ATAPI

Overlap DMA Firmware

Selection Command Release

Overlapped ATAPI

Enhanced IDE 95

Figure 2 - Pyramid of Capabilities

Dzl
Page 11

Proposal for Enhanced IDE 95 Features

4.5.1 ATAPI Overlap

« Allows a CD-ROM Drive to be attached to Primary Cable with no Performance Penaity.

o Uses existing Host & Drive (ATAPI) Hardware (No hardware changes needed.)

« ATAPI Drive Releases the Task File Ownership after acceptance of an ATAPI command.

+ Overlap Mode is enabled on each command via ATAPI Features Register.

+ Overlapped Commands are issued to an IDE (Legacy) Drive while an ATAPI Command is still processing.

+ Interrupts are not Shared.

« Drive uses Interrupt & Service Status to gain Host’s attention.

« Service Status set when any service is needed by the Device.

« Driver uses the A2h (Select) Command to give control of the Task File Registers back to the Device after an Interrupt
and Sensing the Service status bit.

« The Interrupt Reason and DRQ value of I0=1, CoD=1 and DRQ=0 (Message In to Host) is used to indicate a Release
Interrupt.

« Use existing PCI DMA.

« When DMA used, the Drive Interrupts when DMA is complete, only when there is still more data to be transferred
(That command still has more data to transfer).

« When DMA used, Host (Driver) uses Byte Count from the Selection Command (A2h) resuits, to program the DMA

Controller.
Q.‘\Qb & o [Process ATAPI Command]
Yg’\ 3 i ; s
S .
. S o
06\ 2 3
> 2 = E1 -
o E 5| &
Q)
@
DRYV Bit
INTRQ
BSY
DRQ

Figure 3 - ATAPI Overlap Sequence

Enhanced IDE 95 Or Page 12

Proposal for Enhanced IDE 95 Features

4.5.2 IDE & ATAPI Overlap

.

Enhanced IDE 95 Oz

Two new IDE commands for Read and Write Overlapped.

DMA or PIO specified in the IDE Feature Register.

IDE Drive Releases Task File after acceptance of Overlap command.

Task File arbitration performed by the Host (Driver).

Shared Interrupts used to signal Service to Host.

nlEN used to prevent interrupts while BSY or DRQ is set.

IDE INTRQ signal becomes Open Collector.

Both IDE Drives on the Cable must support the Shared Interrupt for it to be used.
Overlap can still be used without Shared Interrupt.

Pulsed Interrupt is used for non-PCI systems (Generates a Rising Edge for normal IDE interrupt logic).
PCI Systems use a Low Level Interrupt signal.

Shared Interrupt function is enabled at Post via the SET FEATURES Command.

,oj
Release
election
Data

Release
election

Release
election

Data

Of)
Command
Data

DRYV Bit

INTRQ

nlEN

BSY

DRQ

Figure 4 - IDE & ATAPI Overlap Sequence using Shared Interrupts

N

Page 13

Proposal for Enhanced IDE 95 Features

4.5.3 PCI DMA Overlap Capability

+ Intercepts the Shared Interrupt from the IDE/ATAPI Device.

« New Status bit in the IDE Status Register to indicate DMA ready.

+ Sequencer selects each Drive, senses DMA Ready & Service status bits.

« Arbitrates and Selects a Drive by issuing A2 command.

e Uses an Interlock to prevent Host (Driver) and Sequencer collisions.

« Blocks Interrupts while processing INTRQ or DMA transfers.

+ Interrupts Host for unknown interrupt reasons.

+ Host (Driver) Performs same function on systems that do not have the Hardware support for the PCI DMA Overlap.
« No change in the existing Drive DMA or DMARQ/DMACK logic.

+ Bridge logic must include control registers for each of the two devices.

« Sequencer in bridge logic reads the Task File Status, Byte Count and Tag registers.

4‘}
Release
Data

%
ommand
Relecase
Data
Release
Data

Transitions From
. PCIDMA Logic "™

DRV Bit

‘\-n.v.- /l. \\ /.
Host Int
INTRQ

nlEN

BSY

DMARQ

Interlock

Figure 5 - Overlapped PCI DMA Sequence

Enhanced IDE 95 Qs Page 14

Proposal for Enhanced IDE 95 Features

4.5.4 Command Queuing

+ Tags are used to identify each command
« ATAPI uses the Tag register to communicate the Tag To and From the Device

. IDE Drives use the IDE Feature Register to send the Tag on a command, then use the ATAPI Tag register when asking
for service.

« For Both ATAPI and IDE the Tag is placed in the ATAPI Tag register after the AZh Command is issued.
» Simple Queuing only is implemented.

« Errors abort all commands in the Queue.

