
ATA Command Queuing

October 13, 1994

James McGrath

Systems Engineer
Strategic and Technical Marketing

Quantum phone: 408-894-4504
500 McCarthy Blvd fax: 408-894-6375
Milpitas, CA 95035 internet: JMCGRATH@QNTM.COM

2

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 2

Document History

ATA Command Queuing

■ General Note: revisions are coming out fast, prompted by good feedback
- do not consider things set in stone, give me feedback!

■ Revision 5: feedback from revision 4:

-- added note in slide 9 and appendix A to deal with HEAD OF QUEUE

-- made slide 16 consistent with 15 in use of lock and arbitration bits

■ Revision 4: first document for general distribution, targetted at the
October 19 ATA-3 meeting. (October 13, 1994). This is an architectural
overview, with some key decisions (e.g. how to pass the tag) and timing
considerations still loosely defined. The key is to look at the forest first,
then the trees.

■ Revision 2 and 3: incorporate private feedback from several companies.
(October 11, 1994)

■ Revision 1: initial proposal (October 4 1994)

3

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 3

Agenda

ATA Command Queuing

■ Why Command Queuing on AT Drives?

■ Why the Drive and not the Host?

■ IO Subsystem Constraints

■ Host Constraints

■ ATA is Simplier than SCSI Command Queuing

■ ATA Protocol Changes Needed for Command Queuing

■ Configuring the Host for Queuing

■ Queue Tags

■ Synchronizing the Host and the Devices

■ Implementing Locks (Host to Device)

■ Host Sending a Command to a Device

■ Arbitration Between Two Queuing Devices

■ Implementing Locks (Device to Host)

■ Status and PIO Data Transfers

■ DMA Data Transfers

■ Transfer Count

■ Error Recovery

4

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 4

Why Command Queuing on AT Drives?

ATA Command Queuing

■ Goal is higher drive performance at little or no additional cost

-- SCSI workstation class drives have demonstrated16 commands) at
no incremental cost

■ Will a Queue of commands exist in PC systems?

-- A key enableations must take advantage of the OS

-- Multi-tasking and workplace environment will generate more IOs

-- Performance gain will be workload dependent

-- Benchmarks will be adapted to show off queuing at its best

■ Although protocol needs to be defined now to allow for ASIC and device
driver development, we do not see a market need until 1996 or beyond.

5

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 5

Why the Drive and not the Host?

ATA Command Queuing

Source of Performance Gain Relative Drive Host

Importance Capable Capable

Access Time Reordering 1 Yes No

Seek Time Reordering 2 Yes Yes

Command Overhead Overlap 3 Yes No

6

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 6

Why Overlap Commands Between Two Devices?

ATA Command Queuing

■ In a well balanced IO subsystem, twice the throughput can be achieved by
overlapping command execution (e.g. a simple mirrored system).

■ When one device is very slow (e.g. CD-ROM, Tape), this allows some
overlap of fast disk IO with slow device IO.

7

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 7

IO Subsystem Constraints

ATA Command Queuing

■ The IO subsystem consists of the host and one or two devices sharing an
IDE cable (secondary address/cables are just a duplicate IO subsystem,
although the primary addresses are used as examples throughout).

■ A component (host, device) can be queuing capable or non-queuing
capable (a legacy componentction with a legacy host, so queuing devices
must power up in a queuing disabled mode and have queuing enabled by
the host.

■ The queuing protocol proposal is designed to address the case of a
queuing host and one or two queuing devices.

■ With a queuing host and a legacy device, the host simply does not
invokeap commands between devices. It must also inform the queuing
device so it can work in a non-arbirtaration mode.

■ ATA and ATAPI should be able to mix on the same cable (at least as
much as they can do today).

■ Although focused on ATA commands, this proposal also works for ATAPI.

8

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 8

Host Constraints

ATA Command Queuing

■ Queuing is not designed to work directly on the ISA expansion bus - local
bus only will be supported.

-- Current proposal should work on ISA expansion buses, but we may
wish to simplify some of the protocol and violate this compatibility.

■ Host connection is via a bridge (which may be discrete or integrated into
system hardware) connecting a dedicated ISA bus to PCI/VL-
Bus/EISA/MCA/other.

■ Since bridges must be supported, bridge constraints must be taken into
consideration:

-- Intel PCI bridge guidelines allow access only to 3F6 and the task file

-- PCI bridges are moving towards first party DMA, implying no CPU
intervention for data transfer. Therefore all drive data transfer
protocol must be simply enough to be handled by a bridge chip.

■ Changes requiring new host hardware is allowed if the cost is small.

■ Queued and non-queued commands cannot be mixed on the same
device.

9

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 9

ATA is Simpler

ATA Command Queuing

■ ATA has only one initiator

-- Number of available queue slots always known

-- Error recovery can be simple

■ ATA has no command reordering restrictions

-- All commands are treated like SCSI SIMPLE queue tag commands
- drive can freely reorder any commands it receives

-- To insure strict order of execution (ORDERED queue tag), the host
 does not queue the command until the drive is idle - and does
not queue the following command until the first has completed.

