
ATA / ATAPI - Multi Threading

Point of Contact: Tom Hanan
Western Digital Corporation
8105 Irvine Center Drive
Irvine Calif. 92718
Ph: (714) 932-7472
Fx: (714) 932-7314
E-Mail hanan_t@a1.wdc.com

Reflector: ata@dt.wdc.com

Revision 0.3
July 21, 1998

Status: Proposal

Preliminary Draft for Review Only

ATA / ATAPI - Multi Threading (Proposal) R0.3 Page 2

1.0 Overview

This proposal is intended to provide a basis for extensions to the
existing ATA and ATAPI protocols needed to support Multi-threading.

The need to provide Multi-threading extensions to ATA and ATAPI devices
is driven by system manufacturers' desire to allow inexpensive, high
performance hard disk drives, ATAPI CD-ROM and ATAPI tape devices to
share a single low cost ATA connection.

This proposal has been put forward by Western Digital in an effort to
address industry wide compatibility issues related to the specifics of
implementing high performance Multi threading on ATA host systems and
peripherals.

It is the intent of the editor of this document to publish this document
as an SFF extension to the existing ATA-2 and SFF ATAPI 1.2 documents.

It is also the intent of the editor to work closely with the editors of
the ATAPI protocol and ATA-3 documents to incorporate the appropriate
sections of this proposal within their respective documents.

Comments or suggestions regarding the technical content of this proposal
should be posted on the ATA / SFF ATAPI reflectors.

Comments or suggestions regarding editorial or administrative issues
related to this document should be sent to:

Tom Hanan
Western Digital
8105 Irvine Center Drive
Irvine CA 92718

PH: 714 932-7472
FAX: 714 932-7314
E-Mail hanan_t@a1.wdc.com

P.S. I hope I get more e-mail on the technical content of the document
than either the format or the politics of which sections will be
included in which X3T10 document. Let's get the compatibility issues
worked out before we decide where the information should go......

Regards,
Tom Hanan

ATA / ATAPI - Multi Threading (Proposal) R0.3 Page 3

I) Traditional

 Cmd Data Data Cmd Data
 +--+--+ +--+--+ +--+--+--+ +--+--+ +--+--+--+
 |SL|IC|o o|RS|TD|o o|RS|TD|RL| |SL|IC|o o|RS|TD|RL|
 +--+--+ +--+--+ +--+--+--+ +--+--+ +--+--+--+
 |B0|R1|B1 |B0|In|B1 |B0|In|B0 |B0|R1|B1 |B0|In|B0
 |s0| | |D1| | |D1| |D0 |s0| | |D1| |D0
 | | | |Ia| | |Ia| |R1 | | | |Ia| |R1

II) Overlapped

 Cmd Poll Poll
+--+--+--+ +--+--+ +--+--+
|SL|IC|RL| o o o o o o o o o o o o o o|SL|RL|o o o o o o o o o |SL|RL|
+--+--+--+ +--+--+ +--+--+
B0	R1	B0	B0	B0	B0	B0
s1		D0	s1	D0	s1	D0
		C0		C0	R1	C1

===
New

III) Shared IRQ (ATA-3)

 Cmd Data Data
+--+--+--+ +--+--+--+ +--+--+--+
|SL|IC|RL| o o o o o o o o o|SL|TD|RL| o o o o|SL|TD|RL|
+--+--+--+ +--+--+--+ +--+--+--+
|B0|R1|B0 |B0|In|B0 |B0|In|B0
|s0| |D0 |s0| |D0 |s0| |D0
| | |R0 |D1| |R0 |D1| |R1
 |C0 |A1| |C0 |A1| |C1

IV) Tagged Queing (ATAPI Only)

 Cmd(1) Cmd(2) Data(2) Data(1)
 +--+--+ +--+--+--+ +--+--+--+ +--+--+--+
 |SL|IC|o o|SL|IC|RL| o o o o|SL|TD|RL| o o o o |SL|TD|RL|
 +--+--+ +--+--+--+ +--+--+--+ +--+--+--+
 |B0|R1|B0 |B0|R1|B0 |B0|In|B0 |B0|In|B0
 |s1| |D0 |s1| |D0 |s1|A0|D0 |s1|A0|D0
 |t1| |R1 |t2| |R0 |D1| |R0 |D1| |R0
 |tt| |C0 |tt| |C0 |T2| |C1 |T1| |C1
 |A1| | |A1| |

===|
B=BSY, D=DRQ, s=DRV, R=DRDY, C=DSC or POST, A=ATTN(IDX,Status:bit1),
Ia=HIRQ Asserted, In=HIRQ Negated, t(n) or T(N)=Tag, tt or TT= Tag Type,
ST=Set Taskfile, SL=Select, RL=Release, IC= Issue Command, RS= Read
Status, TD=Transfer Data.