4.5.5 Advanced DMA

« Layered on Overlapped PCIDMA & Overlapped IDE / ATAPI Command capability.
« Advanced DMA Controller reads Tag from Task File.
+ Uses a memory block with one DMA Control entry for each Tag and Device.

Oz7

Enhanced IDE 95 Page 15

Proposal for Enhanced IDE 95 Features

5.0 Paths

Although what has been discussed thus far are the goals, they will not be implemented all at once. The goals will be met
in groups. These groups represent a phased implementation approach, with less complicated but most beneficial features
implemented first. Other more complicated features or those features that require host hardware modification will be
phased in over a longer time frame.

Although some features will be phased in, the actual definitions for all the enhanced functions will be standardized at the
same time.

A real issue is silicon development cycles, with drive vendors wanting to get this worked out soon as there are new
chips on the operating table and we need closure.

5.1 Phase 1: Overlapped Commands to ATAPI Devices

These are the first improvements that will be implemented. It does not require any hardware changes to the Host or the
ATAPI Device. This capability will be the foundation for all the other overlap and Queuing capabilities. This phase will
allow the OEMs to place one IDE Hard Drive and one ATAPI CDROM on a single IDE Cable, thus reducing the overall
cost of the system by at least $0.50 or more.

One Fast Device and one slower ATAPI Device on one IDE Cable.
Doesn’t require host LSI changes.

The Host arbitrates the DMA hardware usage by the IDE & ATAPI Drives.
Requires OS Driver changes.

Requires minor ATAPI Device Firmware changes.

Only the ATAPI Device needs to be capable of the Overlap function.

5.2 Phase 2: Overlapped IDE channel & Reduced Host Interrupts for DMA

This is where most of the performance improvements will be created. This phase supports both IDE Disk drives and
ATAPI CDROM/Tape. The capabilities added here will form the foundation for Command Queuing and more advanced
DMA capabilities. During this phase there will be some skewing in the use of Host Silicon and Devices that can imple-
ment the overlap capabilities. Although the full improvement in performance will not be obtained when this occurs, some
improvement is still expected.

Mixing of Legacy and Enhanced Drives possible.

Mixing of Non-enhanced Hosts and Enhanced Drives keeps most of the performance gains.
Doesn’t require host LSI changes when using existing PCI DMA or PIO.

Reduced Host Interrupts requires new PCI DMA Bridge logic.

The Host arbitrates the DMA hardware usage by the IDE Drives.

Only very minor peripheral LSI changes (Devices share the Interrupt signal.)

Requires OS Driver changes (Should have already been done in the first phase.)

Requires minor IDE Drive Firmware changes (ATAPI Drive changes occurred in phase one.)

5.3 Phase 3: Command Queuing

In this last phase, Queuing of commands in the Faster IDE Disks is implemented. In addition, optional PCI DMA bridge
logic could be implemented that will allow the Queued commands to be processed out of order without interrupting the
Host Driver when the Tag changes.

All Drives must be Shared Interrupt capable, no mixing allowed.
Optional DMA channel handles Tag and Drive changes automatically (No Driver intervention).
Requires Host LSI changes if Automated DMA is used.

Enhanced IDE 95 o 2 Page 16

Proposal for Enhanced IDE 95 Features

Requires OS driver changes.
Requires Drive Firmware changes.

5.4 OS Improvements

Although not part of any of the above “Phases” the Operating System and its drivers are an integral part of any perfor-
mance improvements that can be achieved. Once the definition for the Overlap capabilities is complete the net releases
should implement ALL the new capabilities. In addition there are other areas that Western Digital believes are important
for the Operating Systems to consider.

« Get rid of the monolithic IDE disk/CD-ROM driver and move fully to the NT like layered I/O model.
» Support disk, CD-ROM, and tape TSDs.

» Rename SCSI Manager and call it I/O Manager.

e Run ATA and ATAPI hardware via mini-ports.

o Allow the ASPI interface to communicate with the ATA and ATAPI mini-ports so that CDHD, CR-R, and CD changer
can be supported by 3rd party applications.

+ Support PCI Bus Master DMA IDE.
e Support for Overlapped IDE channel.
» Support for Command Queuing.

Enhanced IDE 95 Page 17

0o?

Proposal for Enhanced IDE 95 Features

6.0 Key Issues

Before launching into technical discussion of various solutions, it is necessary to provide a foundation of understanding
for the reader. This can be thought of as a list of problems, but even more than that, a tutorial.

6.1 Tutorial and Problem Definition

The IDE interface of today has evolved from the simple Winchester controilers, where there was only one set of regis-
ters and up to two ST506 or ESDI drives. In this environment there was only one controller for the peripherals and as
such the interface was created as “Single Threaded.”

