

T10/08-404r1 SAS-2: Tools for TX characterization (and jitter tolerance setup qualification)

Mathieu Gagnon Guillaume Fortin PMC-Sierra

Overview

- Link to Previous Material
- Guiding Principles
- Transmitter Specifications
- Far-end Measurements Orthogonality
- Issues with SASWDP
- SAS_EYEOPENING
 - Presentation
 - Features
 - Operational Features
- SASWDP vs. SAS_EYEOPENING
- Summary
- To do

Link to Previous material (1)

- In 08-330r0 and 08-345r1 Kevin Witt presented results showing how the SASWDP program could be used to characterize transmitters at the far end, after the compliance channel.
 - The idea is to replace traditional near-end measurements with a single far-end metric
 - Makes the process more flexible to different TX features
 - Makes the process pattern-independent
 - Same point as for RX characterization consistent
- The measurement is taken at the TX as close as possible to the chip pin and convolved with the reference channel.

Guiding Principles (1)

- 2 ways to view the TX compliance:
 - 1. Generate a waveform that an RX can recover
 - 2. Meet specific TX criterions that will ensure an RX can recover its output
- The WDP approach is of the first kind verify if the RX can recover without checking the specific parameters directly
- To verify specific TX criterions is restrictive on the type of equalization that can be provided by a TX

Guiding Principles (2)

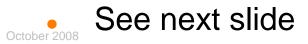
- Spec. contains only few mandatory patterns to be generated by the TX
 - CJTPAT (Table 61, note g)
 - D10.2 or D21.5 (Table 61, note f)
 - PHY_TEST_PATTERN is not mandatory
- Specification measurements are usually done at the near end
 - Easier to setup
 - At 6 Gbs, de-embedding results at compliance points is an issue
 - Measurement at the chip removes uncertainty: Treats board as part of the channel
 - Minimal impact of testing probe likely no de-embedding

Guiding Principles (3)

- Most TX specifications can be tested easily at the near end
 - Mostly DDJ remains, which is mostly orthogonal to other specifications
- Next slides review the standard TX specs:
 - Whether they are orthogonal to DDJ from TX and channel
 - How they relate to system performance
 - Whether they are covered easily by near-end measurements

Transmitter Specifications

		Best	Near-End	Simulated Far-End	
Specification		Pattern	Measurement	Measurement	Comments
		D10.2 or		Difficult	
RJ		D24.3	Easy	Requires long capture	
BUJ				Difficult	
	PJ	CJTPAT	Easy	Requires long capture	
		CJTPAT			
	DCDJ	or D10.2	Easy	Possible	
		CJTPAT	Easiest	Difficult	
	SSCJ	or D24.3	(but not easy)	Requires long capture	
			Constrains de-		
DDJ		CJTPAT	emphasis type	Eye opening after DFE	Zero-Length
Amplitude		CJTPAT	Possible	Tap0 magnitude in CPR	Test Load must
			Constrains de-		be de-
De-Emphasis		CJTPAT	emphasis type	Eye opening after DFE	embedded if
			Easy		used to capture
Rise/Fall Times		CJTPAT	Relevant for EMI	Eye opening after DFE	tx signal