+------+------+------++----------------+----------------+
| BSY | DRDY | DRQ || New Cmd | Change DRV |
+------+------+------++----------------+----------------+
| 0 | 0 | 0 || Ignore New Cmd | OK |
+--------------------++----------------+----------------+
| 0 | 1 | 0 || Accept New Cmd | OK |
+--------------------++----------------+----------------+
| 0 | 1 | 1 || Abort Cur Cmd | ????????????? |
| | | || Accept New Cmd | |

ATA / ATAPI - Multi Threading (Proposal) R0.3 Page 4

+--------------------++----------------+----------------+

ATA / ATAPI - Multi Threading (Proposal) R0.3 Page 5

2.0 Shared IRQ:

The shared IRQ protocol is designed to allow more than one device on a
given IDE cable to process commands and data concurrently. To achieve
this goal the function of several bits within the task file have been
enhanced. Specifically the function and behavior of DRDY, DSC and IDX
have been changed as follows:

2.1 Shared IRQ Signal Timing:

 + IC + RL RA ID+ SL + TD +IC or RL
==
 b________________ h + __
DRV __/+ +XXXXX_________________________/ XXXX
 ___________________ ____________________________
nIEN _/a e_______/j + +______
 +__ c + +__k
cmd ___/A0______________________/A2________________________
 + __ ___+ + ___m p___q
BSY ______/ _____/ d____________/ ________/ _______
 + ____ _________________n_______o +
(DRQ) __________/ ____XXXXX XXXXXXXX________XXXX
 + + + +n +
Data ___________/\/______________________/\/\/\/____________
 + + i+ + +
Status __#__________________#_____#_______________________#_____
 ________________ + n________p + ______
T File ___/ _______________/ ____/______
 + + ____j + +
INTRQ _______________________/g _____________________________
 + + __________l + +
(ATTN) ______________________/f + ________________XXXXXXX

(DRDY) XX _____________XXXXXXXXXXXXXXXXX_________XXXXXXXXXXX

 Signals enclosed in () brackets are valid any time BSY=0.

a-e) Issue Cmd to Device 1
f-j) Release Cable
k-l) Select Device 0
n-q) Transfer Device 0 Data

2.1.1 a-d) IC - Issue Command

a) The IC-Issue Command phase of a transfer is started by selecting the
device to which the command will be sent. If the previous phase was an
IC to the same device the host may not need to Release and Select the
device again in order to issue it another tagged queue command. Device 1
is used in the example above.

b) For backward compatibility the host must disable the assertion of
interrupts using nIEN after selecting the device to which it intends to
issue a command. nIEN may already be disabling the interrupts if the
previous phase was also an IC to the same device. Writing to nIEN with
any device selected shall prevent all devices on the cable from
asserting interrupts to the host. Disabling interrupts is necessary to
prevent interrupts from non selected device from confusing host drivers
while they are issuing commands. Note that disabling interrupts while
issuing ATA and ATAPI commands requires ATAPI devices supporting shared
interrupts to have hardware accelerated command packet DRQ capabilities.

ATA / ATAPI - Multi Threading (Proposal) R0.3 Page 6

If the host intends to issue an ATAPI Tagged command to the device then
it must set up the tt-Tag Type and Tn-Tag number in the task file,
before issuing the A0 ATAPI Packet command to the device.

c) After the host has disabled interrupts it can issue a shared IRQ
command to the selected peripheral. Once the command has been issued it
will continue normally until BSY and DRQ are de-asserted.

d) When BSY and DRQ are both de-asserted the selected device is
signaling the host system that it is releasing control of the cable.

