
From: Gerry Houlder
SendTo: X3T10 Committee
Date: 08/10/94 12:51:42 PM
Subject: System recovery on 3rd party commands X3T10/94-184r0

This issue needs to be addressed at the XOR commands Special Interest
Group meeting planned for Monday morning Sept. 12 (in Houston). The
reflector can also be used to provide comments and suggestions.

The XDWRITE command (XOR Data Write) is being architected so the RAID
controller can send write data to drive A. Drive A will generate XOR data
by reading data from its own media and XORing it with the data received
with the XDWRITE command. Next the drive will send an XPWRITE (XOR Parity
Write) command to drive B (the parity drive) that includes the XOR data.
When drive B completes its XOR and write operations, it returns status to
drive A. Now drive A can return good status to the RAID controller if both
drive operations succeed.

If the XDWRITE operation on drive A fails, it can be reported and
recovered in a manner similar to existing WRITE commands. If drive A is
reporting CHECK status because of a failing XPWRITE operation on drive B,
however, there are extra complications.

The normal SCSI philosophy is that the initiator of any command has
complete responsibility to recovery if the command fails. This assumption
breaks down for RAID configurations that use 3rd party drives to initiate
part of the operation. This is because there are serious drive failures
that can only be "recovered" by removing the failing drive from the array
and replacing it with a good spare. This can only be done by the RAID
controller (which maintains the redundancy group tables) and not by a 3rd
party drive (which has no knowledge of array configuration or spare
availability). Such serious failures will happen and a procedure to
transfer the recovery responsibility to the RAID controller must be
defined.

Several methods to do this suggest themselves:
 (A) Drive B's contingent allegiance to drive A must be ended before the
RAID controller can issue any recovery commands. Drive A could simply
clear the contingent allegiance, report CHECK status on the associated
XDWRITE command, and let the RAID controller do the cleanup. The
disadvantage here is that drive B has no safeguard in place to prevent
other commands (possibly from other 3rd party drives, drive A again, or
other RAID controllers) from being executed. These other commands could
make recovery more difficult than if they were prevented from executing
until the recovery procedure has completed.

(B) Drive A can transfer its "auto contingent allegiance" directly to the
RAID controller's address instead of its own. There currently is no method
to do this, but this is the most desirable path. The contingent allegiance
mechanism is ideally suited to preventing other commands from running on
the failing drive until the recovery procedure is done. This method would
even lock out drive A until the recovery procedure completes. The RAID
controller can clear the contingent allegiance normally when recovery is
complete.
 I suggest defining a new command to "Transfer Contingent Allegiance".
The command needs only to include the address of the device to transfer
allegiance to (the RAID controller in this case). Now drive A can let the
RAID controller know that it has the allegiance. It can return CHECK
status for the XDWRITE command and define sense data that indicates that
allegiance has been transferred. Alternatively, a new status response
could be defined that says "3rd party CHECK condition, and the 3rd party

device has allegiance to you". This would make sure the RAID controller
gets the sense bytes to read the device address. Or should the controller
be required to figure out the 3rd party address from the XDWRITE command
that ended with CHECK status?

(C) Drive A can issue a 3rd party RESERVE command to drive B, reserving it
to the RAID controller. This would lock out other devices until the RAID
controller completes its recovery action. The RAID controller would still
have to learn the failing drive address from the failing XDWRITE command
bytes or resulting sense bytes, just like in case (B). The problem with
this method occurs when the RAID controller is done with recovery and
tries to release the 3rd party reservation. The existing SCSI rules prevent
 the RAID controller from releasing its own reservation, only the device
that sent the 3rd party RESERVE command (drive A) can release the
reservation.
 There are several possible ways to fix this problem:
(1) Change the 3rd party reservation rules to allow the "3rd party device"
to release its own reservation. This looks like a minor rule change with
few complications for backwards compatibility.
(2) Create an "indirect 3rd party release" option on the RELEASE command.
This would be a command that the RAID controller would send to drive A
that tells it to send a regular 3rd party RELEASE command to drive B.
Drive A would return Good status after the 3rd party RELEASE command gets
Good status. This seems unduly complicated, but it could work.
(3) Any better fixit suggestion?
 The disadvantage of using reservations is that the system might choose
to use reservations for its own needs. These needs could conflict with
error recovery needs. However, I think it is unlikely that a system that
makes extensive use of 3rd party devices to help with certain operations
could use reservations for anything but error recovery without causing
problems anyway.

(D) Any other suggestions?