Here we find the first of the problem areas for enhancing the interface to provide some level of “Multi-threading” capa-
bilities. Indeed IDE controllers use a protocol to talk with the host, that provides a simple semaphore for locking access
to the IDE Interface Control Registers (Task File.) This is made up of the Busy (BSY) signal and the Data Request
(DRQ) signals. These signals are used to control “Ownership” of some of the Task File Registers. When BSY or DRQ is
set (1) only the peripheral is allowed to Read and/or Write to the controlled registers.

6.1.1 Task File ownership

Logic conventions are: A = signal asserted, N = signal negated, x = does not matter which it is.
Dark Gray are registers where ownership is controlied by BSY & DRQ.
Light Gray are Registers that are not defined for use by IDE.

Addresses Functions I

CSIFX | CS3FX | DA2 | DAl | DAO Read (DIOR-) Write (DIOW-) |

A N 0 0 0 Data

A N 0 0 1

A N 0 1 0

A N 0 1 1

A N 1 0 0

A N 1 0 I

= N T : 5

A N 1 1 1 Status i { _

N A 0 (V] 0 Floppy A Status .] Unused

N A 0 0 1 Floppy B Status Unused

N A 0 1 0 Unused Floppy Digital Output

N A 0 1 i Floppy ID / Tape Control RESERVED

N A 1 0 0 Floppy Controller Status RESERVED

N A 1 0 1 Floppy Data Register

N A 1 1 0 Alternate Status ' Bevice Conlrol

N A 1 1 1 " Unused

Table 1 - Registers Controlled by BSY & DRQ

As you can see it is impossible to issue a new command for a number of reasons:

Can’t write new command parameters into the Task File while BSY or DRQ is set.
Either BSY or DRQ is always set from the time the command is issued until it is completed.

Enhanced IDE 95 055 Page 18
AV

Proposal for Enhanced IDE 95 Features

Changing the DRV bit will cause commands to be aborted in existing IDE Hard Drives.

6.1.2 Sharing of IDE Hardware Signals

Provided that the problems of sending overlapped commands is solved, a new set of issues is exposed. These center
around the sharing of signals from the IDE Device to the Host. These signals are used to Generate an Interrupt (INTRQ)
and Control DMA operations (DMARQ, DMACK).

6.1.2.1 Sharing INTRQ

For example with one or more commands being processed in more than one device at the same time, when the drive
needs to signal to the host that data or status is available, it uses INTRQ. This signal in IDE devices today is driven high
when an interrupt is desired. In addition it is only driven by the device that is selected via the DRV bit. Thus there is no
way, currently to allow each device to generate an interrupt.

There are two basic approaches to solve this problem. Either the Signal can be inverted and each peripheral can then
drive it low (Pulse or Level for PCI) to signal an interrupt, or the devices can decide between themselves which will be
allowed to drive the signal. This proposal will use the former as it is believed that the arbitration by the devices them-
selves is far to complicated for any benefit that is derived. This would also force significant hardware changes in the de-
vices. Note that the other proposals would make use of DASP and PDIAG for device to device arbitration, and this
would then prohibit the use of these signals for future enhancements (e.g. Parity.)

6.1.2.2 Sharing DMARQ & DMACK

When it comes to the DMA control signals the problem again can be solved in one of two ways. Unlike the INTRQ sig-
nal the DMARQ can not just be driven by each of the devices at the same time. Only one device at a time must use the
signal to communicate with the DMA logic on the mother board. In addition the DMA logic must also be kept in sync
with the specific location in a specific command from a specific device. The easiest way to do this of course is to use the
Host computer to setup the DMA logic and select the device that will be using it.

A more complicated technique would be to program the Host DMA Logic with information on all the outstanding com-
mands. Then to have the devices themselves arbitrate for the use of the DMA control signals, then provide a communica-
tion path from the Device to the Host DMA Logic to tell it which device, command and location within the command is
currently using the control signals. Western Digital has a real problem with this level of complexity. Adding all this logic
to the host DMA will add significant cost and as such will never be “Main Stream.” In addition this would not allow a
phased approach to implementation, which Western Digital believes is important.

Thus the correct solution is to not change the existing DMA logic in the Devices, and allow either the Host Driver or the
PCI DMA Overlap Logic to change the DRV bit.

- 6.1.3 Other DMA issues

An overall issue of DMA, is that of using the interface for any other operations while the DMA is in progress. DMA
makes actual reads and writes to the Data Register of the device performing the DMA. Thus it would be impossible to is-
sue new commands to the device that is performing active DMA. In this proposal the DMA as well as the arbitration is
performed by the Overlapped PCI DMA Bridge Logic. Today when DMA is used the command is issued to the device,
and no further interrupts are generated until the DMA is complete.

In this proposal the DMA operation will be changed to be much closer to that of the PIO protocol used today. This will
add some extra interrupts if the Host does not support the Overlapped PCI DMA Bridge Logic, but will still allow DMA
and overlap to be used. This it is believed will still provide significant performance improvements.

