

Project 110/1760-D

Revision 14 28 January 2008

Information technology -Serial Attached SCSI - 2 (SAS-2)

This is an internal working document of T10, a Technical Committee of Accredited Standards Committee INCITS (International Committee for Information Technology Standards). As such this is not a completed standard and has not been approved. The contents may be modified by the T10 Technical Committee. The contents are actively being modified by T10. This document is made available for review and comment only.

Permission is granted to members of INCITS, its technical committees, and their associated take groups to reproduce this document for the purposes of INCITS standardization activities without further parmission, provided this notice is included. All other rights are reserved. Any duplication of this document for commercial or for-profit use is strictly prohibited.

T10 Technical Editor:

Robert C Elliott Hewlett-Packard Corporation MC 140801

PO Box 692000

Houston, TX 77269-2000 USA

Telephone: 281-518-5037 Email: elliott@hp.com

Reference number ISO/IEC 14776-152:200x ANSI INCITS ***-200x

Printed 6:10 PM Monday 28 January 2008

Summary of Comments on Serial Attached SCSI - 2 (SAS-2) Standard

Page: i

Author: Isi-bbesmer

Subject: Note Date: 6/30/2008 6:23:53 AM -07'00'

ACCEPT - DONE (5/5 split the CONFIGURING bit into 2 bits so zoning and configuring cannot be confused. Make the zoning backoff procedure only look at the zoning reason, not the self-configuring reason. Look for other places where software needs to be advised to look at both bits, not just one.

Specifically, make the existing CONFIGURING bit the OR of the two reasons for best backwards compatibility, but add 2 extra bits explaining the reason for any software that cares.

See comments added in 10.4.3.4 to add the new bits.

The CONFIGURING bit is (unfortunately) overloaded by both zoning and the self-discovery process. There are several cases like:

....shall set the CONFIGURING bit to zero when...

That is not correct behavior when both processes are outstanding

Author: Isi-bbesmer

Date: 7/14/2008 4:52:22 PM -07'00'

ACCEPT - DONE (7/14 review by Brad says r14c looks good. 5/5 use "current" everywhere, fix the few remaining "active"s. Add "current" prefix ahead of bare ZPT everywhere that it is important.)

I think we have a problem with the generic term "zone permission table". We have several "zone permission tables" defined:

- Current
- Shadow
- Default

Collectively, all 4 of these may be referred to "zone permission tables".

I think most current usages are intended to be "current zone permission table".

There are also 2 instance of "active zone permission table", which is undefined and I think really are "current zone permission

This same concern applies to the term "active values"

The most obvious changes to me are:

- 1) Use "active" instead of "current" throughout when referring to zoning permission tables and zone manager password (I counted 25 occurrences that would need to be changed)
- 2) add "active" qualifier added to several instances of "zone permission table".

Author: RElliott

Date: 10/17/2008 7:49:44 PM -07'00'

Comments from page i continued on next page

Project T10/1760-D

Revision 14 28 January 2008

Information technology -Serial Attached SCSI - 2 (SAS-2)

This is an internal working document of T10, a Technical Committee of Accredited Standards Committee INCITS (International Committee for Information Technology Standards). As such this is not a completed standard and has not been approved. The contents may be modified by the T10 Technical Committee. The contents are actively being modified by T10. This document is made available for review and comment only.

Permission is granted to members of INCITS, its technical committees, and their associated task groups to reproduce this document for the purposes of INCITS standardization activities without further permission, provided this notice is included. All other rights are reserved. Any duplication of this document for commercial or for-profit use is strictly prohibited.

T10 Technical Editor:

Robert C Elliott Hewlett-Packard Corporation

MC 140801 PO Box 692000

Houston, TX 77269-2000

USA

Telephone: 281-518-5037 Email: elliott@hp.com

Reference number ISO/IEC 14776-152:200x ANSI INCITS ***-200x

Printed 6:10 PM Monday 28 January 2008

NOTE: comment statuses updated between Wed 5/21 10pm and Sat 5/24 9 am were lost as the Physical WG responses were merged on 5/24. For some reason, some of the imported comments had later dates in the .fdf than their updated duplicates, even though they were really older. Comment statuses were restored based on the 5/21 file, but some will be missed. New comments added between 5/21 and 5/24 appear to have survived.

Author: RElliott Subject: Note Date: 11/6/2008 5:48:43 PM ACCEPT - DONE

Total comments:

Author

Accept - Done:
Accept - Todo:
Accept - Last:
Accept (only):
Refer PHY:
Refer PROTOCOL:
Total worked:
Chapter 0: 25 12 0 1 0 0 12 0 0 25 0
Chapter 1: 5 4 0 0 0 0 1 0 0 5 0
Chapter 10: 608 503 0 0 0 0 105 0 0 608 0
Chapter 11: 24 15 0 0 0 0 9 0 0 24 0
Chapter 12: 148 106 0 0 0 0 42 0 0 148 0
Chapter 13: 27 17 0 0 0 0 10 0 0 27 0
Chapter 2: 16 13 0 0 0 0 3 0 0 16 0
Chapter 3: 206 158 0 0 0 0 48 0 0 206 0
Chapter 4: 426 327 0 0 0 0 99 0 0 426 0
Chapter 5: 517 364 0 0 0 0 142 0 0 506 11
Chapter 6: 411 287 0 0 0 0 124 0 0 411 0
Chapter 7: 813 572 0 0 0 0 241 0 0 813 0
Chapter 8: 81 67 0 0 0 0 14 0 0 81 0
Chapter 9: 360 299 0 0 0 0 61 0 0 360 0
CoxA: 1 1 0 0 0 0 0 0 0 1 0 RElliott: 1749 1712 0 0 0 0 37 0 0 1749 0
nayalasomayajula: 2 0 0 0 0 0 2 0 0 2 0 hpq-bolawsky: 15 11 0 0 0 0 4 0 0 15 0
hpq-curtisb: 1 1 0 0 0 0 0 0 1 0
hpq-relliott: 59 53 0 0 0 0 6 0 0 59 0
n-jay-diepenbrock: 4 0 0 0 0 0 4 0 0 4 0
ibm-pcashman: 2 0 0 0 0 0 2 0 0 2 0
-sandy-shirk-heath: 1 0 0 0 0 0 1 0 0 1 0
m-steve-wallace: 4 2 0 0 0 0 2 0 0 4 0
m-ted-vojnovich: 4 1 0 0 0 0 3 0 0 4 0
ifx-hnewman: 9 6 0 0 0 0 3 0 0 9 0
intc-mseidel: 43 21 0 0 0 0 22 0 0 43 0
ktek-dmoore: 16 13 0 0 0 0 3 0 0 16 0
lsi-bbesmer: 86 67 0 0 0 0 19 0 0 86 0
lsi-bday: 81 64 0 0 0 0 17 0 0 81 0
lsi-gpenokie: 519 289 0 1 0 0 229 0 0 519 0
lsi-jenkins: 15 14 0 0 0 0 1 0 0 15 0
mxim-kwitt: 45 25 0 0 0 0 9 0 0 34 11
mxim-mbari: 14 7 0 0 0 0 7 0 0 14 0
pmcs-gfortin: 33 21 0 0 0 0 12 0 0 33 0

Comments from page i continued on next page

Project T10/1760-D

Revision 14 28 January 2008

Information technology Serial Attached SCSI - 2 (SAS-2)

This is an internal working document of T10, a Technical Committee of Accredited Standards Committee INCITS (International Committee for Information Technology Standards). As such this is not a completed standard and has not been approved. The contents may be modified by the T10 Technical Committee. The contents are actively being modified by 110. This document is made available for review and comment only.

Permission is granted to members of INCITS, its technical committees, and their associated task groups to reproduce this document for the purposes of INCITS standardization activities without further permission, provided this notice is included. All other rights are reserved. Any duplication of this document for commercial or for-profit use is strictly prohibited.

T10 Technical Editor:

Robert C Elliott Hewlett-Packard Corporation MC 140801 PO Box 692000 Houston, TX 77269-2000

USA

Telephone: 281-518-5037 Email: elliott@hp.com

Reference number ISO/IEC 14776-152:200x ANSI INCITS ***-200x

Printed 6:10 PM Monday 28 January 2008

pmcs-rhernandez: 1 0 0 0 0 0 1 0 0 1 0 pmcs-tsymons: 1 1 0 0 0 0 0 0 0 1 0 stx-alvin-cox: 25 14 0 0 0 0 11 0 0 25 0 stx-ghoulder: 148 78 0 0 0 0 70 0 0 148 0 wdc-mevans: 723 295 0 0 0 0 428 0 0 723 0

Author: RElliott Subject: Note
Date: 11/6/2008 5:48:59 PM
ACCEPT - DONE

> Total comments: 3667 Accept - Done: 2744 (74.83%) Accept - Last: 1 (0.03%) Accept - Todo: 0 (0.00%) Accept (only): 0 (0.00%) Reject - Todo: 0 (0.00%) Reject (only): 911 (24.84%) Refer PHY: 0 (0.00%) Refer PROTOCOL: 0 (0.00%) Total worked: 3656 (99.70%) Left: 11 (0.30%)

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Change the column widths of every Byte\Bit table to be 0.7" for the Byte\Bit column

6.0" evenly distributed for the 7 .. 0 columns

except where this causes unpleasant text wrapping in any of the cells. In exceptions, use a combination of smaller fonts and

Author: RElliott

Date: 7/14/2008 11:21:13 AM -07'00'
REJECT (7/14 WG wants to defer to SAS-2.1)

Incorporate 08-064 SAS-2 SPC-4 Differentiate between ACK/NAK timeout reasons

Author: RElliott

Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Change " - " to " to " whenever it used for a range. This avoids confusion with the minus sign (for mathematical expressions) and the hyphen, en dash, and em dash (grammatical conjunction), which look the same.

Author: ibm-pcashman

Subject: Note

Date: 5/6/2008 1:07:47 PM -07'00'

REJECT (The hard reset sequence - a link reset sequence with a HARD RESET primitive - sends a SCSI "hard reset" to an end device (target or initiator). That's the deepest reset available in the protocol. Expanders ignore it; there is no sequence you can send to one phy of an expander to mess up all the other phys. Resetting an embedded SES logical unit inside an expander might have the effect of resetting the switch functionality as well (that's vendor-specific))

At the enterprise level there is a need to have an attached SAS device perform a deep reset, where all device software or firmware is re-initialised. [Typically in this scenario, enterprise would ask for a debug dump to be taken for future analysis too.] This would equate to a reset at the protocol level. This reset should apply to all devices, expanders, drives etc. I don't see how is this done in SAS?

Comments from page i continued on next page

Project T10/1760-D

Revision 14 28 January 2008

Information technology -Serial Attached SCSI - 2 (SAS-2)

This is an internal working document of T/0, a Technical Committee of Accredited Standards Committee INCITS (International Committee for Information Technology Standards). As such this is not a completed standard and has not been approved. The contents may be modified by the T10 Technical Committee. The contents are actively being modified by T10. This document is made available for review and comment only.

Permission is granted to prembers of INCITS, its technical committees, and their associated task groups to reproduce this document for the purposes of INCITS standardization activities without further permission, provided this notice is included. All other rights are reserved. Any duplication of this document for commercial or for-profit use is strictly prohibited.

T10 Technical Editor:

Robert C Elliott Hewlett-Packard Corporation MC 1/0801 PC Box 692000 Houston, TX 77269-2000

Telephone: 281-518-5037 elliott@hp.com

Reference number ISO/IEC 14776-152:200x ANSI INCITS ***-200x

Printed 6:10 PM Monday 28 January 2008

Author: ibm-pcashman

Subject: Note Date: 5/25/2008 1:29:51 PM -07'00'

REJECT (5/5 EPOW = early power off warning. See NOTIFY (POWER LOSS EXPECTED) is for)

At the enterprise level and possibly for other environments, there is also a need to specify behaviour for EPOW. SAS seems to have no method of indicating EPOW to devices, potentially leaving disk systems with 'damaged' sectors that will then fail on array rebuilds, causing data loss. This is unacceptable for the enterprise market and some method of signalling EPOW is required.

Author: ibm-sandy-shirk-heath

Subject: Note Date: 5/25/2008 1:31:06 PM -07'00'

REJECT (Those are items that would go in the SFF specs for the connectors, not in this standard)

Proposal posted with items that need to be covered:

08-186r0.pdf

This page contains no comments

Points of Contact

International Committee for Information Technology Standards (INCITS) T10 Technical Committee

T10 Chair T10 Vice-Chair John B. Lohmeyer Mark S. Evans

Western Digital Corporation LSI Corporation 4420 ArrowsWest Drive 5836 Rue Ferrari San Jose, CA 95138 Colorado Springs, CO 80907-3444

Telephone: (719) 533-7560 Telephone: (408) 363-5257 Email: lohmeyer@t10.org Email: mark.evans@wdc.com

T10 Web Site: http://www.t10.org

T10 E-mail reflector:

Server: majordomo@t10.org

To subscribe send e-mail with 'subscribe' in message body To unsubscribe send e-mail with 'unsubscribe' in message body

INCITS Secretariat

Suite 200 1250 Eye Street, NW Washington, DC 20005 USA

Telephone: 202-737-8888 Web site: http://www.incits.org Email: incits@itic.org

Information Technology Industry Council

Web site: http://www.itic.org

Document Distribution

INCITS Online Store managed by Techstreet 1327 Jones Drive Ann Arbor, MI 48105 USA

Web site: http://www.techstreet.com/incits.html Telephone: (734) 302-7801 or (800) 699-9277

Global Engineering Documents, an IHS Company 15 Inverness Way East Englewood, CO 80112-5704

USA

Web site:

http://global.ihs.com (303) 397-7956 or (303) 792-2181 or (800) 854-7179 Telephone:

ii

Working Draft Serial Attached SCSI - 2 (SAS-2)

American National Standard for Information Technology

Serial Attached SCSI - 2 (SAS-2)

Secretariat
Information Technology Industry Council

Approved mm.dd.yy

American National Standards Institute, Inc.

ABSTRACT

This standard specifies the functional requirements for the Serial Attached SCSI (SAS) physical interconnect, which is compatible with the Serial ATA physical interconnect. It also specifies three transport protocols, one to transport SCSI commands, another to transport Serial ATA commands to multiple SATA devices, and a third to support interface management. This standard is intended to be used in conjunction with SCSI and ATA command set standards.

Page: iii

Author: intc-mseidel
Subject: Highlight
Date: 5/25/2008 1:33:04 PM -07'00'
REJECT (close enough for an abstract)

Is SAS always intended to be compatible with SATA physical interconnect? There are issues of keying, and perhaps there are conditions for some blocks that don't support SATA 6G that may not meet their performance. It is a goal, but SATA 6G is a moving target.

American Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially Standard affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that effort be made towards their resolution.

> The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

> The American National Standards Institute does not develop standards and will in no circumstances give interpretation on any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of

> CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

CAUTION: The developers of this standard have requested that holders of patents that may be required for the implementation of the standard, disclose such patents to the publisher. However, neither the developers nor the publisher have undertaken a patent search in order to identify which, if any, patents may apply to this standard.

As of the date of publication of this standard, following calls for the identification of patents that may be required for the implementation of the standard, notice of one or more claims has been received.

By publication of this standard, no position is taken with respect to the validity of this claim or of any rights in connection therewith. The known patent holder(s) has (have), however, filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license. Details may be obtained from the publisher.

No further patent search is conducted by the developer or the publisher in respect to any standard it processes. No representation is made or implied that licenses are not required to avoid infringement in the use of this standard.

Published by

iν

American National Standards Institute 11 W. 42nd Street, New York, New York 10036

Copyright © 2008 by Information Technology Industry Council (ITI). All rights reserved.

No part of this publication may by reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of ITI, 1250 Eye Street NW, Suite 200, Washington, DC 20005.

Printed in the United States of America

Working Draft Serial Attached SCSI - 2 (SAS-2)

Contents -

	Pag
1 Scope	
·	
2 Normative references	
2.1 Normative references	
2.2 Approved references	
2.3 References under development	
2.4 Other references	
3 Definitions, symbols, abbreviations, keywords, and conventions	
3.1 Definitions	
3.2 Symbols and abbreviations	
3.3 Keywords	
3.4 Editorial conventions	
3.5 Class diagram and object diagram conventions	2
3.6 State machine conventions	3
3.6.1 State machine conventions overview	3
3.6.2 Transitions	
3.6.3 Messages, requests, indications, confirmations, responses, and event notifications	3
3.6.4 State machine counters, timers, and variables	
3.6.5 State machine arguments	
3.7 Bit and byte ordering	
3.8 Notation for procedures and functions	3
•	
4 General	3
4.1 Architecture	3
4.1.1 Architecture overview	3
4.1.2 Physical links and phys	3
4.1.3 Logical links	4
4.1.4 Ports (narrow ports and wide ports)	4
4.1.5 Application clients and device servers	4
4.1.6 SAS devices	
4.1.7 Expander devices	4
4.1.8 Service delivery subsystem	4
4.1.9 Domains	4
4.1.10 Expander device topologies	4
4.1.10.1 Expander device topology overview	
4.1.10.2 Expander device topologies	4
4.1.11 Pathways	5
4.1.12 Connections	
4.1.13 Broadcasts	5
4.2 Names and identifiers	5
4.2.1 Names and identifiers overview	
4.2.2 NAA IEEE Registered format identifier	5
4.2.3 Hashed SAS addresses	5
4.2.4 Device names and expander device SAS addresses	
4.2.5 Device name for SATA devices with world wide names	
4.2.6 Port names	5
4.2.7 Port identifiers and SAS port SAS addresses	5
4.2.8 Phy identifiers	
4.3 State machines	
4.3.1 State machine overview	5
4.3.2 Transmit data path	6
4.3.3 Receive data path	
4.3.4 State machines and SAS Device, SAS Port, and SAS Phy classes	6

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: v

Author: intc-mseidel
Subject: Highlight
Date: 5/25/2008 1:33:30 PM -07'00'

TREJECT (the wraparound are all reasonably formatted in the table. FrameMaker has been known to have anomolies where it
doesn't place the page number on the right any more, but that is not the case here)

Fix long section names so that the wrap-around does not clutter the page number portion.

T10/1760-D Revision 14

28 January 2008

4.4 Resets	. 69
4.4.1 Reset overview	. 69
4.4.2 Hard reset	. 71
4.4.2.1 Hard reset overview	. 71
4.4.2.2 Additional hard reset processing by SAS ports	
4.4.2.3 Additional hard reset processing by expander ports	. 71
4.5 I T nexus loss	. 71
4.6 Expander device model	
4.6.1 Expander device model overview	
4.6.2 Expander ports	
4.6.3 Expander connection manager (ECM)	. 74
4.6.4 Expander connection router (ECR)	
4.6.5 Broadcast propagation processor (BPP)	
4.6.6 Expander device interfaces	
4.6.6.1 Expander device interface overview	
4.6.6.2 Expander device interfaces detail	
4.6.6.3 ECM interface	
4.6.6.4 ECR interface	
4.6.6.5 BPP interface	
4.6.7 Expander device routing	
4.6.7.1 Routing attributes and routing methods	82
4.6.7.2 Connection request routing	82
4.6.7.3 Expander route table	
4.6.7.3.1 Expander route table overview	
4.6.7.3.2 Phy-based expander route table	
4.6.7.3.3 Expander-based expander route table	
4.6.8 Expander device reduced functionality	. 00
4.7 Discover process	. 00
4.7.1 Discover process overview	
4.7.1 Discover process overview 4.7.2 Discover process in a self-configuring expander device	
4.7.3 Enabling multiplexing	
4.8 Configuration subprocess	
4.8.1 Configuration subprocess overview	. 85
4.8.2 Allowed topologies	. 85
4.8.4 Expander route index order	
4.9 Zoning	
4.9.1 Zoning overview	
4.9.2 Zoning expander device requirements	
4.9.3 Zoning operation	
4.9.3.1 Zone phy information	
4.9.3.2 Zone groups	
4.9.3.3 Zone permission table	
4.9.3.4 Zoning expander route table	
4.9.3.5 Source zone group and destination zone group determination	
4.9.4 Zone phy information and link reset sequences	110
4.9.5 Broadcast processing in a zoning expander device with zoning enabled	112
4.9.6 Zone configuration	113
4.9.6.1 Zone configuration overview	
4.9.6.2 Lock step	
4.9.6.3 Load step	
4.9.6.4 Activate step	
4.9.6.5 Unlock step	
4.9.6.6 Zone lock inactivity timer	
4.9.6.7 Enable a zoning expander device	
4.10 Phy test functions	116
4.11 Phy events	116

Working Draft Serial Attached SCSI - 2 (SAS-2)

5 Physical layer	12
5.1 Physical layer overview	12
5.2 Passive interconnect	12
5.2.1 SATA connectors and cable assemblies	
5.2.2 SAS connectors and cables	
5.2.3 Connectors	
5.2.3.1 Connectors overview	
5.2.3.2 SAS internal connectors	
5.2.3.2.1 SAS Drive connectors	
5.2.3.2.1.1 SAS Drive plug connector	
5.2.3.2.1.2 SAS Drive cable receptacle connector	
5.2.3.2.1.3 SAS Drive backplane receptacle connector	
5.2.3.2.1.4 SAS Drive connector pin assignments	
5.2.3.2.2 SAS 4i connectors	
5.2.3.2.2.1 SAS 4i cable receptacle connector	
5.2.3.2.2.2 SAS 4i plug connector	
5.2.3.2.2.3 SAS 4i connector pin assignments	13
5.2.3.2.3 Mini SAS 4i connectors	13
5.2.3.2.3.1 Mini SAS 4i cable plug connector	13
5.2.3.2.3.2 Mini SAS 4i receptacle connector	13
5.2.3.2.3.3 Mini SAS 4i connector pin assignments	13
5.2.3.3 SAS external connectors	13
5.2.3.3.1 SAS 4x connectors	13
5.2.3.3.1.1 SAS 4x cable plug connector	13
5.2.3.3.1.2 SAS 4x receptacle connector	13
5.2.3.3.1.3 SAS 4x connector pin assignments	13
5.2.3.3 Mini SAS 4x connectors	
5.2.3.3.2.1 Mini SAS 4x cable plug connector	
5.2.3.3.2.2 Mini SAS 4x receptacle connector	14
5.2.3.3.2.3 Mini SAS 4x connector pin assignments	
5.2.4 Cable assemblies	
5.2.4.1 SAS internal cable assemblies	
5.2.4.1.1 SAS Drive cable assemblies	
5.2.4.1.2 SAS internal symmetric cable assemblies	
5.2.4.1.2.1 SAS internal symmetric cable assemblies overview	
5.2.4.1.2.2 SAS internal symmetric cable assembly - SAS 4i	
5.2.4.1.2.3 SAS internal symmetric cable assembly - Mini SAS 4i	
5.2.4.1.2.4 SAS internal symmetric cable assembly - SAS 4i to Mini SAS 4i with vendor-specific	:
sidebands	
5.2.4.1.2.5 SAS internal symmetric cable assembly - SAS 4i controller to Mini SAS 4i backplane	
SGPIO	
5.2.4.1.2.6 SAS internal symmetric cable assembly - Mini SAS 4i controller to SAS 4i backplane	
SGPIO	
5.2.4.1.3 SAS internal fanout cable assemblies	
5.2.4.1.3.1 SAS internal fanout cable assemblies overview	
5.2.4.1.3.2 SAS internal controller-based fanout cable assemblies	
5.2.4.1.3.3 SAS internal backplane-based fanout cable assemblies	
5.2.4.2 SAS external cable assemblies	
5.2.4.2.1 SAS external cable assemblies overview	
5.2.4.2.2 SAS external cable assembly - SAS 4x	
5.2.4.2.3 SAS external cable assembly - Mini SAS 4x	
5.2.4.2.4 SAS external cable assembly - SAS 4x to Mini SAS 4x	
5.2.5 Backplanes	
5.2.6 Cable assembly and backplane specifications	
5.3 Transmitter and receiver device electrical characteristics	16
5.3.1 Compliance points	
5.3.2 Test loads	

Working Draft Serial Attached SCSI - 2 (SAS-2)

T10/1760-D Revision 14

5.3.2.1 Test loads overview	. 17
5.3.2.2 Zero-length test load	. 17
5.3.2.3 TCTF test load	
5.3.2.4 Low-loss TCTF test load	
5.3.2.5 Reference transmitter test load	. 178
5.3.3 General electrical characteristics	
5.3.3.1 General electrical characteristics overview	
5.3.3.2 Transmitter device general electrical characteristics	
5.3.3.3 TxRx connection characteristics	
5.3.3.3.1 TxRx connection characteristics overview	
5.3.3.3.2 TxRx connection characteristics for 1.5 Gbps and 3 Gbps	
5.3.3.3 TxRx connection characteristics for 6 Gbps	
5.3.3.4 Receiver device general electrical characteristics	
5.3.4 Transmitter and receiver device transients	
5.3.5 Eye masks and the jitter transfer function (JTF)	
5.3.5.1 Eye masks overview	. 18
5.3.5.2 Jitter transfer function (JTF)	
5.3.5.3 Transmitter device eye mask	. 18
5.3.5.4 Receiver device eye mask	. 186
5.3.5.5 Receiver device jitter tolerance eye mask	. 186
5.3.6 Transmitter device characteristics	
5.3.6.1 Transmitter device characteristics overview	
5.3.6.2 Transmitter device signal output characteristics as measured with the zero-length test load	
5.3.6.3 Transmitter device signal output characteristics as measured with each test load	. 189
5.3.6.4 Transmitter device maximum jitter	
5.3.6.5 Transmitter device signal output characteristics for 6 Gbps	. 192
5.3.6.5.1 Transmitter device signal output characteristics for 6 Gbps overview	. 192
5.3.6.5.2 Transmitter device S-parameters	. 193
5.3.6.5.3 Recommended transmitter device settings for interoperability	. 19
5.3.6.5.4 Reference transmitter device characteristics	. 196
5.3.6.5.5 Transmitter equalization measurement	. 196
5.3.6.6 Transmitter device signal output for OOB signals	. 19
5.3.7 Receiver device characteristics	
5.3.7.1 Receiver device characteristics overview	. 198
5.3.7.2 OOB delivered signal characteristics	. 199
5.3.7.3 Delivered signal (receiver device signal tolerance) characteristics	. 199
5.3.7.4 Receiver device and delivered signal (receiver device signal tolerance) characteristics for 6 C	3bp:
200	
5.3.7.4.1 Receiver device characteristics	. 200
5.3.7.4.2 Receiver device S-parameters	
5.3.7.4.3 Reference receiver device	. 202
5.3.7.4.4 Receiver device physical testing	. 203
5.3.7.4.4.1 Receiver device physical testing overview	203
5.3.7.4.4.2 Test signal characteristics and calibration	
5.3.7.4.4.3 Transmit waveform calibration	20
5.3.7.4.4.4 ISI generator calibration	
5.3.7.4.4.5 ISI generator pulse response	20
5.3.7.4.4.6 Crosstalk calibration	
5.3.7.4.4.7 Jitter tolerance	20
5.3.7.4.4.8 Link dispersion penalty signal processing algorithm	
5.3.7.5 Maximum delivered jitter	. 20
5.3.7.6 Receiver device jitter tolerance	
5.3.8 Spread spectrum clocking (SSC)	
5.3.8.1 SSC overview	
5.3.8.2 Transmitter SSC modulation	
5.3.8.3 Receiver SSC modulation tolerance	
5.3.8.4 Expander device center-spreading tolerance buffer	

Working Draft Serial Attached SCSI - 2 (SAS-2)

28 January 2008

28 January 2008

T10/1760-D Revision 14

ix

5.3.9 Non-tracking clock architecture	211
5.4 READY LED signal electrical characteristics	211
6 Phy layer	
6.1 Phy layer overview	
6.2 8b10b coding	213
6.2.1 8b10b coding overview	
6.2.2 8b10b coding introduction	213
6.2.3 8b10b coding notation conventions	
6.3 Character encoding and decoding	214
6.3.1 Introduction	214
6.3.2 Transmission order	214
6.3.3 Data and control characters	
6.3.4 Encoding characters in the transmitter	221
6.3.5 Decoding characters in the receiver	
6.4 Dwords, primitives, data dwords, and invalid dwords	
6.5 Bit order	
6.6 Out of band (OOB) signals	224
6.6.1 OOB signals overview	224
6.6.2 Transmitting OOB signals	
6.6.3 Receiving OOB signals	
6.6.4 Transmitting the SATA port selection signal	
6.7 Phy reset sequences	
6.7.1 Phy reset sequences overview	
6.7.2 SATA phy reset sequence	
6.7.2.1 SATA OOB sequence	
6.7.2.2 SATA speed negotiation sequence	
6.7.3 SAS to SATA phy reset sequence	
6.7.4 SAS to SAS phy reset sequence	
6.7.4.1 SAS OOB sequence	
6.7.4.2 SAS speed negotiation sequence	
6.7.4.2.1 SAS speed negotiation sequence overview	
6.7.4.2.2 SAS speed negotiation sequence timing specifications	
6.7.4.2.3 Speed negotiation window (SNW) definitions	
6.7.4.2.3.1 SNW definitions overview	
6.7.4.2.3.2 SNW-1, SNW-2, and Final-SNW	
6.7.4.2.3.3 SNW-3	
6.7.4.2.3.4 Train-SNW	
6.7.4.2.4 SAS speed negotiation sequence	
6.7.4.3 Multiplexing sequence	
6.7.5 Phy reset sequence after devices are attached	253
6.8 SP (phy layer) state machine	
6.8.1 SP state machine overview	
6.8.2 SP transmitter and receiver	
6.8.3 OOB sequence states	
6.8.3.1 OOB sequence states overview	
6.8.3.2 SP0:OOB COMINIT state	
6.8.3.2.1 State description	
6.8.3.2.2 Transition SP0:OOB COMINIT to SP1:OOB AwaitCOMX	
6.8.3.2.3 Transition SP0:OOB_COMINIT to SP3:OOB_AwaitCOMINIT_Sent	
6.8.3.2.4 Transition SP0:OOB_COMINIT to SP4:OOB_COMSAS	
6.8.3.3 SP1:OOB AwaitCOMX state	
6.8.3.3.1 State description	
6.8.3.3.2 Transition SP1:OOB AwaitCOMX to SP0:OOB COMINIT	
6.8.3.3.3 Transition SP1:OOB_AwaitCOMX to SP4:OOB_COMSAS	260
6.8.3.4 SP2:OOB_NoCOMSASTimeout state	
6.8.3.4.1 State description	
0.0.0.7.1 Otato accomption	200

Working Draft Serial Attached SCSI - 2 (SAS-2)

6.8.3.4.2 Transition SP2.00B_NOCOMSASTINEOUT to SP0.00B_COMMIT	
6.8.3.4.3 Transition SP2:OOB_NoCOMSASTimeout to SP4:OOB_COMSAS	
6.8.3.5 SP3:OOB_AwaitCOMINIT_Sent state	
6.8.3.5.1 State description	261
6.8.3.5.2 Transition SP3:OOB_AwaitCOMINIT_Sent to SP4:OOB_COMSAS	
6.8.3.6 SP4:OOB_COMSAS state	261
6.8.3.6.1 State description	261
6.8.3.6.2 Transition SP4:OOB COMSAS to SP5:OOB AwaitCOMSAS Sent	261
6.8.3.6.3 Transition SP4:OOB COMSAS to SP6:OOB AwaitNoCOMSAS	261
6.8.3.6.4 Transition SP4:OOB_COMSAS to SP7:OOB_AwaitCOMSAS	
6.8.3.7 SP5:OOB AwaitCOMSAS Sent state	
6.8.3.7.1 State description	
6.8.3.7.2 Transition SP5:OOB_AwaitCOMSAS_Sent to SP6:OOB_AwaitNoCOMSAS	
6.8.3.8 SP6:OOB AwaitNoCOMSAS state	
6.8.3.8.1 State description	
6.8.3.8.2 Transition SP6:OOB_AwaitNoCOMSAS to SP0:OOB_COMINIT	262
6.8.3.8.3 Transition SP6:OOB AwaitNoCOMSAS to SP8:SAS Start	
6.8.3.9 SP7:OOB_AwaitCOMSAS state	
6.8.3.9.1 State description	
6.8.3.9.2 Transition SP7:OOB AwaitCOMSAS to SP2:OOB NoCOMSASTimeout	
6.8.3.9.3 Transition SP7:OOB AwaitCOMSAS to SP6:OOB AwaitNoCOMSAS	
6.8.3.9.4 Transition SP7:OOB AwaitCOMSAS to SP16:SATA COMWAKE	
6.8.3.9.5 Transition SP7:OOB_AwaitCOMSAS to SP26:SATA _SpinupHold	
6.8.4 SAS speed negotiation states.	263
6.8.4.1 SAS speed negotiation states overview	263
6.8.4.2 SP8:SAS Start state	
6.8.4.2.1 State description	
6.8.4.2.2 Transition SP8:SAS Start to SP0:OOB COMINIT	
6.8.4.2.3 Transition SP8:SAS Start to SP1:OOB AwaitCOMX	
6.8.4.2.4 Transition SP8:SAS Start to SP9:SAS WindowNotSupported	
6.8.4.2.5 Transition SP8:SAS_Start to SP10:SAS_AwaitALIGN	
6.8.4.2.6 Transition SP8:SAS_Start to SP27:SAS_Settings	
6.8.4.3 SP9:SAS_WindowNotSupported state	266
6.8.4.3.1 State description	266
6.8.4.3.2 Transition SP9:SAS WindowNotSupported to SP14:SAS Fail	
6.8.4.4 SP10:SAS_AwaitALIGN state	
6.8.4.4.1 State description	
6.8.4.4.2 Transition SP10:SAS AwaitALIGN to SP0:OOB COMINIT	
6.8.4.4.3 Transition SP10:SAS AwaitALIGN to SP11:SAS AwaitALIGN1	
6.8.4.4.4 Transition SP10:SAS AwaitALIGN to SP12:SAS AwaitSNW	
6.8.4.4.5 Transition SP10:SAS AwaitALIGN to SP14:SAS Fail	
6.8.4.5 SP11:SAS_AwaitALIGN1 state	
6.8.4.5.1 State description	
6.8.4.5.2 Transition SP11:SAS AwaitALIGN1 to SP0:OOB COMINIT	
6.8.4.5.3 Transition SP11:SAS AwaitALIGN1 to SP12:SAS AwaitSNW	
6.8.4.5.4 Transition SP11:SAS_AwaitALIGN1 to SP14:SAS_Fail	
6.8.4.6 SP12:SAS AwaitSNW state	
6.8.4.6.1 State description	
6.8.4.6.2 Transition SP12:SAS AwaitSNW to SP0:OOB COMINIT	
6.8.4.6.3 Transition SP12:SAS AwaitSNW to SP13:SAS Pass	268
6.8.4.7 SP13:SAS_Pass state	268
6.8.4.7.1 State description	
6.8.4.7.2 Transition SP13:SAS Pass to SP0:OOB COMINIT	268
6.8.4.7.3 Transition SP13:SAS Pass to SP8:SAS Start	
6.8.4.7.4 Transition SP13:SAS_Pass to SP15:SAS_PHY_Ready	268
6.8.4.8 SP14:SAS_Fail state	
6.8.4.8.1 State description	

Working Draft Serial Attached SCSI - 2 (SAS-2)

6.8.4.8.2 Transition SP14:SAS_Fail to SP1:OOB_AwaitCOMX	
6.8.4.8.3 Transition SP14:SAS_Fail to SP8:SAS_Start	
6.8.4.9.1 State description	
6.8.4.9.2 Transition SP15:SAS_PHY_Ready to SP0:OOB_COMINIT	269
6.8.4.10 SP27:SAS Settings state	
6.8.4.10.1 State description	
6.8.4.10.2 Transition SP27:SAS_Settings to SP0:OOB_COMINIT	270
6.8.4.10.3 Transition SP27:SAS_Settings to SP1:OOB_AwaitCOMX	270
6.8.4.10.4 Transition SP27:SAS_Settings to SP8:SAS_Start	
6.8.4.10.5 Transition SP27:SAS_Settings to SP28:SAS_TrainSetup	
6.8.4.11 SP28:SAS_TrainSetup	
6.8.4.11.1 State description	
6.8.4.11.2 Transition SP28:SAS_TrainSetup to SP0:OOB_COMINIT	
6.8.4.11.3 Transition SP28:SAS_TrainSetup to SP29:SAS_Train	
6.8.4.12 SP29:SAS_Train state	
6.8.4.12.1 State description	
6.8.4.12.2 Transition SP29:SAS_Train to SP0:OOB_COMINIT	
6.8.4.12.3 Transition SP29:SAS_Train to SP1:OOB_AwaitCOMX	
6.8.4.12.4 Transition SP29:SAS_Train to SP30:SAS_TraingDone	
6.8.4.13 SP30:SAS TrainingDone state	
6.8.4.13.1 State description	
6.8.4.13.2 Transition SP30:SAS TrainingDone to SP0:OOB COMINIT	
6.8.4.13.3 Transition SP30:SAS TrainingDone to SP1:OOB AwaitCOMX	
6.8.4.13.4 Transition SP30:SAS_TrainingDone to SP28:SAS_TrainSetup	
6.8.4.13.5 Transition SP30:SAS TrainingDone to SP15:SAS PHY Ready	
6.8.5 SATA host emulation states	272
6.8.5.1 SATA host emulation states overview	272
6.8.5.2 SP16:SATA_COMWAKE state	
6.8.5.2.1 State description	
6.8.5.2.2 Transition SP16:SATA_COMWAKE to SP17:SATA_AwaitCOMWAKE	
6.8.5.3 SP17:SATA_AwaitCOMWAKE state	
6.8.5.3.1 State description	
6.8.5.3.2 Transition SP17:SATA_AwaitCOMWAKE to SP0:OOB_COMINIT	
6.8.5.3.3 Transition SP17:SATA_AwaitCOMWAKE to SP18:SATA_AwaitNoCOMWAKE	
6.8.5.4 SP18:SATA_AwaitNoCOMWAKE state	
6.8.5.4.1 State description	
6.8.5.4.2 Transition SP18:SATA_AWaitNoCOMWAKE to SP0:OOB_COMINIT	
6.8.5.5 SP19:SATA_AwaitALIGN state	
6.8.5.5.1 State description	
6.8.5.5.2 Transition SP19:SATA AwaitALIGN to SP0:OOB COMINIT	
6.8.5.5.3 Transition SP19:SATA_AwaitALIGN to SP20:SATA_AdjustSpeed	
6.8.5.6 SP20:SATA AdjustSpeed state	
6.8.5.6.1 State description	
6.8.5.6.2 Transition SP20:SATA_AdjustSpeed to SP0:OOB_COMINIT	
6.8.5.6.3 Transition SP20:SATA AdjustSpeed to SP21:SATA TransmitALIGN	275
6.8.5.7 SP21:SATA_TransmitALIGN state	275
6.8.5.7.1 State description	
6.8.5.7.2 Transition SP21:SATA_TransmitALIGN to SP0:OOB_COMINIT	
6.8.5.7.3 Transition SP21:SATA_TransmitALIGN to SP22:SATA_PHY_Ready	
6.8.5.8 SP22:SATA_PHY_Ready state	
6.8.5.8.1 State description	
6.8.5.8.2 Transition SP22:SATA_PHY_Ready to SP0:OOB_COMINIT	276
6.8.5.8.3 Transition SP22:SATA_PHY_Ready to SP23:SATA_PM_Partial	276

Working Draft Serial Attached SCSI - 2 (SAS-2)

6.8.5.9 SP23:SATA_PM_Partial state	. 276
6.8.5.9.1 State description	
6.8.5.9.2 Transition SP23:SATA_PM_Partial to SP0:OOB_COMINIT	
6.8.5.9.3 Transition SP23:SATA_PM_Partial to SP16:SATA_COMWAKE	. 276
6.8.5.9.4 Transition SP23:SATA_PM_Partial to SP18:SATA_AwaitNoCOMWAKE	. 276
6.8.5.10 SP24:SATA_PM_Slumber state	. 276
6.8.5.10.1 State description	. 276
6.8.5.10.2 Transition SP24:SATA PM Slumber to SP0:OOB COMINIT	. 276
6.8.5.10.3 Transition SP24:SATA PM Slumber to SP16:SATA COMWAKE	. 277
6.8.5.10.4 Transition SP24:SATA_PM_Slumber to SP18:SATA_AwaitNoCOMWAKE	
6.8.6 SATA port selector state SP25:SATA PortSel	
6.8.6.1 State description.	
6.8.6.2 Transition SP25:SATA PortSel to SP1:OOB AwaitCOMX	
6.8.7 SATA spinup hold state SP26:SATA_SpinupHold	. 278
6.8.7.1 State description	
6.8.7.2 Transition SP26:SATA SpinupHold to SP0:OOB COMINIT	. 278
6.9 SP_DWS (phy layer dword synchronization) state machine	
6.9.1 SP DWS state machine overview	
6.9.2 SP DWS receiver	
6.9.3 SP_DWS0:AcquireSync state	
6.9.3.1 State description	
6.9.3.2 Transition SP_DWS0:AcquireSync to SP_DWS1:Valid1	281
6.9.4 SP_DWS1:Valid1 state	
6.9.4.1 State description.	
6.9.4.2 Transition SP_DWS1:Valid1 to SP_DWS0:AcquireSync	
6.9.4.3 Transition SP_DWS1:Valid1 to SP_DWS2:Valid2	
6.9.5 SP DWS2:Valid2 state	
6.9.5.1 State description	
6.9.5.2 Transition SP DWS2:Valid2 to SP DWS0:AcquireSync	
6.9.5.3 Transition SP_DWS2:Valid2 to SP_DWS3:SyncAcquired	
6.9.6 SP DWS3:SyncAcquired state	
6.9.6.1 State description	
6.9.6.2 Transition SP_DWS3:SyncAcquired to SP_DWS0:AcquireSync	
6.9.6.3 Transition SP_DWS3:SyncAcquired to SP_DWS4:Lost1	202
6.9.7 SP_DWS4:Lost1 state	
6.9.7.1 State description	
6.9.7.1 State description	
6.9.7.3 Transition SP_DWS4:Lost1 to SP_DWS0:AcquireSync	
6.9.7.4 Transition SP_DWS4:Lost1 to SP_DWS6:Lost2	
6.9.8 SP_DWS5:Lost1Recovered state	
6.9.8.1 State description	
6.9.8.2 Transition SP_DWS5:Lost1Recovered to SP_DWS0:AcquireSync	
6.9.8.3 Transition SP_DWS5:Lost1Recovered to SP_DWS3:SyncAcquired	. 283
6.9.9 SP_DWS6:Lost2 state	
6.9.9.1 State description	
6.9.9.2 Transition SP_DWS6:Lost2 to SP_DWS0:AcquireSync	
6.9.9.3 Transition SP_DWS6:Lost2 to SP_DWS7:Lost2Recovered	
6.9.9.4 Transition SP_DWS6:Lost2 to SP_DWS8:Lost3	
6.9.10 SP_DWS7:Lost2Recovered state	
6.9.10.1 State description	
6.9.10.2 Transition SP_DWS7:Lost2Recovered to SP_DWS0:AcquireSync	
6.9.10.3 Transition SP_DWS7:Lost2Recovered to SP_DWS4:Lost1	
6.9.10.4 Transition SP_DWS7:Lost2Recovered to SP_DWS8:Lost3	
6.9.11 SP_DWS8:Lost3 state	
6.9.11.1 State description	
6.9.11.2 Transition SP DWS8:Lost3 to SP DWS0:AcquireSvnc	. 284

xii

Working Draft Serial Attached SCSI - 2 (SAS-2)

6.9.11.3 Transition SP_DWS8:Lost3 to SP_DWS9:Lost3Recovered	284
6.9.12 SP_DWS9:Lost3Recovered state	284
6.9.12.1 State description	284
6.9.12.2 Transition SP DWS9:Lost3Recovered to SP DWS0:AcquireSync	284
6.9.12.3 Transition SP_DWS9:Lost3Recovered to SP_DWS6:Lost2	284
6.10 Multiplexing	
6.11 Spin-up	286
7 Link layer	287
7.1 Link layer overview	
7.2 Primitives	
7.2.1 Primitives overview	
7.2.2 Primitive summary	
7.2.3 Primitive encodings	
7.2.4 Primitive sequences.	
7.2.4.1 Primitive sequences overview	
7.2.4.2 Single primitive sequence	
7.2.4.3 Repeated primitive sequence	
7.2.4.4 Continued primitive sequence	
7.2.4.5 Extended primitive sequence	
7.2.4.6 Triple primitive sequence	
7.2.4.7 Redundant primitive sequence	
7.2.5 Deletable primitives	
7.2.5.1 ALIGN	
7.2.5.2 MUX (Multiplex)	
7.2.5.3 NOTIFY	
7.2.5.3.1 NOTIFY overview	
7.2.5.3.2 NOTIFY (ENABLE SPINUP)	
7.2.5.3.3 NOTIFY (POWER LOSS EXPECTED)	
7.2.6 Primitives not specific to type of connections	
7.2.6.1 AIP (Arbitration in progress)	
7.2.6.2 BREAK	
7.2.6.3 BREAK_REPLY	
7.2.6.4 BROADCAST	
7.2.6.5 CLOSE	
7.2.6.6 EOAF (End of address frame)	
7.2.6.7 ERROR	
7.2.6.8 HARD_RESET	307
7.2.6.9 OPEN_ACCEPT	307
7.2.6.10 OPEN_REJECT	307
7.2.6.11 SOAF (Start of address frame)	310
7.2.6.12 TRAIN	310
7.2.6.13 TRAIN_DONE	310
7.2.7 Primitives used only inside SSP and SMP connections	
7.2.7.1 ACK (Acknowledge)	
7.2.7.2 CREDIT BLOCKED	
7.2.7.3 DONE	
7.2.7.4 EOF (End of frame)	
7.2.7.5 NAK (Negative acknowledgement)	
7.2.7.6 RRDY (Receiver ready)	
7.2.7.7 SOF (Start of frame)	
7.2.8 Primitives used only inside STP connections and on SATA physical links	
7.2.8.1 SATA ERROR	
7.2.8.2 SATA PMACK, SATA PMNAK, SATA PMREQ P, and SATA PMREQ S (Power m	
acknowledgements and requests)	
7.2.8.3 SATA HOLD and SATA HOLDA (Hold and hold acknowledge)	
7.2.8.4 SATA R RDY and SATA X RDY (Receiver ready and transmitter ready)	
1.2.0.4 OATA_N_NDT and OATA_A_NDT (Necesser ready and transmitted ready)	312