2.1.2 e) RL - Release Cable
If the host system has no other commands for that device or the devices
DRDY bit indicates that the device is not ready for another command, the
host should poll the other devices on the cable before enabling
interrupts using nIEN. This is necessary to detect other devices capable
of accepting commands or devices which have pending interrupts to the
host which are disabled because of nIEN. If no other devices on the
cable require servicing then the host system can enable host interrupts
using nIEN and wait for an interrupt. The host system may also wish to
launch a timer thread to allow it to poll the devices on the cable for
another opportunity to issue more commands to the devices before the
next interrupt from a device on the cable.

Note that the cable's task file becomes invalid from the time that the
host uses nIEN to disable host interrupts until nIEN is used to re-
enable host interrupts or the device is selected using the ATA-3 A2
Select Device command. (See j-n)

2.1.3 f-g) RA - Request Attention
While the cable is Released, I.E. the host is not issuing a command ,
interrupts are enabled, and no device has been selected to process an
interrupt, any device on the cable may assert ATTN:IDX and assert the
interrupt signal to the host to request attention from the host. Note
that the assertion of ATTN in the status register is independent of nIEN
and must precede the assertion of the interrupt signal.

2.1.4 i-j) ID - Identify Device requesting Attention
Upon receipt of an interrupt the host system must use the DRV bit to
poll the devices in the cable to determine which device is requesting
attention.

Depending on the IRQ mode selected using the Set Features command the
interrupt signal asserted by the device may be either a 1-2us pulse or a
signal negated by a read to the device's status register.

2.1.5 j-n) SL - Selection
Devices configured for Shared IRQ must be selected to enable their task
file for interrupt processing. This is true for command termination and
data transfer interrupts. In both cases the device will assert ATTN
until they are selected by the host using the ATA-3 A2 Device Select
command.

Once the host has determined which device requires attention the host
must disable host interrupts from the devices on the cable using nIEN
before issuing the ATA-3 Select Device command.

2.1.6 n-q) TD - Transfer Data

ATA / ATAPI - Multi Threading (Proposal) R0.3 Page 7

Data transfer occurs as defined by the protocol for the non A2 command
issued to the device. The Transfer data phase is complete when the
device again releases the cable by de-asserting BSY and DRQ.

ATA / ATAPI - Multi Threading (Proposal) R0.3 Page 8

2.2 New ATA-3 Command Definitions:
Several new commands have been defined to support Shared IRQ.

2.2.1 Select Device (A2h)
This command allows the host to assign control of the cable to a
specific device. The device is considered to have been selected only if,
after the command is issued to the device, the device de-asserts BSY
without aborting the A2 command. Devices aborting the A2 command do not
support the shared IRQ protocol and may need to be reset before they
will again function according to the traditional IDE protocol.

One issue yet to be resolved is how long the host system should be
forced to wait for BSY to be de-asserted when the host issues an A2-
Select Device command. Because nIEN has been set to disable interrupts
an interrupt can not be generated by the device to indicate that it is
done processing the Select Device command. Since it is assumed that
initial shared IRQ devices will not hardware accelerate the Select
Device command, the host system must poll for the de-assertion of BSY.

To prevent degradation of host performance it is recommended that the
host system poll for 50us after which it should generate a timer thread
to return control to the driver not more than 500us later. The host
should continue to use a timer driven polling sequence for up to 3ms at
which point the host should reset the devices on the cable assuming a
catastrophic command failure has occurred.

2.2.2 Set Features:

Enable Shared IRQ Protocol:
Disable Shared IRQ Protocol:
These two commands are used to enable and disable the shared IRQ
protocol within the devices on the cable. These commands are designed to
allow the OS drivers to identify devices compatible with the shared IRQ
protocol and configure them for maximum performance. The device will
abort or accept these commands to identify its compatibility with the
feature.

Peripherals shipped with Shared IRQ protocol enabled may lock up BIOS
and OS drivers which are not designed to utilize this feature when they
are unable to abort an active command because DRDY remains = 0. BIOS and
drivers which issue an SRST as a result of a DRDY time-out are 100%
compatible with drives shipped with Shared IRQ enabled.