Enhanced IDE 95 Page 19

b

[wtns
[t

Proposal for Enhanced IDE 95 Features

6.1.4 Other Problem areas with IDE

Although the Overlapped capability is one of the major areas. that need to be addressed, there are other weaknesses as
well.

Status is not provided after the data is transferred.
The data transfers are always 512 bytes or some fixed multiple.

(e
o
ra

Enhanced IDE 95 Page 20

Proposal for Enhanced IDE 95 Features

7.0 Proposal Details

This proposal makes the attempt to combine discussions of the solutions into just a few categories. In each of these cate-
gories all the pertinent information related to the Host Driver, Host Silicon, Drive Firmware and Drive Silicon will be
covered. Rather than just cover the device side implementation as is usual for X3T10, all the interrelated functionality
needs to be discussed.

This proposal is broken up into four separate capabilities:

¢ Overlapped Operation
¢ Shared Interrupt

¢ Command Queuing

¢ Advanced DMA.

Enhanced IDE 95 Page 21

Proposal for Enhanced IDE 95 Features

8.0 Overlapped Operation

This section will discuss the overall capability of “Overlap.” This is the foundation for all the other capabilities. There
are two very slightly different variations of the Overlap Capability for the Devices. One for IDE and another for ATAPL
In the ATAPI world there are plenty of registers available in the Task File for the Link Layer information. In the IDE
world all the bits are dedicated to passing parametric information and as such none (too few) are available to extend the
functionality. This proposal requires the Overlap Capability to be enabled on a command by command basis. Although
this is strictly not needed for just the simple overlapping of commands, when the Tags are introduced later, this becomes
more important. Rather than try to change the method of overlap between simple overlapped and queued commands,
this proposal makes them identical with the exception of the use of the Tags when sending the command to the Device.

8.1 Task File Changes for Overlap

8.1.1 Overlap for IDE commands

The overlap is enabled by using two new IDE Commands, READ Tagged and WRITE Tagged commands only. All other
commands can not be overlapped. There is no real reason for commands that do not access the media to be overlapped.
These commands operate quickly and thus do not need overlapping. If overlapping was to be supported for IDE Com-
mands, then there would need to be a Command by Command enable, so that there would be no backward compatibility
issues when dropping back to an “Older Style” driver in sever error conditions. As there is no place in the Task File for
an Enable bit, this approach of the two new commands was taken.

8.1.2 Overlap for ATAPI Commands

As has already been discussed, the overlap capability is enabled on a command by command basis. There exists in ATA-
PI a register dedicated to this function, the Features Register. Thus each command is changed into an overlapped style
command via the Overlap Enable bit in the ATAPI Features Register. As this register is used for every ATAPI command,
they can all can be overlapped.

Figure 6 - ATAPI Feature Register

D7 D6 D5 D4 D3 D2 D1 DO
Reserved Overlapped | DMA Enable
Command
Enable

8.1.3 Status register for Overlapped Operation

Figure 7 - Status and Alternate Status Registers for Overlapped Operation

D7 D6 D5 D4 D3 D2 D1 DO
BSY | DRDY i DMA DSC DRQ CORR SERVICE CHECK Read
! | Ready or ERROR
Bit7 BSY Busy is set whenever the drive has access to the Command Block.
Bit 6 DRDY Indicates that the drive is capable of responding to a command. This bit shall

be cleared at power on. Devices that implement tagged commands shall clear
this bit when they are not ready to accept another host command into their

Enhanced IDE 95 g f Page 22

Proposal for Enhanced IDE 95 Features

queue.

Bit5 DMA Ready This bit signals that the Device is ready to start a DMA data transfer. This is
used to communicate to the Overlap Capable PCI DMA Logic that this ser-
vice interrupt is going to transfer data via DMA.

Bit4 DSC Seek Complete indication, used for overlapped Seek operation.

Bit 3 DRQ Data Request - Indicates that the device is ready to transfer a word or byte of
data between the host and the drive. The information in the ATAPI Interrupt
Reason will also be valid during a Packet Command when the DRQ is set.

Bit2 CORR Indicates if a Correctable Error occurred.

Bit 1 SERVICE This bit signals that the Device is requesting service or interrupt. This bit
will be set when the interrupt is requested and not cleared until the SELEC-

TION command is issued.

Bit0 CHECK or ERROR Indicates that an error occurred during execution of the previous command.