Working Draft Serial Attached SCSI - 2 (SAS-2)

7.2.6.5 Other primitives used inside STF connections and on SATA physical links	312
7.3 Physical link rate tolerance management	313
7.3.1 Physical link rate tolerance management overview	313
7.3.2 Phys originating dwords	315
7.3.3 Expander phys forwarding dwords	315
7.4 Idle physical links	316
7.5 CRC	
7.5.1 CRC overview	
7.5.2 CRC generation	
7.5.3 CRC checking	
7.6 Scrambling	
7.7 Bit order of CRC and scrambler	
7.8 Address frames	
7.8.1 Address frames overview	
7.8.2 IDENTIFY address frame.	
7.8.3 OPEN address frame	
7.9 Identification and hard reset sequence	
7.9.1 Identification and hard reset sequence overview	
7.9.2 SAS initiator device rules	
7.9.3 Expander device rules	
7.9.4 SL_IR (link layer identification and hard reset) state machines	
7.9.4.1 SL_IR state machines overview	
7.9.4.2 SL_IR transmitter and receiver	
7.9.4.3 SL_IR_TIR (transmit IDENTIFY or HARD_RESET) state machine	
7.9.4.3.1 SL_IR_TIR state machine overview	
7.9.4.3.2 SL_IR_TIR1:Idle state	
7.9.4.3.2.1 State description	
7.9.4.3.2.2 Transition SL_IR_TIR1:Idle to SL_IR_TIR2:Transmit_Identify	
7.9.4.3.2.3 Transition SL_IR_TIR1:Idle to SL_IR_TIR3:Transmit_Hard_Reset	
7.9.4.3.3 SL_IR_TIR2:Transmit_Identify state	
7.9.4.3.3.1 State description	
7.9.4.3.3.2 Transition SL_IR_TIR2:Transmit_Identify to SL_IR_TIR4:Completed	
7.9.4.3.4 SL_IR_TIR3:Transmit_Hard_Reset state	339
7.9.4.3.4.1 State description	339
7.9.4.3.4.2 Transition SL_IR_TIR3:Transmit_Hard_Reset to SL_IR_TIR4:Completed	339
7.9.4.3.5 SL_IR_TIR4:Completed state	339
7.9.4.4 SL IR RIF (receive IDENTIFY address frame) state machine	339
7.9.4.4.1 SL_IR_RIF state machine overview	339
7.9.4.4.2 SL IR RIF1:Idle state	
7.9.4.4.2.1 State description	340
7.9.4.4.2.2 Transition SL IR RIF1:Idle to SL IR RIF2:Receive Identify Frame	
7.9.4.4.3 SL_IR_RIF2:Receive_Identify_Frame state	
7.9.4.4.3.1 State description	
7.9.4.4.3.2 Transition SL IR RIF2:Receive Identify Frame to SL IR RIF3:Completed	
7.9.4.4.4 SL_IR_RIF3:Completed state	
7.9.4.5 SL_IR_IRC (identification and hard reset control) state machine	341
7.9.4.5.1 SL_IR_IRC state machine overview	
7.9.4.5.2 SL_IR_IRC1:Idle state	
7.9.4.5.2.1 State description	
7.9.4.5.2.1 State description 7.9.4.5.2.2 Transition SL_IR_IRC1:Idle to SL_IR_IRC2:Wait	
7.9.4.5.3 SL_IR_IRC2:Wait state	
7.9.4.5.3.1 State description	
7.9.4.5.3.1 State description	
7.9.4.5.3.2 Transition SL_IK_IKC2:Wait to SL_IK_IKC3:Completed	
7.9.4.5.4 SL_IK_IKC3:Completed state	
7.10 Power management	
7.11 SAS domain changes (Broadcast (Change) usage)	
/ IZ CONDECTIONS	.141

xiv

Working Draft Serial Attached SCSI - 2 (SAS-2)

	. 343
7.12.2 Opening a connection	. 344
7.12.2.1 Connection request	
7.12.2.2 Results of a connection request	. 346
7.12.3 Arbitration fairness	. 346
7.12.4 Arbitration inside an expander device	. 347
7.12.4.1 Expander phy arbitration requirements	. 347
7.12.4.2 ECM arbitration requirements	
7.12.4.2.1 ECM arbitration requirements overview.	
7.12.4.2.2 Arbitrating confirmations	. 348
7.12.4.2.3 Arb Won confirmation	
7.12.4.2.4 Arb Lost confirmation	
7.12.4.2.5 Arb Reject confirmation	
7.12.4.3 Arbitration status	
7.12.4.4 Partial Pathway Timeout timer	
7.12.4.5 Pathway recovery	
7.12.5 BREAK handling	
7.12.6 Aborting a connection request	
7.12.6 Aborting a connection request	. 352
7.12.7 Closing a connection.	. 354
7.12.8 Breaking a connection	
7.13 Rate matching	
7.14 SL (link layer for SAS logical phys) state machines	
7.14.1 SL state machines overview	
7.14.2 SL transmitter and receiver	
7.14.3 SL_RA (receive OPEN address frame) state machine	
7.14.4 SL_CC (connection control) state machine	
7.14.4.1 SL_CC state machine overview	
7.14.4.2 SL_CC0:Idle state	
7.14.4.2.1 State description	
7.14.4.2.2 Transition SL_CC0:Idle to SL_CC1:ArbSel	
7.14.4.2.3 Transition SL_CC0:Idle to SL_CC2:Selected	. 364
7.14.4.3 SL_CC1:ArbSel state	. 364
7.14.4.3.1 State description	. 364
7.14.4.3.2 Transition SL CC1:ArbSel to SL CC0:Idle	. 365
7.14.4.3.3 Transition SL CC1:ArbSel to SL CC2:Selected	. 365
7.14.4.3.4 Transition SL_CC1:ArbSel to SL_CC3:Connected	
7.14.4.3.5 Transition SL_CC1:ArbSel to SL_CC5:BreakWait	. 366
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break	. 366 . 366
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break	. 366 . 366 . 366
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break	. 366 . 366 . 366
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break 7.14.4.4 SL_CC2:Selected state 7.14.4.4.1 State description 7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle	. 366 . 366 . 366 . 367
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break	. 366 . 366 . 366 . 367 . 367
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break	. 366 . 366 . 366 . 367 . 367
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break. 7.14.4.4 SL_CC2:Selected state. 7.14.4.4.1 State description. 7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC5:BreakWait. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC6:Break.	. 366 . 366 . 366 . 367 . 367 . 368
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break 7.14.4.4 SL_CC2:Selected state 7.14.4.4.1 State description 7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected 7.14.4.4.4 Transition SL_CC2:Selected to SL_CC5:BreakWait 7.14.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 SL_CC3:Connected state	. 366 . 366 . 366 . 367 . 367 . 368 . 368
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break 7.14.4.4 SL_CC2:Selected state 7.14.4.4.1 State description 7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected 7.14.4.4.4 Transition SL_CC2:Selected to SL_CC5:BreakWait 7.14.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 Transition SL_CC3:Connected state 7.14.4.5 Transition SL_CC3:Connected state 7.14.4.5 Transition SL_CC3:Connected state	. 366 . 366 . 366 . 367 . 368 . 368 . 368
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break. 7.14.4.4 SL_CC2:Selected state. 7.14.4.4.1 State description. 7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected. 7.14.4.4.4 Transition SL_CC2:Selected to SL_CC6:BreakWait. 7.14.4.5 Transition SL_CC2:Selected to SL_CC6:BreakWait. 7.14.4.5 SL_CC3:Connected state. 7.14.4.5.1 State description. 7.14.4.5.2 Transition SL_CC3:Connected to SL_CC6:DisconnectWait.	. 366 . 366 . 366 . 367 . 368 . 368 . 368 . 368
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break. 7.14.4.4 SL_CC2:Selected state. 7.14.4.4.1 State description. 7.14.4.2 Transition SL_CC2:Selected to SL_CC0:Idle 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC5:BreakWait. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5.1 State description. 7.14.4.5.1 State description. 7.14.4.5.3 Transition SL_CC3:Connected to SL_CC4:DisconnectWait. 7.14.4.5.3 Transition SL_CC3:Connected to SL_CC4:DisconnectWait.	. 366 . 366 . 366 . 367 . 368 . 368 . 368 . 368
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break. 7.14.4.4 SL_CC2:Selected state. 7.14.4.4 State description. 7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle. 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected. 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC5:BreakWait. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC6:BreakWait. 7.14.4.5 Transition SL_CC3:Connected to SL_CC6:Break. 7.14.4.5 State description. 7.14.5.1 State description. 7.14.4.5.2 Transition SL_CC3:Connected to SL_CC4:DisconnectWait. 7.14.4.5.3 Transition SL_CC3:Connected to SL_CC5:BreakWait. 7.14.4.5.4 Transition SL_CC3:Connected to SL_CC6:Break	. 366 . 366 . 366 . 367 . 368 . 368 . 368 . 368 . 368
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break. 7.14.4.4 Stac description. 7.14.4.4.1 State description. 7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle. 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected 7.14.4.4.4 Transition SL_CC2:Selected to SL_CC6:BreakWait 7.14.4.5 Transition SL_CC2:Selected to SL_CC6:BreakWait 7.14.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 SL_CC3:Connected state. 7.14.4.5.1 State description. 7.14.4.5.2 Transition SL_CC3:Connected to SL_CC4:DisconnectWait 7.14.4.5.3 Transition SL_CC3:Connected to SL_CC6:BreakWait 7.14.4.5.3 Transition SL_CC3:Connected to SL_CC6:Break 7.14.4.5.5 Transition SL_CC3:Connected to SL_CC6:Break 7.14.4.5.5 Transition SL_CC3:Connected to SL_CC6:Disconnected	. 366 . 366 . 367 . 367 . 368 . 368 . 368 . 368 . 368 . 368
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break. 7.14.4.4 SL_CC2:Selected state. 7.14.4.4.1 State description. 7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected. 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC5:BreakWait. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 SL_CC3:Connected state. 7.14.5.1 State description. 7.14.5.2 Transition SL_CC3:Connected to SL_CC4:DisconnectWait. 7.14.5.3 Transition SL_CC3:Connected to SL_CC5:BreakWait. 7.14.5.5 Transition SL_CC3:Connected to SL_CC5:BreakWait. 7.14.5.5 Transition SL_CC3:Connected to SL_CC5:BreakWait. 7.14.5.5 Transition SL_CC3:Connected to SL_CC6:Break. 7.14.4.5 Transition SL_CC3:Connected to SL_CC6:Break. 7.14.4.6 SL_CC4:DisconnectWait state.	. 366 . 366 . 366 . 367 . 368 . 368 . 368 . 368 . 368 . 368
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break. 7.14.4.4 SL_CC2:Selected state. 7.14.4.4.1 State description. 7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC5:BreakWait. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 SL_CC3:Connected state 7.14.4.5.1 State description. 7.14.4.5.1 Transition SL_CC3:Connected to SL_CC4:DisconnectWait. 7.14.4.5.3 Transition SL_CC3:Connected to SL_CC6:BreakWait. 7.14.4.5.4 Transition SL_CC3:Connected to SL_CC6:BreakWait. 7.14.4.5.5 Transition SL_CC3:Connected to SL_CC6:BreakWait. 7.14.4.5.4 Transition SL_CC3:Connected to SL_CC6:Consected to SL_CC6:BreakWait. 7.14.4.5.5 Transition SL_CC3:Connected to SL_CC6:Consected to SL_CC6:BreakWait. 7.14.4.5.5 Transition SL_CC3:Connected to SL_CC6:Consected to SL_CC6:BreakWait. 7.14.4.5.5 Transition SL_CC3:Connected to SL_CC6:Consected to SL_CC6:Cons	. 366 . 366 . 366 . 367 . 368 . 368 . 368 . 368 . 368 . 368 . 368 . 368
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break. 7.14.4.4 SL_CC2:Selected state. 7.14.4.4.1 State description. 7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle. 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC5:BreakWait 7.14.4.5 Transition SL_CC2:Selected to SL_CC6:BreakWait 7.14.4.5 SL_CC3:Connected state. 7.14.4.5.1 State description. 7.14.5.2 Transition SL_CC3:Connected to SL_CC4:DisconnectWait 7.14.5.3 Transition SL_CC3:Connected to SL_CC6:BreakWait 7.14.4.5.3 Transition SL_CC3:Connected to SL_CC6:BreakWait 7.14.4.5.5 Transition SL_CC3:Connected to SL_CC6:Break 7.14.4.5.1 State description. 7.14.4.6.1 State description. 7.14.4.6.2 Transition SL_CC3:ConnectWait to SL_CC7:CloseSTP 7.14.4.6.2 Transition SL_CC4:DisconnectWait to SL_CC0:Idle.	. 366 . 366 . 366 . 367 . 368 . 368
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break. 7.14.4.4 Stac description. 7.14.4.4.1 State description. 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected. 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC5:BreakWait. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 SL_CC3:Connected state. 7.14.4.5.1 State description. 7.14.4.5.2 Transition SL_CC3:Connected to SL_CC4:DisconnectWait 7.14.4.5.3 Transition SL_CC3:Connected to SL_CC5:BreakWait 7.14.4.5.4 Transition SL_CC3:Connected to SL_CC6:Break 7.14.4.5.5 Transition SL_CC3:Connected to SL_CC6:Break 7.14.4.6.1 State description 7.14.4.6.1 State description. 7.14.4.6.1 State description 7.14.4.6.3 Transition SL_CC4:DisconnectWait to SL_CC0:Idle 7.14.4.6.3 Transition SL_CC4:DisconnectWait to SL_CC5:BreakWait	. 366 . 366 . 366 . 367 . 367 . 368 . 368 . 368 . 368 . 368 . 368 . 369 . 369 . 369
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break. 7.14.4.4 SL_CC2:Selected state. 7.14.4.4.1 State description. 7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC5:BreakWait. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 SL_CC3:Connected state. 7.14.4.5.1 State description. 7.14.4.5.1 State description. 7.14.4.5.3 Transition SL_CC3:Connected to SL_CC4:DisconnectWait 7.14.4.5.4 Transition SL_CC3:Connected to SL_CC6:Break 7.14.4.5.4 Transition SL_CC3:Connected to SL_CC6:Break 7.14.4.6.5 Transition SL_CC3:Connected to SL_CC6:Break 7.14.4.6.1 State description. 7.14.4.6.2 Transition SL_CC4:DisconnectWait to SL_CC0:Idle 7.14.4.6.3 Transition SL_CC4:DisconnectWait to SL_CC5:BreakWait 7.14.4.6.4 Transition SL_CC4:DisconnectWait to SL_CC5:BreakWait 7.14.4.6.4 Transition SL_CC4:DisconnectWait to SL_CC5:BreakWait 7.14.4.6.4 Transition SL_CC4:DisconnectWait to SL_CC6:Break	. 366 . 366 . 366 . 367 . 367 . 368 . 368 . 368 . 368 . 368 . 369 . 369 . 369 . 369 . 369
7.14.4.3.6 Transition SL_CC1:ArbSel to SL_CC6:Break. 7.14.4.4 Stac description. 7.14.4.4.1 State description. 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected. 7.14.4.4.3 Transition SL_CC2:Selected to SL_CC3:Connected. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC5:BreakWait. 7.14.4.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 Transition SL_CC2:Selected to SL_CC6:Break 7.14.4.5 SL_CC3:Connected state. 7.14.4.5.1 State description. 7.14.4.5.2 Transition SL_CC3:Connected to SL_CC4:DisconnectWait 7.14.4.5.3 Transition SL_CC3:Connected to SL_CC5:BreakWait 7.14.4.5.4 Transition SL_CC3:Connected to SL_CC6:Break 7.14.4.5.5 Transition SL_CC3:Connected to SL_CC6:Break 7.14.4.6.1 State description 7.14.4.6.1 State description. 7.14.4.6.1 State description 7.14.4.6.3 Transition SL_CC4:DisconnectWait to SL_CC0:Idle 7.14.4.6.3 Transition SL_CC4:DisconnectWait to SL_CC5:BreakWait	. 366 . 366 . 366 . 367 . 368 . 368 . 368 . 368 . 368 . 368 . 368 . 368 . 369 . 369 . 369 . 369 . 369 . 369

χv

Working Draft Serial Attached SCSI - 2 (SAS-2)

T10/1760-D Revision 14

28 January 2008

	. 370
7.14.4.8 SL_CC6:Break state	
7.14.4.8.1 State description	. 370
7.14.4.8.2 Transition SL_CC6:Break to SL_CC0:Idle	
7.14.4.9 SL_CC7:CloseSTP state	. 370
7.14.4.9.1 State description	
7.14.4.9.2 Transition SL_CC7:CloseSTP to SL_CC0:Idle	. 370
7.15 XL (link layer for expander logical phys) state machine	. 371
7.15.1 XL state machine overview	. 371
7.15.2 XL transmitter and receiver	
7.15.3 XL0:Idle state	. 376
7.15.3.1 State description	. 376
7.15.3.2 Transition XL0:Idle to XL1:Request Path	. 376
7.15.3.3 Transition XL0:Idle to XL5:Forward_Open	. 377
7.15.4 XL1:Request_Path state	. 377
7.15.4.1 State description	. 377
7.15.4.2 Transition XL1:Request_Path to XL0:Idle	. 378
7.15.4.3 Transition XL1:Request_Path to XL2:Request_Open	. 378
7.15.4.4 Transition XL1:Request_Path to XL4:Open_Reject	. 378
7.15.4.5 Transition XL1:Request Path to XL5:Forward Open	. 378
7.15.4.6 Transition XL1:Request_Path to XL9:Break	. 378
7.15.5 XL2:Request_Open state	. 379
7.15.5.1 State description	. 379
7.15.5.2 Transition XL2:Request_Open to XL3:Open_Confirm_Wait	. 379
7.15.6 XL3:Open_Confirm_Wait state	. 379
7.15.6.1 State description	. 379
7.15.6.2 Transition XL3:Open_Confirm_Wait to XL0:Idle	. 380
7.15.6.3 Transition XL3:Open_Confirm_Wait to XL1:Request_Path	. 380
7.15.6.4 Transition XL3:Open_Confirm_Wait to XL5:Forward_Open	
7.15.6.5 Transition XL3:Open_Confirm_Wait to XL7:Connected	. 380
7.15.6.6 Transition XL3:Open_Confirm_Wait to XL9:Break	
7.15.6.7 Transition XL3:Open_Confirm_Wait to XL10:Break_Wait	. 380
7.15.7 XL4:Open_Reject state	
7.15.7.1 State description	. 381
7.15.7.1 State description	. 381 . 381
7.15.7.1 State description	. 381 . 381 . 381
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open 7.15.8 XL5:Forward_Open state.	. 381 . 381 . 381 . 381
7.15.7.1 State description	. 381 . 381 . 381 . 381
7.15.7.1 State description	. 381 . 381 . 381 . 381 . 381
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open. 7.15.8 XL5:Forward_Open state 7.15.8.1 State description. 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait. 7.15.9 XL6:Open_Response_Wait state.	. 381 . 381 . 381 . 381 . 381 . 381
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open 7.15.8 XL5:Forward_Open state 7.15.8.1 State description 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait 7.15.9 XL6:Open_Response_Wait state 7.15.9 1 State description	. 381 . 381 . 381 . 381 . 381 . 381
7.15.7.1 State description 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open 7.15.8 XL5:Forward_Open state 7.15.8.1 State description 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait 7.15.9 XL6:Open_Response_Wait state 7.15.9.1 State description 7.15.9.1 Transition XL6:Open_Response_Wait to XL0:Idle	. 381 . 381 . 381 . 381 . 381 . 381 . 383
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open. 7.15.8 XL5:Forward_Open state 7.15.8.1 State description 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait. 7.15.9 XL6:Open_Response_Wait state. 7.15.9.1 State description. 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path	. 381 . 381 . 381 . 381 . 381 . 381 . 383
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open. 7.15.8.3 Transition XL4:Open_state 7.15.8.1 State description. 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait 7.15.9.1 State description. 7.15.9.1 State description. 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path 7.15.9.4 Transition XL6:Open_Response_Wait to XL1:Request_Open	. 381 . 381 . 381 . 381 . 381 . 381 . 383 . 383
7.15.7.1 State description 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open 7.15.8 XL5:Forward_Open state 7.15.8.1 State description 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait 7.15.9 XL6:Open_Response_Wait state 7.15.9.1 State description 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path 7.15.9.4 Transition XL6:Open_Response_Wait to XL1:Request_Open 7.15.9.5 Transition XL6:Open_Response_Wait to XL7:Connected	. 381 . 381 . 381 . 381 . 381 . 381 . 383 . 383
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle	. 381 . 381 . 381 . 381 . 381 . 381 . 383 . 383 . 383
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open. 7.15.8.3 Transition XL6:Open_Setate 7.15.8.1 State description. 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait 7.15.9.1 State description. 7.15.9.1 State description. 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path 7.15.9.4 Transition XL6:Open_Response_Wait to XL2:Request_Open 7.15.9.5 Transition XL6:Open_Response_Wait to XL7:Connected 7.15.9.6 Transition XL6:Open_Response_Wait to XL7:Connected 7.15.9.7 Transition XL6:Open_Response_Wait to XL9:Break 7.15.9.7 Transition XL6:Open_Response_Wait to XL9:Break 7.15.9.7 Transition XL6:Open_Response_Wait to XL9:Break	. 381 . 381 . 381 . 381 . 381 . 381 . 383 . 383 . 383 . 383
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open 7.15.8.1 State description. 7.15.8.1 State description. 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait 7.15.9.1 State description. 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path 7.15.9.4 Transition XL6:Open_Response_Wait to XL1:Request_Open 7.15.9.5 Transition XL6:Open_Response_Wait to XL7:Connected 7.15.9.6 Transition XL6:Open_Response_Wait to XL7:Connected 7.15.9.7 Transition XL6:Open_Response_Wait to XL9:Break 7.15.9.7 Transition XL6:Open_Response_Wait to XL1:Break_Wait 7.15.10 XL7:Connected state	. 381 . 381 . 381 . 381 . 381 . 381 . 383 . 383 . 383 . 383
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open. 7.15.8 XL5:Forward_Open state 7.15.8.1 State description. 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait 7.15.9 XL6:Open_Response_Wait state. 7.15.9 XL6:Open_Response_Wait state. 7.15.9.1 State description. 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle. 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path. 7.15.9.4 Transition XL6:Open_Response_Wait to XL1:Request_Open 7.15.9.5 Transition XL6:Open_Response_Wait to XL2:Request_Open 7.15.9.6 Transition XL6:Open_Response_Wait to XL7:Connected 7.15.9.7 Transition XL6:Open_Response_Wait to XL9:Break. 7.15.9.7 Transition XL6:Open_Response_Wait to XL1:Break_Wait 7.15.10 XL7:Connected state 7.15.10 XL7:Connected state 7.15.10 XL5:Description.	. 381 . 381 . 381 . 381 . 381 . 381 . 383 . 383 . 383 . 383 . 383
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open. 7.15.8 XL5:Forward_Open state 7.15.8.1 State description. 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait. 7.15.9 XL6:Open_Response_Wait state. 7.15.9.1 State description. 7.15.9.1 State description. 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path. 7.15.9.5 Transition XL6:Open_Response_Wait to XL2:Request_Open. 7.15.9.5 Transition XL6:Open_Response_Wait to XL7:Connected. 7.15.9.6 Transition XL6:Open_Response_Wait to XL9:Pareak. 7.15.9.7 Transition XL6:Open_Response_Wait to XL1:Break_Wait. 7.15.10 XL7:Connected state 7.15.10.1 State description. 7.15.10.2 Transition XL7:Connected to XL8:Close_Wait.	. 381 . 381 . 381 . 381 . 381 . 381 . 381 . 383 . 383 . 383 . 383 . 383 . 383 . 383
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open 7.15.8.1 State description. 7.15.8.1 State description. 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait 7.15.9.1 State description 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path 7.15.9.4 Transition XL6:Open_Response_Wait to XL1:Request_Open 7.15.9.5 Transition XL6:Open_Response_Wait to XL2:Request_Open 7.15.9.6 Transition XL6:Open_Response_Wait to XL9:Break 7.15.9.7 Transition XL6:Open_Response_Wait to XL9:Break 7.15.9.7 Transition XL6:Open_Response_Wait to XL9:Break 7.15.10 XL7:Connected state 7.15.10.1 State description. 7.15.10.2 Transition XL7:Connected to XL8:Close_Wait 7.15.10.3 Transition XL7:Connected to XL9:Break	. 381 . 381 . 381 . 381 . 381 . 381 . 383 . 383
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open. 7.15.8 XL5:Forward_Open state 7.15.8.1 State description 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait 7.15.9 XL6:Open_Response_Wait state 7.15.9 XL6:Open_Response_Wait state 7.15.9.1 State description 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path 7.15.9.4 Transition XL6:Open_Response_Wait to XL2:Request_Open 7.15.9.5 Transition XL6:Open_Response_Wait to XL2:Request_Open 7.15.9.6 Transition XL6:Open_Response_Wait to XL9:Break 7.15.9.7 Transition XL6:Open_Response_Wait to XL1:Break_Wait 7.15.10 XL7:Connected state 7.15.10.2 Transition XL7:Connected to XL8:Close_Wait 7.15.10.3 Transition XL7:Connected to XL9:Break 7.15.10.3 Transition XL7:Connected to XL9:Break 7.15.10.4 Transition XL7:Connected to XL9:Break_Wait	. 381 . 381 . 381 . 381 . 381 . 381 . 383 . 383
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open. 7.15.8 XL5:Forward_Open state 7.15.8.1 State description 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait. 7.15.9 XL6:Open_Response_Wait state. 7.15.9.1 State description. 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path 7.15.9.4 Transition XL6:Open_Response_Wait to XL2:Request_Open. 7.15.9.5 Transition XL6:Open_Response_Wait to XL2:Request_Open. 7.15.9.5 Transition XL6:Open_Response_Wait to XL7:Connected 7.15.9.7 Transition XL6:Open_Response_Wait to XL1:Request_Open 7.15.10 XL7:Connected state 7.15.10 XL7:Connected state 7.15.10.3 Transition XL7:Connected to XL8:Close_Wait 7.15.10.3 Transition XL7:Connected to XL9:Break 7.15.10.4 Transition XL7:Connected to XL9:Break	. 381 . 381 . 381 . 381 . 381 . 383 . 384 . 385 . 385
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open. 7.15.8.3 Transition XL4:Open_State 7.15.8.1 State description. 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait 7.15.9.1 State description. 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path 7.15.9.4 Transition XL6:Open_Response_Wait to XL2:Request_Open 7.15.9.5 Transition XL6:Open_Response_Wait to XL2:Request_Open 7.15.9.6 Transition XL6:Open_Response_Wait to XL7:Connected 7.15.9.6 Transition XL6:Open_Response_Wait to XL7:Connected 7.15.10 XL7:Connected state 7.15.10 XL7:Connected state 7.15.10.3 Transition XL7:Connected to XL8:Close_Wait 7.15.10.4 Transition XL7:Connected to XL9:Break 7.15.10.4 Transition XL7:Connected to XL9:Break 7.15.10.4 Transition XL7:Connected to XL9:Break 7.15.11 XL8:Close_Wait state 7.15.11 XL8:Close_Wait state 7.15.11 XL8:Close_Wait state 7.15.11.1 State description	. 381 . 381 . 381 . 381 . 381 . 381 . 381 . 383 . 384 . 384
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open. 7.15.8 XL5:Forward_Open state 7.15.8.1 State description 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait 7.15.9 XL6:Open_Response_Wait state. 7.15.9 XL6:Open_Response_Wait state. 7.15.9.1 State description 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path 7.15.9.4 Transition XL6:Open_Response_Wait to XL2:Request_Open 7.15.9.5 Transition XL6:Open_Response_Wait to XL2:Request_Open 7.15.9.6 Transition XL6:Open_Response_Wait to XL9:Break 7.15.9.7 Transition XL6:Open_Response_Wait to XL1:Break_Wait 7.15.10 XL7:Connected state 7.15.10.2 Transition XL7:Connected to XL8:Close_Wait 7.15.10.3 Transition XL7:Connected to XL9:Break 7.15.10.4 Transition XL7:Connected to XL9:Break 7.15.11 XL8:Close_Wait state 7.15.11 XL8:Close_Wait state 7.15.11.1 State description 7.15.11.1 State description 7.15.11.1 State description 7.15.11.1 Transition XL7:Connected to XL10:Break_Wait 7.15.11.1 State description 7.15.11.1 Transition XL7:Connected to XL10:Break_Wait 7.15.11.1 Transition XL7:Connected to XL10:Break_Wait 7.15.11.1 Transition XL7:Connected to XL10:Idle	. 381 . 381 . 381 . 381 . 381 . 381 . 381 . 383 . 383 . 383 . 383 . 383 . 383 . 383 . 383 . 383 . 384 . 384 . 384 . 384
7.15.7.1 State description. 7.15.7.2 Transition XL4:Open_Reject to XL0:Idle 7.15.7.3 Transition XL4:Open_Reject to XL5:Forward_Open. 7.15.8.3 Transition XL4:Open_State 7.15.8.1 State description. 7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait 7.15.9.1 State description. 7.15.9.2 Transition XL6:Open_Response_Wait to XL0:Idle 7.15.9.3 Transition XL6:Open_Response_Wait to XL1:Request_Path 7.15.9.4 Transition XL6:Open_Response_Wait to XL2:Request_Open 7.15.9.5 Transition XL6:Open_Response_Wait to XL2:Request_Open 7.15.9.6 Transition XL6:Open_Response_Wait to XL7:Connected 7.15.9.6 Transition XL6:Open_Response_Wait to XL7:Connected 7.15.10 XL7:Connected state 7.15.10 XL7:Connected state 7.15.10.3 Transition XL7:Connected to XL8:Close_Wait 7.15.10.4 Transition XL7:Connected to XL9:Break 7.15.10.4 Transition XL7:Connected to XL9:Break 7.15.10.4 Transition XL7:Connected to XL9:Break 7.15.11 XL8:Close_Wait state 7.15.11 XL8:Close_Wait state 7.15.11 XL8:Close_Wait state 7.15.11.1 State description	. 381 . 381 . 381 . 381 . 381 . 381 . 381 . 383 . 383 . 383 . 383 . 383 . 383 . 383 . 384 . 385 . 385

Working Draft Serial Attached SCSI - 2 (SAS-2)

7.13.12 AL9.Diedk State	300
7.15.12.1 State description	385
7.15.12.2 Transition XL9:Break to XL0:Idle	
7.15.13 XL10:Break_Wait state	385
7.15.13.1 State description	
7.15.13.2 Transition XL10:Break Wait to XL0:Idle	386
7.16 SSP link layer	
7.16.1 Opening an SSP connection	
7.16.2 Full duplex	
7.16.3 SSP frame transmission and reception.	
7.16.4 SSP flow control	
7.16.5 Interlocked frames	
7.16.6 Breaking an SSP connection	
7.16.7 Closing an SSP connection	
7.16.8 SSP (link layer for SSP phys) state machines	
7.16.8.1 SSP state machines overview	
7.16.8.2 SSP transmitter and receiver	
7.16.8.3 SSP_TIM (transmit interlocked frame monitor) state machine	
7.16.8.4 SSP_TCM (transmit frame credit monitor) state machine	
7.16.8.5 SSP_D (DONE control) state machine	395
7.16.8.6 SSP_TF (transmit frame control) state machine	
7.16.8.6.1 SSP_TF state machine overview	
7.16.8.6.2 SSP_TF1:Connected_Idle state	
7.16.8.6.2.1 State description	
7.16.8.6.2.2 Transition SSP_TF1:Connected_Idle to SSP_TF2:Tx_Wait	
7.16.8.6.2.3 Transition SSP_TF1:Connected_Idle to SSP_TF4:Transmit_DONE	
7.16.8.6.3 SSP_TF2:Tx_Wait state	
7.16.8.6.3.1 State description	
7.16.8.6.3.2 Transition SSP_TF2:Tx_Wait to SSP_TF3:Transmit_Frame	
7.16.8.6.3.3 Transition SSP_TF2:Tx_Wait to SSP_TF4:Transmit_DONE	
7.16.8.6.4 SSP_TF3:Transmit_Frame state	
7.16.8.6.4.1 State description	
7.16.8.6.4.2 Transition SSP_TF3:Transmit_Frame to SSP_TF1:Connected_Idle	
7.16.8.6.5 SSP_TF4:Transmit_DONE state	398
7.16.8.7 SSP_RF (receive frame control) state machine	399
7.16.8.8 SSP_RCM (receive frame credit monitor) state machine	399
7.16.8.9 SSP_RIM (receive interlocked frame monitor) state machine	400
7.16.8.10 SSP_TC (transmit credit control) state machine	400
7.16.8.11 SSP_TAN (transmit ACK/NAK control) state machine	401
7.17 STP link layer	401
7.17.1 STP frame transmission and reception	401
7.17.2 STP flow control	402
7.17.3 Continued primitive sequence	405
7.17.4 Affiliations	406
7.17.5 Opening an STP connection	
7.17.6 Closing an STP connection.	
7.17.7 STP connection management examples	
7.17.8 STP (link layer for STP phys) state machines	
7.17.9 SMP target port support	
7.18 SMP link layer	
7.18.1 SMP frame transmission and reception	
7.18.2 SMP flow control	
7.18.3 Opening an SMP connection	
7.18.4 Closing an SMP connection	
7.18.5 SMP (link layer for SMP phys) state machines	410
7.18.5.1 SMP state machines overview	
7.18.5.2 SMP transmitter and receiver.	
1.10.3.2 SIVIE transmitted and receiver	414

xvii

Working Draft Serial Attached SCSI - 2 (SAS-2)

7.18.5.3 SMP_IP (link layer for SMP initiator phys) state machine	414
7.18.5.3.1 SMP_IP state machine overview	414
7.18.5.3.2 SMP_IP1:Idle state	415
7.18.5.3.2.1 State description	
7.18.5.3.2.2 Transition SMP_IP1:Idle to SMP_IP2:Transmit_Frame	415
7.18.5.3.3 SMP_IP2:Transmit_Frame state	416
7.18.5.3.3.1 State description	
7.18.5.3.3.2 Transition SMP_IP2:Transmit_Frame to SMP_IP3:Receive_Frame	
7.18.5.3.4 SMP_IP3:Receive_Frame state	416
7.18.5.4 SMP_TP (link layer for SMP target phys) state machine	417
7.18.5.4.1 SMP_TP state machine overview	
7.18.5.4.2 SMP_TP1:Receive_Frame state	417
7.18.5.4.2.1 State description	417
7.18.5.4.2.2 Transition SMP_TP1:Receive_Frame to SMP_TP2:Transmit_Frame	
7.18.5.4.3 SMP_TP2:Transmit_Frame state	418
8 Port layer	
8.1 Port layer overview	
8.2 PL (port layer) state machines	
8.2.1 PL state machines overview	
8.2.2 PL_OC (port layer overall control) state machine	
8.2.2.1 PL_OC state machine overview	
8.2.2.2 PL_OC1:Idle state	
8.2.2.2.1 PL_OC1:Idle state description	
8.2.2.2.2 Transition PL_OC1:Idle to PL_OC2:Overall_Control	
8.2.2.3 PL_OC2:Overall_Control state	
8.2.2.3.1 PL_OC2:Overall_Control state overview	
8.2.2.3.2 PL_OC2:Overall_Control state establishing connections	
8.2.2.3.3 PL_OC2:Overall_Control state connection established	
8.2.2.3.4 PL_OC2:Overall_Control state unable to establish a connection	
8.2.2.3.6 PL OC2:Overall Control state connection management	
8.2.2.3.7 PL OC2:Overall Control state frame transmission cancellations	
8.2.2.3.8 Transition PL_OC2:Overall_Control to PL_OC1:Idle	
8.2.3 PL_PM (port layer phy manager) state machine	/32
8.2.3.1 PL PM state machine overview	
8.2.3.2 PL PM1:Idle state	
8.2.3.2.1 PL_PM1:Idle state description	
8.2.3.2.2 Transition PL_PM1:Idle to PL_PM2:Req_Wait	
8.2.3.2.3 Transition PL PM1:Idle to PL PM3:Connected	
8.2.3.3 PL_PM2:Req_Wait state	
8.2.3.3.1 PL_PM2:Req_Wait state overview	
8.2.3.3.2 PL PM2:Reg Wait establishing a connection	
8.2.3.3.3 PL PM2:Reg Wait connection established	
8.2.3.3.4 PL_PM2:Req_Wait unable to establish a connection	
8.2.3.3.5 PL_PM2:Req_Wait connection management	
8.2.3.3.6 Transition PL PM2:Reg Wait to PL PM1:Idle	
8.2.3.3.7 Transition PL_PM2:Req_Wait to PL_PM3:Connected	
8.2.3.3.8 Transition PL_PM2:Req_Wait to PL_PM4:Wait_For_Close	437
8.2.3.4 PL_PM3:Connected state	
8.2.3.4.1 PL_PM3:Connected state description	
8.2.3.4.2 Transition PL_PM3:Connected to PL_PM1:Idle	
8.2.3.5 PL_PM4:Wait_For_Close state	
8.2.3.5.1 PL_PM4:Wait_For_Close state description	440
8.2.3.5.2 Transition PL_PM4:Wait_For_Close to PL_PM1:Idle	441
9 Transport layer	442

xviii

Working Draft Serial Attached SCSI - 2 (SAS-2)

9.1 Hallsport layer overview	
9.2 SSP transport layer	
9.2.1 SSP frame format	
9.2.2 Information units	446
9.2.2.1 COMMAND frame - Command information unit	446
9.2.2.2 TASK frame - Task Management Function information unit	
9.2.2.3 XFER_RDY frame - Transfer Ready information unit	
9.2.2.4 DATA frame - Data information unit	
9.2.2.5 RESPONSE frame - Response information unit	
9.2.2.5.1 RESPONSE frame - Response information unit overview	
9.2.2.5.2 Response information unit - NO_DATA format	
9.2.2.5.3 Response information unit - RESPONSE_DATA format	
9.2.2.5.4 Response information unit - SENSE_DATA format	
9.2.3 Sequences of SSP frames	
9.2.3.1 Sequences of SSP frames overview	
9.2.3.2 Task management function sequence of SSP frames	
9.2.3.3 Non-data command sequence of SSP frames	
9.2.3.4 Write command sequence of SSP frames	
9.2.3.5 Read command sequence of SSP frames	
9.2.3.6 Bidirectional command sequence of SSP frames	
9.2.4 SSP transport layer handling of link layer errors	
9.2.4.1 SSP transport layer handling of link layer errors overview	
9.2.4.2 COMMAND frame - handling of link layer errors	458
9.2.4.3 TASK frame - handling of link layer errors	
9.2.4.4 XFER_RDY frame - handling of link layer errors	
9.2.4.4.1 XFER_RDY frame overview	
9.2.4.4.2 XFER_RDY frame with transport layer retries enabled	458
9.2.4.5 DATA frame - handling of link layer errors	
9.2.4.5.2 DATA frame with transport layer retries enabled	
9.2.4.5.3 DATA frame with transport layer retries disabled	
9.2.5 SSP transport layer error handling summary	
9.2.5.1 SSP transport layer error handling summary introduction	
9.2.5.2 SSP initiator port transport layer error handling summary	
9.2.5.3 SSP target port transport layer error handling summary	
9.2.6 ST (transport layer for SSP ports) state machines	
9.2.6.1 ST state machines overview	
9.2.6.2 ST_I (transport layer for SSP initiator ports) state machines	
9.2.6.2.1 ST I state machines overview	
9.2.6.2.2 ST IFR (initiator frame router) state machine	
9.2.6.2.2.1 ST IFR state machine overview	
9.2.6.2.2.2 Processing transport protocol service requests	
9.2.6.2.2.3 Processing Frame Received confirmations	
9.2.6.2.2.4 Processing Transmission Complete and Reception Complete messages	
9.2.6.2.2.5 Processing miscellaneous requests	
9.2.6.2.3 ST_ITS (initiator transport server) state machine	
9.2.6.2.3.1 ST ITS state machine overview	
9.2.6.2.3.2 ST_ITS1:Initiator_Start state	
9.2.6.2.3.2.1 State description	
9.2.6.2.3.2.2 Transition ST_ITS1:Initiator_Start to ST_ITS3:Prepare_Command	
9.2.6.2.3.2.3 Transition ST ITS1:Initiator Start to ST ITS4:Prepare Task	
9.2.6.2.3.3 ST ITS2:Initiator Send Frame state	471
9.2.6.2.3.3.1 Transition ST_ITS2:Initiator_Send_Frame to ST_ITS1:Initiator_Start	475
9.2.6.2.3.3.2 Transition ST_ITS2:Initiator_Send_Frame to ST_ITS5:Prepare_Data_Out	
9 2 6 2 3 3 3 Transition ST ITS2 Initiator, Send, Frame to ST ITS6 Process, Data, In	

xix

Working Draft Serial Attached SCSI - 2 (SAS-2)

9.2.6.2.3.4 ST_ITS3:Prepare_Command state	
9.2.6.2.3.4.1 State description	
9.2.6.2.3.4.2 Transition ST_ITS3:Prepare_Command to ST_ITS2:Initiator_Send_Frame	
9.2.6.2.3.5 ST_ITS4:Prepare_Task state	
9.2.6.2.3.5.1 State description	
9.2.6.2.3.5.2 Transition ST_ITS4:Prepare_Task to ST_ITS2:Initiator_Send_Frame	
9.2.6.2.3.6 ST_ITS5:Prepare_Data_Out state	477
9.2.6.2.3.6.1 State description	
9.2.6.2.3.6.2 Transition ST_ITS5:Prepare_Data_Out to ST_ITS2:Intiator_Send_Frame	. 478
9.2.6.2.3.7 ST_ITS6:Receive_Data_In state	478
9.2.6.2.3.7.1 State description	
9.2.6.2.3.7.2 Transition ST_ITS6:Receive_Data_In to ST_ITS1:Initiator_Start	
9.2.6.2.3.7.3 Transition ST_ITS6:Receve_Data_In to ST_ITS2:Initiator_Send_Frame	
9.2.6.3 ST_T (transport layer for SSP target ports) state machines	
9.2.6.3.1 ST_T state machines overview	
9.2.6.3.2 ST_TFR (target frame router) state machine	
9.2.6.3.2.1 ST_TFR state machine overview	
9.2.6.3.2.2 Processing Frame Received confirmations	
9.2.6.3.2.3 Processing transport protocol service requests and responses	
9.2.6.3.2.4 Processing miscellaneous requests and confirmations	
9.2.6.3.3 ST_TTS (target transport server) state machine	
9.2.6.3.3.1 ST_TTS state machine overview	
9.2.6.3.3.2 ST_TTS1:Target_Start state	
9.2.6.3.3.2.1 State description	
9.2.6.3.3.2.2 Transition ST_TTS1:Target_Start to ST_TTS3:Prepare_Data_In	
9.2.6.3.3.2.3 Transition ST_TTS1:Target_Start to ST_TTS4:Prepare_Xfer_Rdy	
9.2.6.3.3.2.4 Transition ST_TTS1:Target_Start to ST_TTS5:Receive_Data_Out 9.2.6.3.3.2.5 Transition ST_TTS1:Target_Start to ST_TTS7:Prepare_Response	
9.2.6.3.3.3 ST_TTS2:Target_Send_Frame state	
9.2.6.3.3.3.1 State description	
9.2.6.3.3.3.2 Transition ST TTS2:Target Send Frame to ST TTS1:Target Start	
9.2.6.3.3.3.3 Transition ST_TTS2:Target_Send_Frame to ST_TTS3:Prepare_Data_In	
9.2.6.3.3.3.4 Transition ST_TTS2:Target_Send_Frame to ST_TTS5:Receive_Data_Out	
9.2.6.3.3.4 ST_TTS3:Prepare_Data_In state	101
9.2.6.3.3.4.1 State description	
9.2.6.3.3.4.2 Transition ST TTS3:Prepare Data In to ST TTS2:Target Send Frame	
9.2.6.3.3.5 ST_TTS4:Prepare_Xfer_Rdy state	
9.2.6.3.3.5.1 State description	
9.2.6.3.3.5.2 Transition ST TTS4:Prepare Xfer Rdy to ST TTS2:Target Send Frame	
9.2.6.3.3.6 ST_TTS5:Receive_Data_Out state	
9.2.6.3.3.6.1 State description	
9.2.6.3.3.6.2 Transition ST TTS5:Receive Data Out to ST TTS1:Target Start	
9.2.6.3.3.6.3 Transition ST_TTS5:Receive_Data_Out to ST_TTS4:Prepare_Xfer_Rdy	
9.2.6.3.3.7 ST_TTS6:Prepare_Response state	
9.2.6.3.3.7.1 State description	
9.2.6.3.3.7.2 Transition ST_TTS6:Prepare_Response to ST_TTS2:Target_Send_Frame	
STP transport layer	
.3.1 Initial FIS	. 499
3.2 BIST Activate FIS	. 499
.3.3 TT (transport layer for STP ports) state machines	
SMP transport layer	. 500
.4.1 SMP transport layer overview	
.4.2 SMP_REQUEST frame	
.4.3 SMP_RESPONSE frame	
.4.4 Sequence of SMP frames	
.4.5 MT (transport layer for SMP ports) state machines	
9.4.5.1 SMP transport layer state machines overview	. 502