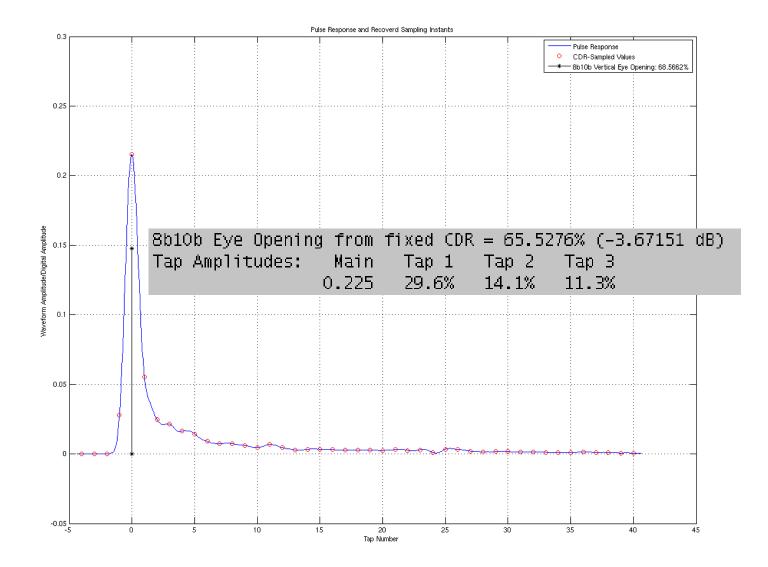

Far-end measurements orthogonality

- Specs affected by channel are best measured at far-end
 - TX amplitude
 - TX De-emphasis
 - TX DDJ
 - TX Rise-Fall time
- RX eye opening is really a combination of all the specs.
 - Need a tool for far-end measurements that can ignore the effects of specs measured at the near-end.
 - I.e., the far-end specs must be measured orthogonally to the near-end ones.
- Can we use SASWDP?

Issues with SASWDP

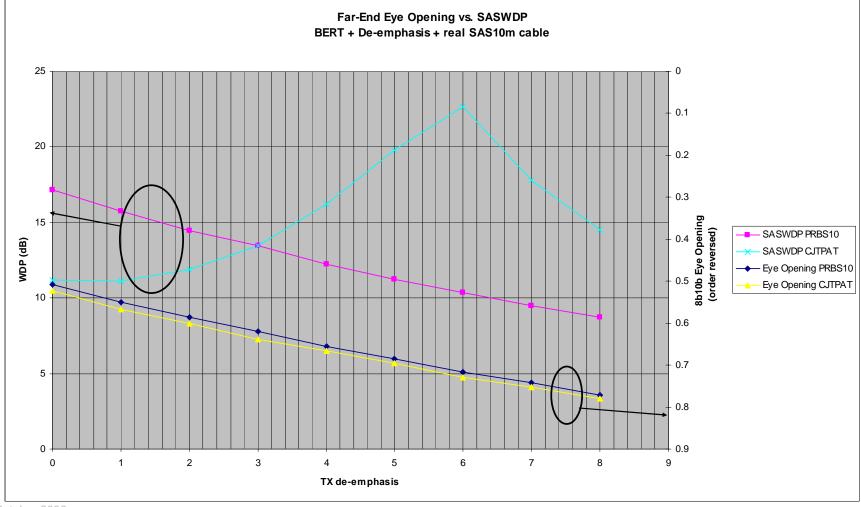
- Requires a PRBS pattern (new to spec)
 - Data must be properly captured to be periodic
- Requires the digital pattern
 - Data and pattern must be aligned
- Has large variations vs. pattern
 - Up to 0.8 dB between two PRBS10
- Sometimes the Clock Recovery does not converge
- Its CDR creates a new « hidden » spec.
- ncDDJ incorrectly measured?
 - Large variations anyway

Issues with SASWDP


тх	TX de- emphasis	Pattern	Channel	SASWDP (original)	ncDDJ (original)
Generated 113ps rft 0-100%	3	TxDataFile_6m-cjtpat	10m SAS	11.4	0.578
Generated 113ps rft 0-100%	3	TxDataFile_10m-prbs10	10m SAS	10.6	0.297
Generated 113ps rft 0-100%	3	PRBS10, poly x204	10m SAS	11.2	0.263
Generated 113ps rft 0-100%	0	TxDataFile_6m-cjtpat	10m SAS	11.3	0.52
Generated 113ps rft 0-100%	0	TxDataFile_10m-prbs10	10m SAS	13.2	0.325
Generated 113ps rft 0-100%	0	PRBS10, poly x204	10m SAS	14	0.364
Generated 113ps rft 0-100%	3	TxDataFile_6m-cjtpat	HP24	<u>15.4</u>	0.725
Generated 113ps rft 0-100%	3	TxDataFile_10m-prbs10	HP24	10.6	0.368
Generated 113ps rft 0-100%	3	PRBS10, poly x204	HP24	10.3	0.397
Generated 113ps rft 0-100%	0	TxDataFile_6m-cjtpat	HP24	<u>24.3</u>	1
Generated 113ps rft 0-100%	0	TxDataFile_10m-prbs10	HP24	12	0.284
Generated 113ps rft 0-100%	0	PRBS10, poly x204	HP24	11.7	0.324