8.1.4 Task File Register usage for ATAPI Devices implementing Overlap

Data

1F1 Sense Key MCR | ABRT EOM ILI Error Register
Overlap DMA ATAPI Feature Register
1F2 i 10 CoD Interrupt Reason Reg
1F3 Tag Tag Register
1F4 Byte Count that will be used for PIO or for DMA operations Byte Count Low
1F5 Byte Count High
1F6 DRV Head Drive Select
1F7 BSY DRDY DMA DSC DRQ l CORR Service ERR Status
0xAO or OxA2 Command

3F6 BSY DRDY DMA DSC DRQ CORR Service Check | Alternate Status

SRST nlEN Device Control
3F7 L DEV Head Selected Change / Drive Address

Table 2 - ATAPI Overlapped Commands, Register Usage

(SRl
Enhanced IDE 95 Out Page 23

Proposal for Enhanced IDE 95 Features

8.2 Using the Select Command (A2h)

The Arbitration of the Task File Registers is performed by logic outside of the Devices attached to the IDE Cable. The
basic premise of this proposal is that the Device releases the use of the Task File Registers when it is processing the com-
mand and no longer needs the registers. This of course makes it difficult to place the arguments for the Interrupt into the
registers as the device no longer owns them. The Select command essentially hands the registers back to the device so
that the correct parameters can be placed into them. These parameters include the Byte Count, Interrupt Reason and

Command Tag values.

When an overlapped command requests service the Host Driver or PCI DMA Logic is responsible for determining
which device should be serviced, and then issuing the Select. This causes the device to place information on the reason
for the service into the Task File registers. Note that for both IDE and ATAPI devices the results of the Select Command

are the same.
1FO Data
1F1 Error Register If the Status indicates an Error then this is Valid
1F2 Interrupt Reason Contains IO and CoD
1F3 Tag for Command Contains the Tag for the command requiring Service
1F4 ATAPI Byte Count LSB Number of bytes that need to be transferred, both for
1F5 ATAPI Byte Count MSB PIO or for DMA
1F6 Drive Select Same before and after “Select”
tF7 Status DRQ along with IO and Cod determine the reason for
the Service Request
3F0 Floppy A Status Unused
3Ft Floppy B Status
3F2 Unused
3F3 Floppy ID / Tape Control
3F4 Floppy Controller Status
3F5 Floppy Data Register
3F6 Alternate Status Same as Status register
3F7 Change / Drive Address Same before and after “Select”
Table 3 - Registers after the Selection Command
Enhanced IDE 95

Page 24

Proposal for Enhanced IDE 95 Features

Host Device
ATAPI IDE Drive
Wait for Not Busy
Load Task File with Byte Count & Features
Write AO (Packet) Command
————4A Set Busy
. Read Task File Values
[Wait for not Busy] Set Interrupt Reason = Packet
Clear Busy
Write six words of Packet Data
Set Busy
Get Packet Data

[Wait for Interrupt]

Check for Release Interrupt 4_’//

If there are IDE Disk Command(s) available:

Check Command for Validity
Set Interrupt Reason = Release
Clear Busy

Set Interrupt

Set Task File Registers
with Sector Coum/Number/Cylmder/Head/DRV
Issue the IDE Command (e.g. Read P10)

i

[Wait for Interrupt]

Read the Status ‘
Transfer the Data

* Set Busy
Process Command

One Complete
Command to
an IDE Disk

Set DRQ, Clear Busy, Set Interrupt

Reselect the ATAPI Drive

» Clear DRQ

New\m‘d"[Wait for Interrupt or New IDE Cbmmand]
IDE Com ,

Read the Status and look for Service Bit
Issue A2h (Select Command)

[Wait for not BN

Read the Interrupt Reason Register and Byte Count
Transfer the Data

[Wait for Interrupt]

Read the Interrupt Reason Register and look for Status

Figure 8 -

Enhanced IDE 95

[Ready to Transfer Data}

Set Service Status Bit
Set Interrupt

Set Busy
Set Byte Count, Interrupt Reason = Data
Set DRQ and Clear Busy

P> Set Busy, Clear DRQ

Set Status, Interrupt Reason = Status
Clear Busy and Set Interrupt

ATAPI Overlap Flow Diagram

Page 25

Proposal for Enhanced IDE 95 Features

9.0 Shared Interrupts

The sharing of the Hardware IDE signal for requesting an interrupt (INTRQ) to the host is enabled by a SET FEATURES
command. Note that this feature must be enabled for both devices on the cable. If either of the devices does not support
Sharing, or if the set features command to enable the capability is aborted, the capability must be disabled in both devic-
es.

When Shared Interrupts are enabled the device will invert the INTRQ line and drive it with an open drain driver. When
an interrupt is to be generated, the device will pulse the interrupt line low for 1 microsecond or continue to drive it low
until the Status Register is read (PCI systems.) In addition when shared interrupts are enabled the SERVICE bit in the
Status and Alternate Status registers will indicate that an interrupt was generated. This status bit will remain set until the
condition that caused the interrupt is cleared. This could be Sending a Selection Command (A2h) or starting a data trans-
fer for an IDE style command. Because this is a capability that is enabled once, it must be kept backward compatible
with existing IDE commands and Drivers. Thus commands that are not using the Selection protocol (Not overlapped)
will be using this type of interrupt. This will not affect the interrupt itself, but may impact on the clearing of the SER-
VICE bit.

