
08-341r3 1 of 5

To: INCITS Technical Committee T10
From: Fred Knight, NetApp
 David Black, EMC
Email: knight@netapp.com
 black_david@emc.com
Date: May 19, 2009
Subject: SBC-3 Thin Provisioning Management Commands

1) Revision history

Revision 0 (Sept 9, 2008) First revision (r0)
Revision 1 (Nov 4, 2008) Make adjustments based on changes to 08-149
Revision 2 (Jan 7, 2009) Add additional management capabilities

(Apr 30, 2009) Change command name to GET LBA STATUS and
add ALLOC bit.

Revision 3 (May 19, 2009) Remove ALLOC state and cover just MAPPED and
UNMAPPED states

2) Related documents

spc4r18 – SCSI Primary Commands – 4
sbc3r18 – SCSI Block Commands – 3

3) Overview
The addition of thin provisioning to SBC-3 (cf. 08-365r5) defined mapped and
unmapped LBA states, but did not provide any way for an initiator to determine
whether LBAs are mapped vs. unmapped. This proposal adds that functionality in
the form of a general command that returns status information, including starting
with the mapped vs. unmapped status of LBAs.

One important use of the mapped vs. unmapped status information involves
copying a thinly provisioned logical unit. An initiator may optimize such a copy
by not copying the unmapped LBAs because no user data is stored in them, but to
employ this optimization, the initiator needs to know which LBAs are unmapped.

This command may be expanded in the future to report other LBA characteristics.

Existing text is shown in BLACK, new text is shown in RED, and comments (not
to be included) are shown in BLUE.

mailto:knight@netapp.com
mailto:black_david@emc.com

08-341r3 2 of 5

Proposal:

Table 3 – SBC Commands that are allowed in the presence of various reservations

Command WE EA RR WE-RR EA-RR

GET LBA STATUS

Allow

Conflict

Allow

Allow

Conflict

<…>

Table 13 – Associations between commands and CbCS permissions

Command DATA READ DATA WRITE PARM READ PARAM WRITE PHY ACC

GET LBA STATUS

1

<…>

Table 14 – Commands for direct-access block devices

Command name OP code Type PI Reference

GET LBA STATUS

9Eh/12h

O

no

5.x.1

<Editor note: Op code is up to the editor.>

<…>

5. x GET LBA STATUS command

5. x. 1 GET LBA STATUS command overview

The GET LBA STATUS command should be implemented by device servers supporting thin
provisioning (see 4.6.3.1). The GET LBA STATUS command (see table x.1) requests that the
device server send status information for the specified logical block addresses to the application
client.

08-341r3 3 of 5

Table x.1 --- Provisioning Management Command

 Bit
Byte

7 6 5 4 3 2 1 0

0 OPERATION CODE (9Eh)

1 Reserved SERVICE ACTION (nnh- 12h)

2

9

(MSB)

STARTING LOGICAL BLOCK ADDRESS

(LSB)

10

13

(MSB)

ALLOCATION LENGTH

(LSB)

14 RESERVED

15 CONTROL

The OPERATION CODE field is defined in SPC-4 shall be set to the value defined in table x.1.

The SERVICE ACTION field is defined in SPC-4 and shall be set to the value defined in table x.4.

<Should this be a service action, or a new dedicated command?>

The STARTING LOGICAL BLOCK ADDRESS field specifies the LBA of the first logical block addressed
by this command. If the specified LBA exceeds the capacity of the medium (see 4.4), then the
device server shall terminate the command with CHECK CONDITION status with the sense key
set to ILLEGAL REQUEST and the additional sense code set to LOGICAL BLOCK ADDRESS
OUT OF RANGE.

<Should (see 4.4) be added to “capacity of the medium” statements all over SBC? Or is this a
well known concept in light of the “LOGICAL BLOCK ADDRESS OUT OF RANGE” statement.>

The ALLOCATION LENGTH field specifies the maximum number of bytes that the application client
has allocated for returned parameter data. An allocation length of zero indicates that no data shall
be transferred. This condition shall not be considered an error. The device server shall terminate
transfers to the data-in buffer when the number of bytes specified by the ALLOCATION LENGTH field
have been transferred or when all available data has been transferred, whichever is less. The
contents of the parameter data shall not be altered to reflect the truncation, if any, that results
from an insufficient allocation length.