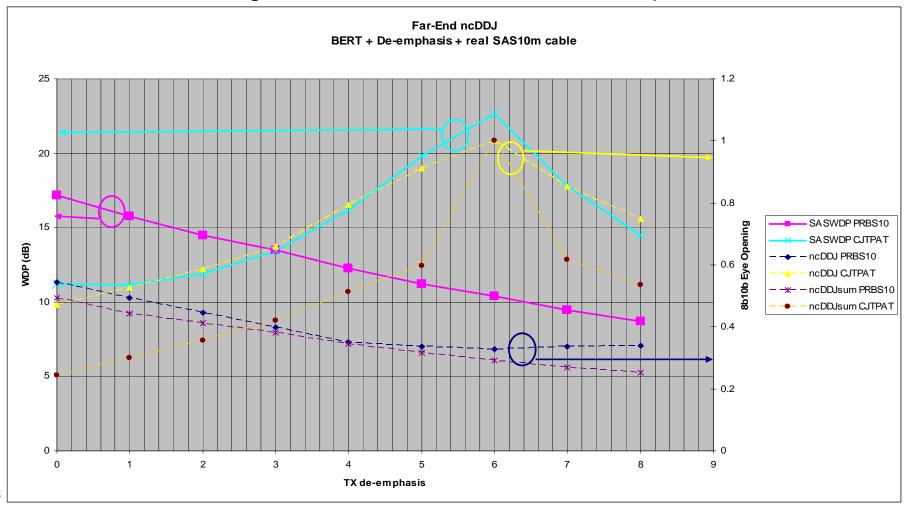
- SAS_EYEOPENING.m script developed
- Evaluates pulse response from the channel (-4 precursors to +40 post-cursors – inspired by SASWDP)
- Extracts sampling instant assuming a random input
 - Insensitive to input pattern
 - Could be improved to consider 8b10b?
- Re-computes the pulse response at this point
- Computes a simple « worst-case » 8b10b sequence
- Computes the eye opening due to DDJ, after a perfect 3-taps DFE
- Outputs information about each of the DFE's 3-taps compensation