-- Commands cannot jump the queue (HEAD OF QUEUE queue tag
does not exist) - although resettingles has suggested a

less brutal technique - see appendix A)

■ From the upper level of system software, ATA and SCSI command

10

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 10

ATA Protocol Changes Needed for Command Queuing

ATA Command Queuing

■ A legacy (non-queuing capable) device can co-exist with a queueing
device. While commands can be queued at the queuing device,
commands cannot be overlappedevice is executing another command.

■ Commands queued or executing at the device must be uniquely identified
so that data and status can be returned to the host in a different order than
the commands were received by the device.

■ An arbitratingthe ATA bus must be developed so that command execution
can be overlappedally well with PIO and DMA commands.

■ An error recovery procedure must be specified

■ Ability for the host to detect queuing capability, the maximum queue size,
and the ability to activate and deactivate the queueing protocol

11

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 11

Configuring the Host for Queuing

ATA Command Queuing

■ By default devices power up in a non-queuing mode.

■ The host can determine if queuing is supported, and the maximum size of
the queue, by issuing the IDENTIFY DRIVE command to the device.

■ Queuing is enabled/disabled by using the SET FEATURES command.

■ Arbitrationenabled vs devices without queuing capability or those with
queuing disabled.

■ Queuing and arbitrationa hardware reset.

12

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 12

Queue Tags

ATA Command Queuing

■ The host assigns each command an ID number, a queue tag.

■ Queue tag values range from 0 to (maximum queue size - 1).

■ Queue tag values are re used as commands are completed.

■ Queue tags are passed between the host and the device via either:

-- the data fifo, or

-- the upper byte of 3F6 accessed as a word.

■ Which of the above to do is still to be decided - the final document will

specify only one (there will be no options)

13

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 13

Synchronizing the Host and the Devices

ATA Command Queuing

■ Today ATA does not provide a way to insure the host can access the task
file and device control registers without device interference, and vica versa.

■ A new lock request/lock granted mechanism is provided to provide such
exclusive access at critical points in the command queuing protocol.

■ While a device or the host is locked, it cannot modify the contents of the
task file or device control registers with the following exceptions

-- The host can always write to the soft reset and interrupt control bits.

-- The locked device can always make new data available via
the data fifo register.

-- The locked device can always modify a few status bits that
are not latched (e.g. index).

■ A lock can be though of as a SCSI connection. Although you may think of
the locking mechanism analogousECTION mechanism of SCSI, note that a
host always locks BOTH devices.

14

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 14

Implementing Locks (Host to Device)

ATA Command Queuing

■ Host locking all devices

-- A host requests a lock by setting a bit in writing a word at 3F6 .

-- Device 1 grants a lock request by asserting PDIAG within 25 ns and
holding it for a short period (e.g. 50 ns) to signal device 0. Device 0
grants the lock request allowing the host to read a 1 in the device’s lock
granted bit when it reads a word at 3F6. The grant must be available
immediately (e.g. within 50 ns of request), and implies that BOTH
device 0 and 1 have granted the lock.

-- In systems with a single queuing device, then that device can grant the
lock without coordinating with the other device. Devices can tell if they
are in a single queuing environment if queuing and arbitration are
enabled.

-- A host considers the lock to be granted if the lock granted bit is set.

-- A host can clear a lock explicitlyode register in the task file.

15

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 15

Implementing Locks (Host to Device)

ATA Command Queuing

AE LRL
C

Queue Tag (or Reserved)

3F6 word access
bit

15

bit

14

bit

13

bit

12

bit

11

bit

10

bit

9

bit

8

AE LG Queue Tag (or Reserved)

LG = lock granted for both devices

Host Write/Drive Read

Host Read/Drive Write

LRLC = 1 for requesting a lock,
0 for clearing a lock

AE = arbitration enabled

R

D#

D# = 0 or 1, used to indicate
device requesting a lock

16

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 16

Host Sending a Command to a Device

ATA Command Queuing

Host requests a lock
from both devices

Lock granted?

Host issues
commandYes

No

■ Assume two devices with queuing enabled

Host writes a 1 to bit 14 of
device control register 6 (3F6)

Host reads device control register 6
(3F6) and checks if bit 14 is set

Host writes the tag into the bits 13-8 of
3F6 or the data fifo, the rest of the task

file as normal, and finally writes to the op
code register. Locks are implicitly
cleared when op code is written.

Host writes a 0 to bit 14 of device control
register 6 (3F6) to clear any locks

Host is blocked
from issuing
the command

17

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 17

Arbitration

ATA Command Queuing

■ If a device wishes to generate an interrupt to the host for data or status
transfer, or to have the DMA controller transfer data, then it must make
sure the other device will not interfere.