Enable OCI-Open Collector IRQ Protocol:
Disable OCI-Open Collector IRQ Protocol:
These two commands are used to enable and disable the open collector IRQ
protocol within the devices on the cable. These commands are designed to
allow the BIOS or adapter drivers to identify devices compatible with
the open collector protocol and configure the host and peripherals for
maximum performance. The device will abort or accept these commands to
identify its compatibility with the feature.

ATA / ATAPI - Multi Threading (Proposal) R0.3 Page 9

2.3 New Bit & Signal Definitions:

2.3.1 DRDY:
DRDY has been changed so that it can be used to indicate when the
peripheral is ready to accept another command into its command Queue. To
achieve this functionality the peripheral no longer aborts the current
command when it receives a new command with DRDY=1. When the peripherals
queue is full, it must indicate this condition to the host system by de-
asserting DRDY. Commands received while DRDY=0 shall be ignored by the
peripheral. Note that de-asserting DRDY may prevent the host from
aborting a command by issuing another command before the first command
has completed.

2.3.2 DSC (POST):
DSC has been changed so that it can be used to indicate when the
peripheral has completed the command for which it is reporting status.
In the case of Tagged ATAPI commands the DSC bit is used in conjunction
with the tag to identify which command in the queue has completed.

2.3.3 IDX (ATTN):
IDX has been changed so that it can be used to indicate which
peripherals are asserting HIRQ. This bit mimics the peripheral's
internal IRQ bit and is unaffected by the state of nIEN. Note that this
bit may also be used to poll the peripherals without the use of
interrupts.

3.0 Tagged Queuing (ATAPI Only):

The tagged queuing protocol for ATAPI is designed to allow the
peripheral to process multiple commands concurrently. To achieve this
goal the function of several TAG fields within the ATAPI task file have
been defined. Specifically the function and behavior of Tag and Tag Type
have been defined as follows:

If only SIMPLE QUEUE TAG commands are used, the peripheral may execute
the commands in any order that is deemed desirable.

If ORDERED QUEUE TAG commands are used, the peripheral shall execute the
commands in the order received with respect to other commands received
with ORDERED QUEUE TAGs. All commands received with a SIMPLE QUEUE TAG
Type prior to a command received with an ORDERED QUEUE TAG type, shall
be executed before that command with the ORDERED QUEUE TAG type.

All commands received with a SIMPLE QUEUE TAG Type after a command
received with an ORDERED QUEUE TAG Type, regardless of initiator,
shall be executed after that command with the ORDERED QUEUE TAG type.

A command received with a HEAD OF QUEUE TAG type is placed first in the
queue, to be executed next. A command received with a HEAD OF QUEUE TAG
message shall be executed prior to any queued I/O process. Consecutive
commands received with HEAD OF QUEUE TAG type are executed in a last-in-
first-out order.

A command received without a queue tag type, while there are any
tagged I/O commands in the command queue, shall be aborted with a Tag of
00h.

An ATAPI peripheral that supports shared IRQ, but not tagged queuing,
shall use DRDY to accept one tagged command at a time. All peripherals

ATA / ATAPI - Multi Threading (Proposal) R0.3 Page 10

supporting Shared IRQ shall return the tag issued to the peripheral with
the command.

3.1 Typical sequences for tagged queuing:

An ATAPI command using tagged queuing uses the following sequences for
normal execution. The host system selects the device and monitors DRDY
until the device is ready to accept another command (DRDY=1). The host
then sets up the task file for the command including the Tag and Tag
Type fields. Note the Tag and Tag Type fields are specified as 0 for non
tagged ATAPI commands. Once the Task file is configured then the host
reads the status register again to verify that the peripheral is ready
to accept a command. If DRDY=1 then the host writes to the command
register to issue the tagged command. The host is then free to issue
more queued commands to this peripheral or select another device on the
cable.

3.2 Aborting Tagged Commands:

The host may abort a specific tagged command in the peripheral's queue
by issuing a new command to the peripheral with the tag used for the
command to be aborted. The new command is placed into the queue using
the order defined by the new tag type. Note that the tag type is not
required to match the original tag.

Peripherals can abort tagged commands using the existing aborted command
sequence with the additional requirement that the peripheral identify
the aborted command with the command's tag.