SAS_EYEOPENING.m

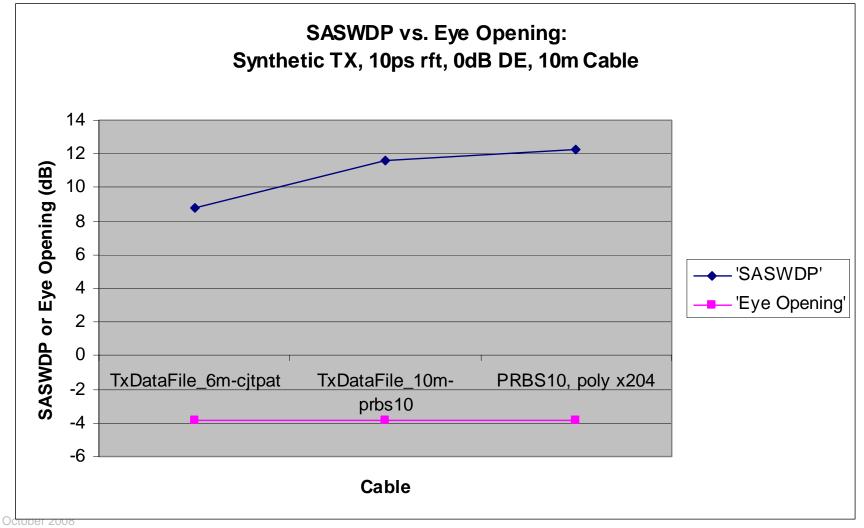


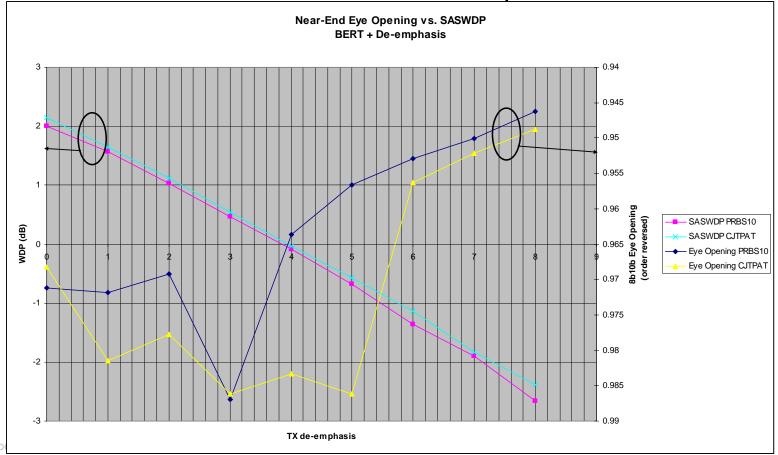
ТХ	TX de- emphasis	Pattern	Channel	SASWD P (original)	ncDDJ (original)	"8b10b" eye opening
Generated 113ps rft 0-100%	3	TxDataFile_6m-cjtpat	10m SAS	11.4	0.578	65.6%
Generated 113ps rft 0-100%	3	TxDataFile_10m-prbs10	10m SAS	10.6	0.297	65.6%
Generated 113ps rft 0-100%	3	PRBS10, poly x204	10m SAS	11.2	0.263	65.5%
Generated 113ps rft 0-100%	0	TxDataFile_6m-cjtpat	10m SAS	11.3	0.52	56.7%
Generated 113ps rft 0-100%	0	TxDataFile_10m-prbs10	10m SAS	13.2	0.325	56.6%
Generated 113ps rft 0-100%	0	PRBS10, poly x204	10m SAS	14	0.364	56.6%
Generated 113ps rft 0-100%	3	TxDataFile_6m-cjtpat	HP24	15.4	0.725	65.4%
Generated 113ps rft 0-100%	3	TxDataFile_10m-prbs10	HP24	10.6	0.368	64.6%
Generated 113ps rft 0-100%	3	PRBS10, poly x204	HP24	10.3	0.397	64.6%
Generated 113ps rft 0-100%	0	TxDataFile_6m-cjtpat	HP24	24.3	1	61.4%
Generated 113ps rft 0-100%	0	TxDataFile_10m-prbs10	HP24	12	0.284	60.7%
Generated 113ps rft 0-100%	0	PRBS10, poly x204	HP24	11.7	0.324	60.6%

13 October 2008

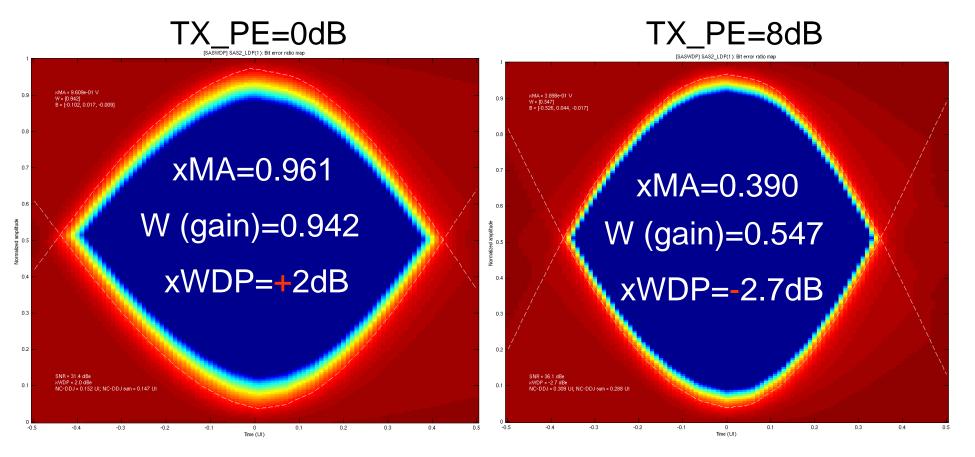

SASWDP vs. SAS_EYEOPENING (PRBS10)

• SASWDP: CJTPAT vs. PRBS10 (results averaged)