ХX

Working Draft Serial Attached SCSI - 2 (SAS-2)

9.4.5.2 MT_IP (transport layer for SMP initiator ports) state machine	502
9.4.5.2.1 MT_IP state machine overview	
9.4.5.2.2 MT_IP1:Idle state	
9.4.5.2.2.1 State description	503
9.4.5.2.2.2 Transition MT_IP1:Idle to MT_IP2:Send	
9.4.5.2.3 MT_IP2:Send state	
9.4.5.2.3.1 State description	
9.4.5.2.3.2 Transition MT_IP2:Send to MT_IP1:Idle	
9.4.5.2.3.3 Transition MT_IP2:Send to MT_IP3:Receive	504
9.4.5.2.4 MT_IP3:Receive state	
9.4.5.2.4.1 State description	
9.4.5.2.4.2 Transition MT_IP3:Receive to MT_IP1:Idle	
9.4.5.3 MT_TP (transport layer for SMP target ports) state machine	
9.4.5.3.1 MT_TP state machine overview	
9.4.5.3.2.1 State description	
9.4.5.3.2.2 Transition MT_TP1:Idle to MT_TP2:Respond	
9.4.5.3.3 MT_TP2:Respond state	
9.4.5.3.3.1 State description	
9.4.5.3.3.2 Transition MT_TP2:Respond to MT_TP1:Idle	506
5.4.5.5.5.2 Transition wit_it z.ivespond to wit_it inde	500
10 Application layer	507
10.1 Application layer overview	507
10.2 SCSI application layer	
10.2.1 SCSI transport protocol services	
10.2.1.1 SCSI transport protocol services overview	
10.2.1.2 Send SCSI Command transport protocol service	
10.2.1.3 SCSI Command Received transport protocol service	509
10.2.1.4 Send Command Complete transport protocol service	
10.2.1.5 Command Complete Received transport protocol service	
10.2.1.6 Send Data-In transport protocol service	512
10.2.1.7 Data-In Delivered transport protocol service	
10.2.1.8 Receive Data-Out transport protocol service	
10.2.1.9 Data-Out Received transport protocol service	
10.2.1.10 Terminate Data Transfer transport protocol service	
10.2.1.11 Data Transfer Terminated transport protocol service	
10.2.1.12 Send Task Management Request transport protocol service	
10.2.1.13 Task Management Request Received transport protocol service	
10.2.1.14 Task Management Function Executed transport protocol service	
10.2.1.15 Received Task Management Function Executed transport protocol service	
10.2.2 Application client error handling	
10.2.3 Device server error handling	
10.2.4 Task router and task manager error handling	
10.2.6 SCSI commands	
10.2.6 SCSI commands	
10.2.6.2 MODE SELECT and MODE SENSE commands	
10.2.6.3 LOG SELECT and LOG SENSE commands	
10.2.6.4 SEND DIAGNOSTIC and RECEIVE DIAGNOSTIC RESULTS commands	
10.2.6.5 START STOP UNIT command	
10.2.7 SCSI mode parameters	
10.2.7.1 SCSI mode parameters overview.	
10.2.7.2 Disconnect-Reconnect mode page	
10.2.7.2.1 Disconnect-Reconnect mode page overview	
10.2.7.2.2 BUS INACTIVITY TIME LIMIT field	
10.2.7.2.3 MAXIMUM CONNECT TIME LIMIT field	
10.2.7.2.4 MAXIMUM BURST SIZE field	

xxi

Working Draft Serial Attached SCSI - 2 (SAS-2)

T10/1760-D Revision 14

10.2.7.2.5 FIRST BURST SIZE field	
10.2.7.3 Protocol-Specific Logical Unit mode page	
10.2.7.4 Protocol-Specific Port mode page	
10.2.7.5 Phy Control And Discover mode page	
10.2.7.6 Shared Port Control mode page	
10.2.7.7 SAS-2 Phy mode page	
10.2.8 SCSI log parameters	
10.2.8.1 Protocol-Specific Port log page	
10.2.9 SCSI diagnostic parameters	
10.2.9.1 SCSI diagnostic parameters overview	
10.2.9.2 Protocol-Specific diagnostic page	
10.2.9.3 Enclosure Control diagnostic page	
10.2.9.4 Enclosure Status diagnostic page	543
10.2.9.5 Additional Element Status diagnostic page	
10.2.10 SCSI power conditions	
10.2.10.1 SCSI power conditions overview	
10.2.10.2 SA_PC (SCSI application layer power condition) state machine	
10.2.10.2.1 SA_PC state machine overview	
10.2.10.2.2 SA_PC_0:Powered_On state	
10.2.10.2.2.1 State description	
10.2.10.2.2.2 Transition SA_PC_0:Powered_On to SA_PC_4:Stopped	
10.2.10.2.2.3 Transition SA_PC_0:Powered_On to SA_PC_5:Active_Wait	
10.2.10.2.3 SA_PC_1:Active state	
10.2.10.2.3.1 State description	545
10.2.10.2.3.2 Transition SA_PC_1:Active to SA_PC_2:Idle	
10.2.10.2.3.3 Transition SA_PC_1:Active to SA_PC_3:Standby	545
10.2.10.2.3.4 Transition SA_PC_1:Active to SA_PC_4:Stopped	
10.2.10.2.4 SA_PC_2:Idle state	
10.2.10.2.4.1 State description	545
10.2.10.2.4.2 Transition SA_PC_2:Idle to SA_PC_1:Active	545
10.2.10.2.4.3 Transition SA_PC_2:Idle to SA_PC_3:Standby	
10.2.10.2.4.4 Transition SA_PC_2:Idle to SA_PC_4:Stopped	546
10.2.10.2.5 SA_PC_3:Standby state	
10.2.10.2.5.1 State description	546
10.2.10.2.5.2 Transition SA_PC_3:Standby to SA_PC_4:Stopped	546
10.2.10.2.5.3 Transition SA_PC_3:Standby to SA_PC_5:Active_Wait	
10.2.10.2.5.4 Transition SA_PC_3:Standby to SA_PC_6:Idle_Wait	546
10.2.10.2.6 SA_PC_4:Stopped state	
10.2.10.2.6.1 State description	546
10.2.10.2.6.2 Transition SA_PC_4:Stopped to SA_PC_3:Standby	546
10.2.10.2.6.3 Transition SA_PC_4:Stopped to SA_PC_5:Active_Wait	546
10.2.10.2.6.4 Transition SA_PC_4:Stopped to SA_PC_6:Idle_Wait	547
10.2.10.2.7 SA_PC_5:Active_Wait state	547
10.2.10.2.7.1 State description	547
10.2.10.2.7.2 Transition SA_PC_5:Active_Wait to SA_PC_1:Active	547
10.2.10.2.7.3 Transition SA_PC_5:Active_Wait to SA_PC_3:Standby	547
10.2.10.2.7.4 Transition SA_PC_5:Active_Wait to SA_PC_4:Stopped	547
10.2.10.2.7.5 Transition SA_PC_5:Active_Wait to SA_PC_6:Idle_Wait	
10.2.10.2.8 SA PC 6:Idle Wait state	548
10.2.10.2.8.1 State description	
10.2.10.2.8.2 Transition SA_PC_6:Idle_Wait to SA_PC_2:Idle	
10.2.10.2.8.3 Transition SA_PC_6:Idle_Wait to SA_PC_3:Standby	
10.2.10.2.8.4 Transition SA_PC_6:Idle_Wait to SA_PC_4:Stopped	
10.2.10.2.8.5 Transition SA PC 6:Idle Wait to SA PC 5:Active Wait	548
10.2.11 SCSI vital product data (VPD)	549
10.2.11.1 SCSI vital product data (VPD) overview	549
10.2.11.2 Device Identification VPD page	

Working Draft Serial Attached SCSI - 2 (SAS-2)

28 January 2008

10.2.11.3 Protocol-Specific Logical Offic Information VPD page	330
0.3 ATA application layer	552
0.4 Management application layer	
10.4.1 READY LED signal behavior	
10.4.2 Management protocol services	
10.4.3 SMP functions	
10.4.3.1 SMP functions overview	
10.4.3.2 SMP function request frame format	556
10.4.3.2.1 SMP function request frame format overview	
10.4.3.2.2 SMP FRAME TYPE field	
10.4.3.2.3 FUNCTION field	
10.4.3.2.4 ALLOCATED RESPONSE LENGTH field	
10.4.3.2.5 REQUEST LENGTH field	
10.4.3.2.6 Additional request bytes	
10.4.3.2.7 Fill bytes	
10.4.3.2.8 CRC field	
10.4.3.3 SMP function response frame format	
10.4.3.3.1 SMP function response frame format overview	
10.4.3.3.2 SMP FRAME TYPE field	
10.4.3.3.3 FUNCTION field	
10.4.3.3.4 FUNCTION RESULT field	
10.4.3.3.5 RESPONSE LENGTH field	
10.4.3.3.6 Additional response bytes	
10.4.3.3.7 Fill bytes	
10.4.3.3.8 CRC field	
10.4.3.4 REPORT GENERAL function	
10.4.3.5 REPORT MANUFACTURER INFORMATION function	
10.4.3.6 REPORT SELF-CONFIGURATION STATUS function	
10.4.3.6.1 REPORT SELF-CONFIGURATION STATUS function overview	
10.4.3.6.2 REPORT SELF-CONFIGURATION STATUS request	
10.4.3.6.3 REPORT SELF-CONFIGURATION STATUS response	
10.4.3.6.4 Self-configuration status descriptor	
10.4.3.7 REPORT ZONE PERMISSION TABLE function	
10.4.3.7.1 REPORT ZONE PERMISSION TABLE function overview	
10.4.3.7.2 REPORT ZONE PERMISSION TABLE request	
10.4.3.7.3 REPORT ZONE PERMISSION TABLE response	
10.4.3.7.4 Zone permission descriptor	584
10.4.3.8 REPORT ZONE MANAGER PASSWORD function	
10.4.3.9 REPORT BROADCAST function	
10.4.3.9.1 REPORT BROADCAST function overview	
10.4.3.9.2 REPORT BROADCAST request	
10.4.3.9.3 REPORT BROADCAST response	
10.4.3.9.4 REPORT BROADCAST response broadcast descriptor	
10.4.3.10 DISCOVER function	
10.4.3.12 REPORT PHY SATA function	
10.4.3.13 REPORT ROUTE INFORMATION function	
10.4.3.14.1 REPORT PHY EVENT function overview	
10.4.3.14.2 REPORT PHY EVENT request	
10.4.3.14.4 REPORT PHY EVENT response phy event descriptor	014
10.4.3.14.4 REPORT PHY EVENT response pny event descriptor	
10.4.3.15.1 DISCOVER LIST function	
10.4.3.15.1 DISCOVER LIST function overview	
10.4.3.15.3 DISCOVER LIST response	
10.4.3.15.3 DISCOVER LIST response SHORT FORMAT descriptor	

xxiii

Working Draft Serial Attached SCSI - 2 (SAS-2)

10.4.3.16 REPORT PHY EVENT LIST function	62
10.4.3.16.1 REPORT PHY EVENT LIST function overview	62
10.4.3.16.2 REPORT PHY EVENT LIST request	62
10.4.3.16.3 REPORT PHY EVENT LIST response	62
10.4.3.16.4 REPORT PHY EVENT LIST response phy event list descriptor	62
10.4.3.17 REPORT EXPANDER ROUTE TABLE LIST function	
10.4.3.17.1 REPORT EXPANDER ROUTE TABLE LIST function overview	62
10.4.3.17.2 REPORT EXPANDER ROUTE TABLE LIST request	62
10.4.3.17.3 REPORT EXPANDER ROUTE TABLE LIST response	62
10.4.3.17.4 REPORT EXPANDER ROUTE TABLE descriptor	62
10.4.3.18 CONFIGURE GENERAL function	62
10.4.3.19 ENABLE DISABLE ZONING function	63
10.4.3.20 ZONED BROADCAST function	63
10.4.3.21 ZONE LOCK function	63
10.4.3.22 ZONE ACTIVATE function	63
10.4.3.23 ZONE UNLOCK function	
10.4.3.24 CONFIGURE ZONE MANAGER PASSWORD function	
10.4.3.25 CONFIGURE ZONE PHY INFORMATION function	
10.4.3.25.1 CONFIGURE ZONE PHY INFORMATION function overview	
10.4.3.25.2 CONFIGURE ZONE PHY INFORMATION request	64
10.4.3.25.3 Zone phy configuration descriptor	
10.4.3.25.4 CONFIGURE ZONE PHY INFORMATION response	
10.4.3.26 CONFIGURE ZONE PERMISSION TABLE function	
10.4.3.26.1 CONFIGURE ZONE PERMISSION TABLE function overview	
10.4.3.26.2 CONFIGURE ZONE PERMISSION TABLE request	
10.4.3.26.3 Zone permission configuration descriptor	
10.4.3.26.4 CONFIGURE ZONE PERMISSION TABLE response	
10.4.3.27 CONFIGURE ROUTE INFORMATION function	
10.4.3.28 PHY CONTROL function	
10.4.3.29 PHY TEST FUNCTION function	
10.4.3.30 CONFIGURE PHY EVENT function	
10.4.3.30.1 CONFIGURE PHY EVENT function overview	
10.4.3.30.2 CONFIGURE PHY EVENT request	
10.4.3.30.3 CONFIGURE PHY EVENT request phy event configuration descriptor	
10.4.3.30.4 CONFIGURE PHY EVENT response	66
Annex A Jitter tolerance patterns	00
A.1 Jitter tolerance pattern (JTPAT)	
A.2 Compliant jitter tolerance pattern (CJTPAT)	
A.3 Considerations for a phy transmitting JTPAT and CJTPAT	
A.4 Considerations for a phy receiving JTPAT and CJTPAT	
A.4 Considerations for a phy receiving STFAT and CSTFAT	07
Annex B Signal performance measurements	67
B.1 Signal performance measurements overview	67
B.2 Simple physical link	
B.2.1 Simple physical link overview	
B.2.2 Assumptions for the structure of the transmitter device and the receiver device	
B.2.3 Definition of receiver sensitivity and receiver device sensitivity	
B.3 Measurement architecture requirements	
B.3.1 General	
B.3.2 Relationship between signal compliance measurements at interoperability points and opera	
systems	
B.4 De-embedding connectors in test fixtures	
B.5 Measurement conditions for signal output at the transmitter device	
B.6 Measurement conditions for signal tolerance at the transmitter device	67
B.7 Measurement conditions for signal output at the receiver device	67
B.8 Measurement conditions for signal tolerance at the receiver device	68

xxiv

Working Draft Serial Attached SCSI - 2 (SAS-2)

B.9 3-parameter measurements	
B.9.1 S-parameter overview	
B.9.2 S-parameter naming conventions	68 [.]
B.9.3 Use of single-ended instrumentation in differential applications	682
B.9.4 Measurement configurations for physical link elements	684
B.9.4.1 Measurement configuration overview	684
B.9.4.2 Transmitter device S ₁₁ measurements	
B.9.4.3 Receiver device S ₁₁ measurements	
B.9.4.4 TxRx connection S ₁₁ measurements at IT or CT	684
B.9.4.5 TxRx connection S ₂₂ measurements at IR or CR	
B.9.5 Summary for S-parameter measurements	
B.10 Calibration of jitter measurement devices (JMDs)	
B.10.1 Calibration of JMDs overview	
B.10.2 JMD Calibration Procedure	
Annex C SAS to SAS phy reset sequence examples	69 ²
Annex D CRC	
D.1 CRC generator and checker implementation examples	
D.2 CRC implementation in C	
D.3 CRC implementation with XORs	
D.4 CRC examples	699
Annex E SAS address hashing	
E.1 SAS address hashing overview	700
E.2 Hash collision probability	
E.3 Hash generation	70 [.]
E.4 Hash implementation in C	70 [.]
E.5 Hash implementation with XORs	702
E.6 Hash examples	70
Annex F Scrambling	70
F.1 Scrambler implementation example	
F.2 Scrambler implementation in C	
F.3 Scrambler implementation with XORs.	
F.4 Scrambler examples	
Annex G ATA architectural notes	70
G.1 STP differences from Serial ATA (SATA)	
G.2 STP differences from Serial ATA II	
G.3 Affiliation policies	
G.3.1 Affiliation policies overview	
G.3.2 Affiliation policy for static STP initiator port to STP target port mapping	
G.3.3 Affiliation policy with SATA queued commands and multiple STP initiator ports	
G.3.4 Applicability of affiliation for STP target ports	
G.4 SATA port selector considerations	710
G.5 SATA device not transmitting initial Register Device-to-Host FIS	
Annex H Minimum deletable primitive insertion rate summary	712
Annex I Zone permission configuration descriptor examples	713
Annex J Expander device handling of connections	716
J.1 Expander device handling of connections overview	716
J.2 Connection request - OPEN_ACCEPT	718
J.3 Connection request - OPEN_REJECT by end device	
J.4 Connection request - OPEN_REJECT by expander device	720

XXV

Working Draft Serial Attached SCSI - 2 (SAS-2)

T10/1760-D Revision 14

28 January 2008

J.5 Connection request - arbitration lost	72 [.]
J.6 Connection request - backoff and retry	72
J.7 Connection request - backoff and reverse path	723
J.8 Connection close - single step	724
J.9 Connection close - simultaneous	72
J.10 BREAK handling during path arbitration when the BREAK_REPLY method is disabled	726
J.11 BREAK handling during connection when the BREAK_REPLY method is disabled	727
J.12 BREAK handling during path arbitration when the BREAK_REPLY method is enabled	728
J.13 BREAK handling during connection when BREAK_REPLY method is enabled	729
J.14 STP connection - originated by STP initiator port	730
J.15 STP connection - originated by STP target port in an STP/SATA bridge	73
J.16 STP connection close - originated by STP initiator port	
J.17 STP connection close - originated by STP target port in an STP/SATA bridge	733
J.18 Connection request - XL1:Request_Path to XL5:Forward_Open transition	734
J.19 Pathway blocked and pathway recovery example	73
Annex K Primitive encoding	73
Annex L Discover process example implementation	
L.1 Discover process example implementation overview	
L.2 Header file	
L.3 Source file	757
Annex M SAS icons	778

Tables	_
1 Standards bodies	
2 Numbering conventions	
3 Multiplicity notation in class diagrams	
4 Data dword containing a value	
5 Data dword containing four one-byte fields	
6 Logical links	
7 Broadcast types	
8 Names and identifiers	
9 SAM-4 attribute mapping	
10 NAA IEEE Registered format	50
11 Hashed SAS address code parameter	
12 Device name created from the IDENTIFY (PACKET) DEVICE world wide name	58
13 Expander logical phy to ECM requests	78
14 Expander logical phy to ECM responses	78
15 ECM to expander logical phy confirmations	78
16 Expander logical phy to ECR to expander logical phy requests and indications	79
17 Expander logical phy to ECR to expander logical phy responses and confirmations	80
18 Expander logical phy to BPP requests	8
19 BPP to expander logical phy indications	
20 Routing attributes and routing methods	
21 Expander route table types	
22 Expander route table levels for externally configurable expander device R phy A	
23 Expander route table levels for externally configurable expander device N	
24 Expander route entries for externally configurable expander device E0 phy 1	
25 Expander route entries for externally configurable expander device F phy 0	
26 Zone manager password	
27 Zoning expander device zoning configuration after power on	
28 Zone phy information	
29 Zone phy information usage	
30 Zone groups	
31 Zone permission table	
32 Zone permission table granting minimal permissions	
33 Source zone group determination	
34 Destination zone group determination	
35 Zone phy information fields after a link reset sequence	
37 PHY EVENT SOURCE field	
38 Connectors	
39 SAS Drive connector pin assignments	
40 Controller SAS 4i connector pin assignments and physical link usage	
41 Backplane SAS 4i connector pin assignments and physical link usage	
42 Controller Mini SAS 4i connector pin assignments and physical link usage	
43 Backplane Mini SAS 4i connector pin assignments and physical link usage	
44 SAS 4x cable plug connector icons	
45 SAS 4x receptacle connector icons	
46 SAS 4x connector pin assignments and physical link usage	
47 Mini SAS 4x cable plug connector icons and key slot positions	
48 Mini SAS 4x receptacle connector icons and key positions	
49 Mini SAS 4x connector pin assignments and physical link usage	
50 General characteristics of cable assemblies and backplanes	
51 S-parameters of cable assemblies and backplanes	
52 Compliance points	. 16
53 General electrical characteristics	
54 Transmitter device general electrical characteristics	. 180
55 Transmitter device termination characteristics	. 180

Working Draft Serial Attached SCSI - 2 (SAS-2)

xxvii

Page: xxvii

Author: intc-mseidel Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00'

Fix long table and figure names so that the wrap-around does not clutter the page number portion or the table/figure number portion.

56 Receiver device general electrical characteristics	400
57 Receiver device termination characteristics	
58 Transmitter device signal output characteristics as measured with the zero-length test load at trans	smitter
device compliance points IT and CT	189
59 Transmitter device signal output characteristics as measured with each test load at transmitter dev	
compliance points IT and CT	190
60 Transmitter device maximum jitter as measured with each test load at transmitter device compliance	e points
IT and CT	191
61 Transmitter device signal output characteristics for 6 Gbps at IT and CT	
62 Transmitter device common mode voltage limit characteristics	
63 S-parameters at the transmitter device compliance point IT _s or CT _s	
64 Recommended transmitter device settings at IT and CT	<mark>194</mark>
65 Reference transmitter device characteristics at IT and CT	
66 Transmitter device OOB signal output characteristics	
67 OOB delivered signal characteristics	199
68 Delivered signal characteristics as measured with the zero length test load at receiver device comp	
points IR and CR	
69 Receiver device delivered signal characteristics at IR and CR	201
70 S-parameters at the receiver device compliance point IR _s or CR _s	201
71 Number of bits received per number of errors for BER confidence level of 95 %	203
72 Stressed receiver sensitivity test characteristics	204
73 Maximum delivered jitter at receiver device compliance points IR and CR	206
74 Receiver device jitter tolerance at receiver device compliance points IR and CR	
75 SSC modulation types	
76 SAS phy transmitter SSC modulation	209
77 Expander phy transmitter SSC modulation types	
78 Receiver SSC modulation tolerance	
79 Expander device center-spreading tolerance buffer	
80 Output characteristics of the READY LED signal	
81 Bit designations	
82 Conversion from byte notation to character name example	
83 Data characters	
84 Control characters	
85 Control character usage	
86 Delayed code violation example	
87 OOB signal timing specifications	
88 OOB signal transmitter device requirements	
89 OOB signal receiver device burst time detection requirements	
90 OOB signal receiver device idle time detection requirements	
91 OOB signal receiver device negation time detection requirements	
92 SATA port selection signal transmitter device requirements	230
93 Phy reset sequence timing specifications	231
94 SATA speed negotiation sequence timing specifications	232
95 SAS speed negotiation sequence timing specifications	237
96 SNW rates used in SNW-1, SNW-2, and Final-SNW	239
97 SNW-3 phy capabilities bit	
98 SNW-3 phy capabilities	
99 Requested logical link rate	
100 Multiplexing negotiation	
101 Supported settings bit priorities	
102 Example SNW-3 phy capabilities values	
103 Training patterns	
104 SP state machine timers	
105 SP_DWS timers	
106 Primitive format	
107 Deletable primitives	
108 Primitives not specific to type of connection	289

xxviii Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: xxviii

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
Date: 6/30/2008 3:16:52 PM -07'00'
CCEPT - DONE (moved ITs or CTs earlier in the title so the title ends with normal text)

fix font in table of tables for table title ending in subscript

Author: intc-mseidel
Subject: Highlight
Date: 5/25/2008 1:35:30 PM -07'00'

ACCEPT - DONE (moved IRs or CRs earlier in the title so the title ends with normal text. Then, changed IR to CR since those were the wrong names - kept the new word order, though, for consistency with table 70)

Fix the format on the page number for Table 70 to be the same font size as the rest of the page numbers.

109 Primitives used only inside SSP and SMP connections	
110 Primitives used only inside STP connections and on SATA physical links	
111 Primitive encoding for deletable primitives	29
112 Primitive encoding for primitives not specific to type of connection	29
113 Primitive encoding for primitives used only inside SSP and SMP connections	
114 Primitive encoding for primitives used only inside STP connections and on SATA physical links	29
115 Primitive sequences	29
116 ALIGN primitives	302
117 MUX primitives	
118 NOTIFY primitives	30
119 AIP primitives	30
120 BROADCAST primitives	300
121 CLOSE primitives	
122 Abandon-class OPEN_REJECT primitives	308
123 Retry-class OPEN_REJECT primitives	309
124 DONE primitives	
125 NAK primitives	31 ⁻
126 RRDY primitives	312
127 Physical link rate tolerance management deletable primitive insertion requirement	
128 CRC notation and definitions	
129 Scrambling for different data dword types	
130 Address frame format	320
131 ADDRESS FRAME TYPE field	320
132 IDENTIFY address frame format	32
133 DEVICE TYPE field	32
134 REASON field	32
135 OPEN address frame format	
136 PROTOCOL field	
137 FEATURES field	33
138 CONNECTION RATE field	
139 ARBITRATION WAIT TIME field	
140 SL_IR_IRC timers	
141 Connection Results of a connection request	340
142 Arbitration priority for OPEN address frames passing on a physical link	34
143 Arbitration priority for contending Request Path requests in the ECM when all requests have Retry	
Status arguments of NORMAL	
144 Arbitration priority for contending Request Path requests in the ECM among requests with Retry P	
Status arguments of IGNORE AWT	349
145 Pathway recovery priority	35
146 Results of aborting a connection request	
147 Results of closing a connection	
148 Results of breaking a connection	
149 Rate matching deletable primitive insertion requirements	
150 SL_CC timers	
151 SL_CC state machine variables	
152 OPEN_REJECT Received message to Open Failed confirmation mapping	
153 XL timers	
154 SSP frame interlock requirements	
155 SSP link layer timers	39
156 STP link layer differences from SATA link layer during an STP connection	
157 Affiliation policies	
158 Affiliation context relative identifier example	
159 PL_OC state machine timers	
161 PL PM state machine timers	
162 Messages from Open Failed confirmations	
163 SSP frame format	
	44,

xxix

Working Draft Serial Attached SCSI - 2 (SAS-2)

164 FRAME TYPE field	444
165 COMMAND frame - Command information unit	447
166 TASK ATTRIBUTE field	
167 TASK frame - Task Management Function information unit	448
168 TASK MANAGEMENT FUNCTION field	449
169 XFER RDY frame - Transfer Ready information unit	
170 DATA frame - Data information unit	
171 RESPONSE frame - Response information unit	
172 DATAPRES field	
173 RESPONSE DATA field	
174 RESPONSE CODE field	
175 Sequences of SSP frames	
176 Confirmations sent to the SCSI application layer if a frame transmission or reception error occurs	460
177 ST ITS state machine variables	
178 ST_ITS state machine arguments	
179 Messages sent to the ST_IFR state machine	
180 Transmission Complete messages for XFER RDY frame verification failures	
181 Reception Complete messages for read DATA frame verification failures	
182 ST_T state machine timers	470
183 Task Management Function Executed Service Response argument mapping to Request (Send Tran	480
Response) service response argument	480
184 Confirmations sent to the SCSI application layer	
185 ST_TTS state machine variables	
186 ST_TTS state machine arguments	
187 Messages sent to the ST_TFR state machine	492
188 Additional messages sent to the ST_TFR state machine	493
189 Reception Complete message for write DATA frame verification failures	
190 Request argument to RESPONSE frame response data field mapping	
191 SMP frame format	
192 SMP FRAME TYPE field	
193 SMP_REQUEST frame format	
194 SMP_RESPONSE frame format	
195 MT_TP time limits	
196 SCSI architecture mapping	
197 Send SCSI Command transport protocol service arguments	
198 SCSI Command Received transport protocol service arguments	
199 Send Command Complete transport protocol service arguments	511
200 Command Complete Received transport protocol service arguments	512
201 Send Data-In transport protocol service arguments	513
202 Data-In Delivered transport protocol service arguments	513
203 Receive Data-Out transport protocol service arguments	514
204 Data-Out Received transport protocol service arguments	
205 Terminate Data Transfer transport protocol service arguments	
206 Data Transfer Terminated transport protocol service arguments	
207 Send Task Management Request transport protocol service arguments	
208 Task Management Request Received transport protocol service arguments	
209 Task Management Function Executed transport protocol service arguments	
210 Received Task Management Function Executed transport protocol service arguments	
211 Delivery Result to additional sense code mapping	
212 SCSI transport protocol events	
213 SSP target port mode pages	
214 Disconnect-Reconnect mode page for SSP	
215 Protocol-Specific Logical Unit mode page for SAS SSP	
216 Protocol-Specific Port mode page for SAS SSP	524
216 Protocol-Specific Port mode page for SAS SSP	
218 Phy Control And Discover mode page	
219 SAS phy mode descriptor	
Z 19 SAS priy mode descriptor	528

xxx

Working Draft Serial Attached SCSI - 2 (SAS-2)

220 Shared Fort Control mode page	
221 SAS-2 Phy mode page	
222 SAS-2 phy mode descriptor	531
223 Protocol-Specific Port log page for SAS SSP	532
224 Protocol-Specific Port log parameter for SAS	533
225 Parameter control byte in the Protocol-Specific Port log parameter for SAS	534
226 SAS phy log descriptor	534
227 SSP target port diagnostic pages	
228 Diagnostic pages affected by zoning	
229 Protocol-Specific diagnostic page for SAS SSP	537
230 PHY TEST FUNCTION field	538
231 PHY TEST PATTERN field	
232 PHY TEST PATTERN SSC field	
233 PHY TEST PATTERN 950 IIIIU	
234 PHY TEST PATTERN DWORDS CONTROL field	
235 TWO DWORDS phy test pattern examples	
236 VPD pages with special requirements for SAS SSP	
237 Device Identification VPD page designation descriptors for the SAS target port	
238 Device Identification VPD page designation descriptors for the SAS target port	
239 Protocol-Specific Logical Unit Information VPD page for SAS SSP	551
241 READY LED signal behavior	
242 SMP functions (FUNCTION field)	554
243 SMP request frame format	
244 SMP response frame format	
245 FUNCTION RESULT field	558
246 Function result priority	562
247 REPORT GENERAL request	
248 REPORT GENERAL response	
249 NUMBER OF ZONE GROUPS field	
250 REPORT MANUFACTURER INFORMATION request	573
251 REPORT MANUFACTURER INFORMATION response	
252 REPORT SELF-CONFIGURATION STATUS request	577
253 REPORT SELF-CONFIGURATION STATUS response	578
254 Self-configuration status descriptor	580
255 STATUS TYPE field	580
256 REPORT ZONE PERMISSION TABLE request	582
257 REPORT TYPE field	
258 REPORT ZONE PERMISSION TABLE response	583
259 Zone permission descriptor for a source zone group (i.e., s) with 128 zone groups	
260 Zone permission descriptor for a source zone group (i.e., s) with 256 zone groups	584
261 Zone permission descriptor bit requirements	585
262 REPORT ZONE MANAGER PASSWORD request	585
263 REPORT ZONE MANAGER PASSWORD response	586
264 REPORT BROADCAST request	
265 REPORT BROADCAST response	
266 Broadcast descriptor	
267 BROADCAST REASON field	
268 DISCOVER request	
269 DISCOVER response	59
270 ATTACHED DEVICE TYPE field	
271 NEGOTIATED LOGICAL LINK RATE field	595
272 ATTACHED SATA PORT SELECTOR and ATTACHED SATA DEVICE bits	596
273 PROGRAMMED MINIMUM PHYSICAL LINK RATE and PROGRAMMED MAXIMUM PHYSICAL LINK rate fields	
274 HARDWARE MINIMUM PHYSICAL LINK RATE and HARDWARE MAXIMUM PHYSICAL LINK RATE fields	
275 ROUTING ATTRIBUTE field	
276 ATTACHED DEVICE NAME field	601

xxxi

Working Draft Serial Attached SCSI - 2 (SAS-2)

Z77 SELF-CONFIGURATION STATUS IIEIU	002
278 SELF-CONFIGURATION LEVELS COMPLETED field	602
279 NEGOTIATED PHYSICAL LINK RATE field	603
280 REPORT PHY ERROR LOG request	605
281 REPORT PHY ERROR LOG response	
282 REPORT PHY SATA request	
283 REPORT PHY SATA response	
284 REPORT ROUTE INFORMATION request	
285 REPORT ROUTE INFORMATION response	
286 REPORT PHY EVENT request	
287 REPORT PHY EVENT response	
288 Phy event descriptor	
289 DISCOVER LIST request	
290 PHY FILTER field	
291 DESCRIPTOR TYPE field	
292 DISCOVER LIST response	
293 SHORT FORMAT descriptor	
294 REPORT PHY EVENT LIST request	
295 REPORT PHY EVENT LIST response	
296 Phy event list descriptor	
297 REPORT EXPANDER ROUTE TABLE LIST request	
298 REPORT EXPANDER ROUTE TABLE LIST response	
299 REPORT EXPANDER ROUTE TABLE descriptor	
300 CONFIGURE GENERAL request	
301 STP SMP I_T NEXUS LOSS TIME field	
302 CONFIGURE GENERAL response	
303 ENABLE DISABLE ZONING request	631
304 SAVE field	631
305 ENABLE DISABLE ZONING field	632
306 ENABLE DISABLE ZONING response	632
307 ZONED BROADCAST request	633
308 BROADCAST TYPE field	634
309 ZONED BROADCAST response	634
310 ZONE LOCK request	635
311 ZONE LOCK response	
312 ZONE ACTIVATE request	
313 ZONE ACTIVATE response	
314 ZONE UNLOCK request	
315 ZONE UNLOCK response	
316 CONFIGURE ZONE MANAGER PASSWORD request	640
317 SAVE field	
318 CONFIGURE ZONE MANAGER PASSWORD response	
319 CONFIGURE ZONE PHY INFORMATION request	
320 SAVE field	
321 Zone phy configuration descriptor	
322 CONFIGURE ZONE PHY INFORMATION response	
323 CONFIGURE ZONE PERMISSION TABLE request	
324 NUMBER OF ZONE GROUPS field	
325 SAVE field	
326 Zone permission configuration descriptor for source zone group (i.e., s) for 128 zone groups	646
327 Zone permission configuration descriptor for source zone group (i.e., s) for 256 zone groups	
328 Zone permission configuration descriptor bit requirements	
329 CONFIGURE ZONE PERMISSION TABLE response	
330 CONFIGURE ROUTE INFORMATION request	
331 CONFIGURE ROUTE INFORMATION response	
332 PHY CONTROL request	
333 PHY OPERATION field	652

xxxii

Working Draft Serial Attached SCSI - 2 (SAS-2)

334 PROGRAMMED MINIMUM PHYSICAL LINK RATE and PROGRAMMED MAXIMUM PHYSICAL LINK RATE fields	. 655
335 PHY CONTROL response	
336 PHY TEST FUNCTION request	. 657
337 PHY TEST FUNCTION field	
338 PHY TEST PATTERN PHYSICAL LINK RATE field	. 659
339 PHY TEST FUNCTION response	
340 CONFIGURE PHY EVENT request	
341 Phy event configuration descriptor	. 661
342 CONFIGURE PHY EVENT response	. 661
A.1 JTPAT for RD+	
A.2 JTPAT for RD-	
A.3 JTPAT for RD+ and RD-	. 665
A.4 CJTPAT	. 667
A.5 CJTPAT with fixed content	. 671
D.1 CRC examples	. 699
E.1 Monte-Carlo simulation results	
E.2 Hash results for simple SAS addresses	
E.3 Hash results for realistic SAS addresses	
E.4 Hash results for a walking ones pattern	. 704
E.5 Hash results for a walking zeros pattern	. 705
F.1 Scrambler examples	. 708
H.1 Minimum deletable primitive insertion rate examples	. 712
I.1 Zone permission table example initial value	
I.2 CONFIGURE ZONE PERMISSION TABLE request example	
I.3 Zone permission table after processing the first zone permission configuration descriptor	. 715
I.4 Zone permission table after processing the second zone permission configuration descriptor	. 715
J.1 Column descriptions for connection examples	
K.1 Primitives with Hamming distance of 8	
K.2 Primitives without Hamming distance of 8	. 739
L.1 C program files	. 740

Figures

xxxiv

1 SCSI document relationships	
2 ATA document relationships	
3 Classes in class diagrams	
4 Association relationships in class diagrams	
5 Aggregation relationships in class diagrams	
6 Generalization relationships in class diagrams	
7 Dependency relationships in class diagrams	31
8 Objects in object diagrams	
9 State machine conventions	
10 SAS Domain class diagram	
11 Physical links and phys	30
12 Phy class diagram	
13 SAS phy object diagram	
14 Expander phy object diagram	
15 Ports (narrow ports and wide ports)	
16 Port class diagram	
17 Port object diagram	
18 SAS devices	
19 Expander device	
20 Expander Device class diagram	40
21 Domains	
22 SAS domain bridging to ATA domains	4
23 SAS domains bridging to ATA domains with SATA port selectors	
24 Devices spanning SAS domains	49
25 Single expander device topology example	
26 Multiple expander device topologies	50
27 Potential pathways	5
28 Multiple connections on wide ports	5
29 State machines for SAS devices	
30 State machines for expander devices	60
31 Transmit data path in a SAS phy	6
32 SSP link, port, SSP transport, and SCSI application layer state machines	
33 SMP link, port, SMP transport, and management application layer state machines	6
34 STP link, port, STP transport, and ATA application layer state machines	6
35 Transmit data path and state machines in an expander phy	6
36 Receive data path in a SAS phy	60
37 Receive data path in an expander phy	6
38 State machines and SAS Device classes	6
39 State machine s and Expander Device classes	69
40 Reset terminology	
41 Expander device model	7
42 Expander device interfaces	70
43 Expander device interface detail	
44 Phy-based expander route table	8
45 Expander-based expander route table	8
46 Level-order traversal example	8
47 Examples of invalid topologies	90
48 Externally configurable expander device and table-to-table attachment	9
49 Expander route index levels example	9
50 Expander route index order example	9
51 One ZPSDS example	
52 Zone manager location examples	
53 Three ZPSDSes example	. 10
54 Extending a ZPSDS example	
55 Overtaking a ZPSDS example	. 10:

Working Draft Serial Attached SCSI - 2 (SAS-2)

56 Zoning expander route table		
57 Example of a ZPSDS		
58 SATA connectors and cables		
59 SAS Drive cable environments		
60 SAS Drive backplane environment		
61 SAS external cable environment		
62 SAS internal symmetric cable environment - controller to backplane		
63 SAS internal symmetric cable environment - controller to controller	. 12	4
64 SAS internal controller-based fanout cable environment		
65 SAS internal backplane-based fanout cable environment		
66 SAS Drive plug connector		
67 Single-port SAS Drive cable receptacle connector		
68 Dual-port SAS Drive cable receptacle connector		
69 SAS Drive backplane receptacle connector	. 12	.8
70 SAS 4i cable receptacle connector		
71 SAS 4i plug connector		
72 Mini SAS 4i cable plug connector		
73 Mini SAS 4i receptacle connector		
74 SAS 4x cable plug connector		
75 SAS 4x receptacle connector		
77 Mini SAS 4x cable plug connector that attaches to an enclosure out port		
78 Mini SAS 4x cable plug connector that attaches to an enclosure out port		
79 Mini SAS 4x receptacle connector		
80 Mini SAS 4x receptacle connector - end device or enclosure universal port		
81 Mini SAS 4x receptacle connector - end device of endosure universal port		
82 Mini SAS 4x receptacle connector - enclosure out port		
83 Single-port SAS Drive cable assembly		
84 Dual-port SAS Drive cable assembly		
85 SAS internal symmetric cable assembly - SAS 4i		
86 SAS internal symmetric cable assembly - Mini SAS 4i		
87 SAS internal symmetric cable assembly - SAS 4i to Mini SAS 4i with vendor-specific sidebands		
88 SAS internal symmetric cable assembly - SAS 4i controller to Mini SAS 4i backplane with SGPIO		
89 SAS internal symmetric cable assembly - Mini SAS 4i controller to SAS 4i backplane with SGPIO		
90 SAS internal controller-based fanout cable assembly - SAS 4i		
91 SAS internal controller-based fanout cable assembly - Mini SAS 4i		
92 SAS internal backplane-based fanout cable assembly - SAS 4i		
93 SAS internal backplane-based fanout cable assembly - Mini SAS 4i		
94 SAS external cable assembly - SAS 4x	15	.7
95 SAS external cable assembly - Mini SAS 4x	15	. 8
96 SAS external cable assembly with Mini SAS 4x cable plug connectors		
97 SAS external cable assembly - SAS 4x to Mini SAS 4x		
98 SAS 4x and Mini SAS 4x cable assembly CT and CR compliance points		
99 Backplane with SAS Drive connector IT and IR compliance points		
100 Backplane with SAS Drive connector compliance points with SATA phy attached		
101 SAS 4i and Mini SAS 4i cable assembly IT and IR compliance points		
102 SAS 4i and Mini SAS 4i cable assembly and backplane IT and IR compliance points		
103 SAS 4i or Mini SASI 4i cable assembly and backplane IT and IR compliance points with SATA device		
attached		;9
104 SAS Drive cable assembly IT and IR compliance points		
105 Zero-length test load for transmitter device compliance point		
106 Zero-length test load for receiver device compliance point	. 17	2
107 Zero-length test load S _{DD21}		
108 TCTF test load	. 17	3
109 TCTF test load Spp34 and ISI loss requirements at IT at 3 Gbps	. 17	4
110 TCTF test load Spoot and ISI loss requirements at CT at 3 Gbps	. 17	5
111 TCTF test load S _{DD21} and ISI loss requirements at IT at 1.5 Gbps	. 17	'6

Working Draft Serial Attached SCSI - 2 (SAS-2)

xxxv

Page: xxxv

Author: intc-mseidel
Subject: Highlight
Date: 5/25/2008 1:35:57 PM -07'00'
ACCEPT - DONE (added "requirements" on the end of the title so it ends in normal text)

Fix the format on the page number for Figure 107 to be the same font size as the rest of the page numbers.