<Authors note – the above text now matches READ CAPACITY (16) use of the allocation length
field as suggested, and includes below, a suggested allocation length similar to REPORT LUNS.>

The application client should specify an ALLOCATION LENGTH that isallocation length should be (a
multiple of 16) + 8. The device server shall terminate transfers to the data-in buffer when:

a)the number of bytes specified by the ALLOCATION LENGTH field has been transferred,
b)when data representing all logical blocks higher than the specified logical block address

has been transferred, or
c)the device server has transferred at least 1 LBA descriptor.

08-341r3 4 of 5

The contents of the parameter data shall not be altered to reflect the truncation, if any, that results
from an insufficient allocation length.

The contents of the CONTROL byte are defined in SAM-4.

5. x. 2 GET LBA STATUS parameter data

5. x. 2.1 GET LBA STATUS parameter Overview

The GET LBA STATUS parameter data (see table x.2) contains an eight-byte header followed by
one or more LBA status descriptors.

Table x.2 GET LBA STATUS parameter data

 Bit
Byte

 7 6 5 4 3 2 1 0

0
3

PARAMETER DATA LENGTH (n-3)

4
7

Reserved

 LBA STATUS DESCRIPTOR LIST

8-23

LBA STATUS DESCRIPTOR 1

… …

n

LBA STATUS DESCRIPTOR m

The STATUS LIST LENGTH field indicates the length in bytes of the parameter data. The relationship
between the STATUS LIST LENGTH field and the ALLOCATION LENGTH field in the CDB is defined in
SPC-4.

Note X: LBA provisioning status changes may occur during or after processing of the
GET LBA STATUS command.

5. x. 2.1.1 LBA status descriptor

The LBA status descriptor (see table x.3) contains LBA status information for one or more LBAs.

Table x.3 LBA status descriptor

 Bit
Byte

 7 6 5 4 3 2 1 0

0
7

(MSB)
STARTING LOGICAL BLOCK ADDRESS

(LSB)

8

11

(MSB)
NUMBER OF LOGICAL BLOCKS

(LSB)

12

RESERVED

LBA PROVISIONING STATUS

13
15

RESERVED

The STARTING LOGICAL BLOCK ADDRESS field contains the starting LBA of the LBA extent for which
this descriptor reports LBA status. The NUMBER OF LOGICAL BLOCKS field contains the number of
logical blocks in that extent.

08-341r3 5 of 5

The STARTING LOGICAL BLOCK ADDRESS field in the first LBA status descriptor returned by the GET
LBA STATUS command shall be the LBA supplied in the STARTING LOGICAL BLOCK ADDRESS field
of the CDB. For subsequent LBA status descriptors, the contents of the STARTING LOGICAL BLOCK
ADDRESS field shall be the sum of the contents of:

a) the STARTING LOGICAL BLOCK ADDRESS field in the previous LBA status descriptor; and
b) the NUMBER OF LOGICAL BLOCKS field in the previous LBA status descriptor.

A MAP bit set to one indicates that the specified LBA range is:
a)mapped to a physical block range; and
b)contains persistent user data and protection information if enabled.

A MAP bit set to zero indicates that the specified LBA range is:

a)not mapped to a physical block range; and
b)does not contain persistent user data or protection information if enabled.

The PROVISIONING STATUS field is described in table X.4

Table X.4 – LBA status field

Name Code Description

Undefined 0h The status of the LBA is unknown

MAPPED 1h The LBA is mapped (see 4.6.4.2)

UNMAPPED 2h The LBA is unmapped (see 4.6.4.3)

All others Reserved

If the logical unit is fully provisioned, then the PROVISIONING STATUS for all LBAs shall be mapped
(see 4.6.2).

Adjacent LBA status descriptors should have different values for the PROVISIONING STATUS field.

If the last LBA status descriptor in the GET LBA STATUS parameter data specifies an LBA
extend that does not include the last LBA for the logical unit, then the next LBA may have the
same provisioning status as that LBA extent.