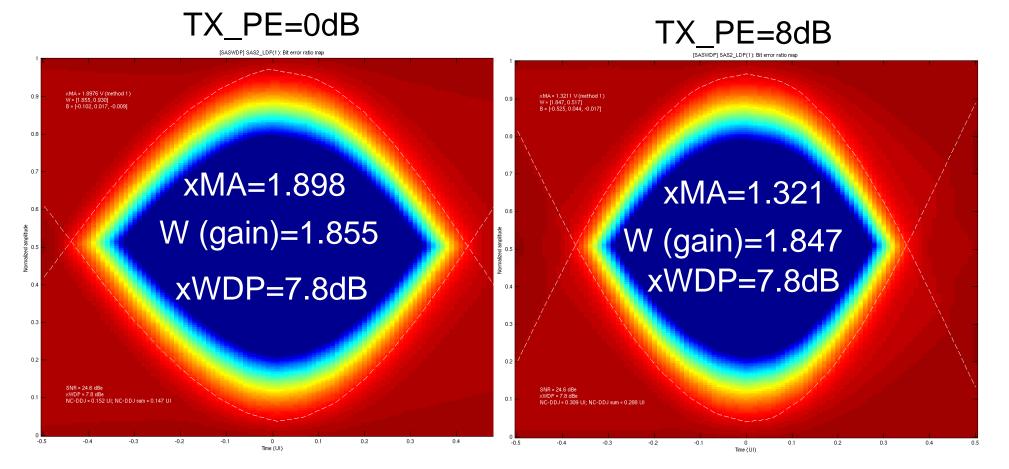

- PRBS10 gives consistent results vs. De-emphasis


• SASWDP vs. SAS_EYEOPENING (PRBS10)

- SASWDP vs. SAS_EYEOPENING at TX NEAR-END
 - Why is SASWDP WDP dropping? Eye should stay open at near end, or reduce with too much post-cursor.



- As DE increases, the main cursor amplitude drops
 - This explains why eye opening slightly degrades: the small energy beyong Tap 3 is scaled by a smaller main cursor



- xWDP gives strange results:
 - The original script reduces WDP (improves) as PE increases
 - Gain/xMA not constant effect of CR? The amplitude after scaling by Gain/xMA is larger for PE=8dB, explaining the better SNR

- If we fix the amplitude extraction (xMA) to use the main cursor's
 - Results are now more constant (only verified for one case)
 - This is what we should expect

- If we fix the amplitude extraction to use the main cursor, but using SASWDP Clock recovery to set it's location
 - Now xWDP increases with increased TX_PE
 - -Due to optimization loop of DFE?

TX PE=0dB TX PE=8dB [SASWDP] SAS2_LDP(1): Bit error ratio map [SASWDP] SAS2_LDP(1): Bit error ratio map 0.9 V = [1.295, 0.951] 3 = [-0.102, 0.017, -0.009] W = [1.822, 0.519] B = [-0.525, 0.044, -0.017] 0.8 xMA=1.323 0.7 xMA=1.303 0.6 W (gain)=1.295 W (gain)=1.822 xWDP=4.7dB xWDP=7.6dB 0.3 0.2 SNR = 24.7 dBe xWDP = 7.6 dBe NC-DDJ = 0.309 UI; NC-DDJ sum = 0.288 UI 0.1

0.3

-0.2

Time (UI)

-0.5

- Thus using EYE_OPENING's main tap makes SASWDP results more consistent for processing near-end data
- Near-end data is not what we want to process
 - but that raises questions as whether SASWDP could be useful to process anything but results from a very welldefined environment
 - In theory, we should be able to qualify the TX at the nearend with the same tool

- Reprocessed some of Kevin's results
 - Fit withing 1dB, 4% Eye Opening Sensitive to re-sampling, etc. Eye Opening vs. SASWDP: Kevin's data 16 0.4 15 0.45 14 0.5 Eye Opening SASWDP (dB) 13 - SASWDP 0.55 Eve Opening 8b10b 12 0.6 11 0.65 10 2 Cables, 0in + SAS10m 2 Cables, 8in + SAS10m TX direct? + Other TX + 10m SAS + ... 3 Cables

SAS10m

8

Ref TX Ref TX

9

Sim

CJTPAT Scram.

1 Cable 2 Cables 3 Cables

Scram.

Sim

2

11

10

Sim

2

+ 8 in

13

Scram.

Real

?

12

Scram.

Real

2

0.7

9

10m Cable:Sim

Pattern PRBS7

TX: Ref TX

1

2

Sim

Ref TX

CJTPAT

3

Real

?