9.1 Enabling Enhanced Capabilities

The Set Features command is used to set some interface timing and protocol modes. These modes are set at Post by many
BIOSes. The contents of the ATA Features Register indicates the function to be performed.

Table 4 - Contents of the Feature Register for Set Features Command

Bit
Byte 7 6 5 4 3 2 i 0
0 Set (1)/ Reserved Feature Number
Clear (0)
Feature

5Dh Enable Shared Interrupts (Edge Sensitive system) Phase 2 and 3
SEh Enable Shared Interrupts for a PCI system (Level) Phase 2 and 3
DDh Disable Shared Interrupts Phase 2 and 3

Table 5 - Feature Number Description for Set Feature Command

s
e

[@®]

Enhanced IDE 95 03 Page 26

Proposal for Enhanced IDE 95 Features

10.0 Overlapped PCI DMA

The overlapped PCI DMA Logic emulates in a simple form what the Host Driver would do when an interrupt is detected.
Thus the IDE or ATAPI Device is unaware of any difference between a driver and the PCI DMA Logic.

To allow the PCI DMA Logic to more easily detect that DMA transfer is required, a new status bit has been added, called
DMA Ready. This bit in conjunction with the Service bit and INTRQ signals to the PCI DMA Logic that it should start a
DMA Operation for this device. Note that the DMA Logic must have previously been programmed for the transfer.

Use of the DMA Ready status and Service bits is enabled when overlapped Command are issued with the DMA enable
bit set in the IDE or ATAPI Feature Registers.

Whenever the PCI DMA Logic senses a condition where it can not handle the interrupt (e.g. No DMA was setup for this
device, or the DMA Ready and Service bits were not set) the Interrupt is passed through to the Driver. The Driver is then
responsible for providing the same level of functionality as in the PCI DMA Logic. Note also that if the Host doesn’t
support the Overlapped DMA Capability, then the driver will provide that functionality.

To prevent the Host from accessing the IDE bus while any possible contention could occur, the PCI DMA Logic con-
tains an Interlock mechanism. This is nothing more than a simple semaphore. When the Host commands the PCI DMA
Logic to start overlapped operations, the Semaphore is seized by the DMA Logic. When the Driver wishes to gain ac-
cess to the IDE Bus, it requests that the Semaphore is released and then waits until it is.

Overlap Capable

Overlapped |«g DMARQ IDE Device
Host | g~ FPCI DMACK
DMA Logic —
INTRQ
Interrupt §
=
Co;::IOchismrs % Data S
Device 1 K%
Control Registers Read
Interlock

Figure 1 - Overlapped PCI DMA Block Diagram

10.1 Error Handling with Overlapped DMA

Error handling is no different than is used today.

0us

Enhanced IDE 95 Page 27

Proposal for Enhanced IDE 95 Features

POR

Stop Request

s
o Detect Who

In Interlock frmode

Do not sense the Read STATUS
Device’s INTRQ

signdl or allow

the'Host to use

The Task File If SERVICE and
‘Registers DMA status bits

are set for this

Issue A2 to
Command Reg

Device

) G BSY

DAk | /Gecoun\
DMARQ
Read BC
Register and
DMARQG ag Register
is detected
N Do DMA

Transfer the
Requested
Num of bytes

Enhanced IDE 95

Set Host
Interlock

Issue INTRQ
to Host and
Clear Interlog

Select Othe!

Invert DRV
Write new DR

If SERVICE and

DMA status bits
are set for this

Read STATUS
If No SERVICE

or DMA Status

If Tag is seen

Note that the more advanced
DMA controller can use the
Tag information received here
to go to memory and get the
DMA parameters to use, thus
not deferring the interrupt .
back to the Host Driver.

7

< Page 28

Proposal for Enhanced IDE 95 Features

11.0 Command Queuing / Tagging

This document is intended to define the additional functionality required to implement ATA tagged command queuing
with minimal impact to backward compatibility with existing ATA BIOS and OS drivers. Adding support for tagged
commands provides a simple, backward compatible, method for significantly enhancing the performance of ATA disk
drives.

11.1 Performance of Command Queuing

The performance improvements achieved by adding tagged queuing are due primarily to the added ability of the device
to receive multiple commands into it’s internal queue and then order the execution of these commands to optimize their
rotational position on the media.

Because rotational delays are typically two to three times typical seek delays, the ability to allow the device to prioritize
commands based on rotational priority can improve drive /O performance by 50% to 150%.

11.2 Tagged Queuing for IDE

In order to support an IDE backward compatible tagging capability the function of the following bits within the task file
have been redefined: DRDY, DSC and Index.