TTZ TOTE test load S _{DD21} and ist loss requirements at CT at 1.5 Gbps	
113 Low-loss TCTF test load	177
114 Low-loss TCTF test load S _{DD21} and ISI loss requirements	178
115 Reference transmitter test load physical characterization	179
116 Example 6 Gbps TxRx connection compliance testing	182
117 Transmitter device transient test circuit	184
118 Receiver device transient test circuit	184
119 Transmitter device eye mask	185
120 Receiver device eye mask	
121 Deriving a receiver device jitter tolerance eye mask	187
122 Applied sinusoidal jitter	
123 Transmitter device common mode voltage limit	
124 S-parameter values	
125 Transmitter device S _{CC22} and S _{DD22} limits	195
126 Transmitter device S _{CD22} limits	105
127 Transmitter equalization measurement	107
128 Receiver device S _{CC11} and S _{DD11} limits	202
129 Receiver device S _{CC11} limits	202
130 Reference receiver device	202
131 Stressed receiver sensitivity test block diagram	
132 Jitter tolerance test block diagram	
133 Center-spreading tolerance buffer	
134 SAS bit transmission logic	
135 SAS bit reception logic	
136 OOB signal transmission	
137 OOB signal detection	229
138 SATA port selection signal	
139 SATA OOB sequence	
140 SATA speed negotiation sequence	
141 SAS to SATA OOB sequence	
142 SAS to SAS OOB sequence	
143 SNW-1, SNW-2, and Final-SNW	
144 SNW-3	239
145 Train-SNW	244
146 SAS speed negotiation sequence SNW flowchart	
147 SAS speed negotiation sequence (phy A: SNW-1 through SNW-3, phy B: SNW-2 only)	247
148 SAS speed negotiation sequence (both phys SNW-1 through SNW-3)	248
149 SAS speed negotiation sequence - phy reset problem in Final-SNW	
150 SAS speed negotiation sequence - phy reset problem in SNW-3	250
151 SAS speed negotiation sequence - phy reset problem in Train-SNW	251
152 SAS speed negotiation sequence - multiple Train-SNWs	
153 Hot-plug and the phy reset sequence	
154 SP (phy layer) state machine - OOB sequence states	
155 SP (phy layer) state machine - SAS speed negotiation states	
156 SP (phy layer) state machine - SAS speed negotiation states for SNW-3 and Train-SNW	
157 SP (phy layer) state machine - SATA host emulation states	273
158 SP (phy layer) state machine – SATA port selector state	
159 SP (phy layer) state machine - SATA point selector state	
160 SP_DWS (phy layer dword synchronization) state machine	
161 Multiplexing disabled	
162 Multiplexing enabled	
163 Transmitting a repeated primitive sequence	
165 Extended primitive sequences	
166 Triple primitive sequences	
167 Redundant primitive sequences	
168 Elasticity buffer	314

xxxvi

Working Draft Serial Attached SCSI - 2 (SAS-2)

169 Address frame, SSP frame, and SMP frame CRC bit ordering	318
170 STP frame CRC bit ordering	319
171 Transmit path bit ordering	
172 Receive path bit ordering	
173 STP transmit path bit ordering	
174 STP receive path bit ordering	
175 Address frame transmission	
176 Identification sequence	
177 Hard reset sequence	
178 SL_IR (link layer identification and hard reset) state machines	
180 Aborting a connection request with BREAK	
181 Connection request timeout example	353
182 Closing a connection example	354
183 Rate matching example	
184 SL (link layer for SAS logical phys) state machines (part 1)	
185 SL (link layer for SAS logical phys) state machines (part 1)	
186 XL (link layer for expander logical phys) state machine (part 1)	
187 XL (link layer for expander logical phys) state machine (part 1)	
188 XL (link layer for expander logical phys) state machine (part 3)	374
189 SSP frame transmission	386
190 Interlocked frames	
191 Non-interlocked frames with the same tag	
192 Non-interlocked frames with different tags	
193 Closing an SSP connection example	390
194 SSP (link layer for SSP phys) state machines (part 1 - frame transmission)	392
195 SSP (link layer for SSP phys) state machines (part 2 - frame reception)	393
196 STP frame transmission	401
197 STP flow control	404
198 Transmitting a continued primitive sequence	405
199 Receiving a continued primitive sequence	
200 Example simultaneous connection recommendations for an expander device	409
201 STP initiator port opening an STP connection	
202 STP target port opening an STP connection	
203 SMP frame transmission	
204 SMP_IP (link layer for SMP initiator phys) state machine	
205 SMP_TP (link layer for SMP target phys) state machine	
206 Port layer examples	
207 PL_OC (port layer overall control) state machine	
208 PL_PM (port layer phy manager) state machine (part 1)	433
210 Task management function sequence of SSP frames	434
211 Non-data command sequence of SSP frames	455
212 Write command sequence of SSP frames	
213 Read command sequence of SSP frames	
214 Bidirectional command sequence of SSP frames	450
215 ST 1 (transport layer for SSP initiator ports) state machines	
216 ST_T (transport layer for SSP target ports) state machines	
217 Sequence of SMP frames	502
218 MT_IP (transport layer for SMP initiator ports) state machine	503
219 MT_TP (transport layer for SMP target ports) state machine	505
220 SA_PC (SCSI application layer power condition) state machine for SAS	544
A.1 CJTPAT pre-scrambling	
B.1 A simple physical link	
B.2 Transmitter device details	
B.3 Receiver device details	675
B.4 De-embedding of connectors in test fixtures	677

Working Draft Serial Attached SCSI - 2 (SAS-2)

xxxvii

B.5 Measurement conditions for signal output at the transmitter device	
B.6 Transmitter device signal output measurement test fixture details	678
B.7 Measurement conditions for signal tolerance at the transmitter device	679
B.8 Calibration of test fixture for signal tolerance at the transmitter device	
B.9 Measurement conditions for signal output at the receiver device	679
B.10 Measurement conditions for signal tolerance at the receiver device	680
B.11 Calibration of test fixture for signal tolerance at the receiver device	680
B.12 S-parameter port naming conventions	682
B.13 Four single-ended port or two differential port element	683
B.14 S-parameters for single-ended and differential systems	
B.15 Measurement conditions for S ₂₂ at the transmitter device connector	684
B.16 Measurement conditions for S ₁₁ at the receiver device connector	685
B.17 Measurement conditions for S ₁₁ at IT or CT	686
B.18 Measurement conditions for S ₂₂ at IR or CR	
C.1 SAS speed negotiation sequence (phy A: SNW-1 only, phy B: SNW-1 only)	691
C.2 SAS speed negotiation sequence (phy A: SNW-1, SNW-2, phy B: SNW-1, SNW-2)	692
C.3 SAS speed negotiation sequence (phy A: SNW-1, SNW-2, SNW-3, phy B: SNW-1, SNW-2)	693
C.4 SAS speed negotiation sequence (phy A: SNW-2, SNW-3, phy B: SNW-1, SNW-2)	694
C.5 SAS speed negotiation sequence (phy A: SNW-1 only, phy B: SNW-2 only)	695
D.1 CRC generator example	696
D.2 CRC checker example	
E.1 BCH(69, 39, 9) code generator	
F.1 Scrambler	706
J.1 Example topology	
J.2 Connection request - OPEN_ACCEPT	
J.3 Connection request - OPEN_REJECT by end device	
J.4 Connection request - OPEN_REJECT by expander device	
J.5 Connection request - arbitration lost	
J.6 Connection request - backoff and retry	
J.7 Connection request - backoff and reverse path	
J.8 Connection close - single step	
J.9 Connection close - simultaneous	
J.10 BREAK handling during path arbitration when the BREAK_REPLY method is disabled	
J.11 BREAK handling during a connection when the BREAK_REPLY method is disabled	
J.12 BREAK handling during path arbitration when the BREAK_REPLY method is enabled	
J.13 BREAK handling during a connection when the BREAK_REPLY method is enabled	
J.14 STP connection - originated by STP initiator port	730
J.15 STP connection - originated by STP target port in an STP/SATA bridge	
J.16 STP connection close - originated by STP initiator port	
J.17 STP connection close - originated by STP target port in an STP/SATA bridge	
J.18 XL1:Request_Path to XL5:Forward_Open transition	
J.19 Partial pathway recovery	
M.1 SAS primary icon	
M.2 SAS alternate icon	
M.3 SAS alternate icon with SAS letters	779

xxxviii Working Draft Serial Attached SCSI - 2 (SAS-2)

Revision Information

R.1 Revision sas2r00 (1 October 2005)

First release of SAS-2. The project proposal was 05-060r0.

Incorporated these changes per the January 2005 CAP WG (05-035r0) and T10 plenary (05-036r2):

- a) 04-372r2 SAM-4 SPC-4 SAS-2 I_T NEXUS RESET task management function (Rob Elliott, HP)
- b) 04-297r2 SAM-4 SAS-2 FCP-3 Retry delay (George Penokie, IBM)

No changes were approved in the March 2005 T10 plenary (05-097r0) or the May 2005 T10 plenary (05-165r1).

Incorporated these changes per the July 2005 SAS protocol WG (05-272r0) and T10 plenary (05-275r0):

a) 05-167r5 SAS-2 New NOTIFY to indicate imminent power failure (George Penokie, IBM)

Incorporated these changes per the September 2005 SAS protocol WG (05-335r0) and T10 plenary (05-338r0):

- a) 05-299r1 Correct log page format tables in SPC-4, SBC-3, and SAS-2 (Ralph Weber, ENDL)
- b) 05-305r0 Maximum SMP response time (Rob Elliott, HP)
- c) 05-307r0 SAS-2 Modifications to NOTIFY to indicate imminent power failure (Mark Evans, Maxtor), dropping the proposed note that just restates the rule being added.

R.2 Revision sas2r01 (13 November 2005)

Incorporated these changes per the November 2005 SAS protocol WG (05-417r0) and T10 plenary (05-420r0):

- a) 04-222r6 SAS-2 More phy test patterns (Rob Elliott, HP). Added the PHY TEST PATTERN DWORDS
 CONTROL and PHY TEST PATTERN DWORDS fields to the SMP PHY TEST FUNCTION function.
- b) 05-306r2 SAS-2 STP connection time limits and STP/SMP I_T nexus loss (Rob Elliott, HP). Corrected all the length field values.
- c) 05-412r0 SAS-2 revision 0 minor corrections (Rob Elliott, HP)
- d) 05-370r2 SAS-2 NOTIFY (POWER FAILURE EXPECTED) fixes (George Penokie, IBM). Included a PROTOCOL IDENTIFIER field in the new subpage to follow the convention of the Protocol-Specific mode pages.
- changed the ST_ITS3 and ST_ITS4 states to set the TARGET PORT TRANSFER TAG field to FFFFh
 rather than zero (for COMMAND and TASK frames) to agree with the definition of the field in 9.2.1
 (found by Ron Roberts, Broadcom)

R.3 Revision sas2r02 (18 January 2006)

Incorporated these changes per the January 2006 SAS protocol WG (06-038r0) and T10 plenary (06-041r0):

- a) 06-055r0 (aka 04-172r4) SAS-2 More counters (Rob Elliott, HP)
- b) 05-309r3 SAS-2 Add device name to IDENTIFY address frame (Rob Elliott, HP)
- c) 06-028r1 SAS-2 Redundant primitive sequence handling (Steve Gorshe, PMC-Sierra)
- d) 06-054r1 SAS-2 Expander issue resolutions (Rob Elliott, HP) covering issues raised by 05-373r2 SAS-2 Expander issues (Craig Stoops, Expert I/O)

R.4 Revision sas2r03 (20 March 2006)

Incorporated these changes per the March 2006 SAS protocol WG (06-124r0) and T10 plenary (06-127r0):

- a) 06-122r2 SAS-2 zoning phy features (Ralph Weber, ENDL). Conflicts with 06-082r2 about whether thes SMP function contains source or destination zone group numbers, especially related to the zone address resolved method, are described with editor's notes. How source zone group 2 is handled was not mentioned; made it based on the zone permission table like all other source zone groups and included an editor's note that more rewrite may be forthcoming. Vague rule about not sending "zoning information" out certain phys tagged with an editor's note. Included editor's notes by each reference to an SMP zone configuration function that is not yet defined.
- b) 06-130r1 SAS-2 sticky zone groups (Kevin Marks, Dell)

Working Draft Serial Attached SCSI - 2 (SAS-2)

xxxix

Page: xxxix

Author: Isi-gpenokie
Subject: Sticky Note
Date: 6/30/2008 11:29:51 AM -07'00'
ACCEPT - LAST (remove revision that is forwarded)

The revision information needs to be removed.

c) 06-082r2 SAS-2 zoning-related SMP functions (Ralph Weber, ENDL and Steve Johnson, LSI Logic) adds the ORIGINATE BROADCAST PRIMITIVES function. Changed name of the function to ZONED BROADCAST

- d) 06-083r1 SAS-2 Handle STP CLOSE and SATA X RDY crossing on the wire (Bob Sheffield, Intel)
- e) 06-099r0 SAS-2 Transitions from SL_CC1:ArbSel (Brian Day, LSÍ Logic). Used "SOAF/Data Dwords/ EOAF Transmitted message" instead of "transmitted the OPEN address frame", and changed two more instances of "transmitted the OPEN address frame" in Transition SL_CC1 to SL_CC2 and Transition SL_CC1 to SL_CC3.
- f) 06-101r0 SAS-2 Minor corrections to STP flow control formula (Brian Day, LSI Logic)
- g) 06-134r0 SAS-2 Renumber phy event information codes (Rob Elliott, HP). Also renumbered "Received SMP frame error count" from 62h to 63h to leave room for a possible "Transmitted SMP frame error count" value at 62h.
- h) In the edge expander device rules, changed "no phy using the subtractive routing method is available" to "...exists" for generation of Arb Reject (No Destination).

R.5 Revision sas2r03a (22 April 2006)

Incorporated these changes per the 23 March 2006 SAS physical WG teleconference (06-171r0) and the 20 April 2006 SAS zoning WG (06-205r0) (subsequently approved by the May T10 plenary (06-233r0)):

- a) 06-181r2 SAS-2 Zone group values after a link reset sequence (Kevin Marks, Dell)
- b) 06-165r0 SAS-2 Change SMP ZONE VIOLATION code values (Rob Elliott, HP)
- c) 06-167r1 SAS-2 Filtering OPEN content based on ZONE PARTICIPATING bit (Rob Elliott, HP)
- d) 06-168r1 SAS-2 OPEN address frame SOURCE ZONE GROUP field definition (Rob Elliott, HP)
- e) 06-166r4 SAS-2 Restrict access to SMP ZONED BROADCAST function (Rob Elliott, HP)
- 6) 06-176r2 SAS-2 Add phy zone information to SMP DISCOVER (Tim Symons, PMC-Sierra and Rob Elliott, HP)
- g) 06-169r1 SAS-2 Correct receiver device jitter table footnotes (Rob Elliott, HP)
- h) added SAM-4 and SPC-4 to references list; changed SAM-3 reference to SAM-4 for the RETRY DELAY TIMER field in the SSP RESPONSE frame (did not change any others yet)
- added dword counts to each JTPAT table, and the INFORMATION UNIT field name to the left column of the CJTPAT table

R.6 Revision sas2r04 (16 May 2006)

Incorporated these changes per the May 2006 SAS protocol WG (06-230r1) and T10 plenary (06-233r0):

- a) 06-161r0 SAS-2 Alternate icon (Rob Elliott, HP)
- b) 06-119r2 SAS-2 BREAK_REPLY (Tim Hoglund, LSI Logic)
- c) 06-164r2 SAS-2 Require expanders transmit three AIPs (Rob Elliott, HP)
- d) 06-199r1 SAS-2 No BROADCASTs before link reset sequence completes (Luben Tuikov, Vitesse and Rob Elliott. HP)
- e) 06-044r3 SAS-2 BROADCAST (ASYNCHONOUS EVENT) (Steve Fairchild, HP)
- f) 06-177r3 SAS-2 ZONED BROADCAST clarification (Ed D'Avignon, Vitesse and Rob Elliott, HP)
- g) 06-097r4 SAS-2 Discovery Configuring bit (Tim Symons, PMC-Sierra)
- h) 06-212r1 SAS-2 Zone group of an expander's SMP (Ed D'Avignon, Vitesse). Placed the rule in the zone phy information section defining the zone group field rather than in the zone permission table section.
- i) Changed RX1/RX2/RX3/RX4 to Rx 0/Rx 1/Rx 2/Rx 3 in the table of Additional requirements for SAS 4x cable assemblies
- j) Changed RXn to Rx n and TXn to Tx n in the table of Additional requirements for SAS 4i cable assemblies
- k) Normalized the table formatting for descriptor lists
- I) Changed COMPONENT REVISION ID to COMPONENT REVISION LEVEL in the REPORT MANUFACTURER INFORMATION response table to match the usage below the table
- m) Changed "not enabled" to "disabled" globally (just two times, all related to first burst)
- n) Changed "forwarded OPEN_REJECTs" to "OPEN_REJECTs in response to forwarded OPEN address frames" in the phy event information sources 22h and 24h
- Added "An SSP initiator port does not reuse a tag until it receives indication from the SSP target port
 that the tag is no longer in use (see 9.2.4, 9.2.5, and 10.2.2)." in 9.2.1 definition of the TAG field.

R.7 Revision sas2r04a (25 June 2006)

Incorporated these changes per the 20 June 2006 SAS zoning WG (06-290r0) (subsequently approved by the July T10 plenary (06-319r0)):

- a) 06-197r3 SAS-2 Add expander change count to most SMP functions (Rob Elliott, HP)
- b) 06-208r2 SAS-2 Restrict access to SMP write functions (Rob Elliott, HP)
- c) 06-213r2 SAS-2 REPORT GENERAL additions for zoning and self configuration (Steve Johnson, LSI
- d) 06-037r7 SAS-2 DISCOVER LIST function (Steve Johnson, LSI Logic). Throughout the standard, wherever DISCOVER was referenced, added mention of DISCOVER LIST if it is equally appropriate.
- e) 06-078r3 SAS-2 REPORT ROUTE TABLE function (Steve Johnson, LSI Logic). Updated the model to support this function. Defined two types of expander route tables phy-based (accessed with the old functions, indexed by numbers dictated by the discover process) and expander-based (accessed with this function, indexed by "routed SAS address"). The latter is called a zoning expander route table in a zoning expander device. 06-078r4 was posted after approval, correcting byte numbers in the REPORT EXPANDER ROUTE TABLE descriptor. The fields in the descriptor were substantially rearranged during incorporation, rendering those changes moot.
- f) Changed "zoning expander device" to mean zoning is supported, not necessarily enabled. Sprinkled "if zoning is enabled" throughout.
- g) In 4.8.1, tweaked introduction from "Every phy in a ZPSDS belongs to a zone group" to "Every phy in the SAS domain may belong to a zone group." Mentioned that phys within the ZPSDS are in zone group 1, phys attached to the boundary pick up their zone groups from the zone phy information of the expander device to which they are attached, and phys beyond the boundary are in zone groups if the address resolved method is being used.

R.8 Revision sas2r05 (21 July 2006)

Incorporated these changes per the July 2006 SAS protocol WG (06-316r0), SAS physical WG (06-348r0), and T10 plenary (06-319r0):

- a) 05-322r4 SAS-2 Wide SSP target port simultaneous connection rules (Rob Elliott, HP)
- b) 06-187r2 SAS-2 Self-configuring expander status (Rob Elliott, HP)
- c) 06-273r1 SAS-2 Bus Inactivity Timer is Broken (Steve Finch, STMicroelectronics). Also changed all
 the timer-related unordered lists into ordered lists.
- d) 06-302r1 SAS-2 Multiple broadcasts on reset (George Penokie, IBM)
- e) 06-189r3 SAS-2 Allow table-to-table expander attachment (Rob Elliott, HP)
- f) 06-304r2 SAS-2 SMP function result priority (Zenta Darnell, Vitesse). Deleted PHY VACANT from the list of DISCOVER LIST responses; it can appear in the full DISCOVER responses but not in the outer DISCOVER LIST repsonse itself. Added SMP ZONE VIOLATION to CONFIGURE GENERAL, PHY CONTROL, PHY TEST FUNCTION, and CONFIGURE PHY EVENT INFORMATION, with a priority just below PHY VACANT.
- g) 06-210r4 SAS-2 Reporting ZONE PARTICIPATING CAPABLE in the IDENTIFY address frame (Kevin Marks, Dell). Renamed ZONE PARTICIPATING in bit names to INSIDE ZPSDS to help the DISCOVER response table fit on the page (still requires a drop in font size).
- h) 06-332r1 SAS-2 PL_PM3 fixes (George Penokie, IBM)
- i) 06-259r1 SAM-4 et. al. making linked commands obsolete (Mark Evans, Maxtor)
- j) 06-323r1 SAM-4 et. al. Multiple service delivery subsystem editorial tweaks (Rob Elliott, HP). Updated all references to SAM-3 to SAM-4, SPC-3 to SPC-4, SBC-2 to SBC-3, and ATA/ATAPI-7 V1 to ATA8-AAM and ATA8-ACS. In the Protocol-Specific Port log parameter, merged the LBIN and LP bits into a FORMAT AND LINKING field, added a DS bit and an SPF bit in byte 0, and marked the DS bit in the parameter control byte obsolete to agree with SPC-4.
- k) corrected dword numbers in JTPAT tables
- fixed ms to µs in the STP BUS INACTIVITY TIME LIMIT field and STP MAXIMUM CONNECT TIME LIMIT field descriptions (Symbol font was not preserved when 05-306r2 was incorporated)
- m) use "management device server" rather than "SMP target port" where appropriate in chapter 10
- added OPEN_REJECT (ZONE VIOLATION) handling throughout the state machines, generally
 wherever OPEN_REJECT (PROTOCOL NOT SUPPORTED) is handled. Add Arb Reject (Zone
 Violation) as lower priority than Arb Reject (Bad Connection Rate).

Working Draft Serial Attached SCSI - 2 (SAS-2)

 added OPEN_REJECT (RESERVED ...) handling throughout the state machines wherever their "process as" peers are handled

- p) 05-251r0 requested deletion in SAS-1.1 of the last three words of "shall not complete the [START STOP UNIT] command with GOOD status" in the Power Condition state machine transition state descriptions, but that change was missed. 06-299r1 requests the same change again.
- q) Added "The ADDITIONAL RESPONSE BYTES may be present but shall be ignored." to SMP function results of INVALID EXPANDER CHANGE COUNT, PHY EVENT INFORMATION SOURCE NOT SUPPORTED, and SMP ZONE VIOLATION. Although the functions that return those don't yet return ADDITIONAL RESPONSE BYTES, functions could do so in the future and that general rule is intended to apply.
- Added a figure in front of the CJTPAT table showing how pre-scrambling the desired pattern results in the desired pattern on the wire.

R.9 sas2r05a (21 July 2006)

Incorporated the following proposals per the July SAS zoning WG (06-349r0)(r3 of each was subsequently approved by the September 2006 T10 plenary (06-417r0):

- a) 06-279r2 SAS-2 Allow more than one ZPSDS in a SAS domain (Rob Elliott, HP)
- b) 06-281r2 SAS-2 Enable and disable zoning (Rob Elliott, HP)

R.10 sas2r05b (1 September 2006)

Incorporated the following proposals per the August SAS zoning WG (06-376r1)(subsequently approved by the September 2006 T10 plenary (06-417r0)):

- a) 06-201r6 SAS-2 SMP CONFIGURE ZONE PHY INFORMATION function (Tim Symons, PMC-Sierra)
- b) 06-203r6 SAS-2 SMP REPORT ZONE PERMISSION TABLE function (Tim Symons, PMC-Sierra)
- c) 06-279r3 SAS-2 Allow more than one ZPSDS in a SAS domain (Rob Elliott, HP)
- d) 06-281r3 SAS-2 Enable and disable zoning (Rob Elliott, HP)
- e) 06-286r5 SAS-2 SMP ZONE LOCK function (Tim Symons, PMC-Sierra)
- f) 06-288r6 SAS-2 SMP ZONE ACTIVATE function (Tim Symons, PMC-Sierra)
- g) 06-289r6 SAS-2 SMP ZONE UNLOCK function (Tim Symons, PMC-Sierra)
- h) 06-377r1 SAS-2 Broadcast (Zone Activate) (Tim Symons, PMC-Sierra)
- i) Corrected "To" columns for BROADCAST primitives
- j) Renamed Arb Reject (Bad Connection Rate) to Arb Reject (Connection Rate Not Supported)
- k) Added function response priorities for ENABLE DISABLE ZONING
- I) In DISCOVER LIST SHORT FORMAT descriptor, defined the PHY IDENTIFIER field as always valid (from Douglas Gilbert). In the SHORT FORMAT descriptor, defined what to do with the remaining fields if the FUNCTION RESULT field is PHY VACANT or PHY DOES NOT EXIST.
- m) Added definitions on UNKNOWN DESCRIPTOR TYPE (renamed from UNKNOWN DESCRIPTOR LIST) and UNKNOWN PHY FILTER for the DISCOVER LIST function
- n) Renamed PHY EVENT INFORMATION NOT SUPPORTED to UNKNOWN PHY EVENT INFORMATION to match other "not supported" function result names
- Changed IDENTIFY address frame FEATURES field from "shall be set to zero" to a table showing 0h as
 the only defined value and all others as reserved. This should help people realize that non-zero
 values must be checked and treated as an error.
- Added footnotes to tables containing values that are a multiple of OOBI indiciting the nominal times they represent.

R.11 Revision sas2r06 (22 September 2006)

Incorporated these changes per the September 2006 SAS protocol WG (06-414r0), SAS physical WG (06-432r0), and T10 plenary (06-417r0):

- a) 06-202r9 SAS-2 SMP CONFIGURE ZONE PERMISSION function (Tim Symons, PMC-Sierra)
- b) 06-263r6 SAS-2 Spread spectrum clocking (Rob Elliott, HP)
- c) 06-299r1 SAS-2 Clarifications of the SCSI power conditions in SAS (Chris Owens and Kevin Marks, Dell)
- d) 06-326r2 SAS-2 SMP zone lock timer (Tim Symons, PMC-Sierra)
- e) 06-358r5 SAS-2 Zone configuration model (Tim Symons, PMC-Sierra)
- f) 06-384r1 SAS-2 OPEN_REJECT RETRY during zoning changes (Rob Elliott, HP)

- g) 06-402r0 SAS-2 Changes to ATTACHED SATA DEVICE bit (Brian Day, LSI Logic)
- h) 06-405r0 SAS-2 Transport layer retries fix (George Penokie, IBM)
- i) 06-408r1 SAS-2 Race condition for transition out of SP12:SAS_Fail state (Bill Martin, Sierra Logic)
- i) 06-409r1 SAS-2 IDENTIFY address frame REASON field (Rob Elliott, HP)
- k) 06-418r1 SAS-2 ENABLE DISABLE ZONING revision (Tim Symons, PMC-Sierra)

R.12 Revision sas2r07 (15 November 2006)

Incorporated these changes per the November 2006 SAS protocol WG (06-485r0), SAS physical WG (06-501r0), and T10 plenary (06-488r0):

- a) 05-381r7 SAS-2 Multiplexing (Rob Elliott, HP). Moved the model section from chapter 7 (link layer) to chapter 6, since it's negotiated in the phy layer now. Split the model section into 2 parts, the multiplexing sequence described in the phy reset sequence section and multiplexing overall described at the 6.xx level. Assign MUX (LOGICAL LINK 0) to a different primitive encoding than proposed, since BREAK_REPLY has already been assigned that encoding. Made most of the states in SP DWS sensitive to Incorrect Mux.
- b) 06-473r0 SAS-2 REPORT EXPANDER ROUTE TABLE descriptor layout change (Rob Elliott, HP)
- c) 06-474r1 SAS-2 Broadcast (Zone Activate) only by ZONED BROADCAST (Rob Elliott, HP)
- d) 06-463r3 SAS-2 OOB transmission requirements (Alvin Cox. Seagate)
- u) 00-40313 SAS-2 OOB transmission requirements (Aivin Cox, Seagate)
- e) 06-464r0 SAS-2 COMWAKE detection requirements (Alvin Cox, Seagate)
- f) Fixed location of "within 1 ms" phrase in NOTIFY (POWER LOSS EXPECTED) section per 05-307r0.
- g) Editorial changes from 06-489r0 SAS-2 Target transport layer read DATA flowchart (George Penokie, IBM)

R.13 Revision sas2r08 (26 January 2007)

Incorporated these changes per the January 2007 SAS protocol WG (07-031r0), SAS physical WG (07-043r0), and T10 plenary (07-034r0):

- a) 06-515r0 SAS-2 Modifications to SAS Speed Negotiation (Steve Finch, ST Microelectronics and Amr Wassal, PMC-Sierra) [which was a continuation of 06-324 and 06-295)
- b) 06-188r3 SAS-2 Support multiple STP affiliations (Rob Elliott, HP)
- c) 06-275r0 SAS-2 ALIGN insertion rate during STP connections (Rob Elliott, HP)
- d) 06-322r4 SAS-2 Response to abandon-class OPEN_REJECT (Rob Elliott, HP)
- e) 06-451r6 SAS-2 SAM-4 Miscellaneous state machine fixes (George Penokie, IBM)
- f) 06-466r1 SAS-2 OPEN_REJECT RETRY during self-configuration changes (Rob Elliott, HP)
- g) 06-470r4 SAS-2 Transport layer read data flowchart (George Penokie, IBM)
- h) 06-471r1 SAS-2 Change to phy reset sequence 10ms rule (Brian Day, LSI Logic)
- i) Changed ISO/IEC number for ATA/ATAPI-7 from 14776 to 27439

R.14 Revision sas2r09 (22 March 2007)

Incorporated these changes per the March 2007 SAS protocol WG (07-114r0), CAP WG (07-116r0), SAS physical WG (07-140r0), and T10 plenary (07-117r0):

- a) 06-467r3 SAS-2 Initiator handling of retransmit read DATA frames (Bob Sheffield, Intel)
- b) 06-478r2 SAS-2 Changes to NEGOTIATED PHYSICAL LINK RATE (Brian Day, LSI Logic). Assigned NEGOTIATED PHYSICAL LINK RATE field value of 6h for UNSUPPORTED PHY ATTACHED.
- c) 07-008r8 SAS-2 Expander notification of temporary shutdown (George Penokie, IBM) with these exceptions:
 - A) Changed "reduced function" to "reduced functionality"
 - B) Changed the "time to reduced function timer" to "reduced functionality delay" timer
 - C) In the OPEN_REJECT (RETRY) definition, added "c) an expander device in the pathway has reduced functionality (see 4.6.8)"
 - D) In the ECM Arb Reject confirmation rules, added "Arb Reject (Retry) if the expander device is unable to process the connection request because it has reduced functionality (see 4.6.8)"

xliii

- d) 07-027r2 SAS-2 Enabling and disabling Transport Layer Retries (Chris Martin and Rob Elliott, HP)
- e) 07-028r1 SAS-2 Remove address resolved zoning (Tim Symons, PMC-Sierra)
- f) 07-058r3 SAS-2 OOB and SSC (Steve Finch, STMicroelectronics)
- g) 07-059r1 SAS-2 Update SATA references to Serial ATA 2.6 (Rob Elliott, HP)
- h) 07-066r1 SAM-4 SAS-2 QUERY TASK SET task management function (Rob Elliott, HP)

Working Draft Serial Attached SCSI - 2 (SAS-2)

i) 07-076r1 CAM 4 SAS 2 QUERY UNIT ATTENTION tack management function (Rob Elliott, HP)

- i) 07-082r1 SAS-2 Fix target device name PIV bit (Rob Elliott, HP)
- K) 07-083r0 SAS-2 Mini SAS 4i to SAS 4i cable assemblies with SGPIO (Barry Olawsky and Rob Elliott, HP)
- I) 07-084r1 SAS-2 Add ATTACHED REASON field (Rob Elliott, HP)
- m) 07-085r0 SAS-2 Change mode page subpage names (Rob Elliott, HP)
- n) 07-087r1 SAS-2 SES-2 Enclosure Connector Information (Brad Besmer, LSI Logic)
- o) 07-108r1 SAS-2 Transport level read fixes (George Penokie, IBM) with these exceptions:
 - A) In ST_TTS3, applied the "Read Data Frames Transmitted/ACKed to zero" to both the "with a Retry argument" lists, not the "without a Retry argument" list.
 - B) In ST_TTS2, added "minus the Data-In Application Client Buffer Offset argument" in two more places where the Read Data Offset variable was being compared to the Data-In Request Byte Count argument.
 - C) In ST_TTS3, noted two places where "plus the Data-In Application Client Buffer Offset argument" still needs to be added.
- p) 07-121r1 SAS-2 Add REASON field to DISCOVER and DISCOVER LIST (Steve Johnson, LSI Logic)
- q) Eliminated use of the word "comprise"
- r) Clarified in the SNW-3 REQUESTED LOGICAL LINK RATE field that bit 4 is the MSB; bit 7 is the LSB. Corrected the parity bit value in the example with rate of 9h; added another example with rate of 8h which highlights the endianness.
- s) Corrected cross-references relating to RETRANSMIT bit set to one for XFER_RDY and RESPONSE frames in ST_TTS and for TASK frames in ST_ITS

R.15 Revision sas2r09a (23 April 2007)

Incorporated these changes per the April 2007 SAS protocol WG (07-183r0). The SAS physical WG (07-183r0) did not recommend anything. Proposals are not yet approved by a T10 plenary:

- a) 07-124r0 SAS-2 Remove Messages Between State Machines annex (Rob Elliott, HP)
- b) 07-128r0 SAS-2 Target handling of retransmitted write DATA frames (Bob Sheffield, Intel)
- c) 07-167r0 SAS-2 Add SNTT timer to SP27:SAS_Settings (Bob Sheffield, Intel)
- d) 07-154r1 SAS-2 ATTACHED SAS ADDRESS for virtual phys (Bob Sheffield, Intel)
- e) 07-176r1 SAS-2 SMP function result for incomplete descriptor lists (Rob Elliott, HP)
- f) 07-178r0 SAS-2 Connection request livelock avoidance (Rob Elliott, HP)
- g) 07-155r0 SAS-2 Add expander reduced functionality to REASON field (Rob Elliott, HP)

R.16 Revision sas2r10 (15 May 2007)

Incorporated these changes per the May 2007 SAS protocol WG (07-210r0), SAS physical WG (07-243r0), and T10 plenary (07-213r0):

- a) 06-373r3 SAS-2 Zone manager key (Rob Elliott, HP). Assigned CONFIGURE ZONE MANAGER PASSWORD to function code 89h.
- b) 06-476r2 SAS-2 WWN-based Attached Device Name for SATA (Rob Elliott, HP)
- c) 07-017r2 SAS-2 SAS-2 More zone groups (Steve Johnson, LSI Logic)
- d) 07-094r2 SAS-2 UML changes for logical phys (George Penokie, IBM)
- e) 07-166r2 SAS-2 Clarify scope of retransmitted XFER_RDY (Bob Sheffield, Intel)
- f) 07-177r2 SAS-2 Port layer wide port ordering (Rob Elliott, HP)
- g) 07-209r0 SAS-2 Mini SAS 4x cable plug pull tab color (Rob Elliott, HP and Jay Neer, Molex)
- h) 07-228r0 SAS-2 ResetStatus port selector fixes (Brian Day, LSI)
- 07-233r0 SAS-2 Function result for 256 zone support (Tim Symons, PMC-Sierra). Renamed the value ZONE GROUP OUT OF RANGE and let the result continue to be applied to the CONFIGURE ZONE PHY INFORMATION function if the ZONE GROUP field is too large.
-) Changed some uses of "detected" to "received"
- k) Corrected DJ CR 3 Gbps footnote to point to the measurement bandwidth of 1 800 kHz to 1 500 MHz, which was correct in sas-r05 but broken in SAS-1.1 when the table cells were rearranged.
- In class and object diagrams, changed class and attribute names to mixed cases to parallel a change planned for SAM-4 revision 11.
- in class and object diagrams, shaded class name cells tan and object name cells blue; removed any shading from attribute and operation cells.

Page: xliv

Author: hpq-relliott Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00'

07-076r1 s/b 07-067r1

- n) Added some multiplexing examples to the "Multiple connections on wide ports" figure
- Deleted "and in the SMP DISCOVER LIST response" from numerous places. It was not mentioned everywhere that DISCOVER was mentioned, so rather than imply different behavior with inconsistency, just removed the phrase.
- Define that the link layer SSP transmitter and the SMP transmitter are responsibly for inserting the CRC at the end of the frame (not the port layer or transport layer).
- q) Added the SMP Port class to the "State machines and Expander Device classes" class diagram with Port Layer and Transport Layer classes underneath it, paralleling the Port class diagram

R.17 Revision sas2r11 (23 July 2007)

Incorporated these changes per the July 2007 SAS protocol WG (07-313r0), SAS physical WG (07-338r0), CAP WG (07-315r0), and T10 plenary (07-316r0):

- a) 07-039r4 SAS-2 Self-Configuration Status Updates (Tyson Hartshorn and Stephen Johnson, LSI)
- b) 07-075r5 SAS-2 SMP REPORT BROADCAST function (George Penokie, IBM). Assigned function number 06h, since 05h is already taken.
- c) 07-091r3 SAS-2 SMP DISCOVER support for SNW-3 phy capabilities (Rob Elliott, HP). Placed the NEGOTIATED SSC bit in the DISCOVER response in byte 95, since byte 94 bit 4 is now taken by the REASON field
- d) 07-102/3 SAS-2 Changes to Report Phy Event logging and reporting (Tyson Hartshorn, LSI). Assigned DISCOVER LIST to 20h, REPORT PHY EVENT INFORMATION LIST to 21h, and REPORT SELF-CONFIGURATION STATUS LIST to 22h.
- e) 07-130r4 SAS-2 CRC fixes (Luben Tuikov, Vitesse). Addressed preliminary letter ballot comments.
- f) 07-153r1 SAS-2 SPC-4 Protocol-Specific VPD pages (Rob Elliott, HP)
- g) 07-214r1 SAS-2 Mode and log page support for SNW-3 phy capabilities (Rob Elliott, HP)
- h) 07-277:0 SAS-2 SMP PHY CONTROL and affiliations (Rob Elliott, HP). Assigned AFFILIATION VIOLATION to 1Ah rather than 1Bh, since 07-287 deletes the assignment of 1Ah to LOGICAL LINK RATE NOT SUPPORTED.
- i) 07-280r1 SAS-2 SMP DISCOVER virtual phy clarifications (Rob Elliott, HP)
- j) 07-284r0 SAS-2 OPEN REJECT ZONE VIOLATION priority (Rob Elliott, HP)
- k) 07-285r0 SAS-2 STP bus inactivity time limit clarification (Rob Elliott, HP)
- I) 07-287r0 SAS-2 SMP function result tweaks (Rob Elliott, HP)
- m) 07-288r0 SAS-2 TARGET PORT TRANSFER TAG ST_T state machine fix (Brian Day, LSI)
- n) 07-293r0 SAS-2 Zoning interaction with enclosure services (Rob Elliott, HP)
- o) 07-297r1 SAS-2 CJTPAT usage (Rob Elliott, HP)
- p) 07-300r1 SAS-2 Configurable expander table-to-table error handling (Rob Elliott, HP)
- q) 07-306r1 SAS-2 Route table discovery process (Tim Symons, PMC-Sierra)
- r) 07-307r1 SAS-2 Zone group valid bit (Tim Symons, PMC-Sierra)
- s) 07-311r1 SAS-2 More Transport Layer Retries Fixes (George Penokie, IBM)
- 07-312r2 SAS-2 Zone route table entries for subtractive ports (Tim Symons, PMC-Sierra). Merged the sentiments of the last proposed paragraph into item b).
- u) Corrected maximum COMMAND frame size from 284 to 280 bytes (Brian Day, LSI)
- Added NOTE in discover process section that old expander devices don't implement DISCOVER LIST.
- w) In the SAS phy transmitter SSC modulation table footnote on "None or downspreading", fixed "attach to SAS" to "support being attached to SATA devices", added the ppm range for SAS downspreading as an i.e., changed the SATA ppm range to not include +/- 350 ppm, and made other changes to try to address concerns from Doug Loree, Toshiba
- x) Fixed "hexadecimal" column for OPEN REJECT

R.18 Revision sas2r12 (28 September 2007)

Incorporated these changes per the September 2007 SAS protocol WG (07-394r0) and T10 plenary (07-396r0):

- a) 07-317r2 SAS-2 Target transport layer write flowcharts (George Penokie, IBM)
- b) 07-334r2 SAS-2 Add minimum number of dwords after IDENTIFY frame (Gerry Houlder, Seagate)

xlv

- c) 07-388r1 SAS-2 Only issue BROADCAST (Change) for initial spinup hold (Brian Day, LSI)
- d) 07-401r0 SAS-2 SMP DISCOVER LIST field alignment (Brad Besmer, LSI)

Working Draft Serial Attached SCSI - 2 (SAS-2)

- e) 07-305r3 SAS-2 Zone phy information clarifications (Rob Elliott, HP)
- f) In REPORT ZONE PERMISSION TABLE, renamed SOURCE INDEX DOES NOT EXIST to SOURCE ZONE GROUP DOES NOT EXIST and assigned it function result code 28h (missed while incorporating 06-203r6 into sas2r05b)
- g) Corrected last scrambler output in CJTPAT table (the one XORed with the CRC).
- Corrected header and CRC for CJTPAT with fixed content (the header with mostly zeros is not the desired output on the physical link)
- Redrew the CJTPAT scrambling figure to show the frame header and CRC not being pre-scrambled. Changed the column order in the tables to have pre-scrambled values on the left and physical link values on the right.
- j) In REPORT GENERAL response, changed the minimum increment rule for the EXPANDER CHANGE COUNT field from REPORT GENERAL responses to any SMP response frame containing an EXPANDER CHANGE COUNT field
- k) In REPORT GENERAL response, changed the note about wrapping to discuss 65 535 rather than 65 536 increments, since the field now wraps to 0001h rather than 0000h.
- In Arbitration status section, changed "transmitting" to "originating" in the rule about transmitting at least one AIP every 128 dwords. This does not apply to dwords that are being forwarded (e.g. after originating AIP (WAITING ON DEVICE)).
- m) In the phy event information source description of 05h elasticity buffer overflows, added "outside of phy reset sequences" (as is done in 01h and 02h). Elasticity buffer overflows might occur during Train-SNW (since it doesn't send ALIGNs) but are irrelevent.
- n) In the list of reasons for a Service Response of SERVICE DELIVERY OR TARGET FAILURE for the Command Complete Received transport protocol service arguments, added " or the ST_IFR state machine detects an error as described in 9.2.6.2.2.3 and 9.2.6.2.2.4" to cover additional cases where the initiator port reports the error on its own.
- o) Renamed "phy event information" to "phy event" throughout (inconsistent in sas2r11; the shorter name seems adequate). This affects function names REPORT PHY EVENT INFORMATION, REPORT PHY EVENT INFORMATION LIST, and CONFIGURE PHY EVENT INFORMATION and one function result name.

R.19 Revision sas2r13 (16 November 2007)

Incorporated these changes per the November 2007 SAS protocol WG (07-473r0), SAS physical WG (07-502r0), and T10 plenary (07-476r0):

- a) 07-304r3 SAS-2 Zero-length test load (Barry Olawsky, HP). Since this required drawing a new S_{DD21} graph, also redrew the TCTF test load graphs based on Excel plots of the real equations. Separated IT and CT graphs into separate figures since they have different curvatures.
- b) 07-090r3 SAS-2 Transmit IDENTIFY three times (Rob Elliott, HP)
- c) 07-392r2 SAS-2 Remove AWT reset on receipt of OPEN REJECT (RETRY) (George Penokie, IBM)
- d) 07-482r1 SAS-2 PHY CHANGE COUNT increment due to zoning changes (Brad Besmer, LSI)
- e) 07-424r1 SAS-2 Initiator Side Transport layer write flowcharts (George Penokie, IBM)
- f) 07-103r3 SAS-2 Changes to Report Phy Broadcast Counts logging and retrieval method (Tyson Hartshorn I SI)
- g) 07-480r0 SAS-2 More phy test patterns TRAIN, TRAIN_DONE, and idle dwords (Rob Elliott, HP)
- h) Added more cross-references in the definitions section when using other defined terms
- Added subsections to the expander route table section to isolate phy-based and expander-based
- Moved the paragraphs in 7.9.2 SAS initiator device rules (for handling the identification sequence) about Broadcast (Expander) handling into 4.6.8 Expander reduced functionality

R.20 Revision sas2r14 (28 January 2008)

Incorporated these changes per the January 2008 SAS protocol WG (08-059r0), SAS physical WG (08-072r0), and T10 plenary (08-062r0):

- a) 07-339r9 SAS-2 6 Gbps PHY specification (Alvin Cox, Seagate)
- b) 07-391r3 SAS-2 Limiting SAS target response to OPEN_REJECT (RETRY) (George Penokie). Put the REJECT TO OPEN LIMIT field in bytes 8-9 rather than 10-11. Put the STP REJECT TO OPEN LIMIT field in bytes 18-19 rather than 17-18 (unaligned).

Working Draft Serial Attached SCSI - 2 (SAS-2)

 07-397r3 SAS-2 Indeterminate response length to an SMP REPORT GENERAL function (George Penokie).

- d) 07-403r2 SAS-2 Add SMP REPORT GENERAL open response while configuring (Brad Besmer, LSI). Named the field OPEN REJECT RETRY SUPPORTED which fits better in the table.
- e) 07-443r1 SAS-2 Calibration of jitter measurement devices (Alvin Cox, Seagate and Chuck Hill, Alta Engineering)
- f) 07-471r3 SAS-2 Proposed cable tables (Greg McSorley, Amphenol)
- g) 07-479r2 SAS-2 Phy test pattern transmitter controls (Rob Elliott, HP)
- h) 07-484r2 SAS-2 Interconnect Signal-to-Noise Ratio study (Barry Olawsky, HP)
- i) 07-486r3 SAS-2 Receiver Device physical testing (Kevin Witt and Mahbubul Bari, Maxim)
- j) 08-005r0 SAS-2 Mode page tweaks (Rob Elliott, HP). Also added the "minimum" wording to the STP SMP I T NEXUS LOSS TIME field in the REPORT GENERAL/CONFIGURE GENERAL functions.
- k) 08-009r1 SAS-2 Elasticity buffer clarifications (Rob Elliott, HP)
- I) 08-010r1 SP State Machine SL State Machine interaction issue (Bill Martin, Emulex)
- m) 08-011r0 SAS-2 XL Forward Dword correction (Rob Elliott, HP)
- n) 08-014r4 SAS-2 Remove restrictions for SSC (Gerry Houlder and Alvin Cox, Seagate)
- o) 08-032r4 SAS-2 Proposed modifications to SSC profile definition (Guillaume Fortin, PMC-Sierra)
- p) 08-040r0 SAS-2 SMP DISCOVER Self-Configuration Levels Completed (Brad Besmer, LSI)
- q) 08-041r1 Use period as decimal separator in T10 standards (Rob Elliott, HP)
- Corrected Protocol-Specific Logical Unit VPD page section (07-153r1, incorporated into sas2r11, mixed up the VPD page table with the logical unit information descriptor table).
- s) In various UML figures, changed 127 to 128 since the number represents a count (0=not present, 1..256 mean that many objects) not an identifier (e.g. phy identifier 0 through 127) (Dennis Moore, KnowledneTek).
- t) Changed -3.8 dB to -3.7 dB in the low-loss TCTF equation for > 3 GHz to match the value of the equation for < 3 GHz with f=3 GHz.
- In SP8, deleted the "upon entry" verbage about sending Set Rate message of 1.5 Gbps or a SAS SNW Rate argument. This is handled by the next paragraphs dealing with the Current SNW state machine variable.

This revision is undergoing T10 letter ballot.

R.21 Pending changes

These physical layer proposals/changes are pending acceptance by the appropriate WG(s) and the T10 plenary:

a) resolve letter ballot comments

Foreword (This foreword is not part of this standard)

This standard defines the Serial Attached SCSI (SAS) interconnect and three transport protocols that use the SAS interconnect:

- a) Serial SCSI Protocol (SSP): a mapping of SCSI supporting multiple initiators and targets;
- Serial ATA Tunneled Protocol (STP): a mapping of Serial ATA expanded to support multiple initiators and targets; and
- c) Serial Management Protocol (SMP): a management protocol.

