
Duncan Penman X3T10 94-240r1
Zadian Technologies
Rev 1.1, 11/10/94

Comparison of Proposals for Overlapped Command Execution on ATA Bus

Note: This is an informational document only. It contains no new proposals of its own.

There are 3 outstanding proposals on ways to allow overlapped execution of commands
between the 2 devices on an ATA cable. All were presented as part of larger proposals which
included command queueing. Two of the proposals were for traditional IDE devices, while one
was for ATAPI devices; the suggested command queueing implementations are not compatible
across the 2 device types, but the protocol for overlapped execution (i.e. concurrent execution of
commands on both devices with interleaved use of the bus) potentially is common.

The information in this writeup is derived from the following documents:
1. ATA/ATAPI Multi Threading, rev 0.2, dated 9/14/94, by Western Digital
2. Presentation on Enhanced IDE 95, undated, by Western Digital
3. ATA Command Queueing, rev 6, dated 11/9/94, by Quantum
4. ATA Tagged Command Queueing, v1.0, dated 10/28/94, by Conner Peripherals

This discussion is limited to the portions of the proposals that apply to overlapped command
execution. I believe it is desirable to find a protocol that both IDE and ATAPI can implement so
that the two device types can share a cable and use this feature. I also believe that we should
agree on a command overlap approach before deciding on a command queueing strategy.

The contents of this writeup are my interpretation of the source documents. It has not been
reviewed by the authors of the proposals.

Traditional ATA - The Baseline

The basic ATA behavior model is that there will only be one command active from the
host at any one time. (There has been limited use of overlapped seek, but nothing more
that I am aware of.) In consequence, a drive stays ‘selected’ from the time it receives a
command until the command is finished. Any interrupts or DMA requests must have
come from that drive, so no form of bus arbitration or selection is needed.

Overlapped Command Execution

General Description

WD - Commands are issued with interrupts disabled in 3F6. The host then re-enables for
interrupts. (The host can also leave interrupts disabled and poll for status changes.)
When an interrupt occurs, the host disables interrupts again and reads both status registers
to see which device posted the interrupt. The host then selects the device that it wants to

have access to the interface. (It is possible for both devices to have posted an interrupt, in
which case both need service. In that case, the host handles one device at a time.)

Quantum - The host locks the devices when issuing a command (i.e. they cannot update
their interface registers or assert interrupt request.) During command execution the drives
arbitrate between themselves for use of the bus. The winner then asserts interrupt request
(INTRQ) or DMA request (DMARQ) as appropriate for the command.

Conner - Commands are issued as they are in ordinary ATA. During command
execution the drives arbitrate between themselves for use of the interrupt request line.
The arbitration signals, PDIAG- and DASP-, also tell the host which drive generated the
interrupt. Three status register bits are redefined to tell the host whether the interrupt was
for data transfer, bus disconnect, or command completion.

New or Changed Commands

WD - SELECT DEVICE grants the selected device use of the bus. (Note: I’m not sure
why the DEV bit in 1F6 isn’t sufficient for this.) Also, new feature register values are
identified for the SET FEATURES command to Enable/Disable Shared IRQ Protocol and
Enable/Disable Open Collector IRQ Protocol. Not real clear what the difference between
these is, nor why two different commands are needed.

Quantum - New feature register values are identified for the SET FEATURES command
to Enable/Disable Command Queueing and to Enable/Disable Arbitration. Two LOCK
REQUEST commands are proposed, one for Drive 0; one for Drive 1.

Conner - New feature register values are identified for the SET FEATURES command
to Enable/Disable Command Queueing. Presumably this is needed to activate the register
remapping and arbitration protocol, even if queueing per se isn’t used.

Register Definition Changes

WD - Status Register
Bit 1 (IDX) becomes SERVICE to indicate that the drive has an outstanding
interrupt request. INTRQ may have been asserted on the interface, depending on
whether interrupts are enabled.

Bit 4 (DSC in ATA, Vendor Specific in ATA-2) becomes POST, indicating
command completion.

Bit 5 (DF) becomes DMA Ready. This is needed to allow overlapped operation to
include DMA commands under this protocol.

Note: other register usage is based on the ATAPI Task File definitions. Not
described here, but I don’t believe these affect overlapped command execution.

Quantum - The Device Control Register is redefined as a 16 bit register for command
queueing. Command overlap controls that were in this register in rev 5 of
the Quantum proposal have been removed and implemented by a
combination of status register bits and new commands.

Status Register - New in rev 6
Bit [TBD] Lock Granted....the positive response to a LOCK REQUEST
command

Conner - Status Register
Bit 5 (DF) becomes DISC, indicating the drive is temporarily giving up
control of the bus.

Bit 4 (Vendor Specific) becomes CCPT, command complete.

Bit 3 (DRQ) becomes DTPH, Data Phase. Meaning & usage is the same as
or similar to DRQ.

Features Register/Precomp Register presumably retains its meaning for the
SET FEATURES command; is remapped for others.
Bit 6 - HACK, Host Acknowledge tells the drive that the host has seen the
interrupt and the drive can now modify the Task File.

New Interface Signal Usage

WD - INTRQ may be driven concurrently by both drives.

Quantum - In rev 6 of the Quantum proposal, their earlier proposed implementation was
withdrawn in favor of the Conner version below..

Conner - DASP- and PDIAG- used to arbitrate for use of INTRQ and to notify host
which drive is the source of an interrupt.

How a Device ‘Disconnects’
WD - No explicit control. Each interrupt is for a specified service with a specified

transfer length. When that service is complete, the bus is again available.

Quantum - The implied lock condition is cleared by the host based on PIO transfer length
or DMARQ/DMACK both being deasserted.

Conner - An interrupt with DISC set in the status register tells the host that the bus is
now available.

How a Device ‘Reconnects’

WD - Drive asserts INTRQ and sets SERVICE in the status register. Other bits identify
the emulated SCSI bus phase for this interrupt request (ATAPI protocol). The
host issues SELECT DEVICE command to grant one device or the other access to
the bus.

Quantum - Drives arbitrate. Winner asserts INTRQ or DMARQ. Rev 6 of Quantum
proposal suggests adopting Conner approach below.

Conner - Drives arbitrate. Winner asserts INTRQ or DMARQ and keeps its arbitration
line asserted. DASP- for Drive 0; PDIAG- for Drive 1. This tells the host
which drive is requesting service.

How a Command is Completed

WD - Uses ATAPI Status Phase for ATAPI devices, undefined for IDE devices but
presumably unchanged.

Quantum - Nothing defined different from basic ATA.

Conner - Drive sets CCPT in status register before asserting INTRQ.

Other Required Changes

The Conner proposal identified the following items which may apply to the other
proposals as well.

Arbitration requires that a drive be aware of whether the other device is asserting
INTRQ or DMARQ.

Only the selected drive should clear an interrupt request on a status register read
by the host. (Some drives today don’t check.)

On receiving a command, the selected drive should stay busy until it has saved all
necessary information from the Task File. Once BSY is turned off, the host may
start writing to the Task File again.

Not a complete analysis, but I hope it will help toward a workable common protocol.