4

Scram. PRBS7 CJTPAT

Ref TX Ref TX

Sim

5

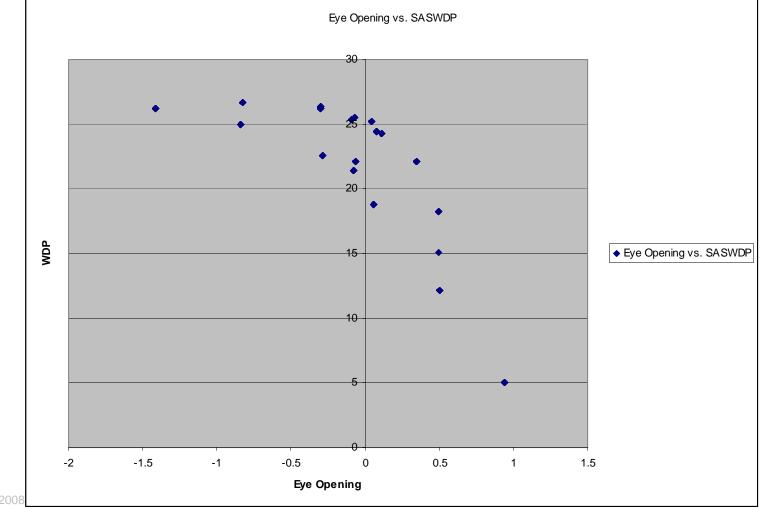
Sim

6

Sim

?

7


Scram. PRBS7

Sim

- Comparison of different test cases
 - Need to run more tests. Match « linear » in region of interest?

Far-end Measurements Orthogonality

			Impacts		
Specification		Impacts SASWDP result	SAS_EYE_OPENING result		
RJ		No	No		
BUJ	PJ	No	No		
	DCDJ	Yes	No		
	SSCJ	N/A	N/A		
DDJ		Yes, that's the goal	Yes, that's the goal		
Amplitude		Yes through W parameter	Yes, that's the goal		
De-Emphasis		Yes, that's the goal	Yes, that's the goal		
Rise/Fall Times		Yes, that's the goal	Yes, that's the goal		
Pattern type		Yes	No		

SAS_EYEOPENING Features

- Independent to pattern. CJTPAT can be used.
- Little dependence to rise/fall times
 - This is somewhat part of the DDJ
- Low sensitivity to DCD
- Likely some sensitivity to TX impedance (?)
 - This is also somewhat part of the DDJ
- Does not support SSC
 - Same as SASWDP
- Can be used both at near and far ends
 - Will cover cables from 0 to 10m

SAS_EYEOPENING Operational Features

- Can self-correct digital errors
 - Can use data recovered from a closed eye
 - Can thus be used directly from simple time/value scope captures
 - Can re-align data
- Does not require a periodic capture
- Fast & simple to use
 - Long sequences can be used:
 - 120 kBits in ~3 minutes, including correcting > 6k digital errors in 7 passes
 - Insensitive to RJ without pre-averaging

SAS_EYEOPENING.m Operational Features

Example run output (from closed-eye recovered data)

Iteration 1... Number of digital errors: 1038 Iteration 2... Number of digital errors: 83 Iteration 3... Number of digital errors: 49 Iteration 4... Number of digital errors: 25 Tteration 5... Number of digital errors: 15 Iteration 6... Number of digital errors: 5 Iteration 7... Number of digital errors: 2 Tteration 8... Number of digital errors: O 8b10b Eye Opening from fixed CDR = 65.5276% (-3.67151 dB) Tap Amplitudes: Main Tap 1 Tap 2 Tap 3 0.225 29.6% 14.1% 11.3%