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They should be sent to the INCITS Secretariat, International Committee for Information Technology Standards, Information Technology Institute, 1250 Eye Street, NW, Suite 200, Washington, DC 20005-3922.

This standard was processed and approved for submittal to ANSI by the International Committee for Information Technology Standards (INCITS). Committee approval of the standard does not necessarily imply that all committee members voted for approval. At the time it approved this standard, INCITS had the following members:

INCITS Technical Committee T10 on Lower Level Interfaces, which developed and reviewed this standard, had the following members:

John B. Lohmeyer, Chair Mark S. Evans, Vice-Chair Ralph O. Weber, Secretary

xlviii

Working Draft Serial Attached SCSI - 2 (SAS-2)

Introduction

This standard defines the Serial Attached SCSI (SAS) interconnect and three transport protocols that use the SAS interconnect:

- a) Serial SCSI Protocol (SSP): a mapping of SCSI supporting multiple initiators and targets;
- Serial ATA Tunneled Protocol (STP): a mapping of Serial ATA expanded to support multiple initiators and targets; and
- c) Serial Management Protocol (SMP): a management protocol.

The standard is organized as follows:

- Clause 1 (Scope) describes the relationship of this standard to the SCSI and ATA families of standards.
- Clause 2 (Normative references) provides references to other standards and documents.
- Clause 3 (Definitions, symbols, abbreviations, keywords, and conventions) defines terms and conventions used throughout this standard.
- Clause 4 (General) describes architecture, names and identifiers, state machines, fesets, I_T nexus loss, and provides an expander device model.
- Clause 5 (Physical layer) describes the physical layer. It describes has sive interconnect components (connectors, cables, and backplanes) and defines the transmitter and receiver electrical characteristics.
- Clause 6 (Phy layer) describes the phy layer. It describes 8510b encoding, bit order, out of band (OOB) signals, phy reset sequences, phy layer state machines, and spin-up.
- Clause 7 (Link layer) describes the link layer. It describes primitives, physical link rate tolerance management, idle physical links, CRC, scrambling, address frames, the identification sequence and its state machine, power management, SAS domain changes, connections, rate matching, and SSP, STP, and SMP connection rules and link layer state machines.
- Clause 8 (Port layer) describes the port layer, which sits between one or more link layers and one or more transport layers. It includes port layer state machines.
- Clause 9 (Transport layer) describes the transport layer. It includes SSP, STP, and SMP tramedefinitions and transport layer state machines.
- Clause 10 (Application layer) describes the application layer. It describes SCSI protocol services, mode parameters, log parameters, and power conditions, ATA specifics, and SMP functions.

Normative Annex A (Jitter tolerance patterns) describes the jitter tolerance patterns.

Normative Annex B (Signal performance measurements) describes signal measurement techniques. Informative Annex C (SAS to SAS phy reset sequence examples) provides additional phy reset sequence examples.

Informative Annex D (CRC) provides information and example implementations of the CRC algorithm. Informative Annex E (SAS address hashing) provides information and example implementations of the hashing algorithm

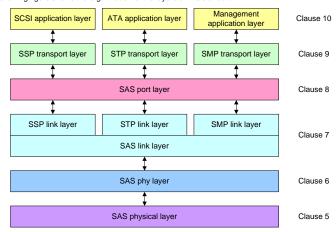
Informative Annex F (Scrambling) provides information and example implementations of the scrambling

Informative Annex G (ATA architectural notes) describes ATA architectural differences from Serial ATA and Serial ATA II.

Informative Annex H (Minimum deletable primitive insertion rate summary) describes the minimum ALIGN and/or NOTIFY insertion rates for physical link rate tolerance management and rate matching.

Informative Annex J (Expander device handling of connections) describes expander device behavior in a variety of connection examples.

Informative Annex K (Primitive encoding) lists the primitive encodings available for future versions of this standard


Informative Annex L (Discover process example implementation) provides an example implementation of the discover process.

Informative Annex M (SAS icons) defines the SAS icons.

Page: il

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 1:36:51 PM -07'00' REJECT layer. It describes layer, including definition of the Author: wdc-mevans Author: wdc-mevans Subject: Cross-Out Date: 5/25/2008 1:37:18 PM -07'00' [Delete this word.] Author: wdc-mevans Subject: Highlight Date: 5/25/2008 1:36:55 PM -07'00' REJECT layer. It describes s/b layer, including definition of the Author: wdc-mevans Subject: Highlight Date: 5/25/2008 1:36:59 PM -07'00' REJECT layer. It describes s/h layer, including definition of the Author: wdc-mevans Subject: Highlight Date: 5/25/2008 1:37:02 PM -07'00' REJECT layer. It describes layer, including definition of the Author: wdc-mevans Subject: Highlight Date: 5/25/2008 1:37:07 PM -07'00' REJECT layer. It describes layer, including definition of the

The following figure shows the organization of the layers of this standard.

Organization of this standard

AMERICAN NATIONAL STANDARD

BSR INCITS ***-200x

1

American National Standard for Information Technology -

Serial Attached SCSI - 2 (SAS-2)

1 Scope

The SCSI family of standards provides for many different transport protocols that define the rules for exchanging information between different SCSI devices. This standard defines the rules for exchanging information between SCSI devices using a serial interconnect. Other SCSI transport protocol standards define the rules for exchanging information between SCSI devices using other interconnects.

Figure 1 shows the relationship of this standard to the other standards and related projects in the SCSI family of standards.

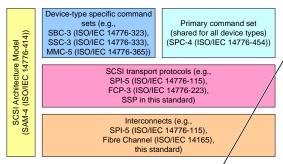


Figure 1 — SCSI document relationships

This standard also defines the rules for exchanging information between ATA hosts and ATA devices using the same serial interconnect. Other ATA transport protocol standards define the rules for exchanging information between ATA hosts and ATA devices using other interconnects.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 1

Author: Isi-bbesmer

Subject: Highlight
Date: 5/28/2008 138:04 PM -07'00'
Date: 5/28/2008 138:0

Should SAT be included in this? SAT-2 Figure 3 indicates how SAT fits in overall.

T10/1760-D Revision 14

Figure 2 shows the relationship of this standard to other standards and related projects in the ATA family of standards.

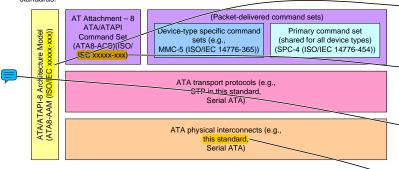


Figure 2 — ATA document relationships

Figure 1 and figure 2 show the general relationship of the documents to one another, and do not imply a relationship such as a hierarchy, protocol stack or system architecture.

These standards specify the interfaces, functions and operations necessary to ensure interoperability between conforming implementations. This standard is a functional description. Conforming implementations may employ any design technique that does not violate interoperability.

Page: 2

28 January 2008

Author: Isi-gpenokie Subject: Highlight
Date: 6/30/2008 2:38:32 PM -07'00'
TACCEPT - DONE (Per June T13 meeting, ATA8-AAM will be 24739-100)

I don't think putting an unknown standard here is a good idea. It looks like a TBD. Either delete it or get a real number. ISO/IEC xxxxx-xxx

Author: Isi-gpenokie Subject: Highlight Date: 6/30/2008 1:55:12 PM -07'00' ACCEPT - DONE (Per June T13 meeting, ATA8-ACS will be 24739-200)

I don't think putting an unknown standard here is a good idea. It looks like a TBD. Either delete it or get a real number. IEC xxxxx-

Author: stx-ghoulder
Subject: Note
Date: 6/30/2008 2:38:57 PM -07'00'
Date: 6/30/2008 2:38:57 PM -07'00'
ACCEPT - DONE (waiting on real number from T13 for AAM. Per June T13 meeting, ATA8-AAM will be 24739-100 and ATA8-ACS will be 24739-200)

ATA8-AAM and ATA8-ACS do not have correct ISO/IEC numbers.

Author: elx-bmartin

Adultu. EX-UTITATURI
Subject: Highlight
Date: 5f/62008 1:07:47 PM -07'00'
TREJECT (The SAS physical layer is the physical interconnect used for STP, which carries ATA.)

this standard

What part of this standard defines the ATA physical interconnect?

2 Normative references

2.1 Normative references

Referenced standards and specifications contain provisions that, by reference in the text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed below.

Copies of the following documents may be obtained from ANSI:

- a) approved ANSI standards:
- approved and draft international and regional standards (e.g., JSO, IEC); and
- c) approved and draft foreign standards (e.g., JIS and DIN)

For further information, contact ANSI Customer Service Department at 212-642-4900 (phone), 212-302-1286 (fax) or via the World Wide Web at http://www.ansi.org.

Additional availability contact information is provided below as needed.

Table 1 shows standards bodies and their web sites.

Table 1 — Standards bodies

Abbreviation	Standards body	Web site
ANSI	American National Standards Institute	http://www.ansi.org
DIN	German Institute for Standardization	http://www.din.de
IEC	International Engineering Consortium	http://www.iec.ch
IEEE	Institute of Electrical and Electronics Engineers	http://www.ieee.org
INCITS	International Committee for Information Technology Standards	http://www.incits.org
ISO	International Standards Organization —	http://www.iso.ch
ITI	Information Technology Industry Council	http://www.itic.org
JIS	Japanese Industrial Standards Committee	http://www.jisc.org
T10	INCITS T10 SCSI storage interfaces	http://www.t10.org
T11	INCITS T11 Fibre Channel interfaces	http://www.t11.org
T13	INCITS T13 ATA storage interface	http://www.t13.org

2.2 Approved references

At the time of publication, the following referenced standards or technical reports were approved:

ANSI INCITS TR-35-2004, Methodologies for Jitter and Signal Quality Specification (MJSQ). When MJSQ is referenced from this standard, the FC Port terminology used within MJSQ should be substituted with SAS phy

2.3 References under development

At the time of publication, the following referenced standards were still under development. For information on the current status of the document, or regarding availability, contact the relevant standards body or other organization as indicated.

ISO/IEC xxxxx-xxx, ATA Attachment-8 ATA/ATAPI Architecture Model (ATA8-AAM) (T13/1700-D)

ISO/IEC xxxxx-xxx ATA Attachment-8 ATA/ATAPI Command Set (ATA8-ACS) (T13/1699-D)

Page: 3

Author: Isi-bday

Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00'

PREJECT (SATA IO is an industry consortium, not an accredited standards body. That's why references to it go in the "Other references" section, not the "Normative references" section. Thus, it doesn't fit in this list as currently worded.)

Should this table include the SATA IO organization?

Author: RElliott Subject: Note

Date: 9/3/2008 9:02:49 AM -07'00'

ACCEPT - DONE (as notes under table 1)

Need to add some (R) symbols and a section listing which terms are registered trademarks

ANSI is a registered trademark of American National Standards Institute

ISO is a registered trademark of the International Organization for Standardization

IEC is a registered trademark of the International Electrotechnical Commission.

IEEE is a registered trademark of the Institute of Electrical Electronics Engineers, Inc.

Don't add:

Unified Modeling Language is an unregistered trademark of OMG. See http://www.omg.org/legal/tm_list.htm. They'd like to see a

INCITS is an unregistered service mark (incits.org uses the unofficial SM label).

Author: RElliott

Subject: Highlight Date: 9/3/2008 8:26:59 AM -07'00'

TACCEPT - DONE

International Engineering Consortium

International Electrotechnical Commission

Author: RElliott

Subject: Highlight
Date: 9/3/2008 8:27:10 AM -07'00'

International Standards Organization

International Organization for Standardization

Author: RElliott

Subject: Highlight
Date: 9/3/2008 8:27:28 AM -07'00'

http://www.jisc.org

http://www.jisc.co.jp

Author: wdc-mevans

3

Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00'

Comments from page 3 continued on next page

2 Normative references

2.1 Normative references

Referenced standards and specifications contain provisions that, by reference in the text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed below.

Copies of the following documents may be obtained from ANSI:

- a) approved ANSI standards:
- b) approved and draft international and regional standards (e.g., ISO, IEC); and
- c) approved and draft foreign standards (e.g., JIS and DIN).

For further information, contact ANSI Customer Service Department at 212-642-4900 (phone), 212-302-1286 (fax) or via the World Wide Web at http://www.ansi.org.

Additional availability contact information is provided below as needed.

Table 1 shows standards bodies and their web sites.

Table 1 — Standards bodies

-		
Abbreviation	Standards body	Web site
ANSI	American National Standards Institute	http://www.ansi.org
DIN	German Institute for Standardization	http://www.zin.de
IEC	International Engineering Consortium	http://www.iec.ch
IEEE	Institute of Electrical and Electronics Engineers	http://www.ieee.org
INCITS	International Committee for Information Technology Standards	http://www.incits.org
ISO	International Standards Organization	http://www.iso.ch
ITI	Information Technology Industry Council	http://www.itiz.org
JIS	Japanese Industrial Standards Committee	http://w/w.jisc.org
T10	INCITS T10 SCSI storage interfaces	http://www.t10.org
T11	INCITS T11 Fibre Channel interfaces	http://www.t11.org
T13	INCITS T13 ATA storage interface	http://www.t13.org

2.2 Approved references

At the time of publication, the following referenced standards or technical reports were approved:

ANSI INCITS TR-35-2004, Methodolog/leg/ for Jijker and Signal Quality Specification (MJSQ). When MJSQ is referenced from this standard, the FC/Port ter/ning/gy used within MJSQ should be substituted with SAS phy

2.3 References under de le lo provent

At the time of publication, the following referenced standards were still under development. For information on the current status of the focus ent, or regarding availability, contact the relevant standards body or other organization as indicated.

AT// Attachment-8 ATA/ATAPI Architecture Model (ATA8-AAM) (T13/1700-D)

xxxx-xxx, ATA Attachment-8 ATA/ATAPI Command Set (ATA8-ACS) (T13/1699-D)

Working Draft Serial Attached SCSI - 2 (SAS-2)

REJECT (physical layer engineers have not complained).

the FC Port terminology used within MJSQ should be substituted with SAS phy terminology.

[There should be more about how to do this, at the very least a couple of "e.g."s would be helpful.]

Author: stx-ghoulder Subject: Highlight Date: 6/30/2008 2:38:10 PM -07'00' DACCEPT - DONE (Per June T13 meeting, ATA8-AAM will be 24739-100)

xxxxx-xxx, This is incorrect ISO number.

Author: Isi-gpenokie
Subject: Highlight
Date: 6/30/2008 2:38:15 PM -07'00'
ACCEPT - DONE (Per June T13 meeting, ATA8-AAM will be 24739-100)

I don't think putting an unknown standard here is a good idea. It looks like a TBD. Either delete it or get a real number. ISO/IEC

Author: stx-ghoulder

Subject: Highlight Date: 6/30/2008 1:55:37 PM -07'00'

TACCEPT - DONE (Per June T13 meeting, ATA8-ACS will be 24739-200)

xxxxx-xxx This is incorrect ISO number.

Author: Isi-gpenokie

3

Subject: Highlight
Date: 6/30/2008 1:55:31 PM -07'00'

ACCEPT - DONE (Per June T13 meeting, ATA8-ACS will be 24739-200)

I don't think putting an unknown standard here is a good idea. It looks like a TBD. Either delete it or get a real number. ISO/IEC XXXXX-XXX

ISO/IEC 14776-414. SCSI Architecture Model-4 (SAM-4) (T10/1683-D)

ISO/IEC 14776-454, SCSI Primary Commands-4 (SPC-4) (T10/1731-D)

ISO/IEC 14776-323, SCSI Block Commands-3 (SBC-3) (T10/1799-D)

ISO/IEC 14776-372, SCSI Enclosure Services-2 (SES-2) (T10/1559-D)

NOTE 1 - For more information on the current status of these documents, contact the INCITS Secretariat at 202-737-8888 (phone), 202-638-4922 (fax) or via Email at incits@itic.org. To obtain copies of these documents, contact Global Engineering at 15 Inverness Way, East Englewood, CO 80112-5704 at 303-792-2181 (phone), 800-854-7179 (phone), or 303-792-2192 (fax) or see http://www.incits.org.

2.4 Other references

For information on the current status of the listed documents, or regarding availability, contact the indicated

Serial ATA 2.6 (SATA-2). Separatry 2007

SFF-8086, Compact Multilane Series: Common Elements

SFF-8087, Compact Multilane Series: Unshielded

SFF-8088, Compact Multilane Series: Shielded

SFF-8223, 2.5" Drive Form Factor with Serial Connector

SFF-8323, 3.5" Drive Form Factor with Serial Connector

SFF-8523, 5.25" Drive Form Factor with Serial Connector

SFF-8410, HSS Copper Testing and Performance Requirements

SFF-8416, Measurement and Performance Requirements for HPEI Bulk Cable

SFF-8460, HSS Backplane Design Guidelines

SFF-8470, Shielded High Speed Multilane Copper Connector

SFF-8482, Unshielded Dual Port Serial Attachment Connector

SFF-8484, Multi-Lane Unshielded Serial Attachment Connectors

SFF-8485, Serial GPIO (SGPIO) Bus

NOTE 3 - For more information and the Current status of SFF document, contact the SFF Committee at 408-867-6630 (phone), or 408-867-2115 (fax). To obtain copies of these documents, contact the SFF Committee at 14426 Black Walnut Court, Saratoga, CA 95070 at 408-867-6630 (phone) or 408-741-1600 (fax) or see http://www.sffcommittee.org

OMG Unified Modeling Language (UML) Specification. Version 1.5, March 2003.

NOTE 4 - For more information on the UML specification, contact the Object Modeling Group at http://www.omg.org.

PANTONE® Color Formula Guide

NOTE 5 - Pantone® and PANTONE MATCHING SYSTEM® are registered trademarks of Pantone, Inc. For more information on Pantone colors, contact Pantone, Inc. at http://www.pantone.com.

Page: 4

Author: Isi-bbesmer

Subject: Highlight Date: 5/25/2008 1:40:18 PM -07'00'

PACCEPT - DONE (only standards that are referenced go here; SAT is not currently referenced. Since almost all SAS initiators include a SATL, though, it should be. Added "ISO/IEC 14776-922, SCSI/ATA Translation-2 (SAT-2) (T10/1826-D)" here, added SAT-2 to figure 1 showing SCSI standards, and added "A SCSI to ATA translation layer (see SAT-2) may be implemented to enable SCSI application clients to communicate with ATA devices." in 4.1.5.)

Add SAT-2 to this list?

Author: ktek-dmoore

Subject: Highlight Date: 5/16/2008 10:00:20 AM -07'00'

**ACCEPT - DONE (This is leftover from when SATA was multiple specifications - SATA-1, SATA-2 extensions, SATA port selector,

etc. It also does help differentiate references to the SATA specification from SATA overall. However, that nuance seems unnecessary. Replaced "SATA-2" with "SATA" everywhere. Changed "defined by SATA (see SATA-2)" to "defined by SATA".)

SATA-2 s/b SATA rev 2.6 Global change. The SATA-IO organization says there is no such thing as SATA-2 and does not want the term used. Maybe a definition of "SATA" equals "Serial ATA 2.6" in this standard and make a global change of SATA-2 to

Author: Isi-bday

Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00'

ACCEPT - DONE (keeping the parenthetical term, which is needed for references)

Serial ATA 2.6 (SATA-2).

Serial ATA Revision 2.6.

Author: RElliott

Date: 7/17/2008 2:21:55 PM -07'00'

ACCEPT - DONE (7/15)

Add reference to SATA 3.0

Author: RElliott

Subject: Note Date: 9/3/2008 3:25:50 PM -07'00' ACCEPT - DONE

Add reference for AWG:

ASTM Standard B 258-02, 2002, Standard specification for standard nominal diameters and cross-sectional areas of AWG sizes of solid round wires used as electrical conductors, ASTM International, West Conshohocken, PA, USA.

NOTE: For more information on ASTM International standards, see www.astm.org.

Author: mxim-mbari Subject: Note

Date: 6/6/2008 10:27:08 AM -07'00'

REJECT (not appropriate for this section. We can refer to web sites in the main body.)

Should StatEye (www.stateye.org) need to be added to the list of other references?

3 Definitions, symbols, abbreviations, keywords, and conventions

3.1 Definitions

- **3.1.1 8b10b coding:** A coding scheme that represents an 8-bit byte (i.e., a control byte or data byte) as a 10-bit character (i.e., a control character or data character). See 6.2.
- **3.1.2 8b10b encoding:** Encoding an 8-bit byte (i.e., a control byte or data byte) into a 10-bit character (i.e., a control character or data character). See 6.2.
- **3.1.3 10b8b decoding:** Decoding a 10-bit character (i.e., a control character or data character) into an 8-bit byte (i.e., a control byte or data byte). See 6.2.
- 3.1.4 actual lock time (ALT): The time during Train-SNW at which a phy locks on received ALIGN (0)s and/or ALIGN (1)s and changes from transmitting ALIGN (0) to ALIGN (1) (see 6.7.4.2.3.4).
- 3.1.5 actual training time (ATT): The time during Train-SNW at which training (see 3.1.278) is complete (see 6.7.4.2.3.4).
- 3.1.6 active zone manager: The zone manager (see 3.1.301) that successfully locked a zoning expander device (see 3.1.305). See 4.9.6.
- 3.1.7 affiliation: The STP target port (see 3.1.267) state of limiting acceptance of connection requests to those from one or more STP initiator ports (see 3.1.262). See 7.174.
- 3.1.8 affiliation context: A set of ATA task file registers maintained by an STP sarget port for an STP nitiator port holding an affiliation. See 7.17.4.
- 3.1.9 aggregation: When referring to classes (see 3.1.29), a form of association (see 3.1.11) that defines whole-part relationship between the whole (i.e., aggregate) class (see 3.1.28) and its parts. See 3.5.
- 3.1.10 application client: An object that is the source of SCSI commands and task management function requests (see SAM-4), ATA commands (see ATA8-AAM), or management function requests. See 4.1.5.
- -3.1.1 association: When referring to classes (see 3.1.29), a relationship between two or more classes (see 3.1.28) that specifies connections among their objects (see 3.1.151) (i.e., a relationship that specifies that objects of one class are connected to objects of another class). See 3.5.
- **3.1.12 attached SAS address:** The SAS address (see 3.1.196) of the attached phy (e.g., received by a logical phy in the incoming IDENTIFY address frame during the initialization sequence (see 4.1.2), or the SAS address of the STP target port in an STP/SATA bridge (see 4.6.2).
- 3.1.13 attribute: When referring to classes (see 3.1.29) or objects (see 3.1.152), a named property of a classe (see 3.1.28) that describes the range of values that its objects (see 3.1.151) may hold. See 3.5.
- **3.1.14 AT Attachment (ATA):** A standard for the internal attachment of storage devices to hosts. See ATA8-AAM.
- 3.1.15 ATA device: A storage peripheral (analogous to a SCSI target device). See ATA8-AAM.
- 3.1.16 ATA domain: An I/O system consisting of an ATA host and one or more ATA devices that communicate with one another by means of a service delivery subsystem (see 3.1.233). See ATA8-AAM.
- **3.1.17 ATA host:** A host device that originates requests to be processed by an ATA device (analogous to a SCSI initiator device). See ATA8-AAM.

Page: 5 Author: intc-mseidel Subject: Highlight Date: 9/4/2008 11:32:33 AM -07'00' ACCEPT - DONE (added: The part of DJ (see 3.1.59) not aligned in time with the signal being measured. Specifically, BUJ excludes ISI (see 3.1.117) and duty cycle distortion. See MJSQ. from 08-202r1 - made a definition rather than a footnote) "jitter, bounded uncorrellated (BUJ)" should appear in the list of definitions Author: intc-mseidel Subject: Highlight Date: 5/16/2008 10:02:03 AM -07'00' TACCEPT - DONE The definition for ALT does not conform to that in Table 95. Table 95 is correct. Author: Isi-bday Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00' TACCEPT - DONE Train-SNW SNW-1, SNW-2, or Final-SNW Author: Isi-bday Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00' TACCEPT - DONE (and moved earlier in the sentence) (see 6.7.4.2.3.4). 6.7.4.2.3.2 Author: elx-hmartin Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00' ACCEPT - DONE (Moved this one earlier after "Train-SNW". The algorithm is: if the reference applies to the whole term, a new See x.y sentence is added. If the reference is for some of the words in the sentence, it goes in the sentence after those words.) (see 6.7.4.2.3.4). Make see references at the end of definitions consistent either (see x.y) or See x.y. Author: elx-hmartin Subject: Highlight Date: 5/26/2008 3:55:00 PM -07'00' REJECT (there's no context here to define which zoning expander device is "the" one. "a" is better for this section.) s.b. the

a implies any zoning expander, while this refers to the zone manager that locked the zoning expander device that is being

Comments from page 5 continued on next page

referenced.

Author: wdc-mevans

Subject: Highlight Date: 5/17/2008 10:44:43 AM -07'00'

3 Definitions, symbols, abbreviations, keywords, and conventions

3.1 Definitions

- 3.1.1 8b10b coding: A coding scheme that represents an 8-bit byte (i.e., a control byte or data byte) as a 10-bit character (i.e., a control character or data character). See 6.2.
- 3.1.2 8b10b encoding: Encoding an 8-bit byte (i.e., a control byte or data byte) into a 10-bit character (i.e., a control character or data character). See 6.2.
- 3.1.3 10b8b decoding: Decoding a 10-bit character (i.e., a control character or data character) into an 8-bit byte (i.e., a control byte or data byte). See 6.2.
- 3.1.4 actual lock time (ALT): The time during Train-SNW at which a phy locks on received ALIGN (0)s and/or ALIGN (1)s and changes from transmitting ALIGN (0) to ALIGN (1) (see 6.7.4.2.3.4).
- 3.1.5 actual training time (ATT): The time during Train-SNW at which training (see 3.1.278) is complete (see 6.7.4.2.3.4).
- 3.1.6 active zone manager: The zone manager (see 3.1.301) that successfully locked a zoning expander device (see 3.1.305). See 4.9.6.
- 3.1.7 affiliation: The STP target port (see 3.1.267) state of limiting acceptance of connection requests to those from one or more STP initiator ports (see 3.1.262). See 7.17.4.
- 3.1.8 affiliation context: A set of ATA task file registers maintained by an STF target port for an STF initiator port holding an affiliation. See 7.17.4.
- 3.1.9 aggregation: When referring to classes (see 3.1.29) form of association (see 3.1.11) that defines a whole-part relationship between the whole (i.e., aggregate) class (see 3.1.28) and its parts. See 3.5.
- 3.1.10 application client. An object that is the source of SCSI commands and task management function requests (see SAM-4), ATA commands (see ATA8-AAM), or management function requests. See 4.1.5.
- ડે.1.11 association: When referring to classes (see 3.1.29), કાર્દીવાંગાship between two or more classes (see 3.1.28) that specifies connections among their objects (see 3.1.151) (i.e., a relationship that specifies that objects of one class are connected to objects of another class). See 3.5.
- 3.1.12 attached SAS address: The SAS address (see 3.1.196) of the attached phy (e.g., received by a logical phy in the incoming IDENTIFY address frame during the initialization sequence (see 4.1.2)), or the SAS address of the STP target port in an STP/SATA bridge (see 4.6.2).
- 3.1.13 attribute: When referring to classes (see 3.1.29) or objects (see 3.1.152), a named property of a class (see 3.1.28) that describes the range of values that its objects (see 3.1.151) may hold. See 3.5.
- 3.1.14 AT Attachment (ATA): A standard for the internal attachment of storage devices to hosts. See MAA-8ATA
- 3.1.15 ATA device: A storage peripheral (analogous to a SCSI target device). See ATA8-AAM.
- 3.1.16 ATA domain: An I/O system consisting of an ATA host and one or more ATA devices that communicate with one another by means of a service delivery subsystem (see 3.1.233). See ATA8-AAM.
- 3.1.17 ATA host: A host device that originates requests to be processed by an ATA device (analogous to a SCSI initiator device). See ATA8-AAM.

TREJECT (a field is not an object that can be "maintained"; literally changing "task file register" to "field" doesn't work in most cases. SATA 2.6 uses the term "register" for many things, including the names of the Register - Host to Device and Register - Device to Host FISes. So, changing most instances of "task file" to plain "register". Rewording some of them to "affiliation context".)

task file registers fields [this is how they are defined in ATA8-ACS]

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' classes (see 3.1.29)

s/h classes (see 3.1.28) and delete the 3.1.28 reference later

3.1.29 refers to "class diagrams", which this definition used to refer to, but no longer does.

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 2:14:24 PM -07'00'

TREJECT (only including a cross-reference by "object" when it closely tied to UML. This could be generic English)

If you insist on all things be cross referenced then there needs to be one here . << An object that is >>

Author: Isi-gpenokie Subject: Sticky Note

Date: 5/25/2008 2:31:19 PM -07'00'

REJECT (some judgement was applied to whether they are useful or not. For example, when referring to UML terms (which sound like standard English terms), the cross-references are often included.)

I have pointed out a few missing cross-references to other glossary entries. I question the benefits of adding in cross-references to within section 3.1.xx as is see on way to get them all. I recommend removing them all.

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

classes (see 3.1.29) s/h

classes (see 3.1.28)

and delete the 3.1.28 reference later

3.1.29 refers to "class diagrams", which this definition used to refer to, but no longer does.

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

classes (see 3.1.29) or objects (see 3.1.152)

classes (see 3.1.28) or objects (see 3.1.151)

Author: elx-bmartin

Comments from page 5 continued on next page

3 Definitions, symbols, abbreviations, keywords, and conventions

3.1 Definitions

- **3.1.1 8b10b coding:** A coding scheme that represents an 8-bit byte (i.e., a control byte or data byte) as a 10-bit character (i.e., a control character or data character). See 6.2.
- 3.1.2 8b10b encoding: Encoding an 8-bit byte (i.e., a control byte or data byte) into a 10-bit character (i.e., a control character or data character). See 6.2.
- **3.1.3 10b8b decoding:** Decoding a 10-bit character (i.e., a control character or data character) into an 8-bit byte (i.e., a control byte or data byte). See 6.2.
- **3.1.4 actual lock time (ALT):** The time during Train-SNW at which a phy locks on received ALIGN (0)s and/or ALIGN (1)s and changes from transmitting ALIGN (0) to ALIGN (1) (see 6.7.4.2.3.4).
- **3.1.5 actual training time (ATT):** The time during Train-SNW at which training (see 3.1.278) is complete (see 6.7.4.2.3.4).
- 3.1.6 active zone manager: The zone manager (see 3.1.301) that successfully locked a zoning expander device (see 3.1.305). See 4.9.6.
- **3.1.7 affiliation:** The STP target port (see 3.1.267) state of limiting acceptance of connection requests to those from one or more STP initiator ports (see 3.1.262). See 7.17.4.
- **3.1.8 affiliation context:** A set of ATA task file registers maintained by an STP target port for an STP initiator port holding an affiliation. See 7.17.4.
- **3.1.9 aggregation:** When referring to classes (see 3.1.29), a form of association (see 3.1.11) that defines a whole-part relationship between the whole (i.e., aggregate) class (see 3.1.28) and its parts. See 3.5.
- 3.1.10 application client: An object that is the source of SCSI commands and task management function requests (see SAM-4), ATA commands (see ATA8-AAM), or management function requests. See 4.1.5.
- 3.1.11 association: When referring to classes (see 3.1.29), a relationship between two or more classes (see 3.1.28) that specifies connections among their objects (see 3.1.151) (i.e., a relationship that specifies that objects of one class are connected to objects of another class). See 3.5.
- **3.1.12 attached SAS address:** The SAS address (see 3.1.196) of the attached phy (e.g., received by a logical phy in the incoming IDENTIFY address frame during the initialization sequence (see 4.1.2)), or the SAS address of the STP target port in an STP/SATA bridge (see 4.6.2).
- **3.1.13 attribute:** When referring to classes (see 3.1.29) or objects (see 3.1.152), a named property of a class (see 3.1.28) that describes the range of values that its objects (see 3.1.151) may hold. See 3.5.
- **3.1.14 AT Attachment (ATA):** A standard for the internal attachment of storage devices to hosts. See ATA8-AAM.
- 3.1.15 ATA device: A storage peripheral (analogous to a SCSI target device). See ATA8-AAM.
- 3.1.16 ATA domain: An I/O system consisting of an ATA host and one or more ATA devices that communicate with one another by means of a service delivery subsystem (see 3.1.233). See ATA8-AAM.
- **3.1.17 ATA host:** A host device that originates requests to be processed by an ATA device (analogous to a SCSI initiator device). See ATA8-AAM.

5

Working Draft Serial Attached SCSI - 2 (SAS-2)

Date: 5/25/2008 2:30:13 PM -07'00'

ACCEPT - DONE (from ATA8-AAM's definition of "device", added "that processes ATA commands and device management functions". ATA8-AAM defines "device", "ATA device", and "ATAPI" device; SAS is trying to use "ATA device" to mean ATA8-AAM's "device", since that definition conflicts with SCSI's definition of "device".)

A storage peripheral (analogous to a SCSI target device).

Clarify this as a storage device that processes requests originated by an ATA host.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Add "Analogous to a SCSI domain."

3.1.18 baud rate: The signaling speed, expressed as the maximum number of times per second that the signal (see 3.1.234) may change the state of the physical link (see 3.1.164). Each state change produces a transition (i.e., signal edge). The baud rate is the reciprocal of the UI (i.e., f_{haud} = 1 / UI) (see 3.1.291).

- **3.1.19 big-endian:** A format for storage or transmission of binary data in which the most significant byte appears first. In a multi-byte value, the byte containing the most significant bit is stored in the lowest memory address and transmitted first, and the byte containing the least significant bit is stored in the highest memory address and transmitted last (e.g., for the value 0080h, the byte containing 00h is stored in the lowest memory address, and the byte containing 80h is stored in the highest memory address).
- 3.1.20 bit cell time (BCT): The time for transmitting a phy capabilities bit during SNW-3 (see 6.7.4.2.3.3).
- 3.1.21 bit error ratio (BER): The number of logical bits output from a receiver circuit that differ from the correct transmitted logical bits, divided by the number of transmitted logical bits. BER is usually expressed as a coefficient and a power of 10 (e.g., 2 erroneous bits out of 100 oou bits transmitted is expressed as 2 out of 10⁵ or 2 × 10⁻⁵). See MJSQ.
- 3.1.22 Broadcast: Information about an event in the SAS dosain, communicated between phys with the BROADCAST primitive sequence (see 7.2.6.4) and/or the SMP ZONED BROADCAST function (see 10.4.3.20). See 4.1.13.
- 3.1.23 Broadcast propagation processor (BPP): An object within an expander function (see 3.1.78) that manages Broadcasts (see 3.1.22). See 4.6.5.
- 3.1.24 burst time: The part of an OOB signal (see 3.1.156) where the OOB burst (see 3.1.153) is transmitted. See 6.6.
- 3.1.25 byte: A sequence of eight contiguous bits considered as a unit. A byte is encoded as a character (\$\frac{1}{2}\$ 3.1.27) using 8b10b coding (see 6.2).
- **3.1.26 cable assembly:** Bulk cable plus a separable connector at each end plus any retention backshell, or shielding features. See 5.2.4.
- **3.1.27 character:** A sequence of ten contiguous bits considered as a unit. A byte (see 3.1.25) is encoded as a character using 8b10b coding (see 6.2).
- 3.1.28 class: A description of a set of objects (see 3.1.151) that share the same attributes (see 3.1.13), operations (see 3.1.157), relationships, and semantics. Classes may have attributes and may support operations.
- **3.1.29 class diagram:** A diagram that shows a collection of classes (see 3.1.28) and their contents and relationships. See 3.5.
- 3.1.30 clock data recovery (CDR): The function provided by the receiver circuit responsible for producing a regular clock signal (i.e., the recovered clock) from the received signal and for aligning the recovered clock to the symbols (i.e., bits) being transmitted with the signal. The CDR uses the recovered clock to recover the bits See M.ISO
- **3.1.31 command descriptor block (CDB):** A structure used to communicate a command from a SCSI application client to a SCSI device server. See SAM-4.
- 3.1.32 common SSC transmit clock: An implementation that employs a single transmit clock for multiple transmitter devices and enables or disables SSC (see 5.3.8) on the transmit clock signal to all transmitter device in common rather than allowing each transmitter device to independently control SSC.
- 3.1.33 compliance point: An interoperability point where interoperability specifications are met. See 5.3.1.

6

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 6 Author: RElliott Subject: Highlight Date: 11/6/2008 12:53:06 AM ACCEPT - DONE signaling speed s/b nominal signaling speed Since III is nominal, and haud rate is defined as 1/III per 11/4 WG discussion of 08-433 Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00' REJECT (without the comma, could be interpreted as A that differ from (B divided by C). It needs to be interpreted as (A that differ from B) divided by C.) bits, divided s/b bits divided Author: RElliott Subject: Note Date: 11/6/2008 9:20:43 AM ACCEPT - DONE The BER is computed on the raw bit stream before 10b8b decoding. requested by 08-433 Author: intc-mseidel Subject: Highlight Date: 9/25/2008 1:43:37 PM -07'00' "pREJECT (that's how all such references are done; e.g. to SAM-4 or SPC-4 or SATA) The directive "See MJSQ," is not well-defined in this context. It should point to a section number ("See MJSQ in 2.2."). There are other occurrences of this phrase in the standard. Author: wdc-mevans Subject: Highlight Date: 5/17/2008 10:47:47 AM -07'00' REJECT

REJECT (only including a cross-reference by "object" when it closely tied to UML. This could be generic English)

If you insist on all things be cross referenced then there needs to be one here . << An object within an >>

domain, communicated

domain communicated

Date: 5/25/2008 2:14:31 PM -07'00'

Author: Isi-gpenokie

s/b

3.1.34 compliant jitter tolerance pattern (CJTPAT): A test pattern for jitter testing. See 5.3.5.5 and A.2.

- 3.1.35 configuration subprocess: A subprocess invoked from the discover process (see 3.1.62) to configure an externally configurable expander device (see 3.1.86). See 4.7.
- 3.1.36 confirmation: Information passed from a lower layer state machine to a higher layer state machine, usually responding to a request (see 3.1.187) from that higher layer state machine, and sometimes relaying a response (see 3.1.189) from a peer higher layer state machine, Sec 3.6.
- 3.1.37 connection: A temporary association between a SAS initiator port (see 3.1.201) and a SAS target port (see 3.1.207) using a pathway (see 3.1.159). See 7.12.
- 3.1.38 connection rate: The effective rate of dwords through the pathway (see 3.1.159) between a SAS initiator phy and a SAS target phy, established through the connection request.
- 3.1.39 connection request: A request to establish a connection originated by a SAS initiator port (see 3.1.201) or a SAS target port using an OPEN address frame (see 7.8.3). See 7.12.2.1.
- 3.1.40 connector: Electro-mechanical components consisting of a receptacle and a plug that provide a separable interface between two transmission segments. Sec 5.2.3.
- 3.1.41 constraint: When referring to classes (see 3.1.29) and objects (see 3.1.152), a mechanism for specifying semantics or conditions that are maintained as true between extities (e.g., a required condition between associations (see 3.1.11)). See 3.5.
- 3.1.42 control byte: A byte containing control information defined in table 84 (see 6.2)
- 3.1.43 control character (Kxx.y): A character containing control information defined in table \$4 (see 6.2).
- 3.1.44 cumulative distribution function (CDF): The probability that jitter is less than a given value. See
- 3.1.45 cyclic redundancy check (CRC): An error checking mechanism that checks data integrity by computing a polynomial algorithm based checksum. See 7.5.
- 3.1.46 D.C. idle: A differential signal level that is nominally 0 V(P-P), used during the idle time (see 3.1.108) and negation time (see 3.1.147) of an OOB signal (see 3.1.156). See 5.3.6.
- 3.1.47 data byte: A byte containing data information defined in table 83 (see 6.2).
- 3.1.48 data character (Dxx.y): A character containing data information defined in table 83 (see 6.2).
- 3.1.49 data dword: A dword containing four data bytes, or four data characters with correct disparity.
- 3.1.50 deadlock: A condition in which two or more processes (e.g., connection requests) are waiting on the others to complete, resulting in none of the processes completing.
- 3.1.51 decibel (dB): One-tenth of the common logarithm (i.e., log₁₀) of the ratio of relative powers.

NOTE 6 - The ratio of powers P_1 and P_2 in dB is $10 \times \log_{10} (P_1 / P_2)$. If $P_1 = V_1^2 / R_1$, $P_2 = V_2^2 / R_2$, and R₁=R₂, then this ratio is equivalent to one-twentieth of the common logarithm of the relative voltage ratio (i.e., $dB = 20 \times \log_{10} (V_1 / V_2)$ (e.g., $20 \times \log_{10} (1) = 0$ dB, $20 \times \log_{10} (0.5) = -$

3.1.52 dB millivolts (dBmV): The decibel ratio of an rms voltage value relative to 1 mV.

NOTE 7 - 20 mV(rms) is equal to 20 x log₁₀(20 mV / 1 mV) = 26 dBmV. This does not depend on the impedance level.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 7

Author: Isi-gpenokie

Subject: Highlight Date: 5/26/2008 4:02:01 PM -07'00'

REJECT (this is describing how in an expander, a response from one phy gets converted into a confirmation by the outgoing phy part of the 4 step request -> indication -> response -> confirmation process. Added "(e.g., see figure 42 in 4.6.6.1)" which might

I have no clue what this statement is trying to tell me << and sometimes relaying a response (see 3.1.189) from a peer higher layer state machine. >> and there is nothing in section 3.6 that would help. I suggest it be deleted.

Author: wdc-mevans

Subject: Highlight Date: 5/26/2008 4:02:24 PM -07'00'

REJECT (No other SCSI device is involved. This is describing how in an expander, a response from one phy gets converted into a confirmation by the outgoing phy - part of the 4 step request -> indication -> response -> confirmation process. Added "(e.g., see figure 42 in 4.6.6.1)" which might help)

from a peer higher layer state machine.

from a peer higher layer state machine in a different SCSI device.

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

> Remove cross-references from: SAS initiator port (see 3.1.201) and a SAS target port (see 3.1.207)

Author: Isi-gpenokie

Subject: Highlight Date: 6/3/2008 2:17:38 PM -07'00'

*REJECT (there are about 250 cross references now. It's not a good idea to blindly delete them all, as some of them were added upon request. It's not worth the effort to rejudge whether each one is individually better left in or out. References are usually included when it's an unusual term, or being used as a building block for another definition. In this case, the terms "SAS initiator phy" and "SAS target phy" are somewhat secondary in the definition, so I think it reads better without the references. The term "pathway" is referenced since it is strange; "dword" and "connection request" are not.)

If you insist on all things be cross referenced then there needs to be one here . <<SAS initiator phys >>

Author: Isi-gpenokie Subject: Highlight

Date: 6/3/2008 2:16:48 PM -07'00'

REJECT (see other comment on this sentence)

If you insist on all things be cross referenced then there needs to be one here . << SAS target phy >>

Author: RElliott

Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

SAS initiator port (see

3.1.201) or a SAS target port

7

SAS phy (see 3.1.200)

Initiator and target were mentioned separately to try to hint that expanders are different, but that's not really necessary. Phy should be used rather than port here, too.

Comments from page 7 continued on next page

3.1.34 compliant jitter tolerance pattern (CJTPAT): A test pattern for jitter testing. See 5.3.5.5 and A.2.

- 3.1.35 configuration subprocess: A subprocess invoked from the discover process (see 3.1.62) to configure an externally configurable expander device (see 3.1.86). See 4.7.
- 3.1.36 confirmation: Information passed from a lower layer state machine to a higher layer state machine, usually responding to a request (see 3.1.187) from that higher layer state machine, and sometimes relaying a response (see 3.1.189) from a peer higher layer state machine. See 3.6.
- 3.1.37 connection: A temporary association between a SAS initiator port (see 3.1.2011) and a SAS target port (see 3.1.207) using a pathway (see 3.1.159). See 7.12.
- 3.1.38 connection rate: The effective rate of dwords through the pathway (see 3.1.159) between a SAS initiator phy and a SAS target phy, established through the connection request.
- 3.1.39 connection request: A request to establish a connection originated by a SAS initiator port (see 3.1.201) or a SAS target port using an OPEN address frame (see 7.8.3). See 7.12.2.1.
- 3.1.40 connector: Electro-mechanical components consisting of a receptacle and a plug that provide a separable interface between two transmission segments. See 5.2.3.
- 3.1.41 constraint: When referring to classes (see 3.1.29) and objects (see 3.1.152), a mechanism for specifying semantics or conditions that are maintained as true between entities (e.g., a required condition between associations (see 3.1.11)). See 3.5.
- 3.1.42 control byte: A byte containing control information defined in table 84 (see 6.2).
- 3.1.43 control character (Kxx.y): A character containing control information defined in table 84 (see 6.2).
- 3.1.44 cumulative distribution function (CDF): The probability that jitter is less than a given value. See
- 3.1.45 cyclic redundancy check (CRC): An error checking mechanism that checks data integrity by computing a polynomial algorithm based checksum. See 7.5.
- 3.1.46 D.C. idle: A differential signal level that is nominally 0 V(P-P), used during the idle time (see 3.1.10%) and negation time (see 3.1.147) of an OOB signal (see 3.1.156). See 5.3.6.
- 3.1.47 data byte: A byte containing data information defined in table 83 (see 6.2)
- 3.1.48 data character (Dxx.y): A character containing data information defined in table 83 (see 6.2).
- 3.1.49 data dword: A dword containing four data bytes, or four data characters with correct disparity.
- 3.1.50 deadlock: A condition in which two or more processes (e.f., copyrection requests) are warting on the others to complete, resulting in none of the processes completing.
- 3.1.51 decibel (dB): One-tenth of the common logarithm (i.e., log₁₀) of the ratio of relative powers.