■ A pre condition for this protocol is the host enabling arbitration device may
always assume arbitrationers in preparation for arbitratingthe lock.

■ Device 0 can generate a interrupt or assert DREQ as long as the device is
not locked and PDIAG is not asserted by device 1. The device is said to
have won arbitrationot locked and PDIAG has been asserted by device 1
for 500 ns without Device 0 generating an interrupt or asserting DREQ.
The device is said to have won arbitrationear that the host will not react to
the arbitration

18

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 18

Implementing Locks (Device to Host)

ATA Command Queuing

■ Device locking a host

-- A lock is requested by the device by asserting IRQ (status and PIO
data) or asserting device can conflict since this device

has won arbitrationetting a host to device lock (for status and PIO
data) - the host requests a lock, and is immediately granted it
by the devices. Another mechanism may be evolved. For DMA data, the
lock is granted by the host asserting DACK.

-- The host clears the lock in the same way as clearing a host to device
lock (for status and PIO data) - writing a 0 to bit 14 of 3F6. For DMA,
the lock is cleared when both DREQ and DACK are deasserted.

-- The host or DMA controller can identify the command for which a lock
is being requesting by examining bit 13 of device control register 6 (the
device number, 0 or 1) and bits 12 to 8 of the same register (the
queue tag). Alteratively

19

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 19

Status and PIO Data Transfers

ATA Command Queuing

Device wins arbitration

Host reads tag value

Host transfers data
(if any), checks

status, and clears
lock

Host writes a 0 to bit 14 of
device control register 6 (3F6)

to clear the lock

Host reads from bits
13-8 of 3F6 or the
data fifo register

■ Assume two devices with queuing enabled

20

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 20

DMA Data Transfers

ATA Command Queuing

Device wins arbitration

DMA controller asserts DACK, granting the lock

DMA controller reads device number and tag

■ Assume two devices with queuing enabled

DMA controller transfers data until DREQ or DACK is
deasserted

Lock is cleared when both DREQ or DACK are deasserted

21

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 21

Transfer Count

ATA Command Queuing

■ After reading the queue tag, the host may read a transfer count word from
the device’s data fifo register.

■ This value indicates the number of words of data available from the device

for immediate transfer (i.e. words of data in the device buffer) for reads. It
indicates the number of words of space available in the device for
immediate transfer (i.e. words of space in the device buffer) for writes.

■ For PIO commands, this value is 256 for backward compatibility, but
allows a larger, variable number of words to be transferred at a time.

■ For DMA commands, this value may not indicate the length of the current

DMA burst, but does limit the length of the burst.

■ The transfer count mechanism may not be needed, but may assist the
host and DMA controller in making transfers more efficient.

22

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 22

Error Recovery

ATA Command Queuing

■ Errors are reported in the STATUS register as usual.

■ The devices continue execution as normal when errors occur - there is no
halting of the queue.

■ The host can always abort everything via a soft reset - all the commands
are wiped clean.

■ Individual commands can be aborted by locking the devices and issuing a
NOP to the same device/queue tag as the command to be aborted. The

drive will return with ABORTED command status.

■ Since ATAPI allows the gathering of more extensive sense information via
REQUEST SENSE, the device shall maintain sense data for each

command, discarding it when the queue tag is re used by the host. The
REQUEST SENSE command packet must specify the tag for which sense
is requested (there are lots of reserved bytes).

23

Q U A L I T Y S T O R A G E F O R B E T T E R S Y S T E M S
®

jpm 7/22/98 Pg 23

Appendix A: another way to do HEAD OF QUEUE

ATA Command Queuing

Commant from Charles Monia (SAM editor)

Just one comment on your ATA queuing slides. On pp 9, you suggest that simulating HOQ commands
would require the host-resident SCSI emulation software to abort and reissue previously pending
commands.

As I describe below, it is possible for the host to simulate the behavior for HOQ and all other command
types without going to those lengths.

One way to do that is for the host to maintain a host-resident queue of pending commands, as your slide
suggests. A command is unconditonally entered on this queue when it is received and remains there until
completion. The host marks commands on the HR queue that have been passed to the drive.

If an ordered command arrives and the HR queue is empty, the ordered command is immediately
forwarded to the drive. Otherwise, the pending command is placed on the HR queue and forwarded when
all previous commands have ended.

If a Simple command arrives and there are no pending HOQ or Ordered commands, the Simple
command is forwarded to the drive. Otherwise, it remains on the queue and is forwarded when all
previous HOQ and ordered commands have ended.

If an HOQ command arrives, it is unconditionally forwarded to the drive.

Even though there's no way to for such a command to 'jump the line' of commands that have been
forwarded, that is not an issue since commands previous to an HOQ command are allowed to complete
before the HOQ command completes.

I assume in all these cases that an error condition unconditionally aborts all commands that have been
passed to the drive. Since all such commands would still be in the HR queue, the host-resident emulation
software could just restart them when the ACA is cleared.