SAS_EYEOPENING Procedure: TX characterization

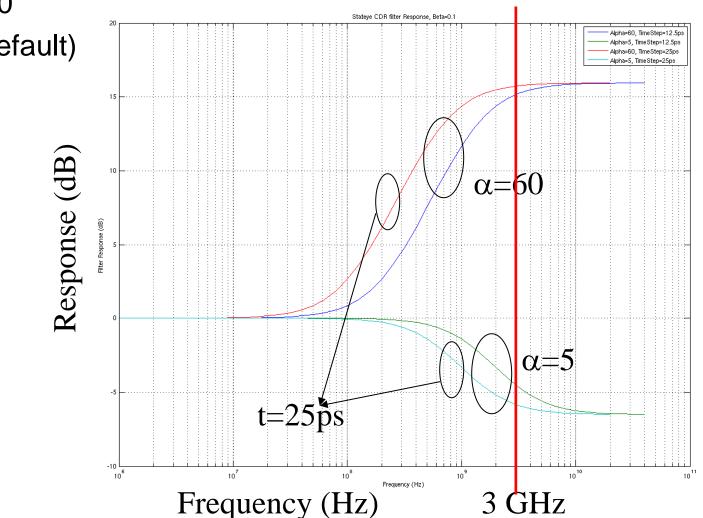
- Measure Time/Values at TX near end
- Extract Exact Clock frequency from transitions
 - Or use a synchronous setup
- Extract data from opened-eye
 - Or provide exact sequence if known and align to get the best correlation
- Re-sample values at an integer multiple of the bit rate
 - 16 works fine
- Convolve with Channel
- Send Values and Digital Data to SAS_EYEOPENING
- Compare EyeClosure8b10b with spec.
 - Maybe also DFE 3 taps

SAS_EYEOPENING Procedure: RX characterization

- Measure Time/Values at RX near end
- Extract Exact Clock frequency from transitions
 - Or use a synchronous setup
- Extract approximative data from closed-eye
 - Or provide exact sequence if known and align to get the best correlation
- Re-sample values at an integer multiple of the bit rate
 - 16 works fine
- Send Values and Digital Data to SAS_EYEOPENING
- Compare EyeClosure8b10b with spec.
 - Maybe also DFE's 3 taps

Very similar to TX procedure

StatEye Clock Recovery


- Data is filtered by a digital filter
 - Parameters:
 - Alpha (high-pass)
 - Beta (low-pass)
 - Time Step (overall frequency scaling)
- Serves as noise filter
- Can serve as equalization
- Examples (testall.bat) included Alpha=5 and Default Alpha=60
 - Parameter z in testcase.py
 - Beta always 0.1
- Some examples forced Time Step=12.5ps
 - Parameter x in testcase.py
- Further NOTE from Rob Elliott:
 - This is for the extraction from the waveform (extractsignal.py)
 - The part of the code we are interested in for correlation with previous result does not contain this routine

StatEye Clock Recovery

• Example Responses:

- α=5 or 60
- β=0.1 (default)
- t=12.5ps or 25ps

StatEye Clock Recovery

- CDR then works on the edges of the « emphasized » input
 - Emphasis based on user-defined parameters & time-step
 - It seems to then filter the transitions further
 - Parameters m and k in cdr.py
 - period += [period[-1] + phaseError[-1] * k]
 - phase += [phase[-1] + phaseError[-1] * m + nperiod[-1]*period[-1]]
- Conclusion:
 - StatEye allows the user to specify input filtering
 - It does have an hard-coded jitter filtering
 - Default is a high-pass filter
 - Parameters should be scaled vs. time step
- What should we do?
 - Specify a filter for clock recovery?
 - Work on unequalized eye?
- To do: look more at StatEye to see what it does when no measured input is provided

Summary

- Keep the same methodology as for SASWDP
 - Near-end measurement convolved for TX
 - Far-end measurement for RX
- Change the script from SASWDP to SAS_EYEOPENING
 - Change the spec from WDP & ncDDJ to 8b10b eye opening
 - Add Taps 0 to 3 amplitudes?
- More flexibility (use time/value captures, corrects errors)
- No question about CDR, ncDDJ, SASWDP variability

To do

- Test orthogonality to more effects
 - BUJ, DCD
 - TX impedance
- Test with more TX and channels (in process)
- Try to make output WDP-like
- Look at StatEye's CDR (partly done).
- Compare StatEye to Eye Opening for Synthetic TX cases
- Define a min. eye opening spec. for the TX
- Define a max. eye opening spec. for the RX
- Evaluate if a spec. on DFE coefficients is required
 - There is no such limit in the spec.
 - However, this is a direct indication of how hard a 3-tap DFE has to work
- Evaluate near-end results convolved with channel