NOTE 6 - The ratio of powers P_1 and P_2 in dB is $10 \times 10^{-2} (P_1 - 1/P_2)$. If $P_1 = V_1^2 / P_1$, $P_2 = V_2^2 / P_2$, and R_1 = R_2 , then this ratio is equivalent to one-twenties of the common logarithm of the relative voltage ratio (i.e., dB = $20 \times \log_{10} (V_1/V_2)$) (e.g., $20 \times \log_{10} (V_1/V_2)$) (e.g., $20 \times \log_{10} (V_1/V_2)$).

3.1.52 dB millivolts (dBmV). The decibel ratio of an rms voltage value relative to 1 mV.

NOTE 7 20 mV(rms) is equal to 20 x log₁₀(20 mV / 1 mV) = 26 dBmV. This does not depend on the impedance level.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE frame(s/h

frame (Author: Isi-gpenokie

Subject: Highlight Date: 5/25/2008 2:35:31 PM -07'00'

REJECT (but changed definition instead)

If you insist on all things be cross referenced then there needs to be one here .<< SAS target port >>

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

classes (see 3.1.29) and objects (see 3.1.152)

classes (see 3.1.28) or objects (see 3.1.148)

Author: intc-mseidel

Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00'

ACCEPT - DONE (keeping note 6 as a note. If definitions get too long, people complain. I don't want to create a whole section defining decibel, but do want to include the equations for power and voltage and some explanation of why 10 and 20 are used at different times, so a long note seems like a good compromise)

A dB is ten times the common log of the power ratio, not one-tenth. It also should incorporate Note 6.

Author: Isi-gpenokie

Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00'

TREJECT (This is mathematically wrong, and should be "Twenty times". Fixed it that way.)

This << one-twentieth >> should be expressed mathematically.

Author: RElliott

Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

List three example ratios: positive, negative, and 1.0.

Author: intc-mseidel

Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00'

TREJECT (see comment on dB)

Notes 7 and 8 should be incorporated into the definitions of dBmv and

dBm.

3.1.53 dB milliWatts (dBm): The decibel ratio of a power value relative to 1 mW.

NOTE 8 - 20 mW is equal to $10 \times \log_{10}(20 \text{ mW} / 1 \text{ mW}) = 13 \text{ dBm}$. If power is measured with a 50 ohm impedance level, 20 mW is equivalent to $(0.02 \text{ W} \times 50 \text{ ohm})^{(1/2)} = 1 \text{ V or } 60 \text{ dBmV}$. If power is measured with a 25 ohm impedance level (i.e., the reference impedance for common mode measurements), 20 mW is equivalent to $(0.02 \text{ W} \times 25 \text{ ohm})^{(1/2)} = 0.707 \text{ V or } 57 \text{ dBmV}$.

- **3.1.54 decision feedback equalizer (DFE):** A nonlinear equalizer that uses a feedback loop based on previously decoded symbols.
- 3.1.55 deletable primitive: An ALIGN (see 7.2.5.1), NOTIFY (see 7.2.5.3), or MUX (see 7.2.5.2), which may be deleted by a receiver instead of being placed into its clasticity buffer (see 7.3). See 7.2.5.
- 3.1.56 dependency: When referring to classes (see 3.1.29), scelationship between two classes (see 3.1.28) where a change to one class (i.e., the independent class) may cause a change in the other class (i.e., the dependent class). See 3.5.
- 3.1.57 device name: A worldwide unique name for a device within a transport protocol. See 4.2.4.
- 3.1.58 device server: An object that processes SCSI tasks (see SAM-4), ATA commands (see ATA8-AAM), or management functions. See 4.1.5.
- 3.1.59 direct current (D.C.): The non-A.C. component of a signal. In this standard, all frequency components below 100 kHz.
- 3.1.60 direct routing attribute: The attribute of an expander phy that indicates it have used by the ECM (see 3.1.75) to route a connection request to an end device. See 4.6.7.1.
- 3.1.61 direct routing method: The method the ECM (see 3.1.75) uses to route connection requests to an attached end device or an attached expander device (see 3.1.77). See 4.6.7.1.

- 3.1.62 discover process: The process performed by a management application clear to discover all the SAS devices (see 3.1.197) and expander devices (see 3.1.77) in the SAS domain (see 3.1.198) that invokes the configuration subprocess (see 3.1.35) as needed. See 4.7.
- 3.1.63 disparity: The difference between the number of ones and zeros in a character (see 6.2).
- 3.1.64 dispersion: Signal pulse broadening and distortion from all causes.
- 3.1.65 domain: A SAS domain (see 3.1.198), a SCSI domain (see 3.1.219), or an ATA domain (see 3.1.16).
- **3.1.66 dword:** A sequence of four contiguous bytes or four contiguous characters considered as a unit. The meaning depends on the context (e.g., when discussing the bits being transmitted over a physical link, dword represents four characters (i.e., 40 bits). When discussing the contents of a frame after 10b8b decoding (see 3.1.3), dword represents four bytes (i.e., 32 bits)).
- **3.1.67 dword synchronization:** Detection of an incoming stream of dwords from a physical link by a phy. See 6.9.
- **3.1.68 electromagnetic interference (EMI):** Any electromagnetic disturbance that interrupts, obstructs, or otherwise degrades or limits the effective performance of electronics/electrical equipment.
- 3.1.69 enclosure: The box, rack, or set of boxes providing the powering, cooling, mechanical protection, EMI protection, and external electronic interfaces for one or more end device(s) (see 3.1.73) and/or expander device(s) (see 3.1.77). The enclosure provides the outermost electromagnetic boundary and acts as an EMI barrier. An enclosure is not a class (see 3.1.28) in this standard.

Page: 8

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
   milliWatts
   s/b
   milliwatts
   per SI brochure
Author: elx-bmartin
Subject: Highlight
Date: 5/25/2008 1:45:33 PM -07'00'
TREJECT (who else's could it be? There are no other nouns in the sentence that could be thought of as having a buffer.)
   its
   s.b.
   the receiver's
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
   classes (see 3.1.29)
   classes (see 3.1.28)
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
   it
   s/b
   that the expander phy
   to match wdc-meyans comments on subtractive and table routing attributes
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
   Delete crossreference in:
   expander device (see 3.1.77).
Author: elx-bmartin
Date: 5/25/2008 2:37:52 PM -07'00'
The process performed by a management application client to discover all the SAS devices (see 3.1.197) and expander devices
```

(see 3.1.77) in the SAS domain (see 3.1.198) that invokes the configuration subprocess (see 3.1.35) as needed. See 4.7.

(see 3.1.77) in the SAS domain (see 3.1.198), that invokes the configuration subprocess (see 3.1.35) as needed. See 4.7.

The process performed by a management application client, to discover all the SAS devices (see 3.1.197) and expander devices

Comments from page 8 continued on next page

add comas as shown

3.1.53 dB milliWatts (dBm): The decibel ratio of a power value relative to 1 mW.

NOTE 8 - 20 mW is equal to $10 \times \log_{10}(20 \text{ mW} / 1 \text{ mW}) = 13 \text{ dBm.}$ If power is measured with a 50 ohm impedance level, 20 mW is equivalent to $(0.02 \text{ W} \times 50 \text{ ohm})^{(1/2)} = 1 \text{ V}$ or 60 dBmV. If power is measured with a 25 ohm impedance level (i.e., the reference impedance for common mode measurements), 20 mW is equivalent to $(0.02 \text{ W} \times 25 \text{ ohm})^{(1/2)} = 0.707 \text{ V}$ or 57 dBmV.

- 3.1.54 decision feedback equalizer (DFE): A nonlinear equalizer that uses a feedback loop based on previously decoded symbols.
- 3.1.55 deletable primitive: An ALIGN (see 7.2.5.1), NOTIFY (see 7.2.5.3), or MUX (see 7.2.5.2), which may be deleted by a receiver instead of being placed into its elasticity buffer (see 7.3.5. See 7.2.5.
- **3.1.56 dependency:** When referring to classes (see 3.1.29), a relationship between two classes (see 3.1.28) where a change to one class (i.e., the independent class) may cause a change in the other class (i.e., the dependent class). See 3.5.
- 3.1.57 device name: A worldwide unique name for Adevice within a transport protocol. See 4.2.4.
- 3.1.58 device server: An object that processes SCSI tasks (see SAM-4), ATA commands (see ATA8-AAM), or management functions. See 4.1.5.
- **3.1.59 direct current (D.C.):** The ion-A.C. component of a signal. In this standard, all frequency components below 100 kHz.
- 3.1.60 direct routing attribute: The attribute of an expander phy that indicates it may be used by the ECM (see 3.1.75) to route a connection request to an end device. See 4.6.7.1.
- **3.1.61 direct routing method:** The method the ECM (see 3.1.75) uses to route connection requests to an attached and device or an attached expander device (see 3.1.77). See 4.6.7.1.
- 31.62 discover process: The process performed by a management application client to discover all the SAS devices (see 3.1.197) and expander devices (see 3.1.77) in the SAS domain (see 3.1.198) that invokes the configuration subprocess (see 3.1.35) as needed. See 4.7.
 - 3.1.63 disparity: The difference between the number of ones and zeros in a character (see 6.2).
 - 3.1.64 dispersion: Signal pulse broadening and distortion from all causes.
 - 3.1.65 domain: A SAS domain (see 3.1.198), a SCSI domain (see 3.1.219), or an ATA domain (see √3.1.1\$).
 - **3.1.66 dword:** A sequence of four contiguous bytes or four contiguous characters considered as ∮ unit. ↑he meaning depends on the context (e.g., when discussing the bits being transmitted over a physical/link, dword represents four characters (i.e., 40 bits). When discussing the contents of a frame after 10b8b decoding (see 3.1.3), dword represents four bytes (i.e., 32 bits)).
 - **3.1.67 dword synchronization:** Detection of an incoming stream of dwords from a physical I/nk by a phy. See 6.9.
 - 3.1.68 electromagnetic interference (EMI): Any electromagnetic disturbance that interrupts, obstructs, or otherwise degrades or limits the effective performance of electronics/electrical equipment.
 - 3.1.69 enclosure: The box, rack, or set of boxes providing the powering, cooling, mechanical protection, EMI protection, and external electronic interfaces for one or more end device(s) (see 3.1.73) and/or expander device(s) (see 3.1.77). The enclosure provides the outermost electromagnetic boundary and acts as an EMI barrier. An enclosure is not a class (see 3.1.28) in this standard.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

In the discover process definition, delete crossreferences for SAS device, expander device, and SA domain

Author: Isi-bbesmer

Subject: Highlight Date: 5/17/2008 10:52:44 AM -07'00'

ACCEPT - DONE ("before 8b10b encodiring or after 10b8b decoding")

This implies dword is only on the receive path. Also applies prior to 8b10b encoding (ie. when transmitting a dword).

Author: Isi-gpenokie

Subject: Highlight Date: 5/17/2008 10:55:18 AM -07'00'

REJECT (this directly from the ANSI ATIS glossary. See http://www.atis.org/glossary/definition.aspx?id=7584)

This << electronics/electrical equipment. >> should be << electronics or electrical equipment. >>

3.1.70 enclosure in port: A set of expander phys with subtractive routing attributes using the same external connector (see 5.2.3.3). See 4.6.2.

- **3.1.71 enclosure out port:** A set of expander phys with table routing attributes in an expander device that does not support table-to-table attachment using the same external connector (see 5.2.3.3). See 4.6.2.
- **3.1.72 enclosure universal port:** A set of expander phys with table routing attributes in an expander device that supports table-to-table attachment using the same external connector (see 5.2.3.3). See 4.6.2.
- 3.1.73 end device: A SAS device (see 3.1.197) or SATA device (see 3.1.210) that is not contained within an expander device (see 3.1.77).
- 3.1.74 event notification: Information passed from the transport layer to the application layer notifying the application layer state a SCSI event has occurred. See SAM-4.
- 3.1.75 expander connection manager (ECM): An object within an expander function (see 3.1.78) that manages routing. See 4.6.3.
- **3.1.76 expander connection router (ECR):** The portion of an expander function (see 3.1.78) that routes messages between expander phys. See 4.6.4.
- 3.1.77 expander device: A device that is part of a service delivery subsystem (see 3.1.233), facilitates communication between SAS devices (see 3.1.197) and SATA devices (see 3.1.210), and is either an externally configurable expander device (see 3.1.86) or a self-configuring expander device (see 3.1.227). See 4.1.7
- 3.1.78 expander function: An object within an expander device (see 3.1.77) that contains an expander connection manager (see 3.1.75), expander connection router (see 3.1.76), and Broadcast propagation processor (see 3.1.23). See 4.6.1.
- **3.1.79 expander logical phy:** An expander phy (see 3.1.80) or a multiplexed portion of an expander phy.
- **3.1.80 expander phy:** A phy in an expander device (see 3.1.77) that interfaces to a service delivery subsystem (see 3.1.233).
- **3.1.81 expander port:** An expander device object that interfaces to a service delivery subsystem (see 3.1.233) and to SAS ports in other devices. See 4.6.2.
- **3.1.82 expander route entry:** A SAS address and an enable/disable bit in an expander route table (see 3.1.84).
- 3.1.83 expander route index: A value used in combination with a phy identifier to select an expander route entry in an expander route table (see 3.1.84) in an externally configurable expander device (see 3.1.86). See 4.6.7.3.
- **3.1.84 expander route table:** A table of expander route entries (see 3.1.82) within an expander device (see 3.1.77). The table is used by the expander function (see 3.1.78) to resolve connection requests. See 4.6.7.3.
- 3.1.85 external connector: A bulkhead connector (see 3.1.40), whose purpose is to carry signals into and out of an enclosure (see 3.1.69), that exits the enclosure with only minor compromise to the shield effectiveness of the enclosure (e.g., a SAS 4x receptacle or Mini SAS 4x receptacle). See 5.2.3.3.
- **3.1.86 externally configurable expander device**: A non-self-configuring expander device (see 3.1.77) that contains an expander route table (see 3.1.84) that is configurable with the SMP CONFIGURE ROUTE INFORMATION function (see 10.4.3.27). See 4.1.7.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 9

Author: stx-ghoulder
 Subject: Highlight
 Date: 5/6/2008 1:07:48 PM -07'00'
 ACCEPT - DONE

application layer should be "SCSI application layer".

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

> transport layer s/b SSP transport layer

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

application s/b SCSI application

Author: stx-ghoulder Subject: Highlight Date: 5/6/2008 1:07:47 PM -07'00'

REJECT (Broadcast is capitalized everywhere, including when it is used as part of the name of an object.)

Broadcast -- why is this capitalized but none of the other objects within an expander are capitalized?

3.1.87 eve contour: The locus of points in a signal level versus time eve diagram where the CDF of 10⁻¹² in the actual signal population exists. Comparison of the measured eye contour to the jitter eye mask determines whether a litter eve mask violation has occurred. See 5.3.5 and MJSQ.

- 3.1.88 fall time: The time interval for the falling signal edge to transit between specified percentages of the signal amplitude. In this standard, the measurement points are the 80 % and 20 % voltage levels. Also rise time (see 3.1.191).
- 3.1.89 fanout cable assembly: A cable assembly that attaches a wide connector on one end to multiple narrow connectors on the other and. See 5.2.4.1.3
- 3.1.90 far-end crosstalk: Crosstalk that is propagated in a disturbed channel in the same direction as the propagation of a signal in the disturbing channel. The terminals of the disturbed channel, at which the far-end crosstalk is present, and the energized terminals of the disturbing channel are usually remote from each other.
- 3.1.91 field: A group of one or more contiguous bits.
- 3.1.92 frame: A sequence of data dwords between a start of frame primitive (i.e., SQE_SOAF, or SATA_SOF) and an end of frame primitive (i.e., EOF, EOAF, or SATA_EOF).
- 3.1.93 frame information structure (FIS): The SATA frame format. See SATA-2.
- 3.1.94 generalization: When referring to classes (see 3.1.29), a relationship among classes (see 3.1.28) where one class (i.e., the superclass) shares the attributes (see 3.1.3) and operations (see 3.1.57) of one or more other classes (i.e., the subclasses). See 3.5.
- 3.1.95 golden phase lock loop (golden PLL): A function that conforms to the jitter timing reference frequency response requirements in MJSQ that extracts the jitter timing reference from the data stream under test to be used as the timing reference for the instrument used for measuring the jitter in the signal under test. See MJSQ.
- 3.1.96 hard reset: A SAS device or expander device action in response to a reset event in which the device performs the operations described in 4.4.
- 3.1.97 hard reset sequence: A sequence that causes a hard reset (see 4.4).
- 3.1.98 hardware maximum physical link rate: The maximum physical link rate capability of a phy.
- 3.1.99 hardware minimum physical link rate: The minimum physical link rate capability of a phy.
- 3.1.100 hash function: A mathematical function that maps values from a larger set of values into a smaller set of values, reducing a long value into a shorter hashed value.
- 3.1.101 | T nexus: When referring to SAS ports (see 3.1.204), a nexus between a SAS initiation port and a SAS target port. When referring to SCSI ports (see 3.1.222), a nexus between a SCSI initiator port and a SCSI target port. See SAM-4.
- 3.1.102 | T nexus loss: When referring to SAS ports (see 3.1.204), a condition where a SAS port determines that another SAS port is no longer available. See 4.5. When referring to SCSI ports (see 3.1.222)(e.g., SSP ports), a condition resulting from the events defined by SAM-4 in which the SCSI device performs the I T nexus loss operations described in SAM-4, SPC-4, and the appropriate command standards. See SAM-4
- 3.1.103 I_T_L nexus: A nexus that exists between a SCSI initiator port, a SCSI target port, and a logical unit. This relationship extends the prior I_T nexus. See SAM-4.

Page: 10

Author: elx-bmartin

Subject: Highlight Date: 6/3/2008 2:24:29 PM -07'00'

ACCEPT - DONE (changed to "with one connector on one end and multiple connectors on the other end", avoiding that term and providing a more accurate definition. A fanout cable assembly in SAS-2.1 could easily be 8x on one side to two 4x on the other

wide connector

There is no definition of "wide connector" modify this reference to refer to multiple phys or something of that nature.

Author: elx-bmartin

Subject: Highlight Date: 6/3/2008 2:24:44 PM -07'00'

ACCEPT - DONE (see previous response in this sentence)

narrow connectors

There is no definition of "narrow connector" modify this reference to refer to single phy or something of that nature.

Author: elx-hmartin Subject: Highlight

Date: 5/6/2008 1:07:48 PM -07'00'

REJECT (fields can be 1 bit, and in some standards there are tables with "Field" headers that list both 1-bit and multi-bit fields. Not sure if SAS does that right now, but it should be able to.)

one s.b. two

We never refer to a one bit field, we always refer to that as a bit.

Author: intc-mseidel

Subject: Highlight
Date: 5/17/2008 10.56:10 AM -07'00'

"pt ACCEPT - DONE (changed to "See SATA" to agree with other comments on SATA-2 references)

"SATA-2" is not defined in this standard, but is in the list of abbreviations. The pointer should be to a section number (2.4). There may be other occurrences of this phrase in the standard.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

classes (see 3.1.29)

classes (see 3.1.28)

Author: wdc-meyans

Date: 5/17/2008 10:58:07 AM -07'00'

TREJECT (this is a generic definition. 4.2.5 and Annex E are very specific implementations of hashing)

value.

value (see Annex E).

Comments from page 10 continued on next page

3.1.87 eye contour: The locus of points in a signal level versus time eye diagram where the CDF of 10⁻¹² in the actual signal population exists. Comparison of the measured eye contour to the jitter eye mask determines whether a litter eye mask violation has occurred. See 5.3.5 and MJSQ.

- 3.1.88 fall time: The time interval for the falling signal edge to transit between specified percentages of the signal amplitude. In this standard, the measurement points are the 80 % and 20 % voltage levels. Also see rise time (see 3.1.191).
- **3.1.89 fanout cable assembly:** A cable assembly that attaches a wide connector on one end to multiple narrow connectors on the other end. See 5.2.4.1.3.
- **3.1.90 far-end crosstalk:** Crosstalk that is propagated in a disturbed channel in the same direction as the propagation of a signal in the disturbing channel. The terminals of the disturbed channel, at which the far-end crosstalk is present, and the energized terminals of the disturbing channel are usually remote from each other.
- 3.1.91 field: A group of one or more contiguous bits.
- **3.1.92 frame:** A sequence of data dwords between a start of frame primitive (i.e., SOF, SOAF, or SATA_SOF) and an end of frame primitive (i.e., EOF, EOAF, or SATA_EOF).
- 3.1.93 frame information structure (FIS): The SATA frame format. See SATA-2.
- **3.1.94 generalization:** When referring to classes (see 3.1.29), a relationship among classes (see 3.1.28) where one class (i.e., the superclass) shares the attributes (see 3.1.13) and operations (see 3.1.157) of one or more other classes (i.e., the subclasses). See 3.5.
- 3.1.95 golden phase lock loop (golden PLL): A function that conforms to the jitter trying reference frequency response requirements in MJSQ that extracts the jitter timing reference/from the data stream under test to be used as the timing reference for the instrument used for measuring the jitter in the signal under test. See MJSQ.
- **3.1.96 hard reset:** A SAS device or expander device action in response to reset event in which the device performs the operations described in 4.4.
- 3.1.97 hard reset sequence: A sequence that causes a hard reset (s/e 4.4).
- 3.1.98 hardware maximum physical link rate: The maximum physical link rate capability of a phy.
- 3.1.99 hardware minimum physical link rate: The minimum physical link rate capability of a phy.
- **3.1.100** hash function: A mathematical function that maps/values from a larger set of values into a smaller set of values, reducing a long value into a shorter hashed value.
- 3.1.101 LT nexus: When referring to SAS ports (see 3.1/204), a nexus between a SAS initiator port and a SAS target port. When referring to SCSI ports (see 3.1.222), a nexus between a SCSI initiator port and a SCSI target port. See SAM-4.
- 3.1.102 LT nexus loss: When referring to SAS ports (see 3.1.204), a condition where a SAS port determines that another SAS port is no longer available. See 4.5. When referring to SCSI ports (see 3.1.22)(e.g., SSP ports), a condition resulting from the events defined by SAM-4 in which the SCSI device performs the LT nexus loss operations described in SAM-4, SPC-4, and the appropriate command standards. See SAM-4.
- 3.1.103 I_T_L nexus: A nexus that wists between a SCSI initiator port, a SCSI target port, and a logical unit. This relationship extends the prior I_T nexus. See SAM-4.

10 Working Draft Serial Attached SCSI - 2 (SAS-2)

```
Author: wdc-mevans
Subject: Cross-Out
Date: 5/25/2008 1:48:04 PM -07'00'
TACCEPT - DONE

that exists
[Delete these words here or add them in the other nexus definitions.]

Author: etx-bmartin
Subject: Cross-Out
Date: 5/17/2008 11:06:06 AM -07'00'
TACCEPT - DONE (deleted whole sentence, which is no longer included in the SAM-4 definition of this term)
prior
```

This term is unnecessary and is confusing as I_T nexus is 2 definitions above this one.

3.1.104 L_T_L_Q nexus: A nexus between a SCSI initiator port, a SCSI target port, a logical unit, and a task
This relationship extends the prior L_T_nexus or I_T_L nexus. See SAM-4.

- 3.1.105 IDENTIFY (PACKET) DEVICE data: IDENTIFY DEVICE data from an ATA device, or IDENTIFY PACKET DEVICE data from an ATAPI device. See ATA8-ACS.
- 3.1.106 identification sequence: A sequence where phys exchange IDENTIFY address frames. See
- 3.1.107 idle dword: A vendor-specific data dword that is scrambled and is transmitted outside a frame. See
- 3.1.108 idle time: The part of an OOB signal (see 3.1.156) where D.C. idle (see 5.3.6) is being transmitted interleaved with OOB burst (see 3.1.153). See 6.6.
- 3.1.109 indication: Information passed from a lower layer state machine to a higher layer state machine, usually relaying a request (see 3.1.187) from a peer high. Layer state machine. See 3.6.
- 3.1.110 information unit (IU): The portion of an SSP frame that carries command, ask management function, data, response, or transfer ready information. See 9.2.2.
- **3.1.111 insertion loss:** The ratio, usually expressed in dB, of incident power to delivered power. The dB magnitude of S₁₂ or S₂₁ is the negative of insertion loss in dB. See B.9.
- 3.1.112 intersymbol interference (ISI): Reduction in the distinction of a pulse caused by overlapping energy from neighboring pulses. Neighboring pulses are pulses that are close enough to have significant energy overlapping and does not imply or exclude adjacent pulses (i.e., many bit times may separate the pulses especially in the case of reflections). ISI may result in DDJ and vertical eye closure. Several mechanisms produce ISI (e.g., dispersion, reflections, and circuits that lead to baseline wander). See MJSQ.
- **3.1.113 invalid character:** A character that is not a control character (see 3.1.43) or a data character (see 3.1.48).
- **3.1.114 invalid dword:** A dword that is not a data dword (see 3.1.49) or a primitive (see 3.1.172) (i.e., in the character context, a dword that contains an invalid character, a control character in other than the first character position, a control character other than K28.3 or K28.5 in the first character position, or one or more characters with a running disparity error).
- **3.1.115 jitter:** The collection of instantaneous deviations of signal edge times at a defined signal level of the signal from the reference times (e.g., as defined by the jitter timing reference) for those events. See MJSQ.
- 3.1.116 jitter, data dependent (DDJ): Jitter that is added when the transmission pattern is changed from a clock-like to a non-clock-like pattern. See MJSQ.
- 3.1.117 jitter, deterministic (DJ): Jitter with non-Gaussian distribution. See MJSQ.
- 3.1.118 jitter, random, (RJ): Jitter that is characterized by a Gaussian distribution and is unbounded. See MJSQ.
- 3.1.119 jitter, sinusoidal (SJ): Single frequency jitter applied during signal tolerance testing. See MJSQ.
- 3.1.120 jitter, total (TJ): Jitter from all sources. See MJSQ.
- **3.1.121 jitter timing reference:** The signal used as the basis for calculating the jitter in the signal under test. See MJSQ.

Page: 11 Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE (global change) The term << task >> in most cases should be changed to << command >> Author: elx-bmartin Subject: Cross-Out Date: 5/17/2008 11:06:21 AM -07'00'
TTACCEPT - DONE (deleted whole sentence, which is no longer included in the SAM-4 definition of this term) This term is unnecessary and is confusing as to what is meant by prior. Prior in time or what? Author: wdc-mevans Subject: Highlight Date: 5/25/2008 1:48:30 PM -07'00' REJECT (this is not two clauses logically ORed, this is joining two independent clauses) device, or s/b device or Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE (see 5.3.6) is should refer to the D.C. idle definition in 3.1.xx Author: wdc-mevans Subject: Cross-Out Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE interleaved with OOB burst (see 3.1.153). [Delete the unnecessary words.] Author: wdc-mevans Date: 5/26/2008 4:02:35 PM -07'00' TREJECT (this is describing how in an expander, a response from one phy gets converted into a confirmation by the outgoing phy part of the 4 step request -> indication -> response -> confirmation process. Added "(e.g., see figure 42 in 4.6.6.1)" which might from a peer higher layer state machine. from a peer higher layer state machine in a different SCSI device. Author: stx-ahoulder

REJECT (the peer relationship is between the higher layer state machine on the initiator and on the target. The initiator application

-- the "peer higher layer" phrase totally loses me. If you are a lower level machine passing a message to a higher layer machine,

Comments from page 11 continued on next page

usually relaying a request (see 3.1.187) from a peer higher layer state machine.

layer sends something using a request, the target application layer receives it in an indication.)

Date: 5/6/2008 1:07:48 PM -07'00'

3.1.104 I T L_Q nexus: A nexus between a SCSI initiator port, a SCSI target port, a logical unit, and a task. This relationship extends the prior I T nexus or I T L nexus. See SAM-4.

- 3.1.105 IDENTIFY (PACKET) DEVICE data: IDENTIFY DEVICE data from an ATA device, or IDENTIFY PACKET DEVICE data from an ATAPI device. See ATA8-ACS.
- 3.1.106 identification sequence: A sequence where phys exchange IDENTIFY address frames. See 7.9.
- 3.1.107 idle dword: A vendor-specific data dword that is scrambled and is trapenitted outside a frame. See
- 3.1.108 idle time: The part of an OOB signal (see 3.1.156) where D.C. idle (see 5.3.6) is being transmitted interleaved with OOB burst (see 3.1.153). See 6.6.
- 3.1.109 indication: Information passed from a lower layer state machine to a higher layer state machine, sually relaving a request (see 3.1.187)
- 3.1.110 information unit (IU): The portion of an SSP frame that carries con mmand, task management function, data, response, or transfer ready information. See 9.2.2.
- 3.1.111 insertion loss: The ratio, usually expressed in dB, of incident power to delivered power. The dB magnitude of S₁₂ or S₂₁ is the negative of insertion loss in dB. See B.9.
- 3.1.112 intersymbol interference (ISI): Reduction in the distinction of a pulse caused by overlapping energy from neighboring pulses. Neighboring pulses are pulses that are close enough to have significant energy overlapping and does not imply or exclude adjacent pulses (i.e., many bit times may separate the pulses, especially in the case of reflections). ISI may result in DDJ and vertical eye closure. Several mechanisms produce ISI (e.g., dispersion, reflections, and circuits that lead to baseline wanter). See MJSQ.
- 3.1.113 invalid character: A character that is not a control character (see 3.1.43) or a data character (see 3.1.48).
- 3.1.114 invalid dword: A dword that is not a data dword (see 3.1.45) or a primitive (see 3.1.172) (i.e., in the character context, a dword that contains an invalid character, a control character in other than the first character position, a control character other than K28.3 or 128.5 in the first character position, or one or more characters with a running disparity error).
- 3.1.115 jitter: The collection of instantaneous deviations of signal edge times at a defined signal level of the signal from the reference times (e.g., and defined by the jitter timing reference) for these events. See MJSQ.
- 3.1.116 jitter, data dependent (DDJ): Jitter that is added when the transmission pattern is changed from a clock-like to a non-clock-like pattern. See MJSQ.
- 3.1.117 jitter, deterministic (UJ): Jitter with non-Gaussian distribution. See MJSQ.
- 3.1.118 jitter, random, (157): fitter that is characterized by a Gaussian distribution and is unbounded. See MJSQ.
- 3.1.119 jitter, sinusoidal (SJ): Single frequency jitter applied during signal tolerance testing. See MJSQ.
- 3.1.120 jitter, total (TJ): Jitter from all sources. See MJSQ.
- 3.1.121 jitter timing reference: The signal used as the basis for calculating the jitter in the signal under test. See MJSQ.

how can there be a peer higher layer machine to the lower layer machine? I think this entire phrase should be deleted.

Author: RElliott Subject: Cross-Out Date: 7/17/2008 1:57:40 PM -07'00' ACCEPT - DONE

Delete this unused acronym:

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

REJECT (the value defined by "insertion loss" is not required to be described in dB. The definition would be incorrect if it insisted on that. S-parameter files used by physical layer designers can be in 3 different formats, only one of which uses dB)

Is there any case in this standard when it is expressed in something other than dB? I think not so the << usually >> term should be deleted.

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 1:49:44 PM -07'00' ACCEPT - DONE

This should be << data dependent jitter >>

Author: elx-bmartin Subject: Highlight Date: 5/25/2008 1:49:12 PM -07'00' ACCEPT - DONE

3.1.116 jitter, data dependent

Change 3.1.116 to 3.1.120 to be the proper name not "jitter, qualifier" (e.g., "data dependent jitter" not "jitter, data dependent").

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE

This should be << deterministic jitter >>

Author: wdc-mevans Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
ACCEPT - DONE

> random, (RJ): s/b random (RJ):

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

This should be << random jitter >> and the second , should be deleted.

Author: Isi-gpenokie Subject: Sticky Note

If I'm going to the glossary to look for any of these types of jitter I would not look in the j's I would look in d, r, or s and not find it.

Author: Isi-gpenokie Subject: Highlight

3.1.104 L_T_L_Q nexus: A nexus between a SCSI initiator port, a SCSI target port, a logical unit, and a task. This relationship extends the prior I T nexus or I T L nexus. See SAM-4.

- **3.1.105 IDENTIFY (PACKET) DEVICE data:** IDENTIFY DEVICE data from an ATA device, or IDENTIFY PACKET DEVICE data from an ATAPI device. See ATA8-ACS.
- 3.1.106 identification sequence: A sequence where phys exchange IDENTIFY address frames. See 7.9.
- 3.1.107 idle dword: A vendor-specific data dword that is scrambled and is transmitted outside a frame. See
- 3.1.108 idle time: The part of an OOB signal (see 3.1.156) where D.C. idle (see 5.3.6) is being transmitted interleaved with OOB burst (see 3.1.153). See 6.6.
- 3.1.109 indication: Information passed from a lower layer state machine to a higher layer state machine, usually relaying a request (see 3.1.187) from a peer higher layer state machine. See 3.6.
- 3.1.110 information unit (IU): The portion of an SSP frame that carries command, task management function, data, response, or transfer ready information. See 9.2.2.
- **3.1.111 insertion loss:** The ratio, usually expressed in dB, of incident power to delivezed power. The dB magnitude of S₁₂ or S₂₁ is the negative of insertion loss in dB. See B.9.
- 3.1.112 intersymbol interference (ISI): Reduction in the distinction of a pulse a dused by overlapping energy from neighboring pulses. Neighboring pulses are pulses that are close enough to have significant energy overlapping and does not imply or exclude adjacent pulses (i.e., many bit times may separate the pulses, especially in the case of reflections). ISI may result in DDJ and vertical eye closure. Several mechanisms produce ISI (e.g., dispersion, reflections, and circuits that lead to baseline wander). See MJSQ.
- **3.1.113 invalid character:** A character that is not a control character (see 3.1.43) or a data character (see 3.1.48).
- **3.1.114 invalid dword:** A dword that is not a data dword (see 3.1.49) or a primitive (see 3.1.172) (i.e., in the character context, a dword that contains an invalid character, a control character in other than the first character position, a control character other than K28 or K28.5 in the first character position, or one or more characters with a running disparity error).
- **3.1.115 jitter:** The collection of instantaneous deviations of signal edge times at a defined signal level of the signal from the reference times (e.g., as defined by the jitter timing reference) for those events. See MJSQ.
- 3.1.116 jitter, data dependent (DDJ): Jixer that is added when the transmission pattern is changed from a clock-like to a non-clock-like pattern. See MJSQ.
- 3.1.117 jitter, deterministic (DJ): Jitter with non-Gaussian distribution. See MJSQ.
- **=**
- 3.1.118 jitter, random, (RJ): Atter that is characterized by a Gaussian distribution and is unbounded. See MJSQ.
 - 3.1.119 jitter, sinusoid (SJ): Single frequency jitter applied during signal tolerance testing. See MJSQ.
 - 3.1.120 jitter, total (TJ): Jitter from all sources. See MJSQ.
 - **3.1.121 jitter timing reference:** The signal used as the basis for calculating the jitter in the signal under test. See MJSQ.

11

Working Draft Serial Attached SCSI - 2 (SAS-2)

Date: 5/6/2008 1:07:48 PM -07'00'

This should be << sinusoidal jitter >>

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'

This should be << total jitter >>

3.1.122 jitter tolerance: The ability of the receiver device to recover transmitted bits in an incoming data stream in the presence of specified jitter in the signal applied to the receiver device compliance point. See MISO.

- 3.1.123 jitter tolerance pattern (JTPAT): A test pattern for jitter testing. See 5.3.5.5 and A.1.
- **3.1.124 least mean square (LMS):** An algorithm for adaptively adjusting the tap coefficients of a DFE (see 3.1.54) based on the difference between the desired and actual signal.
- **3.1.125 least significant bit (LSB):** In a binary code, the bit or bit position with the smallest numerical weighting in a group of bits that, when taken as a whole, represent a numerical value (e.g., in the number 0001b, the bit that is set to one).
- 3.1.126 link reset: Performing the link reset sequence (see 3.1.127).
- **3.1.127 link reset sequence:** For SATA, a phy reset sequence (see 3.1.163). For SAS, a phy reset sequence followed by an identification sequence (see 3.1.106), or a phy reset sequence followed by a hard reset sequence (see 3.1.97), another phy reset sequence, and an identification sequence. See 4.4
- 3.1.128 little-endian: A format for storage or transmission of binary data in which the least significant byte appears first. In a multi-byte value, the byte containing the least significant bit is stored in the lowest memory address and transmitted first, and the byte containing the most significant bit is stored in the highest memory address and transmitted last (e.g., for the value 0080h, the byte containing 80h is stored in the lowest memory address, and the byte containing 00h is stored in the highest memory address).
- **3.1.129 livelock:** A condition where two or more processes (e.g., connection requests) continually change their state in response to changes in other processes, resulting in none of the progresses completing.
- **3.1.130 locked zoning expander device:** A zoning expander device (see 3.1.305) that has been locked by a zone manager (see 3.1.301). See 4.9.6.2.
- 3.1.131 logical link: A physical link (see 3.1.164) or a multiplexed portion of a physical link. See 4.1.3.
- **3.1.132 logical link rate**: A link rate between two logical phys estableshed as a result of speed negotiation and multiplexing negotiation between the physical phys containing mose logical phys.
- 3.1.133 logical phy: A phy (see 3.1.161) or a multiplexed portion of a phy. See 4.1.2.
- 3.1.134 logical unit: An externally addressable entity within a SCSI target device that implements a SCSI device model and contains a device server. See SAM-4.
- 3.1.135 logical unit number (LUN): An identifier for a logical unit (see 3.1.134). See SAM-4.
- 3.1.136 maximum training time (MTT): The maximum time during Train-SNW for a phy receiver to complete training (see 3.1.278) (see 6.7.4.2.3.4).
- **3.1.137 maximum Train-SNW window time (MTWT):** The maximum duration of Train-SNW (see 6.7.4.2.3.4).
- 3.1.138 media: Plural of medium (see 3.1.139).

12

- 3.1.139 medium: The material on which data is stored (e.g., a magnetic disk).
- 3.1.140 message: Information sent between state machines. See 3.6.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 12

Author: elx-bmartin Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' TACCEPT - DONE (moved latter after "Train-SNW")

(see 3.1.278) (see 6.7.4.2.3.4).

do not put two parenthetical references next to each other.

- 3.1.141 most significant bit (MSB): In a binary code, the bit or bit position with the largest numerical weighting in a group of bits that, when taken as a whole, represent a numerical value (e.g., in the number 1000b, the bit that is set to one).
- **3.1.142 multiplexing:** Dividing a physical link into two logical links, and dividing a phy into two logical phys, by interleaving dwords. See 6.10.
- 3.1.143 multiplicity: When referring to classes (see 3.1.29), an indication of the range of allowable instances of an object (see 3.1.151) or an attribute (see 3.1.13). See 3.5.
- 3.1.144 narrow link: A physical link that attaches a narrow port to another narrow port. See 4.1.4.
- 3.1.145 narrow port: A port that contains exactly one phy. See 4.1.4.
- 3.1.146 near-end crosstalk (NEXT): Crosstalk that is propagated in a disturbed channel in the opposite direction as the propagation of a signal in the disturbing channel. The terminals of the disturbed channel, at which the near-end crosstalk is present, and the energized terminals of the disturbing channel are usually near-each other.
- **3.1.147 negation time:** The part of an OOB signal (see 3.1.156) during which D.C. idle (see 3.1.46) is transmitted after the last OOB burst (see 3.1.153). See 6.6.
- 3.1.148 negotiated logical link rate: The current operational logical link rate (see 3.1.132).
- **3.1.149 negotiated physical link rate:** The current operational physical link rate (see 2.1.165).
- 3.1.150 nexus: When referring to SAS ports (see 3.1.204), a relationship between a SAS initiator port and a SAS target port. When referring to SCSI ports (see 3.1.222), a relationship between a SCSI initiator port and a SCSI target port that may extend to a logical unit and a task. 56e SAM-4.
- **3.1.151 object:** An entity with a well-defined boundary and identity that encapsulates state and behavior. All objects are instances of classes (see 3.1.28)(i.e., a concrete manifestation of a class is an object).
- **3.1.152 object diagram:** A diagram that encompasses objects and their relationships at a point in time. See 3.5.
- 3.1.153 OOB burst: The transmission of signal transitions for a burst time (see 3.1.24). See 6.6.1
- **3.1.154 OOB interval:** The time basis for burst times (see 3.1.24), idle times (see 3.1.108) regation times (see 3.1.147), and signal times (see 3.1.237) used to create OOB signals (see 3.1.156).
- **3.1.155 OOB sequence:** A sequence where two phys exchange OOB signals (see 3.1.156). See 6.7.2.1 and 6.7.4.1.
- **3.1.156 OOB signal:** A pattern of idle time (see 3.1.108), burst time (see 3.1.24), and negation time (see 3.1.147) used during the link reset sequence. See 6.6.
- **3.1.157 operation:** When referring to classes (see 3.1.29), a service that may be requested from any object (see 3.1.151) of the class (see 3.1.28) in order to effect behavior. Operations describe what a class is allowed to do and may be a request or a query. A request may change the state of the object but a query should not. See 3.5.
- **3.1.158 partial pathway:** The set of logical links participating in a connection request that have not yet conveyed a connection response. See 4.1.11.
- **3.1.159 pathway:** A set of logical links between a SAS initiator phy and a SAS target phy being used by a connection (see 3.1.37). See 4.1.11.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 13

classes (see 3.1.28)

13

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
   classes (see 3.1.29)
   classes (see 3.1.28)
Author: Isi-gpenokie
Subject: Highlight
Date: 5/17/2008 11:10:07 AM -07'00'
TACCEPT - DONE (rewritten based on sam4r14 definition: "When referring to SAS devices (see 3.1.195), a relationship between
    two SAS devices, and the SAS initiator port and the SAS target port objects within those SAS devices. When referring to SCSI
   devices (see 3.1.214), a relationship between two SCSI devices, and the SCSI initiator port and the SCSI target port objects within
   those SCSI devices. See SAM-4.")
   This is not a good definition for nexus. How about << When referring to SAS devices, a relationship between SAS ports. When
   referring to SCSI devices, a relationship between a SCSI ports that may extend to a logical unit and a command.
Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
   Global
   task
   s/b
   command
   [as based on the most recent changes in SAM-4]
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
   classes (see 3.1.29)
```

3.1.160 pathway blocked count: The number of times the port has retried this connection request due to receiving OPEN_REJECT (PATHWAY BLOCKED), OPEN_REJECT (RESERVED STOP 0), or OPEN_REJECT (RESERVED STOP 1).

- **3.1.161 phy:** A object in a device that is used to interface to other devices (e.g., an expander phy (see 3.1.80) or a SAS phy (see 3.1.202)). See 4.1.2.
- 3.1.162 phy identifier: The value by which a phy is identified within a device. See 4.2.8.
- **3.1.163 phy reset sequence:** An OOB sequence (see 3.1.155) followed by a speed negotiation sequence (see 3.1.248). See 4.4.
- **3.1.164 physical link:** Two differential signal pairs, one pair in each direction, that connect two physical phys (see 3.1.166). See 4.1.2.
- **3.1.165 physical link rate**: A link rate between two physical phys established as a result of speed negotiation between those phys.
- **3.1.166 physical phy:** A phy (see 3.1.161) that contains a transceiver (see 3.1.281) and electrically interfaces to a physical link to communicate with another physical phy. See 4.1.2.
- **3.1.167 port:** A SAS port (see 3.1.204) or an expander port (see 3.1.81). Each port contains one or more phys (see 3.1.161). See 4.1.4.
- 3.1.168 port identifier: The value by which a port is identified within a domain. See 4.2.7.
- 3.1.169 port name: A worldwide unique name for a port within a transport protocol. See 4.2.6.
- **3.1.170 potential pathway:** A set of logical links between a SAS initiator phy and a SAS target phy. See 4.1.11.
- 3.1.171 power op. Power being applied.

14

- **3.1.172 primitive:** A dword containing a 7Ch or BCh control byte followed by three data bytes, or a K28.3 or K28.5 control character with correct disparity followed by three data characters with correct disparity. See 7.2.
- 73.1.173 primitive sequence: A set of primitives treated as a single entity. See 7.2.4.
- **3.1.174 probe point:** Physical position in a test load where signal characteristics for compliance points are measured See 5.3.2.
- 3.1.175 programmed maximum physical link rate: The maximum operational physical link rate of a phy (e.g., as programmed via the SMP PHY CONTROL function (see 10.4.3.28) or the Phy Control and Discover mode page (see 10.2.7.5)).
- 3.1.176 programmed minimum physical link rate: The minimum operational physical link rate of a phy (e.g., as programmed via the SMP PHY CONTROL function (see 10.4.3.28) or the Phy Control and Discover mode page (see 10.2.7.5)).
- 3.1.177 protocol: Either SSP (see 3.1.232), SMP (see 3.1.231), or STP (see 3.1.229).
- 3.1.178 rate: Data transfer rate of a physical or logical link (e.g., 1.5 Gbps, 3 Gbps, or 6 Gbps).
- **3.1.179 rate change delay time (RCDT):** The time between rates during the speed negotiation sequence (see 6.7.4.2).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 14

Author: hpq-relliott

Subject: Note Date: 5/17/2008 11:12:16 AM -07'00'

ACCEPT - DONE (5/5 WG: Mark Evans does want this changed. The "may" level is appropriate.

Worded as: "For a phy that supports being attached to SATA phy, a dword containing a 7Ch or BCh control byte followed by three data bytes, or a K28.5 control character with correct disparity followed by three data characters with correct disparity. For a phy that does not support being attached to SATA phy, a dword containing a BCh control byte followed by three data bytes, or a K28.5 control character with correct disparity followed by three data characters with correct disparity.")