 Cmd(1) Cmd(2) Data(2) Data(2)
 +--+--+ +--+--+--+ +--+--+--+ +--+--+--+
 |ST|IC|o o|ST|IC|RL| o o o o|SL|TD|RL| o o o o |SL|TD|RL|
 +--+--+ +--+--+--+ +--+--+--+ +--+--+--+
 |B0|R1|B0 |B0|R1|B0 |B0|In|B0 |B0|In|B0
 |s1| |D0 |s1| |D0 |s1|A0|D0 |s1|A0|D0
 |t1| |R1 |t2| |R0 |D1| |R0 |D1| |R0
 |tt| |C0 |tt| |C0 |A1| |C0 |A1| |C1
 |T2| | |T2|

 Abort(1)
 +--+--+
 |SL|RL|
 +--+--+
 |B0|B0
 |s1|D0
 |D0|R0
 |T1|C1
 |E1

ATA / ATAPI - Multi Threading (Proposal) R0.3 Page 11

3.3 Example of Tag Queue Ordering:

An example of the execution of five queued Commands is given below to
demonstrate how tagged queuing operates. The five commands are defined
in the table below. At the time the Commands are first being executed,
it is assumed that the actuator is in position to access logical block
10 000.

 Commands in order received by peripheral
+==========-============-============-==========-============-=========+
Command	Queue tag	Queue tag	Logical	Transfer	Status
	message	value	block	length	
			address		
----------+------------+------------+----------+------------+---------					
READ	SIMPLE	01h	10 000	1 000	Queued
READ	SIMPLE	02h	100	1	Queued
READ	ORDERED	03h	1 000	1 000	Queued
READ	SIMPLE	04h	10 000	1	Queued
READ	SIMPLE	05h	2 000	1 000	Queued
+==+

The optimum order would require that those blocks close to the actuator
position be the first blocks accessed, followed by those increasingly
far from the actuator position. However, the command with queue tag 03h
is an ordered command, so that all simple Commands transferred
previously must be executed before, while all simple Commands
transferred after the ordered command must be executed after the ordered
command.

If a peripheral supports an optimizing algorithm the actual order in
which the Commands are executed could be as shown in the table below.

 Commands in order of execution
+==========-============-============-==========-============-=========+
Command	Queue tag	Queue tag	Logical	Transfer	Status
	message	value	block	length	
			address		
----------+------------+------------+----------+------------+---------					
READ	SIMPLE	01h	10 000	1 000	Queued
READ	SIMPLE	02h	100	1	Queued
READ	ORDERED	03h	1 000	1 000	Queued
READ	SIMPLE	05h	2 000	1 000	Queued
READ	SIMPLE	04h	10 000	1	Queued
+==+

Commands with queue tag values 01h and 02h are executed in the order
received since the actuator is already in position to execute command
01h. Command 02h must be executed before Command 04h or 05h because
the ordered Command 03h was transmitted after Commands 01h and 02h
but before Commands 04h and 05h. Command 03h is then executed after
Command 02h. The Commands 04h and 05h are executed after the
ordered Command 03h. Command 05h is executed before Command 04h
because the actuator is in position to access block 2 000 after
executing Command 03h. Command 04h is executed last.

As an example of the operation of the HEAD OF QUEUE TAG Command,
consider that a new Command, identified by a HEAD OF QUEUE TAG message
with a queue tag of 08h, is transmitted to the peripheral while the
ordered Command 03h is being executed. The Command 03h continues
execution, but the new HEAD OF QUEUE TAG Command is placed in the queue

ATA / ATAPI - Multi Threading (Proposal) R0.3 Page 12

for execution before all subsequent Commands. In this case, the queue
for execution after the ordered Command 03h was executed would appear as
shown in the table below.

 Modified by HEAD OF QUEUE TAG message
+==========-============-============-==========-============-=========+
Command	Queue tag	Queue tag	Logical	Transfer	Status
	message	value	block	length	
			address		
----------+------------+------------+----------+------------+---------					
READ	ORDERED	03h	1 000	1 000	Executing
READ	HEAD OF QUE	08h	0	8	Queued
READ	SIMPLE	05h	2 000	1 000	Queued
READ	SIMPLE	04h	10 000	1	Queued
+==+

To obtain maximum performance gains using tagged queuing requires
careful implementation of the queuing algorithms in the peripheral. In
addition, host systems should allow a maximum number of simple Commands
to be executed with a minimum number of ordered Commands.