11.3 Tags in IDE

Although the stated goal is for the Tagging capability to be implemented the same for IDE as in ATAPI, the register defi-
nitions prevent it. In ATAPI the Tag register overlaps the IDE SECTOR NUMBER Register. Thus the tagging protocol
will be the same for IDE and ATAPI, but the placement of the Tag will be slightly different.

For IDE the Tag will be placed into the IDE Features Registers. For ATAPI the TAG Register will be used.
11.4 IDE Tag Registers

Figure 10 - IDE Tag Register

D7 D6 D5 D4 D3 D2 D1 DO
Tag Value] Reserved ‘ DMA Write Only
Bit 0 DMA The DMA bit is used just like the least DMA bit in the ATAPI Feature register.

If the DMA bit set (1) then DMA will be used for this command, otherwise
normal PIO will be used.

Bits 7-2 TAG This contains the Tag for the command. This allows for values from 0 - 63. All
64 tag values are legal.

11.5 IDE Style Tagged Commands

As the Tag is supplied in the IDE FEATURE Register, not all the commands could be queued. This forces the decision
that not all commands can be queued. There are only two functions that will be able to benefit from queueing, Read and
Write. Thus there are two new commands to provide command queuing.

Enhanced IDE 95 107 Page 29

Proposal for Enhanced IDE 95 Features

READ TAGGED 0xA6
WRITE TAGGED 0xA7

1F0 Data
1F1 UNC MC IDNF ABRT AMNF | Error Register
Tag DMA | IDE Feature Register
1F2 Count Sector Count
1F3 Sector Sector Number
1F4 Cylinder Cylinder Low
1F5 Cylinder High
1F6 L DRV Head Drive Select
1F7 BSY DRDY DMA DSC DRQ | CORR | Service ERR Status
0xA6 or 0xA7 Command
3F6 BSY DRDY DMA DSC DRQ CORR | Service ERR Alternate Status
SRST nlEN Device Control
3F7 L DEV Head Selected Change / Drive Address

Table 6 - IDE Overlap Command Register Usage

Data

1F1 l UNC 1 MC IDNF ABRT AMNF | Error Register |
Tag DMA IDE Feature Register

1F6 | L DRV Head Drive Select

1F7 BSY DRDY DMA DSC DRQ | CORR | Service ERR Status
0xA6 or OxA7 Command
3F6 BSY DRDY DMA DSC DRQ CORR | Service ERR Alternate Status
SRST nlEN Device Control
3F7 L DEV Head Selected Change / Drive Address

Table 7 - IDE Overlap Command Register Usage after A2h (Select) Command

Tagged Commands use the following sequences for normal execution. The host system selects the device and monitors
DRDY until the device is ready to accept another command (DRDY=1). The host then sets up the task file for the com-
mand including the Tag field. Once the Task file is configured the host writes to the command register to issue the tagged
command.

The host may abort a specific tagged command in the peripheral’s queue by issuing a new command to the peripheral

Enhanced IDE 95 . vz Page 30

Proposal for Enhanced IDE 95 Features

with the tag used for the command to be aborted. Peripherals can abort tagged commands using the existing aborted
command sequence with the additional requirement that the peripheral identify the aborted command with the com-
mand’s tag.

11.6 Non Tagged Commands

Upon receipt of a non-tagged command the device shall terminate without status any commands in progress, clear all en-
tries in the devices command queue and immediately process the non tagged command using the non tagged protocol.

Implementors Note: Mixing tagged and non tagged commands in the same command stream can create backward com-
patibility problems. As a rule the OS drivers supporting tagging should ensure that all commands issued by the tagging
driver have completed before releasing control to other drivers in the system which may not be compatible with the tag-
ging protocol.

11.7 Effect of Reset on Queued Commands

Upon receipt of any of the three IDE reset conditions; Power On Reset, assertion of the RESET signal or toggling the
SRST bit in the device control register, the device shall terminate the current command without status and clear all en-
tries from the devices tagged command queue.

In the case of SRST the device shall remain configured according to the rules governing the SET FEATURES command.

11.8 Errors and Command Queuing

All errors when Queuing is being used will cause ALL the commands that have yet to be processed to be aborted. The
fact that the commands have been aborted is implied in the protocol and no specific status will be generated to indicate
that these commands have been aborted. Note that this aborting of all commands on an error applies to ANY fatal or
hard error that is detected and reported to the Host. This technique will greatly simplify the error recovery procedures
that the Driver and Device will need to implement. This obviates the need for any contingent allegiance conditions or any
specific command abort capabilities.

[y
<
(

Enhanced IDE 95 Page 31

Proposal for Enhanced IDE 95 Features

11.9 Advanced DMA

This capability is intended to allow the host to only field one interrupt per command. The Host’s DMA controller must be
capable of keeping information on ALL active commands for both IDE devices.