An end device that does not support being attached to SATA (e.g., a SAS disk drive) should be allowed to consider K28.3 based dwords as not being primitives, and thus treat them as illegal dwords.

Add this somewhere:

An end device that does not support STP or SATA may consider a dword containing 7Ch control byte or K28.3 control character as an invalid dword.

3.1.180 read data: Data transferred to the SCSI application client's data-in buffer from the SCSI device server, as requested by the Send Data-in transport protocol service (see 10.2.1.6).

- 3.1.181 receiver circuit: An electronic circuit that converts an analog serial input signal to a logic signal.
- 3.1.182 receiver device (Rx): The device downstream from an IR or CR compliance point sontaining a portion of the physical link and a receiver circuit (see 3.1.181).
- 3.1.183 reference receiver device: A set of parameters defining electrical performance characteristics that provide a set of minimum electrical performance requirements for a receiver device and that are also used in mathematical modeling to determine compliance of a TxRx connection or transmitter device. See 5.3.7.4.3.
- 3.1.184 reference transmitter device: A set of parameters defining electrical performance characteristics of a transmitter device that are used in mathematical modeling to determine compliance of a TxRx connection. See 5.3.6.5.4.
- **3.1.185 reference transmitter test load:** A set of S-parameters defining the electrical characteristics of a TxRx connection used as the basis for transmitter device and receiver device performance evaluation through mathematical modeling. See 5.3.2.5.
- 3.1.186 reflection coefficient (ρ): The ratio of reflected voltage to incident voltage.
- 3.1.187 request: Information passed from a higher layer state machine to a lower layer state machine, usually to initiate some action. See 3.6.
- 3.1.188 reset event: An event that triggers a hard reset (see 4.4.2) in a SAS devices
- **3.1.189 response:** Information passed from a higher layer state machine to a lower layer state machine, usually in response to an indication (see 3.1.109). See 3.6.
- **3.1.190 return loss:** The ratio, usually expressed in dB, of incident power to reflected power. The dB magnitude of S₁₁ or S₂₂ is the negative of return loss in dB. See B.9.
- 3.1.191 rise time: The time interval for the rising signal edge to transit between specified percentages of the signal amplitude. In this standard, the measurement points are the 20 % and 80 % voltage levels. Also see fall time (see 3.1.88).
- **3.1.192 role:** When referring to classes (see 3.1.29) and objects (see 3.1.152), a label at the end of an association (see 3.1.11) or aggregation (see 3.1.9) that defines a relationship to the class on the other side of the association or aggregation. See 3.5.
- 3.1.193 route table optimization: A configuration subprocess (see 3.1.35) algorithm that reduces the number of entries required in an expander route table (see 3.1.84) in an externally configurable expander device (see 3.1.86). See 4.8.3.
- 3.1.194 run length: Number of consecutive identical bits in the transmitted signal (e.g., the pattern 0011111010 includes the following run lengths: five 1s, one 0, one 1, and indeterminate run lengths of 0s at the start and end).
- 3.1.195 running disparity (RD): A binary parameter with a negative (-) or positive (+) value indicating the cumulative encoded signal imbalance between the one and zero signal state of all characters since dword synchronization has been achieved. See 6.2.
- 3.1.196 SAS address: A worldwide unique NAA IEEE Registered format identifier assigned to a SAS port (see 3.1.204) or expander device (see 3.1.77). See 4.2.2.
- 3.1.197 SAS device: A SAS initiator device, SAS target device, or SAS target/initiator device.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 15 Author: wdc-mevans Subject: Highlight Date: 5/17/2008 11:14:39 AM -07'00' REJECT server, as s/b server as Author: elx-hmartin Subject: Highlight Date: 6/3/2008 3:37:40 PM -07'00' ACCEPT - DONE (see reply to comment on transmitter device (Tx) definition) IR or CR compliance point There is no definition of these points. They are mentioned in the text but only as points with no textual description that I can find. Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' REJECT (See response to "insertion loss" comment) Is there any case in this standard when it is expressed in something other than dB? I think not so the << usually >> term should be Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE classes (see 3.1.29) and objects (see 3.1.152) classes (see 3.1.28) or objects (see 3.1.152) Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE See 6.2. point to new RD section Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE A worldwide unique NAA IEEE Registered format identifier An identifier to allow for NAA Locally Administered (see comment in 4.2.2)

Comments from page 15 continued on next page

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

3.1.180 read data: Data transferred to the SCSI application client's data-in buffer from the SCSI device server, as requested by the Send Data-In transport protocol service (see 10.2.1.6).

- 3.1.181 receiver circuit: An electronic circuit that converts an analog serial input signal to a logic signal.
- **3.1.182 receiver device (Rx):** The device downstream from an IR or CR compliance point containing a portion of the physical link and a receiver circuit (see 3.1.181).
- 3.1.183 reference receiver device: A set of parameters defining electrical performance characteristics that provide a set of minimum electrical performance requirements for a receiver device and that are also used in mathematical modeling to determine compliance of a TxRx connection or transmitter device. See 5.3.7.4.3.
- 3.1.184 reference transmitter device: A set of parameters defining electrical performance characteristics of a transmitter device that are used in mathematical modeling to determine compliance of a TXRX connection. See 5.3.6.5.4.
- **3.1.185 reference transmitter test load:** A set of S-parameters defining the electrical characteristics of a TxRx connection used as the basis for transmitter device and receiver device performance evaluation through mathematical modeling. See 5.3.2.5.
- 3.1.186 reflection coefficient (ρ): The ratio of reflected voltage to incident voltage.
- **3.1.187 request:** Information passed from a higher layer state machine to a lower layer state machine, usually to initiate some action. See 3.6.
- 3.1.188 reset event: An event that triggers a hard reset (see 4.4.2) in a SAS device.
- **3.1.189 response:** Information passed from a higher layer state machine to a lower layer state machine, usually in response to an indication (see 3.1.109). See 3.6.
- **3.1.190 return loss:** The ratio, usually expressed in dB, of incident power to reflected power. The dB magnitude of S₁₁ or S₂₂ is the negative of return loss in dB. See B.9.
- 3.1.191 rise time: The time interval for the rising signal edge to transit between specified percentages of the signal amplitude. In this standard, the measurement points are the 20 % and 80 % voltage levels. Also see fall time (see 3.1.88).
- **3.1.192 role:** When referring to classes (see 3.1.29) and objects (see 3.1.152), a label at the end of an association (see 3.1.11) or aggregation (see 3.1.9) that defines a relationship to the class on the other side of the association or aggregation. See 3.5.
- **3.1.193 route table optimization:** A configuration subprocess (see 3.1.35) algorithm that reduces the number of entries required in an expander route table (see 3.1.84) in an externally configurable expander device (see 3.1.86). See 4.8.3.
- **3.1.194 run length:** Number of consecutive identical bits in the transmitted signal (e.g., the pattern 0011111010 includes the following run lengths: five 1s, one 0, one 1, and indeterminate run lengths of 0s at the start and end).
- **3.1.195 running disparity (RD):** A binary parameter with a negative (-) or positive (+) value indicating the cumulative encoded signal imbalance between the one and zero signal state of all characters since dword synchronization has been achieved. See 6.2.
- 3.1.196 SAS address: A worldwide unique NAA IEEE Registered format identifier assigned to \$\frac{1}{2}\$ SAS port (see 3.1.204) or expander device (see 3.1.77). See 4.2.2.

15

3.1.197 SAS device: A SAS initiator device, SAS target device, or SAS target/initiator device.

Working Draft Serial Attached SCSI - 2 (SAS-2)

See 4.2.2.

needs to allow for NAA Locally Assigned (see comment in 4.2.2)

Author: Isi-gpenokie Subject: Highlight

Subject: Highlight Date: 5/25/2008 1:51:26 PM -07'00'

ACCEPT - DONE (changed to "A SAS initiator device and/or a SAS target device.")

There should be no such thing as a << SAS target/initiator device >> delete it here and everywhere else where it appears.

3.1.198 SAS domain: The I/O system defined by this standard that may serve as a SCSI domain. See 4.1.9.

- 3.1.199 SAS initiator device: A device containing SSP, STP, and/or SMP initiator ports in a SAS domain.
- 3.1.200 SAS initiator phy: A logical phy (see 3.1.133) in a SAS initiator device.
- **3.1.201 SAS initiator port:** An SSP initiator port (see 3.1.254), STP initiator port (see 3.1.262), and/or SMP initiator port (see 3.1.240) in a SAS domain.
- 3.1.202 SAS phy: A phy in a SAS device that interfaces to a service delivery subsystem (see 3.1.233).
- 3.1.203 SAS logical phy: A SAS phy (see 3.1.202) or a multiplexed portion of a SAS phy. See 4.1.2.
- 3.1.204 SAS port: A SAS initiator port (see 3.1.201), SAS target port (see 3.1.207), or SAS target/initiator port (see 3.1.209).
- **3.1.205 SAS target device:** A device containing SSP, STP, and/or SMP target ports in a SAS domain. See 4.1.6.
- 3.1.206 SAS target phy: A logical phy (see 3.1.133) in a SAS target device.
- 3.1.207 SAS target port: An SSP target port (see 3.1.258), STP target port (see 3.1.267), and/or SMP target port (see 3.1.244) in a SAS domain.
- 3.1.208 SAS target/initiator device: A device that has all the characteristics of a SAS target device and a SAS initiator device.
- 3.1.209 SAS target/initiator port: A port that has all the characteristics of a SAS target port and a SAS initiator port in a SAS domain.
- 3.1.210 SATA device: An ATA-device that contains a SATA device port in an ATA domain (analogous to a SCSI target device):
- **3.1.211 SATA device port:** An ATA device object that interfaces to a service delivery subsystem (see 3.1.233) with SATA. Analogous to a SCSI target port.
- 3.1.212 SATA host: An ATA host that contains a SATA host port in an ATA domain (analogous to a SCSI initiator device).
- **3.1.213 SATA host port:** An ATA host object that interfaces to a service delivery subsystem (see 3.1.233) with SATA. Analogous to a SCSI initiator port.
- 3.1.214 SATA phy: A phy in a SATA device or SATA port selector that interfaces to a service delivery subsystem (see 3.1.233). Analogous to a SAS phy.
- 3.1.215 SATA port selector: A device that attaches to two SATA host ports (i.e., two ATA demains) and one SATA device port, and provides the means for one SATA host to access the device at any given time (see SATA-2).
- 3.1.216 saturating counter: A counter that remains at its maximum value after reaching its maximum value.
- **3.1.217 scrambling:** Modifying data by XORing each bit with a pattern generated by a linear feedback shift register to minimize repetitive character patterns. See 7.6.
- **3.1.218 SCSI device:** A device that contains one or more SCSI ports that are connected to a service delivery subsystem (see 3.1.233) and supports a SCSI application protocol. See SAM-4.

Page: 16

Author: Isi-gpenokie

Subject: Highlight
Date: 5/25/2008 1:52:07 PM -07'00'
TPACCEPT - DONE (using "and/or")

This << port (see 3.1.201), SAS target port >> should be << port (see 3.1.201) or SAS target port >>

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 1:51:53 PM -07'00'

There should be no such thing as a << SAS target/initiator port >> delete it here and everywhere else where it appears.

Author: Isi-gpenokie
Subject: Cross-Out
Date: 5/25/2008 1:52:20 PM -07'00'
PACCEPT - DONE
There should be no such thing

Author: Isi-gpenokie
Subject: Cross-Out
Date: 5/25/2008 1:52:26 PM -07'00'
TACCEPT - DONE
There should be no such thing

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
SCSI target device
s/b
SAS target device

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
SCSI target port
s/b
SAS target port

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE
SCSI initiator device
s/b
SAS initiator device

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 2:18:13 PM -07'00'

You have to ways of stating this, one in ()s and the other in a sentence. Change all ()s to sentences so there read << SATA. Analogous to a SCSI thing. >>.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Comments from page 16 continued on next page

3.1.198 SAS domain: The I/O system defined by this standard that may serve as a SCSI domain. See 4.1.9.

- **3.1.199 SAS initiator device:** A device containing SSP, STP, and/or SMP initiator ports in a SAS domain. See 4.1.6.
- 3.1.200 SAS initiator phy: A logical phy (see 3.1.133) in a SAS initiator device.
- **3.1.201 SAS initiator port:** An SSP initiator port (see 3.1.254), STP initiator port (see 3.1.262), and/or SMP initiator port (see 3.1.240) in a SAS domain.
- 3.1.202 SAS phy: A phy in a SAS device that interfaces to a service delivery subsystem (see 3.1.233).
- 3.1.203 SAS logical phy: A SAS phy (see 3.1.202) or a multiplexed portion of a SAS phy. See 4.1.2.
- 3.1.204 SAS port: A SAS initiator port (see 3.1.201), SAS target port (see 3.1.207), or SAS target/initiator port (see 3.1.209).
- **3.1.205 SAS target device:** A device containing SSP, STP, and/or SMP target ports in a SAS domain. See 4.1.6.
- 3.1.206 SAS target phy: A logical phy (see 3.1.133) in a SAS target device.
- 3.1.207 SAS target port: An SSP target port (see 3.1.258), STP target port (see 3.1.267), and/or SMP target port (see 3.1.244) in a SAS domain.
- 3.1.208 SAS target/initiator device: A device that has all the characteristics of a SAS target device and a SAS initiator device.
- 3.1.209 SAS target/initiator-port: A port that has all the characteristics of a SAS target port and a SAS initiator-port in a SAS domain.
- **3.1.210 SATA device:** An ATA device that contains a SATA device port in an ATA domain (analogous to a SCSI target device).
- **3.1.211 SATA device port:** An ATA device object that interfaces to a service delivery subsystem (see 3.1.233) with SATA. Analogous to a SCSI target port.
- 3.1.212 SATA host: An ATA host that contains a SATA host port in an ATA domain (analogous to a SCSI initiator device).
- **3.1.213 SATA host port:** An ATA host object that interfaces to a service delivery subsystem (see 3.1.233) with SATA. Analogous to a SCSI initiator port.
- **3.1.214 SATA phy:** A phy in a SATA device or SATA port selector that interfaces to a service delivery subsystem (see 3.1.233). Analogous to a SAS phy.
- **3.1.215 SATA port selector:** A device that attaches to two SATA host ports (i.e., two ATA domains) and one SATA device port, and provides the means for one SATA host to access the device at any given time (see SATA-2).
- 3.1.216 saturating counter: A counter that remains at its maximum value after reaching its maximum value.
- **3.1.217 scrambling:** Modifying data by XORing each bit with a pattern generated by a linear feedback shift register to minimize repetitive character patterns. See 7.6.
- **3.1.218 SCSI device:** A device that contains one or more SCSI ports that are connected to a service delivery subsystem (see 3.1.233) and supports a SCSI application protocol. See SAM-4.

Working Draft Serial Attached SCSI - 2 (SAS-2)

16

3.1.219 SCSI domain: An I/O system consisting of a set of SCSI devices that communicate with one another by means of a service delivery subsystem (see 3.1.233). See SAM-4.

- **3.1.220 SCSI initiator device:** A SCSI device containing SCSI application clients and SCSI initiator ports that originates device service and task management requests to be processed by a SCSI target device and receives device service and task management responses from SCSI target devices. See SAM-4.
- 3.1.221 SCSI initiator port: A SCSI initiator device object that acts as the connection between SCSI application clients and a service delivery subsystem (see 3.1.233) through which indications and responses are routed. See SAM-4.
- 3.1.222 SCSI port: A SCSI initiator port, SCSI target port, or SCSI target/initiator port. See SAM-4.
- 3.1.223 SCSI target device: A SCSI device containing logical units and SCSI target ports that receives device service and task management requests for processing and sends device service and task management responses to SCSI initiator devices. See SAM-4.
- 3.1.224 SCSI target port: A SCSI target device object that contains a task router and acts as the connection between SCSI device servers and task managers and a service delivery subsystem (see 3.1.233) through which requests and confirmations are routed. See SAM-4.
- 3.1.225 SCSI target/initiator device: A device that has all the characteristics of a SCSI target device and a SCSI initiator device. See SAM-4.
- 3.1.226 SCSI target/initiator port: A SCSI target/initiator device object that has all the characteristics of a SCSI target port and a SCSI initiator port. See SAM-4.
- 3.1.227 self-configuring expander device: An expander device (see 3.1.77) containing an SMP initiator port and a management application client to perform the discover process (see 3.1.62) to configure its own expander route table (see 3.1.84). See 4.7.2.
- 3.1.228 Serial ATA (SATA): The protocol defined by SATA-2 (see 2.3).
- 3.1.229 Serial ATA Tunneled Protocol (STP): The protocol defined in this standard used by STP initiator ports (see 3.1.262) to communicate with STP target ports (see 3.1.267) in a SAS logiain. See 7.17 and 9.3.
- 3.1.230 Serial Attached SCSI (SAS): The set of protocols and the interconnect defined by this standard.
- **3.1.231 Serial Management Protocol (SMP):** The protocol defined in this standard used by SMP initiator ports (see 3.1.240) to communicate with SMP target ports (see 3.1.244) in a SAS domain. See 7.18 and 9.4.
- **3.1.232 Serial SCSI Protocol (SSP):** The protocol defined in this standard used by SSP initiator ports (see 3.1.254) to communicate with SSP target ports (see 3.1.258) in a SAS domain. See 7.16 and 9.2.
- 3.1.233 service delivery subsystem: The part of a SCSI I/O system that transmits information between a SCSI initiator port and a SCSI target port, or the part of an ATA I/O system that transmits information between an ATA host and an ATA device, or the part of a SAS I/O system that transmits information between a SAS initiator port and a SAS target port.
- 3.1.234 signal: The entire voltage waveform during transmission.
- **3.1.235 signal amplitude:** A property of the overall signal (see 3.1.234) that describes the peak or peak-to-peak values of the signal level (see 3.1.236).
- 3.1.236 signal level: The instantaneous intensity of a signal (see 3.1.234) measured in volts.

Page: 17 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE indications and responses requests and confirmations since right now, SAM-4 does not define indications and responses on the initiator side (it does so only on the target side). This matches the SAM-4 post-letter ballot definition. Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE A SCSI initiator port, SCSI target port, or SCSI target/initiator port. A SCSI initiator port and/or a SCSI target port. since SAM-4 got rid of "SCSI target/initiator port" Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 2:24:42 PM -07'00' ACCEPT - DONE This should be << through which requests, indications, responses, and confirmations are routed. >> Author: Isi-gpenokie Subject: Cross-Out Date: 5/25/2008 1:53:10 PM -07'00' TACCEPT - DONE There is no such thing. Author: Isi-gpenokie Subject: Cross-Out Date: 5/25/2008 1:53:16 PM -07'00' ACCEPT - DONE There is not such thing. Author: elx-hmartin Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE (changed 2.3 to 2.4, but kept in parenthesis) (see 2.3). s.b. See 2.4 Author: intc-mseidel

Comments from page 17 continued on next page

Date: 5/6/2008 1:07:48 PM -07'00'

Author: elx-bmartin

The listing of "SATA-2" is in 2.4, not 2.3.

3.1.219 SCSI domain: An I/O system consisting of a set of SCSI devices that communicate with one another by means of a service delivery subsystem (see 3.1.233). See SAM-4.

- 3.1.220 SCSI initiator device: A SCSI device containing SCSI application clients and SCSI initiator ports that originates device service and task management requests to be processed by a SCSI target device and receives device service and task management responses from SCSI target devices. See SAM-4.
- 3.1.221 SCSI initiator port: A SCSI initiator device object that acts as the connection between SCSI application clients and a service delivery subsystem (see 3.1.233) through which indications and response are routed. See SAM-4.
- 3.1.222 SCSI port: A SCSI initiator port, SCSI target port, or SCSI target/initiator port. See SAM-4.
- 3.1.223 SCSI target device: A SCSI device containing logical units and SCSI target ports that receives device service and task management requests for processing and sends device service and task management responses to SCSI initiator devices. See SAM-4.
- 3.1.224 SCSI target port: A SCSI target device object that contains a task router and acts as the connection between SCSI device servers and task managers and a service delivery subsystem (see 3.1.233) through which requests and confirmations are routed. See SAM-4.
- 3.1.225 SCSI target/initiator device: A device that has all the characteristics of a SCSI target device and a SCSI initiator device. See SAM-4.
- 3.1.226 SCSI target/initiator port: A SCSI target/initiator device object that has all the characteristics of a SCSI target port and a SCSI initiator port. See SAM-4.
- 3.1.227 self-configuring expander device: An expander device (see 3.1.77) containing an SMP initiator port and a management application client to perform the discover process (see 3.1.62) to configure its own expander route table (see 3.1.84). See 4.7.2.
- 3.1.228 Serial ATA (SATA): The protocol defined by SATA-2 (see 2.3).
- 3.1.229 Serial ATA Tunneled Protocol (STP): The protocol defined in this standard used by STP initiate ports (see 3.1.262) to communicate with STP target ports (see 3.1.267) in a SAS domain. See 7.17 and 9.3.
- 3.1.230 Serial Attached SCSI (SAS): The set of protocols and the interconnect defined by this standard.
- 3.1.231 Serial Management Protocol (SMP): The protocol defined in this standard used by MP initiator ports (see 3.1.240) to communicate with SMP target ports (see 3.1.244) in a SAS domain, see 7.18 and 9.4.
- 3.1.232 Serial SCSI Protocol (SSP): The protocol defined in this standard used by SSP initiator ports (see 3.1.254) to communicate with SSP target ports (see 3.1.258) in a SAS domain. See 7/16 and 9.2.
- 3.1.233 service delivery subsystem: The part of a SCSI I/O system that transmits information between a SCSI initiator port and a SCSI target port, or the part of an ATA I/O system that transmits information between an ATA host and an ATA device, or the part of a SAS I/O system that transmits information between a SAS initiator port and a SAS target port.
- 3.1.234 signal: The entire voltage waveform during transmission.
- 3.1.235 signal amplitude: A property of the overall signal (see 3.1/234) that describes the peak or peak-to-peak values of the signal level (see 3.1.236).
- 3.1.236 signal level: The instantaneous intensity of a signal (see 3.1.234) measured in volts.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Subject: Cross-Out

Date: 6/9/2008 11:34:14 AM -07'00'
TACCEPT - DONE (This definition came from FC-PI. Preface with "When referring to the physical layer, ..." to avoid confusion with a their meanings. other meanings.

Use the first of these from http://www.atis.org/glossary/, the ANSI T1 glossary (changing "can be" to "is"): signal: 1. Detectable transmitted energy that can be used to carry information. 2. A time-dependent variation of a characteristic of a physical phenomenon, used to convey information. 3. As applied to electronics, any transmitted electrical impulse. [JP1] 4. Operationally, a type of message, the text of which consists of one or more letters, words, characters, signal flags, visual displays, or special sounds, with prearranged meaning and which is conveyed or transmitted by visual, acoustical, or electrical means. [JP1]

3.1.234 signal: The entire voltage waveform during transmission.

The term signal is used in its normal dictionary definition as well as this narrow definition. I would suggest deleting this definition as the meaning of signal is well understood in context where it is used or possibly replace it with transmission signal

Author: elx-bmartin Subject: Highlight
Date: 6/9/2008 11:52:34 AM -07'00' REJECT (see "signal" response)

signal

see comment on 3.1.234

Author: elx-bmartin Subject: Highlight Date: 6/9/2008 11:52:40 AM -07'00' REJECT (see "signal" response)

17

see comment on 3.1.234

3.1.237 signal time: The time of an OOB signal (see 3.1.156), consisting of six burst times (see 3.1.24), six idle times (see 3.1.108), and one negation time (see 3.1.147). See 6.6.

- 3.1.238 signal tolerance: The ability of the receiver device to recover transmitted bits in an incoming data stream with maximum jitter and minimum amplitude. See MJSQ.
- 3.1.239 SMP initiator phy: A SAS initiator phy (see 3.1.200) in an SMP initiator port (see 3.1.240).
- 3.1.240 SMP initiator port: A SAS initiator device object in a SAS domain that interfaces to a service delivery subsystem with SMP.
- 3.1.241 SMP phy: A SAS logical phy (see 3.1.203) in an SMP port.
- 3.1.242 SMP port: An SMP initiator port (see 3.1.240), SMP target port (see 3.1.244), or SMP target/initiator
- 3.1.243 SMP target phy: A SAS target phy (see 3.1.206) in an SMP target port (see 3.1.244).
- 3.1.244 SMP target port: A SAS target device object in a SAS domain that interfaces to a service delivery subsystem (see 3.1.233) with SMP.
- 3.1.245 SMP target/initiator port: A port that has all the characteristics of an SMP initiator port apan SMP target port.
- 3.1.246 SMP zone configuration function: An SMP function that configures zoning expander shadow values (see 3.1.307) and is only accepted by a locked zoning expander device (see 3.1.130). See 4.9.6.3.
- 3.1.247 speed negotiation lock time (SNLT): The maximum time during an SNW (see 3.1.250) for a transmitter to reply with ALIGN (1) (see 6.7.4.2).
- 3.1.248 speed negotiation sequence: A sequence in which two phys negotiate the operational physical link rate. See 6.7.2.2 and 6.7.4.2.
- 3.1.249 speed negotiation transmit time (SNTT): The time during which ALIGN (0) or ALIGN (1) is transmitted during the speed negotiation sequence (see 6.7.4.2).
- 3.1.250 speed negotiation window (SNW): A portion of the SAS speed negotiation sequence (see 3.1.248). See 6.7.4.2.3.
- 3.1.251 speed negotiation window time (SNWT): The duration of an SNW (see 3.1.251), See 6.7.4.2.3.
- 3.1.252 spread spectrum clocking (SSC): The technique of modulating the operating frequency of a transmitted signal (i.e., the physical link rate) to reduce the measured peak amplitude of radiated emissions. See 5.3.8.
- 3.1.253 SSP initiator phy: A SAS initiator phy (see 3.1.200) in an SSP initiator port (see 3.1.254).
- 3.1.254 SSP initiator port: A SCSI initiator port in a SAS domain that implements SSP.
- 3.1.255 SSP phy: A SAS logical phy (see 3.1.203) in an SSP port.
- 3.1.256 SSP port: An SSP initiator port (see 3.1.254), SSP target port (see 3.1.258), or SSP target/initiator port (see 3.1.259)
- 3.1.257 SSP target phy: A SAS target phy (see 3.1.206) in an SSP target port (see 3.1.258).
- 3.1.258 SSP target port: A SCSI target port in a SAS domain that implements SSP.

Working Draft Serial Attached SCSI - 2 (SAS-2) 18

Page: 18

Author: Isi-gpenokie

Subject: Cross-Out Date: 5/25/2008 1:53:58 PM -07'00'

ACCEPT - DONE (you mean "should be no such thing." Used "and/or" instead)

There is no such thing as a << SMP target/initiator port >>

 Author: Isi-apenokie Subject: Cross-Out

Date: 5/25/2008 1:54:09 PM -07'00'
PT ACCEPT - DONE (you mean "should be no such thing.")

The is no such thing.

Author: intc-mseidel Subject: Highlight Date: 5/25/2008 1:56:32 PM -07'00' ACCEPT - DONE

The definition for SNTT does not conform to that in Table 95. Table 95 is correct.

Author: Isi-gpenokie

Subject: Cross-Out Date: 5/25/2008 1:56:47 PM -07'00'

ACCEPT - DONE (you mean "should be no such thing." Use "and/or" instead)

This should be deleted as there is not such thing.

- 3.1.259 SSP target/initiator port: A port that has all the characteristics of an SSP initiator port and an SSP target port.
- 3.1.260 state machine variable: A variable that exists within the context of a state machine that may log status determined in one state that is used in another state of the same state machine affecting subsequent state transitions or state machine outputs.
- 3.1.261 STP initiator phy: A SAS initiator phy (see 3.1.200) in an STP initiator port (see 3.1.262).
- 3.1.262 STP initiator port: A SAS initiator device object in a SAS domain that interfaces to a service delivery subsystem (see 3.1.233) with STP.
- 3.1.263 STP phy: A SAS logical phy (see 3.1.203) in an STP port.
- 3.1.264 STP port: An STP initiator port (see 3.1.262), STP target port (see 3.1.267), or STP target/initiator port (see 3.1.268).
- 3.1.265 STP primitive: A primitive used only inside STP connections and on SATA physical links. See 7.2.2.
- 3.1.266 STP target phy: A SAS target phy (see 3.1.206) in an STP target port (see 3.1.267).
- 3.1.267 STP target port: A SAS target device object in a SAS domain that interfaces to a service delivery subsystem (see 3.1.233) with STP.
- 3.1.268 STP target/initiator port: A port that has all the characteristics of an STP initiator port and an STP
- 3.1.269 STP/SATA bridge: An expander device object containing an STP target port, a SATA host port, and the functions required to forward information between the STP target port and SATA host port to enable STP. initiator ports in a SAS domain to communicate with SATA devices in an ATA domain.
- 3.1.270 subtractive routing attribute: The attribute of an expander phy that indicates it may be used by the ECM (see 3.1.75) to route connection requests to an attached expander device that were not resolved using the direct routing method or table routing method. See 4.6.7.1.
- 3.1.271 subtractive routing method: The method the ECM (see 3.1.75) uses to route connection requests not resolved using the direct routing method or table routing method to an attached expander device (see 3.1.77), See 4.6.7.1.
- 3.1.272 symbol: The smallest unit of data transmission on a physical link (i.e., a bit). A symbol perfesents a single transition if the maximum transition rate (i.e., a 0101b pattern) is occurring.
- 3.1.273 table routing attribute: The attribute of an expander phy that indicates it may be used by the ECM (see 3.1.75) to route connection requests using an expander route table (see 3.1.84). See 4.6.7.1.
- 3.1.274 table routing method: The method the ECM (see 3.1.75) uses to route connection requests to an attached expander device (see 3.1.77) using an expander route table (see 3.1.84). See 4.6.7.1.
- 3.1.275 task: An object within the logical unit representing the work associated with a command. See SAM 4.
- 3.1.276 task management function: A task manager service capable of being requested by a SCSI application client to affect the processing of one or more tasks. See SAM-4.
- 3.1.277 task manager: An object within a SCSI target device that controls the sequencing of SCSI commands and processes SCSI task management functions. See SAM-4.
- 3.1.278 training: The process of adapting equalization circuitry in a receiver device to an incoming pattern.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 19

```
Author: Isi-gpenokie
Subject: Cross-Out
Date: 5/25/2008 1:56:59 PM -07'00'
ACCEPT - DONE (you mean "should be no such thing.")
    This should be deleted as there is no such thing.
Author: Isi-apenokie
Subject: Highlight
Date: 5/25/2008 1:58:22 PM -07'00'
    This should be << state machine that may contain
    status from one state that is used in another state
Author: Isi-gpenokie
Subject: Cross-Out
Date: 5/25/2008 1:58:34 PM -07'00'
ACCEPT - DONE (you mean "should be no such thing." Use "and/or" instead)
   No such thing exists.
Author: Isi-gpenokie
Subject: Cross-Out
Date: 5/25/2008 1:58:47 PM -07'00'
ACCEPT - DONE
    There should be no such thing.
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 1:58:59 PM -07'00'
ACCEPT - DONE (that the expander phy)
   it
    s/h
   that the phy
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 1:59:12 PM -07'00'
ACCEPT - DONE (that the expander phy)
   s/b
   that the phy
Author: RElliott
Subject: Cross-Out
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE (and changed "task" to "command" throughout, where appropriate)
```

3.1.275 task: An object within the logical unit representing the work associated with a command. See SAM-4.

3.1.279 training lock time (TLT): The maximum time during Train-SNW for a receiver to complete training (see 3.1.278) and transmit TRAIN DONE patterns instead of TRAIN patterns (see 6.7.4.2.3.4).

- 3.1.280 Train-SNW window time (TWT): The actual duration of Train-SNW (see 6.7.4.2.3.4).
- **3.1.281 transceiver:** A physical entity that contains both a transmitter device (see 3.1.284) and a receiver device (see 3.1.182).
- 3.1.282 transmitter circuit: An electronic circuit that converts a logic signal to an analog serial output signal.
- 3.1.283 transmitter compliance transfer function (TCTF): The mathematical statement of the transfer function through which the transmitter shall be capable of producing acceptable signals as defined by a receive mask. See 5.3.6.1.
- **3.1.284 transmitter device (Tx):** The device upstream from an Tor CT compliance point containing a portion of the physical link and a transmitter circuit (see 3.1.282).
- 3.1.285 transport protocol service confirmation: Information passed from the transport keyer to the application layer (i.e., from the SSP initiator port to the SCSI application client) that notifies the application layer that a SCSI-transport protocol service has completed.
- 3.1.286 transport protocol service indication: Information passed from the transport layer to the application layer notifying the application layer (i.e., from the SSP target port to the SCSI device server) to begin a SCSI transport protocol service.
- 3.1.287 transport protocol service request: Information passed from the SCSI application layer to the SSP transport layer (i.e., from the SCSI application client to the SCSI initiator port) to begin a SCSI transport protocol service.
- 3.1.288 transport protocol service response: Information passed from the application layer to the transport layer (i.e., from the SCSI device server to the SSP target port) that completes the SCSI transport protocol service.
- 3.1.289 TxRx connection: The complete simplex signal path between the transmitter circuit (see 3.1.282) and receiver circuit (see 3.1.181). See 5.3.3.
- 3.1.290 TxRx connection segment: That portion of a TxRx connection (see 3.1.289) delimited by separable connectors or changes in the conductive material. See 5.3.3.
- **3.1.291 unit interval (UI):** The normalized, dimensionless, nominal duration of a symbol (see 3.1.272) (e.g., $666.\overline{6}$ ps at 1.5 Gbps, $333.\overline{3}$ ps at 3 Gbps, and $166.\overline{6}$ ps at 6 Gbps). The UI is the reciprocal of the baud rate (i.e., UI = $1/f_{baud}$)(see 3.1.18).
- 3.1.292 valid character: A character that is a control character (see 3.1.43) or a data character (see 3.1.48).
- 3.1.293 valid dword: A dword that is a data dword (see 3.1.49) or a primitive (see 3.1.172).
- 3.1.294 virtual phy: A phy (see 3.1.161) that interfaces with a vendor-specific interface to another virtual phy inside the same device. See 4.1.2.
- **3.1.295 voltage modulation amplitude (VMA):** The difference in electrical voltage of a signal (see 3.1.234) between the stable one level and the stable zero level.
- 3.1.296 wide link: A group of physical links that attaches a wide port to another wide port. See 4.1.4.
- 3.1.297 wide port: A port that contains more than one phy. See 4.1.4.

Page: 20 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE (see 6.7.4.2.3.4). move earlier in the sentence Author: elx-bmartin Subject: Highlight Date: 6/3/2008 3:37:04 PM -07'00' TACCEPT - DONE (added four entries to the acronym list: IR intra-enclosure (i.e., internal) receiver device compliance point (see 5.3.1) IT intra-enclosure (i.e., internal) transmitter device compliance point (see 5.3.1) CR inter-enclosure (i.e., cabinet) receiver device compliance point (see 5.3.1) CT inter-enclosure (i.e., cabinet) transmitter device compliance point (see 5.3.1) and changed this to "a transmitter device compliance point (see 3.1.xx)" since there's no need to use the acronyms here. "compliance point" is already a defined term, pointing to 5.3.1. IT or CT compliance point These are not defined Author: elx-bmartin Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' TACCEPT - DONE transport s.b. SSP transport Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE application SCSI application Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE application SCSI application Author: elx-bmartin Subject: Comment on Text Date: 5/6/2008 1:07:48 PM -07'00' TACCEPT - DONE transport

SSP transport

3.1.279 training lock time (TLT): The maximum time during Train-SNW for a receiver to complete training (see 3.1.278) and transmit TRAIN DONE patterns instead of TRAIN patterns (see 6.7.4.2.3.4).

- 3.1.280 Train-SNW window time (TWT): The actual duration of Train-SNW (see 6.7.4.2.3.4).
- **3.1.281 transceiver:** A physical entity that contains both a transmitter device (see 3.1.284) and a receive device (see 3.1.182).
- 3.1.282 transmitter circuit: An electronic circuit that converts a logic signal to an analog serial output signal
- 3.1.283 transmitter compliance transfer function (TCTF): The mathematical statement of the transfer function through which the transmitter shall be capable of producing acceptable aignals as defined by a receive mask. See 5.3.6.1.
- 3.1.284 transmitter device (Tx): The device upstream from an IT of compliance point containing a portion of the physical link and a transmitter circuit (see 3.1.282).
- 3.1.285 transport protocol service confirmation: Information passed from the transport layer to the application layer (i.e., from the SSP initiated port to the SCSI application client) that notifies the application layer that a SCSI transport protocol service has completed.
- 3.1.286 transport protocol service indication: Information passed from the transport layer to the application layer rotifying the application layer (i.e., from the SSP target port to the SCSI device server) begin a SCSI transport protocol service.
- 3.1.287 transport protocol service request: Information passed from the SCSI application layer to the SSP transport layer (i.e., from the SCSI application client to the SCSI initiator port) to begin a SCSI transport protocol service.
- 3.1.288 transport arotocol service response: Information passed from the application layer to the transport layer (i.e., from the SCSI device server to the SSP target port) that completes the SCSI transport protocol service.
- 3.1.289 TxRx connection: The complete simplex signal path between the transmitter circuit (see 3.1.282) and receiver circuit (see 3.1.181). See 5.3.3.
- 3.1.290 TxRx connection segment: That portion of a TxRx connection (see 3.1.289) delimited by separable connectors or changes in the conductive material. See 5.3.3.
- 3.1.291 unit interval (UI): The normalized, dimensionless, nominal duration of a symbol (see 3.1.272) (e.g., $666.\overline{6}$ ps at 1.5 Gbps, $333.\overline{3}$ ps at 3 Gbps, and $166.\overline{6}$ ps at 6 Gbps). The UI is the reciprocal of the baud rate (i.e., UI = 1 / f_{baud})(see 3.1.18).
- 3.1.292 valid character: A character that is a control character (see 3.1.43) or a data character (see 3.1.48).
- 3.1.293 valid dword: A dword that is a data dword (see 3.1.49) or a primitive (see 3.1.172).
- 3.1.294 virtual phy: A phy (see 3.1.161) that interfaces with a vendor-specific interface to another virtual phy inside the same device. See 4.1.2.
- **3.1.295 voltage modulation amplitude (VMA):** The difference in electrical voltage of a signal (see 3.1.234) between the stable one level and the stable zero level.
- 3.1.296 wide link: A group of physical links that attaches a wide port to another wide port. See 4.1.4.
- 3.1.297 wide port: A port that contains more than one phy. See 4.1.4.

20

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE
application
s/b
SCSI application

Author: stx-ghoulder
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'

ACCEPT - DONE (also in 3.1.285, 3.1.287, and 3.1.288)
application layer
should this be "SCSI application layer"?

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE
application
s/b
SCSI application

Author: elx-bmartin
Subject: Comment on Text
Date: 5/6/2008 1:07:48 PM -07'00'

Author: elx-bmartin
Subject: Comment on Text
Date: 5/6/2008 1:07-48 PM -07'00'

TACCEPT - DONE

transport

SSP transport

s.b.

3.1.298 wrapping counter: A counter that wraps back to zero after reaching its maximum value.

3.1.299 write data: Data transferred from the SCSI application client's data-out buffer to the SCSI device server, as requested by the Request Data-Out transport protocol service (see 10.2.1.8).

3.1.300 zone group: A set of phys in a ZPSDS (see 3.1.303) that all have the same access permission. See 4.9.

3.1.301 zone manager: The entity responsible for configuring a ZPSDS (see 3.1.303). See 4.9.1.

3.1.302 zone permission table: The table that defines access permission between the zone group of a source phy and the zone group of the destination phy. See 4.9.3.3.

3.1.303 zoned portion of a service delivery subsystem (ZPSDS): A group of zerning expander devices (see 3.1.305) that cooperate to control access between phys. The ZPSDS may include all or part of a service delivery subsystem (see 3.1.233). See 4.9.

3.1.304 zoning expander active values: The active zene permission table (see 3.1.302) and zone phy information in a zoning expander device (see 3.1.305). See 4.9.6.

3.1.305 zoning expander device: An expander device (see 3.1.77) that supports zoning. See 4.9.

3.1.306 zoning expander phy: An expander phy in a zoning expander device (see 3.1.305).

3.1.307 zoning expander shadow values: The shadow zone permission table (see 3.1.302) and zone phy information in a zoning expander device, which are changed by SMP zone configuration functions (see 3.1.246) but do not become active until the activate step (see 4.9.6.4) is performed. See 4.9.6.

3.2 Symbols and abbreviations

See 2.1 for abbreviations of standards bodies (e.g., ISO). Units and abbreviations used in this standard:

		(-3,, -
	Abbreviation	Meaning
	AA	ATA application layer (see 10.3)
<u>-</u>	A.C.	alternating current
~	ACK	acknowledge primitive (see 7.2.7.1)
	AIP	arbitration in progress primitive (see 7.2.6.1)
\	ALT	actual lock time (see 3.1.4)
	ATA	AT attachment (see 3.1.14)
~	ATAPI	AT attachment packet interface
	ATA8-AAM	AT Attachment - 8 ATA/ATAPI Architecture Model standard (see 2.3)
F	ATA8-ACS	AT Attachment - 8 ATA/ATAPI Command Set standard (see 2.3)
	ATT	actual training time (see 3.1.5)
	AWG	American wire gauge
	AWT	arbitration wait time
	BCH	Bose, Chaudhuri and Hocquenghem code (see 4.2.3)
	BCT	bit cell time (see 3.1.20)
	BER	bit error ratio (see 3.1.21)
	BIST	built in self test
	BPP	broadcast propagation processor (see 3.1.23)
	CDB	command descriptor block (see 3.1.31)

```
TREJECT
   server, as
    s/b
    server as
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE (global)
   zoning expander active values
   s/b
    zoning expander current values
   to match Isi-bbesmer comment on page i
Author: Isi-bhesmer
Subject: Highlight
Date: 5/16/2008 7:57:33 AM -07'00'
ACCEPT - DONE
   active
   s/b
    current
   (unless global comment to change current to active is accepted)
Author: RElliott
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
   ACA auto contingent allegiance (see SAM-4)
Author: RElliott
Subject: Note
Date: 9/4/2008 7:57:41 AM -07'00'
   ACCEPT - DONE (GPIO, Gbps, ID, SGPIO, SMA, mA were already in or have been added to the list. plusminus already in; added
    v| and circle-r; added <=, >= since those are FrameMaker variables (whose font could be lost); not adding <, >, +, or - since those
   are in the base ASCII character set.
   Added normative reference to this standard that apparently covers all math symbols:
   ISO 80000-2, Quantities and units -- Part 2: Mathematical signs and symbols to be used in the natural sciences and technology.
   (from Ralph Weber, ENDL)
   I have completed processing on SAS-1.1 ISO, except for the references. As a result, I have the following late Letter Ballot
```

Page: 21

Author: wdc-mevans Subject: Highlight Date: 5/17/2008 11:14:52 AM -07'00'

The following abbreviations should be added: ASIC, GPIO, Gbit, Gbps, (note: MBps is already defined), ID, SGPIO, SMA (sub-miniature A connector),

3.1.298 wrapping counter: A counter that wraps back to zero after reaching its maximum value.

3.1.299 write data: Data transferred from the SCSI application client's data-out buffer to the SCSI device server, as requested by the Request Data-Out transport protocol service (see 10.2.1.8).

3.1.300 zone group: A set of phys in a ZPSDS (see 3.1.303) that all have the same access permission. See 4.9.

3.1.301 zone manager: The entity responsible for configuring a ZPSDS (see 3.1.303). See 4.9.1.

3.1.302 zone permission table: The table that defines access permission between the zone group of a source phy and the zone group of the destination phy. See 4.9.3.3.

3.1.303 zoned portion of a service delivery subsystem (ZPSDS): A group of zoning expanded devices (see 3.1.305) that cooperate to control access between phys. The ZPSDS may include all or part of a service delivery subsystem (see 3.1.233). See 4.9.

3.1.304 zoning expander active values: The active zone permission table (see 3.1.302) and zone phy information in a zoning expander device (see 3.1.305). See 4.9.6.

3.1.305 zoning expander device: An expander device (see 3.1.77) that supports zoning. See 4.9

3.1.306 zoning expander phy: An expander phy in a zoning expander device (see 3.1.395)

3.1.307 zoning expander shadow values: The shadow zone permission table (see 3.1.302) and zone phy information in a zoning expander device, which are changed by SMP zone configuration functions (see 3.1.246) but do not become active until the arrivate step (see 4.9.6.4) is performed. See 4.9.6.

3.2 Symbols and abbreviations

See 2.1 for abbreviations of standards bodies (e.g., ISO). Units and abbreviations used in this standard:

	Abbreviation	Meaning
	AA	A/A application layer (see 10.3)
	A.C.	alternating current
√	ACK /	acknowledge primitive (see 7.2.7.1)
=	AIP	arbitration in progress primitive (see 7.2.6.1)
	XLT /	actual lock time (see 3.1.4)
	ATA	AT attachment (see 3.1.14)
~	ATAPI	AT attachment packet interface
	ATA8-AAM	AT Attachment - 8 ATA/ATAPI Architecture Model standard (see 2.3)
-	ATA8-ACS	AT Attachment - 8 ATA/ATAPI Command Set standard (see 2.3)
	ATT	actual training time (see 3,1.5)
	AWG	American wire gauge
	AWT	arbitration wait time
	BCH	Bose, Chaudhuri and Hocquenghem code (see 4.2.3)
	BCT	bit cell time (see 3.1.20)
	BER	bit error ratio (see 3.1.21)
	BIST	built in self test
	BPP	broadcast propagation processor (see 3.1.23)
	CDB	command descriptor block (see 3.1.31)

Working Draft Serial Attached SCSI - 2 (SAS-2)

and mA.