11.10 Device to Device Arbitration

There are two possible ways of handling the sharing of the DMA control signals. One would be for the devices to arbi-
trate for them, the other would be for the devices to signal to the DMA controller that they wish service, and then for the
DMA controller to select one for DMA operations.

s

11.11 Signaling of Drive, Tag and Location in the Data Stream to Host DMA Logic

11.12 Error Handling for Advanced DMA

Enhanced IDE 95 tus Page 32

Proposal for Enhanced IDE 95 Features

Co’r/nmands are Queued Enable lljgv;/nc}grsl:n and m
. (

here until they can
be issued to a drive Interrupts
] Disable Intrs

:" Setup TF
m Command ready to be Issue Cmd
Executed and Drive is T N mecelerated
", not curren sing-tiie K o B LTS

No Other Enable Ints DMA channel " [Kecorerated N

DMA o Check for o -

Start - \Queued Cmgs R

Intergupt . Wait for BSY
Clear Block No Service Wait up to to negate
on DMA Detected 50us for BSY,
to negate
Error Detected

Channel “Spurious”

Disable Intrq .‘
Basic Release
//

Poll Service No Service
BC=0 Requests Requests Process Cmd
Interrupt Pending . completion .
‘s Status
Setvice is)
neded

Look for
e another Intrq
before leaving

Wait for BC=0
interrupt

Interrupt was
to present
command status

ait for ~BSY
up to 200us

Service Requested

Wait for Bsy
to be
deasserted

Select Drive Accelerated Drive
Issue “A2”

ote that DMARQ

will be asserted at
this point

Transfer
Specified
Data

Interrupt is
for Data

Note that at this point the
DMAREQ is already active
and only needs the engine
to begin transferring

Program the
DMA engine
and Start it

Figure 11 - Host State Diagram, Command Queuing & Shared Interrupts

Page 34

[P
C N
wl

Enhanced IDE 95

Proposal for Enhanced IDE 95 Features

11.15 Error Handling for Overlapped and Queued Operation

When an error on a command occurs that must report a “Fatal” condition to the host, all queued commands that have not
yet been executed will be removed from the command queue and not executed. There will be no errors returned to the
host for those commands. This is done to remove the Contingent Allegiance that is used in SCSI to handle getting the
Status from the Request Sense. This would not be necessary for Queued IDE commands, but is being done to keep the
interface and protocol consistent.

In overlapped operation there will be intermediate command status, as well as the final command completion status. The
intermediate status is supplied to indicate if the command was accepted. If the command is not accepted, then there will
be no further status supplied. The intermediate status is the status at the point that the device releases the Task File regis-
ters back to the host, prior to executing the command. Thus this status can only relate to the validity of the command and
not any command execution.

fomot
C:,
(@p)

Enhanced IDE 95 Page 35

Proposal for Enhanced IDE 95 Features

12.0 Comparisons

12.1 Comparisons with Other Proposals

12.2 Shared Interrupt vs. Drive to Drive Arbitration

Requires very little drive hardware changes.
Not as complicated as Drive to Drive Arbitration.

Allows PCI DMA controller to trap interrupt and perform arbitration or pass the interrupt through to the Host Driver
when a function is not supported in hardware.

Reduces communication from the drive to the DMA controller after arbitration.
Allows some Overlapped commands in a mixed Legacy and Overlap Capable environment.

12.3 New Opcodes vs. using all Existing Opcodes in different “Modes”

Using new Opcodes prevents any older driver from breaking.

Allows some redefinition of the Task File Registers.

Only two commands simplifies the Drive Firmware.

Enables the Function on a command by command basis automatically.
Does not break existing prefetch hardware.

Does not break existing Drive Auto DRQ logic when using Queuing.
Provides simple Drive Hardware Decode and Sequence logic.

12.4 PCI DMA hardware Arbitration vs. Drive to Drive Arbitration

Only the Host Hardware changes.

When the Host Hardware does not support the feature, the Host Driver can provide the capability transparently to the
IDE Drive.

Allows for various levels of performance without changing the Drive Hardware or Firmware.
Advanced PCI DMA can be implemented without any Drive Hardware Changes.

No potential race condition on the DMARGQ line during arbitration.

Can be used in mixed Legacy and Enhanced environment.

Enhanced IDE 95 Page 36

Proposal for Enhanced IDE 95 Features

13.0 Issues still unresolved
There are still several areas that remain unresolved.
« Howto generate an interrupt for Non-accelerated devices for the A2 command. Would have to re-enable interrupts in

general and could get an interrupt from the other device and not for the A2 completion. If this happened the Task File
would still be Busy.

fomstn
<
(&)

Enhanced IDE 95 Page 37