The following symbols should be added: plus-or-minus, greater than, greater than or equal to, less than, less than or equal to, and |v| ... absolute value of v.

Author: RElliott
Subject: Note
Date: 9/4/2008 6:49:20 AM -07'00'

Add a reference for SMA connectors:

IEC 60169-15, 1979. Radio-frequency connectors. Part 15: R.F. coaxial connectors with inner diameter of outer conductor 4.13 mm (0.163 in) with screw coupling — Characteristic impedance 50 ohms (Type SMA). International Standard

Author: RElliott
Subject: Note
Date: 7/9/2008 7:05:27 AM -07'00'

Add:

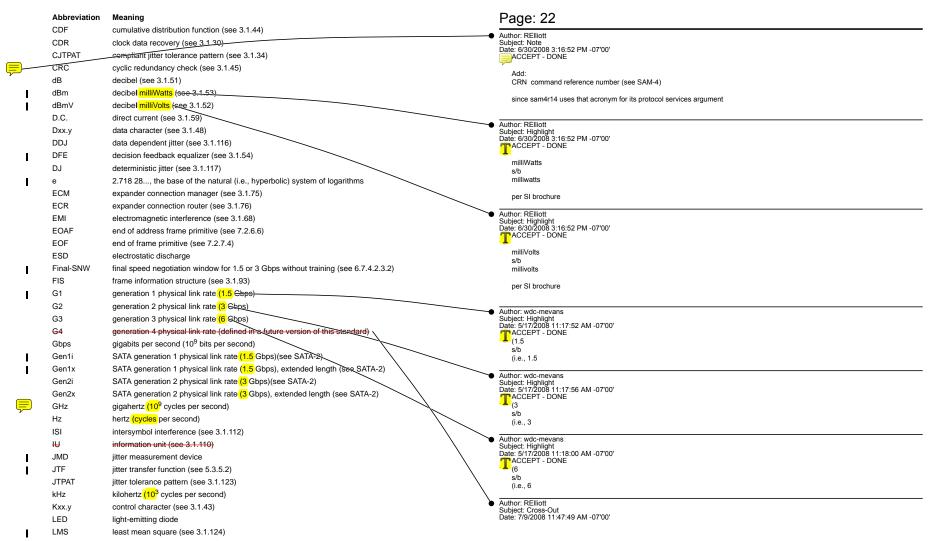
ID identifier GPIO general purpose input/output mA milliampere (i.e., 10⁻³ amperes) SGPIO serial GPIO (see 2.4) SMA subminiature version A connector

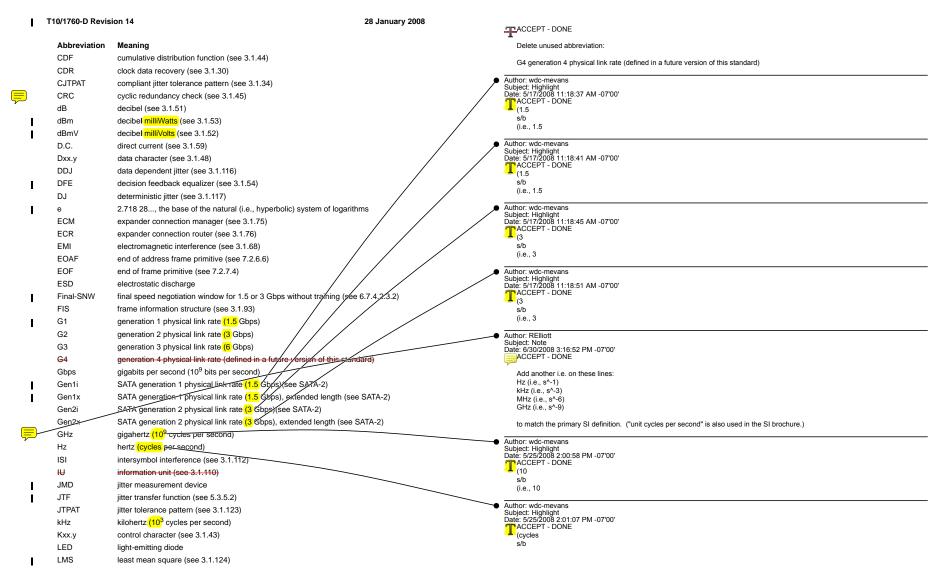
(from Ralph Weber, ENDL)

Author: RElliott
Subject: Highlight
Date: 9/3/2008 3:26:29 PM -07'00'
TACCEPT - DONE
After:

American wire gauge

(see ASTM Standard B 258-02 (see 2.4))


referring to the new reference in Other references


Author: stx-ghoulder

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

TACCEPT - DONE ("Broadcast" is always supposed to be capitalized with mixed case, since it specifically represents both BROADCAST primitives and ZONED BROADCAST address frames. "broadcast" could be used as a verb. Corrected all instances, including "broadcast count", "broadcast source zone group", and "broadcast descriptor".)

broadcast propagation processor — why is the word Broadcast capitalized in all other occurrances of this phrase but not here? I actually think none should be capitalized unless it is the first word of a sentence.

Comments from page 22 continued on next page

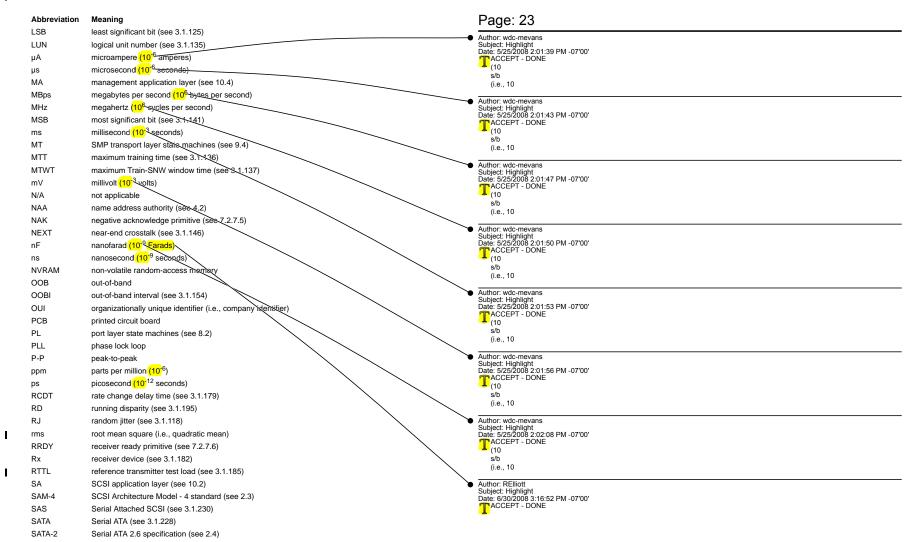
Abbreviation Meaning CDF cumulative distribution function (see 3.1.44) CDR clock data recovery (see 3.1.30) CJTPAT compliant jitter tolerance pattern (see 3.1.34) CRC cyclic redundancy check (see 3.1.45) dΒ decibel (see 3.1.51) dBm decibel milliWatts (see 3.1.53) dBmVdecibel milliVolts (see 3.1.52) D.C. direct current (see 3.1.59) Dxx.y data character (see 3.1.48) DDJ data dependent jitter (see 3.1.116) DFE decision feedback equalizer (see 3.1.54) DJ deterministic jitter (see 3.1.117) 2.718 28..., the base of the natural (i.e., hyperbolic) system of logarithms е ECM expander connection manager (see 3.1.75) **ECR** expander connection router (see 3.1.76) EMI electromagnetic interference (see 3.1.68) **EOAF** end of address frame primitive (see 7.2.6.6) EOF end of frame primitive (see 7.2.7.4) ESD electrostatic discharge final speed negotiation window for 1.5 or 3 Gbps without training (see 6.7.4.2.3.2) Final-SNW FIS frame information structure (see 3.1.93) G1 generation 1 physical link rate (1.5 Gbps) G2 generation 2 physical link rate (3 Gbps) generation 3 physical link rate (6 Gbps) G3 G4 generation 4 physical link rate (defined in a future version of this standard) Gbps gigabits per second (10⁹ bits per second) Gen1i SATA generation 1 physical link rate (1.5 G/sr/s)(see SATA-2) SATA generation 1 physical link rate (1.5/Gbps), extended length (see SATA-2) Gen1x SATA generation 2 physical link rate (3 Gps)(see SATA-2) Gen2i SATA generation 2 physical link rate (3/Gbps), extended length (see SATA-2) Gen2x GHz gigahertz (109 cycles per secong) Hz hertz (cycles per second) ISI intersymbol interference (see 3.//.112) ₩ information unit (see 3.1/.110) JMD jitter measurement device JTF jitter transfer function (see 5.3.5.2) **JTPAT** jitter tolerance pattern (see 3.1.123) kilohertz (10³ cycles per second) kHz Kxx.y control character (see 3.1.43) LED light-emitting diode

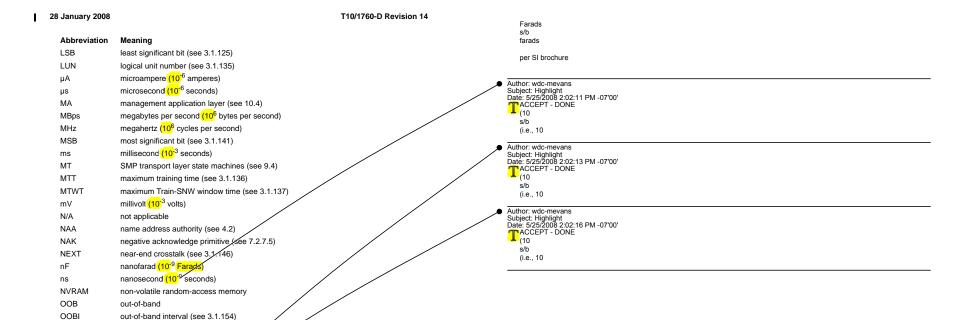
least mean square (see 3.1.124)

(i.e., cycles

Author: RElliott
Subject: Cross-Out
Date: 7/17/20/8 1:57:01 PM -07'00'

TACCEPT - DONE


Delete this unused acronym:
IU information unit (see 3.1.110)


Author: wdc-mevans
Subject: Highlight
Date: 5/25/20/8 2:01:16 PM -07'00'

TACCEPT - DONE
(10
s/b
(i.e., 10

LMS

T10/1760-D Revision 14

organizationally unique identifier (i.e., company identifier)

printed circuit board

phase lock loop

peak-to-peak
parts per million (10-6)

port layer state machines (see 8/2

picosecond (10^{-1/2} seconds)

running disparity (see 3.1.195)

random jitter (see 3.1.118)

receiver device (see 3.1.182)

Serial ATA (see 3.1.228)

SCSI application layer (see 10.2)

Serial Attached SCSI (see 3.1.230)

Serial ATA 2.6 specification (see 2.4)

rate change delay time (see 3.1.179)

root mean square (i.e., quadratic mean)

reference transmitter test load (see 3.1.185)

SCSI Architecture Model - 4 standard (see 2.3)

receiver ready primitive (see 7.2.7.6)

OUI

PCB

PL

PLL

P-P

ppm

ps RCDT

RD

RJ

rms RRDY

Rx

SA

RTTL

SAM-4

SAS

SATA

SATA-2

Abbreviation Meaning

SBC-3	SCSI Block Commands - 3 standard (see 2.3)
SCSI	Small Computer System Interface family of standards
S _{ii}	S-parameter for port j to port i (see B.9)
S _{CCij}	S-parameter for common-mode to common-mode port j to port i (see B.9)
S _{CDij}	S-parameter for differential to common-mode port j to port i (see B.9)
S _{DCij}	S-parameter for common-mode to differential port j to port i (see B.9)
S _{DDij}	S-parameter for differential to differential port j to port i (see B.9)
SJ	sinusoidal jitter (see 3.1.119)
SL	link layer for SAS phys state machines (see 7.14)
SL_IR	link layer identification and hard reset state machines (see 7.9.4)
SMP	Serial Management Protocol (see 3.1.231), or link layer for SMP phys state machines (see 7.18.5)
SNLT	speed negotiation lock time (see 3.1.247)
SNTT	speed negotiation transmit time (see 3.1.249)
SNW	speed negotiation window (see 3.1.250)
SNW-1	speed negotiation window for 1.5 Gbps without training (see § 7.4.2.3.2)
SNW-2	speed negotiation window for 3 Gbps without training (see 6.7.4.2.3.2)
SNW-3	speed negotiation window negotiating physical link rates with training (see 6.7.4.2.3.3)
SNWT	speed negotiation window time (see 3.1.251)
SOAF	start of address frame primitive (see 7.2.6.11)
OF	start of frame primitive (see 7.2.7.7)
SP.	phy layer state machine (see 6.8)
SP_DWS	phy layer dword synchronization state machine (see 6.9)
SPC-4	SCSI Primary Commands - 4 standard (see 2.3)
SP	Serial SCSI Protocol (see 3.1.232) or link layer for SSP phys state machines (see 7.16.8)
ST	SSP transport layer state magnines (see 9.2)
STP	Serial ATA Tunneled Protocol (see 3.1.229), or link layer for STP phys state machines (see 7.17.8)
<mark>s)</mark>	second (unit of time)
CTF	transmitter compliance transfer function (see 3.1.283)
ΓDNA	time domain network analyzer (i.e., TDR/TDT plus analysis software that performs a VNA-style output)
TDR	time domain reflectometer
TDT	time domain transmission
TJ	total jitter (see 3.1.120)
TLT	training lock time (see 3.1.279)
Train-SNW	speed negotiation window with training (see 6.7.4.2.3.4)
TT	STP transport layer state machines (see 9.3)
TWT	Train-SNW window time (see 3.1.280)
Tx	transmitter device (see 3.1.284)

Page: 24

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 2:02:37 PM -07'00'
TREJECT (we use N ms, N us, N ns, and N ps a lot, which are derived from s. You are not supposed to mix SI symbols and names
in one document; 1'd rather use the symbols than spell all those out. The cases where s is used that are not preceded by a number
clearly dp not mean "seconds". Nobody has ever complained about a byte number "m" in a table being interpreted as "meter")

s second (unit of time)

[This is a problematic abbreviation because "s" is used in so many places in the draft as something like "source zone group". I could find only two places where "s" is used in the draft to mean "second". Search for "gigasymbols/s" and look in the table defining LED behavior. Because of this problematic nature, I recommend deleting this definition and replacing the occurrences of where "s" is used to mean "second" by using the words "second" or "seconds" as appropriate.]

T10/1760-D Revision 14

	Abbreviation	Meaning	Page: 25
	V	volt	Author: wdc-mevans
ı	VMA	voltage modulation amplitude (see 3.1.295)	Subject: Highlight Date: 5/25/2008 2:02:55 PM -07'00'
	VNA	vector network analyzer	TREJECT (acronyms/symbols don't use i.e.)
	VPD	vital product data (see 10.2.11)	♣ (Delta) s/b
	XL	link layer for expander phys state machine (see 7.45)	(i.e., Delta)
	XOR	exclusive logical OR	→ Author: wdc-mevans
	ZP[s, d]	Zone permission bit for accource zone group (i.e., s) and a destination zone group (i.e., d) in the zone permission table (see 4.9.3.3)	Subject: Highlight Date: 5/25/2008 2:03:02 PM -07'00' TREJECT (acronyms/symbols don't use i.e.)
	ZPSDS	Zoned portion of a service delivery subsystem (see 3.1.303)	(hbi)
ī	Δ (Delta)	difference operator	s/b
i	φ <mark>(phi)</mark> ———	phase	(i.e., phi)
i	π (pi)	3.141 59 , the ratio of <mark>any circle's circumference</mark> t o its diameter	Author: Relliott
i	ρ (rho) —	reflection coefficient (see 3.1.186)	Subject: Highlight Date: 7/9/2008 11:45:02 AM -07'00'
•	^	exclusive logical OR	TPACCEPT - DONE
	↓ _	multiplication	any circle's circumference
	,	division	s/b
	,	UNISION	the circumference of a circle
	3.3 Keywords		→ Author: wdc-mevans
	3.3.1 invalid: A ke	eyword used to describe an illegal or unsupported bit, byte, word, field or code value.	Subject: Highlight
		id bit, byte, word, field or code value shall be reported as an error.	Daté: 5/25/2008 2:03:12 PM -07'00' TREJECT (acronyms/symbols don't use i.e.)
			(pi)
	standard.	A keyword indicating an item that is required to be inclemented as defined in this	s/b (i.e., pi)
	2 2 2 4 1	ward the string director flowibility of the circumstance invariant and supplied to the flow of the flow of the circumstance of	Author: wdc-mevans
	not").	word that indicates flexibility of choice with no implied preference (equivalent to "may or may)	Subject: Highlight Date: 5/25/2008 2:03:06 PM -07'00'
			TREJECT (acronyms/symbols don't use i.e.)
		eywords that indicate flexibility of choice with no implied preference (equivalent to "may or	(rho) s/b
	may not").		siu (i.e., rho)
	3 3 5 obsolete: A	keyword indicating that an item was defined in prior standards but has been removed from	
	this standard.	Noyword indicating that air from was defined in prior standards but has been removed not.	Author: RElliott Subject: Highlight
			Subject: Highlight Date: 7/9/2008 11:35:42 AM -07'00'
		keyword that describes features that are not required to be implemented by this standard.	TACCET - DONE
	defined in this star	tional feature defined in this standard is implemented, then it shall be implemented as idard.	Ensure that char-xmultiply variable is used everywhere rather than a lowercase x
		have a description to ble have a words fields and a describe a flat and a described.	Author: stx-ghoulder
		keyword referring to bits, bytes, words, fields and code values that are set aside for future reserved bit, byte, word or field shall be set to zero, or in accordance with a future	Subject: Highlight Date: 8/31/2008 2:44:25 PM -07'00'
		andard. Recipients are not required to check reserved bits, bytes, words or fields for zero	TREJECT (
	values. Receipt of	reserved code values in defined fields shall be reported as an error.	8/31 "valid/invalid SNW" is too ingrained, and is reasonable wording. A "valid" SNW-3 can still have bad parity - calling it "successful" would be more confusing. The keyword definition doesn't specifically mention SNWs (just bit code value), so it
			doesn't necessarily apply. Leaving as is.
		A keyword referring to bits, bytes, words, and fields that are set aside for use in other her data structures in this standard. A restricted bit, byte, word, or field shall be treated as a	7/14 keep "shall" here as is since 3 other keywords also use it. Change the SNW terminology.
		word or field for the purposes of the requirements defined in this standard.	7714 Keep shall here as is since 3 other keywords also use it. Change the SixW terminology.
			5/5 I agree - there should be no "shalls" in the keywords. SNWs are the main violator of this, and can be changed to "successful"
I		word indicating a mandatory requirement. Designers are required to implement all such	and "unsuccessful")
	mandatory require	ments to ensure interoperability with other products that conform to this standard.	

Abbreviation	Meaning
V	volt
VMA	voltage modulation amplitude (see 3.1.295)
VNA	vector network analyzer
VPD	vital product data (see 10.2.11)
XL	link layer for expander phys state machine (see 7.15)
XOR	exclusive logical OR
ZP[s, d]	Zone permission bit for a source zone group (i.e., s) and a destination zone group (i.e., d) in the zone permission table (see $4.9.3.3$)
ZPSDS	Zoned portion of a service delivery subsystem (see 3.1.303)
Δ (Delta)	difference operator
φ <mark>(phi)</mark>	phase
π <mark>(pi)</mark>	3.141 59, the ratio of any circle's circumference to its diameter
ρ <mark>(rho)</mark>	reflection coefficient (see 3.1.186)
^	exclusive logical OR
×	multiplication
/	division

3.3 Keywords

- **3.3.1 invalid:** A keyword used to describe an illegal or unsupported bit, byte, word, field or code value. Receipt of an invalid bit, byte, word, field or code value shall be reported as an error.
- **3.3.2 mandatory:** A keyword indicating an item that is required to be implemented as defined in this standard.
- 3.3.3 may: A keyword that indicates flexibility of choice with no implied preference (equivalent to "may or may not").
- **3.3.4 may not:** Keywords that indicate flexibility of choice with no implied preference (equivalent to "may or may not").
- **3.3.5 obsolete:** A keyword indicating that an item was defined in prior standards but has been removed from this standard.
- **3.3.6 optional:** A keyword that describes features that are not required to be implemented by this standard. However, if any optional feature defined in this standard is implemented, then it shall be implemented as defined in this standard.
- 3.3.7 reserved: A keyword referring to bits, bytes, words, fields and code values that are set aside for future standardization. A reserved bit, byte, word or field shall be set to zero, or in accordance with a future extension to this standard. Recipients are not required to check reserved bits, bytes, words or fields for zero values. Receipt of reserved code values in defined fields shall be reported as an error.
- **3.3.8 restricted:** A keyword referring to bits, bytes, words, and fields that are set aside for use in other standards or for other data structures in this standard. A restricted bit, byte, word, or field shall be treated as a reserved bit, byte, word or field for the purposes of the requirements defined in this standard.
- **3.3.9 shall:** A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory requirements to ensure interoperability with other products that conform to this standard.

Working Draft Serial Attached SCSI - 2 (SAS-2)

shall be

s/b is usually ... there are cases where invalid dwords or frames are just counted or ignored rather than "reported as an error". Also SNW-final makes assumption of "non-support" rather than error for invalid SNW windows.

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 2:03:52 PM -07'00'
TREJECT (see no reason to follow SAM-4 down that path)
preference (equivalent to "may or may not").
s/b

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 2:03:58 PM -07'00'

REJECT (see no reason to follow SAM-4 down that path)

preference (equivalent to "may or may not").

preference. "May not" is synonymous with the phrase "may or may not". [see SAM-4]

preference. "May" is synonymous with the phrase "may or may not". [see SAM-4]

Author: RElliott
Subject: Highlight
Date: 11/6/2008 12:16:37 PM

Replace: 3.3.8 restricted: A keyword referring to bits, bytes, words, and fields that are set aside for use in other standards or for other data structures in this standard. A restricted bit, byte, word, or field shall be treated as a reserved bit, byte, word or field for the purposes of the requirements defined in this standard.

with the wording in 08-450r1

25

3.3.10 should: A keyword indicating flexibility of choice with a strongly preferred alternative (equivalent to "is strongly recommended").

3.3.11 vendor specific: Semething (e.g., a bit, field, or code value) that is not defined by this standard and may be used differently in various implementations

3.4 Editorial conventions

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning These words and terms are defined either in clause 3 or in the text where they first appear.

Names of signals, address frames, primitives and primitive sequences, SMP functions, state machines, SCSI and ATA commands, SCSI statuses, SCSI sense keys, and SCSI additional sense codes are in all uppercase (e.g., REQUEST SENSE command).

Names of messages, requests, confirmations, indications, responses, event notifications, timers, SCSI diagnostic pages, SCSI mode pages, and SCSI log pages are in mixed case (e.g., Disconnect-Reconnect mode page).

Names of fields are in small uppercase (e.g., DESTINATION SAS ADDRESS). Normal case is used when the contents of a field are being discussed. Fields containing only one bit are usually referred to as the NAME bit instead of the NAME field.

Normal case is used for words having the normal English meaning.

A binary number is represented in this standard by any sequence of digits consisting of only the Western-Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g., 0101b). Underscores or spaces may be included between characters in binary number representations to increase readability or delineate field boundaries (e.g., 0 0101 1010b or 0_0101_1010b).

A hexadecimal number is represented in this standard by any sequence of digits consisting of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A through F immediately followed by a lower-case h (e.g., FA23h). Underscores or spaces may be included between characters in hexadecimal number representations to increase readability or delineate field boundaries (e.g., B FD8C FA23h or B FD8C FA23h).

A decimal number is represented in this standard by any sequence of digits consisting of only the Arabic numerals 0 through 9 not immediately followed by a lower-case b or lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:

- a) the decimal separator (i.e., separating the integer and fractional portions of the number) is a period;
- b) the thousands separator (i.e., separating groups of three digits in a portion of the number) is a space;
- c) the thousands separator is used in both the integer portion and the fraction portion of a number.

Table 2 shows some examples of decimal numbers using various numbering conventions.

Table 2 — Numbering conventions

French	English	This standard						
0,6	0.6	0.6						
3,141 592 65	3.14159265	3.141 592 65						
1 000	1,000	1 000						
1 323 462,95	1,323,462.95	1 323 462.95						

A decimal number represented in this standard with an overline over one or more digits following the decimal point is a number where the overlined digits are infinitely repeating (e.g., 666.6 means 666.666 666... or 666 2/3, and 12.142 857 means 12.142 857 142 857... or 12 1/7).

26 Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 26

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 2:04:18 PM -07'00'

REJECT (that diverges from the wording in other standards)

alternative (equivalent to "is strongly recommended").

alternative. "Should" is used in cases where the defined instance is strongly recommended

Author: stx-ghoulder Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

TREJECT (per a SAS-1.0 letter ballot comment from the T10 chair, vendor-specific is used as an adjective modifying some other obvious noun, and vendor specific is used as a noun).

vendor specific:

Most references to "vendor specific" in this document use a hyphen (i.e. vendor-specific) but this instance and a handful of others don't. We should be consistent -- always use the hyphen or always use space.

Author: elx-bmartin

Subject: Cross-Out
Date: 5/6/2008 1:07:48 PM -07'00'

REJECT (see response on "field" definition)

Fields containing only one bit are usually referred to as the NAME bit instead of the NAME field.

Unless there is a place where we refer to a one bit value as a field remove this sentence.

Lists sequenced by letters (e.g., a) red, b) blue, c) green) show no ordering relationship between the listed items. Lists sequenced by numbers (e.g., 1) red, 2) blue, 3) green) show an ordering relationship between the

In the event of conflicting information the precedence for requirements defined in this standard is:

- 2) tables; then
- figures.

Notes do not constitute any requirements for implementers.

3.5 Class diagram and object diagram conventions

The notation used in class diagrams and object diagrams is based on the Unified Modeling Language (UML) specification.

Figure 3 shows the notation used for classes in class diagrams.

Notation for a class with no attributes or operations:

Class Name Notation for a class with attributes and no operations: Class Name Attribute 1 Attribute 2 Notation for a class with operations and no attributes:

Class Name Operation 1() Operation 2()

Notation for a class with attributes and operations:

Class Name Attribute 1 Attribute 2 Operation 1() Operation 2()

Notation for a class with attributes showing multiplicity and operations:

Class Name Attribute 1[1..*] Attribute 2[1] Operation 1() Operation 2()

Figure 3 — Classes in class diagrams

Page: 27

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 2:04:45 PM -07'00'

TREJECT (I do not endorse the SCSI style guide. This wording matches the wording used by SAM-4 and SPC-4. The wording currently in SBC-3 seems to be mistakenly incorporating editor instructions like "list shall have a semicolon here, etc.", not reader guidelines. There should be no "shall"s in this section.)

Lists

[Expand this paragraph to something more like the example shown in the SCSI style guide.]

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

then s/b and

to match several Isi-gpenokie comments on other ordered lists throughout the document.

Table 3 defines the notation used for multiplicity in class diagrams.

Table 3 — Multiplicity notation in class diagrams

Notation	Description
<none></none>	The number of instances of the object or attribute is not specified.
1	One instance of the object or attribute exists.
0*	Zero or more instances of the object or attribute exist.
1*	One or more instances of the object or attribute exist.
01	Zero or one instances of the object or attribute exist.
nm	n to m instances of the object or attribute exist (e.g., 28).
x, nm	Multiple disjoint instances of the object or attribute exist (e.g., 2, 815).

Figure 4 defines the notation used for association relationships between classes.

Association ("knows about" relationship) Class A knows about Class B (i.e., is read as "Class A association name Class B") and Class B Class B knows about Class A (i.e., is read as "Class B association name Class A") Class B knows about Class A (i.e., is read Class B as "Class B knows about Class A") but Class A does not know about Class B 0..1 Class A knows about Class B (i.e., is read Role Name as "Class A uses the role name attribute → Class B of Class B") but Class B does not know about Class A Note: The role name and association name are optional

Examples of class diagrams using associations:

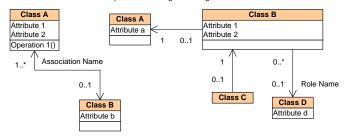


Figure 4 — Association relationships in class diagrams

Figure 5 defines the notation used for aggregation relationships between classes.

Aggregation ("is a part of" or "contains" relationship) The part is part of the whole and may continue to Whole <> exist even if the whole is removed. The part is part of the whole and shall not continue to Whole + exist if the whole is removed. Examples of class diagrams using aggregation: Whole Whole 0..1 Attribute 1 Attribute 1 Attribute 2 Attribute 2 Operation 1() (Constraint between 0..1 associations} 1..* Part

Figure 5 — Aggregation relationships in class diagrams

Part B

Attribute B

Part C

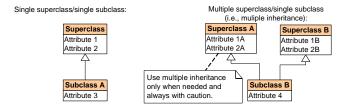

Attribute C

Figure 6 defines the notation used for generalization relationships between classes.

Generalization ("is a kind of" relationship)

Subclass is a kind of superclass. A subclass shares all the attributes and operations of the superclass (i.e., the subclass inherits from the superclass).

Examples of class diagrams using generalization:

Single superclass/multiple subclass:

Attribute 3

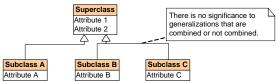


Figure 6 — Generalization relationships in class diagrams

Figure 7 defines the notation used for dependency relationships between classes.

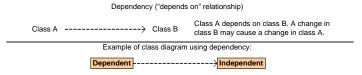


Figure 7 — Dependency relationships in class diagrams

Figure 8 defines the notation used for objects in object diagrams.

Notation for a named object with no attributes:

Notation for a named object with attributes:

label : Class Name
Attribute 1 = x
Attribute 2 = y

Notation for an anonymous object with no attributes:

: Class Name

Notation for an anonymous object with attributes:

Figure 8 — Objects in object diagrams

A constraint is specified in a class diagram or an object diagram as text encapsulated with a { } notation within a box. See figure 5 for an example of a constraint.

A note is specified in a class diagram or an object diagram as text within a box. See figure 6 for an example of a note.

3.6 State machine conventions

3.6.1 State machine conventions overview

Figure 9 shows how state machines are described. See 4.3 for a summary of the state machines in this standard.

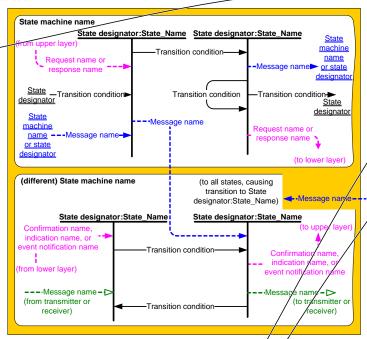


Figure 9 — State machine conventions

When multiple state machines are present in a figure, they are enclosed in boxes with rounded corners.

Each state machine is identified by a state machine name. In state machines with one state, the state machine is identified by a state designator. In state machines with multiple states, each state is identified by a state designator and a state name. The state designator (e.g., SL1) is unique among all state machines in this standard. The state name (e.g., Idle) is a brief description of the primary action taken during the state, and the same state name may be used by other state machines. Actions taken while in each state are described in the state description text.

3.6.2 Transitions

Transitions between states are shown with solid lines, with any arrow pointing to the destination state. A transition may be labeled with a transition condition label, a orief description of the event or condition that causes the transition to occur.

31

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 31

Author: RElliott

Subject: Note
Date: 11/6/2008 5:45:28 PM
ACCEPT - DONE (Viso wavy lines - unknown what causes this or what can be done to fix it. Laptop doesn't exhibit the problem.)

Fix wavy lines

Author: wdc-mevans
Subject: Highlight
Date: 11/6/2008 5:45:04 PM
TACCEPT - DONE (Viso wavy lines - unknown what causes this or what can be done to fix it. Laptop doesn't exhibit the problem.)

Figure 9 — State machine conventions
s/b
[Fix the squiggly lines on the right hand side of both inner boxes in the figure.]

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 2:05:29 PM -07'00'
TREJECT (That would change the meaning, since the latter phrase is just a definition of "transition label". Changed to an i.e. instead)

label, a
s/b
label, and may include a

If the state transition leaves the page, the transition label goes to or from a state designator label with double underlines rather than to or from a state.

The conditions and actions are described fully is the transition description text. In case of a conflict between a figure and the text, the text shall take precedence.

Upon entry into a state, all actions to be processed in that state are processed. If a state is re-entered from itself, all actions to be processed in the state are processed again. A state may be entered and exited in zero time if the conditions for exiting the state are valid upon entry into the state. Transitions between states are instantaneous

3.6.3 Messages, requests, indications, confirmations, responses, and event notifications

Messages passed between state machines are shown with dashed lines labeled with a message name. When messages are passed between state machines within the same layer of the protocol, they are identified by either:

- a) a dashed line to or from a state machine name label with double underlines and/or state name label with double underlines, if the destination is in a different figure from the source;
- b) a dashed line to or from a state in another state machine in the same figure; or
- c) a dashed line from a state machine name label with double underlines to a "(to all states)" label, if the destination is every state in the state machine.

The meaning of each message is described in the state description text.

Requests, indications, confirmations, responses, and event notifications are shown with curved dashed lines originating from or going toward the top or bottom of the figure. Each request, indication, confirmation, response, and event notification is labeled. The meaning of each request, indication, confirmation, response, and event notification is described in the state description text.

Messages with unfilled arrowheads are passed to or from the state machine's transmitter or receiver, not shown in the state machine figures, and are directly related to data being transmitted on or received from the physical link.

The state machine description text for each state whelly defines the messages sent while the state machine is in that state. If a state machine in one state repeatedly sending a message transitions to another state, it stops repeatedly sending that message unless stated otherwise in the new state.

3.6.4 State machine counters, timers, and variables

State machines may contain counters, timers, and variables that affect the operation of the state machine. The following properties apply to counters, timers, and variables:

- a) Their scope is the state machine itself;
- b) They are created and deleted with the state machines with which they are associated;
- Their initialization and modification is specified in the state descriptions and the transition descriptions; and
- d) Their current values may be used to determine the behavior of a state and select the transition out of

State machine timers may continue to run while a state machine is in a given state, and a timer may cause a state transition upon reaching a defined threshold value (e.g., zero for a timer that counts down).

3.6.5 State machine arguments

32

State machines may contain an argument received in a message or confirmation-as a state machine arguments. The following properties apply to state machine arguments:

- a) the state machine that sends the argument owns that argument's value;
- b) the state machine that receives the argument shall not modify those argument's value
- c) the state machine that sends the argument may resend those arguments with different values
- d) the scope of a state machine argument is the state machine itself; and
- e) state machine argument usage is described in the state descriptions and the transition descriptions.

Page: 32

```
Author: wdc-mevans
Subject: Highlight
Date: 5/17/2008 11:22:14 AM -07'00'
  PACCEPT - DONE (as "If the state transition in one figure goes to or comes from a state machine or state in a different figure, then
 the transition is shown going to or coming from a state machine name or a state designator label with double underlines.")
   If the state transition leaves the page, the transition label goes to or from a state designator label with double underlines rather than
   to or from a state.
   If a state transition shown in one figure goes to or comes from a state machine or state in a different figure, then the state machine
   name or state designator label is shown in the first figure including the state machine name or state designator label with double
   underlines
Author: wdc-mevans
Subject: Cross-Out
Date: 5/25/2008 2:05:43 PM -07'00'
REJECT
   fully
    s/b
   [Delete the unnecessary word.]
 Author: wdc-mevans
Subject: Cross-Out
Date: 5/25/2008 2:06:34 PM -07'00'
REJECT (this is a necessary word)
    wholly
   [Delete the unnecessary word.]
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 2:06:16 PM -07'00'
 REJECT (first noun/subject convention, but added "then")
   s/b
   then the state machine
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TO ACCEPT - DONE
    state repeatedly
    state that is repeatedly
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
    Their
    s/h
   their
```

(part of global change to lowercase a)b)c) list entries)

If the state transition leaves the page, the transition label goes to or from a state designator label with double underlines rather than to or from a state.

The conditions and actions are described fully in the transition description text. In case of a conflict between a figure and the text, the text shall take precedence.

Upon entry into a state, all actions to be processed in that state are processed. If a state is re-entered from itself, all actions to be processed in the state are processed again. A state may be entered and exited in zero time if the conditions for exiting the state are valid upon entry into the state. Transitions between states are instantaneous

3.6.3 Messages, requests, indications, confirmations, responses, and event notifications

Messages passed between state machines are shown with dashed lines labeled with a message name. When messages are passed between state machines within the same layer of the protocol, they are identified by either

- a) a dashed line to or from a state machine name label with double underlines and/or state name label with double underlines, if the destination is in a different figure from the source;
- b) a dashed line to or from a state in another state machine in the same figure; or
- c) a dashed line from a state machine name label with double underlines to a "(to all states)" label, if the destination is every state in the state machine.

The meaning of each message is described in the state description text.

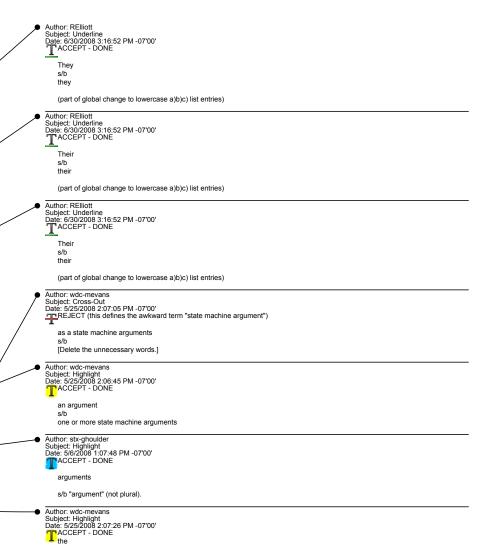
Requests, indications, confirmations, responses, and event notifications are shown with curved dashed lines originating from or going toward the top or bottom of the figure. Each request, indication, confirmation, response, and event notification is labeled. The meaning of each request, indication, confirmation, response, and event notification is described in the state description text.

Messages with unfilled arrowheads are passed to or from the state machine's transmitter or receiver, not shown in the state machine figures, and are directly related to data being transmitted on or received from the physical link.

The state machine description text for each state whelly defines the messages sent while the state machine is in that state. If a state machine in one state peatedly sending a message transitions to another state, it stops repeatedly sending that message unless state of otherwise in the new state.

3.6.4 State machine counters, timers, and variables

State machines may contain younters, times, and variables that affect the operation of the state machine. The following properties apply to counters, timers, and variables:


- a) Their scope is the state machine itself;
- b) They are created and deleted with the state machines with which they are associated;
- c) Their initialization and modification is specified in the state descriptions and the transition descriptions; and
- d) Their current values may be used to determine the behavior of a state and select the transition out of a state.

State machine timers may continue to run while a state machine is in a given state, and a timer may cause a state transition upon reaching a defined threshold value (e.g. reference that counts down).

3.6.5 State machine arguments

State machines may certain an argument received in a message or confirmation-as a state machine arguments. The following properties apply to state machine arguments:

- a) the state machine that sends the argument owns that argument's value;
- b) the state machine that receives the argument shall not modify those argument's values
- c) the state machine that sends the argument may resend those arguments with different values
- d) the scope of a state machine argument is the state machine itself; and
- e) state machine argument usage is described in the state descriptions and the transition descriptions.

Comments from page 32 continued on next page

If the state transition leaves the page, the transition label goes to or from a state designator label with double underlines rather than to or from a state.

The conditions and actions are described fully in the transition description text. In case of a conflict between a figure and the text, the text shall take precedence.

Upon entry into a state, all actions to be processed in that state are processed. If a state is re-entered from itself, all actions to be processed in the state are processed again. A state may be entered and exited in zero time if the conditions for exiting the state are valid upon entry into the state. Transitions between states are instantaneous

3.6.3 Messages, requests, indications, confirmations, responses, and event notifications

Messages passed between state machines are shown with dashed lines labeled with a message name. When messages are passed between state machines within the same layer of the protocol, they are identified by either:

- a) a dashed line to or from a state machine name label with double underlines and/or state name label with double underlines, if the destination is in a different figure from the source;
- b) a dashed line to or from a state in another state machine in the same figure; or
- a dashed line from a state machine name label with double underlines to a "(to all states)" label, if the
 destination is every state in the state machine.

The meaning of each message is described in the state description text.

Requests, indications, confirmations, responses, and event notifications are shown with curved dashed lines originating from or going toward the top or bottom of the figure. Each request, indication, confirmation, response, and event notification is labeled. The meaning of each request, indication, confirmation, response and event notification is described in the state description text.

Messages with unfilled arrowheads are passed to or from the state machine's transmitter or receiver, not shown in the state machine figures, and are directly related to data being transmitted on or received from the physical link.

The state machine description text for each state whelly defines the messages sent while the state machine is in that state. If a state machine in one state repeatedly sending a message transitions to another state, it stop repeatedly sending that message unless stated otherwise in the new state.

3.6.4 State machine counters, timers, and variables

State machines may contain counters, timers, and variables that affect the operation of the state machine. The following properties apply to counters, timers, and variables:

- a) Their scope is the state machine itself;
- b) They are created and deleted with the state machines with which they are associated;
- c) Their initialization and modification is specified in the state descriptions and the transition descriptions; and
- d) Their current values may be used to determine the behavior of a state and select the transition out of

State machine timers may continue to run while a state machine is in a given state, and a timer may cause a state transition upon reaching a defined threshold value (e.g., zero for a timer that counts down)

3.6.5 State machine arguments

State machines may contain an argument received in a message or confirmation as a state mychine arguments. The following properties apply to state machine arguments:

- a) the state machine that sends the argument owns that argument's value;
- b) the state machine that receives the argument shall not modify those argumy/it's values;
- c) the state machine that sends the argument may resend those arguments with different value
- d) the scope of a state machine argument is the state machine itself; and
- e) state machine argument usage is described in the state descriptions and the transition descriptions.

Subject: Highlight Date: 5/25/2008 2:07:59 PM -07'00' TACCEPT - DONE values s/b "value" (not plural) Author: stx-ahoulder Subject: Highlight Date: 5/25/2008 2:08:10 PM -07'00' ACCEPT - DONE ("that") those s/h 'the" Author: wdc-mevans Subject: Highlight Date: 5/25/2008 2:07:37 PM -07'00' TACCEPT - DONE the s/b an Author: stx-ahoulder Subject: Highlight
Date: 5/25/2008 2:07:50 PM -07'00' TACCEPT - DONE different values s/b "a different value" (not plural) Author: stx-ghoulder Subject: Highlight Date: 5/17/2008 11:23:28 AM -07'00' ACCEPT - DONE (as "that argument" per wdc-mevans comment) those arguments s/b "the argument" Author: wdc-mevans Subject: Highlight Date: 5/17/2008 11:23:17 AM -07'00' ACCEPT - DONE those arguments that argument Author: wdc-mevans Subject: Highlight Date: 5/25/2008 2:07:31 PM -07'00' TACCEPT - DONE the s/b an

s/b an

Author: stx-ghoulder

3.7 Bit and byte ordering

In a field in a table consisting of more than one bit that contains a single value (e.g., a number), the least significant bit (LSB) is shown on the right and the most significant bit (MSB) is shown on the left (e.g., in a byte, bit 7 is the MSB and is shown on the left; bit 0 is the LSB and is shown on the right). The MSB and LSB are not labeled if the field consists of 8 or fewer bits.

In a field in a table consisting of more than one byte that contains a single value (e.g., a number), the byte containing the MSB is stored at the lowest address and the byte containing the LSB is stored at the highest address (i.e., big-endian byte ordering). The MSB and LSB are labeled.

NOTE 9 - SATA numbers bits within fields the same as this standard, but uses little-endian byte ordering.

In a field in a table consisting of more than one byte that contains multiple fields each with their own values. (e.g., a descriptor), there is no MSB and LSB of the field itself and thus there are no MSB and LSB labels. Each individual field has an MSB and LSB, but they are not labeled.

In a field containing a text string (e.g., ASCII or UTF-8), the MSB label is the MSB of the first character and the LSB label is the LSB of the last character.

Multiple byte fields are represented with entry two rows, with the non-sequentially increasing byte number indicating the presence of additional bytes.

A data dword consists of 32 bits. Table 4 shows a data dword containing a single value, where the MSB is on the left in bit 31 and the LSB is on the right in bit 0.

Tabie 4 — Data dword containing a value

$\overline{}$																															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	45	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
M	SB														Va	lue			~	/	/									L	SB

Table 5 shows a data dword containing four one-byte fields, where byte 0 (the first byte) is on the left and byte 3 (the fourth byte) is on the right. Each byte has an MSB on the left and an LSB on the right.

Table 5 — Data dword containing four one-byte fields

31 30	29 28 27 26	25 24	23 22	21 2	20 19	18	17 1	16 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MSB	Byte 0 (First byte)	LSB	MSB		lyte 1 and b	yte)	LSI	ВМ	SB		Byte hird		te)	LS	SB	M	SB		Byt urth		rte)	LS	SB

3.8 Notation for procedures and functions

In this standard, the model for functional interfaces between objects is the callable procedure. Such interfaces are specified using the following notation:

[Result =] Procedure Name (IN ([input-1] [,input-2] ...), OUT ([output-1] [,output-2] ...)) where:

A single value representing the outcome of the procedure or Result

Procedure Name: A descriptive name for the function to be performed.

A comma-separated list of names identifying caller-supplied input IN (Input-1, Input-2, ...)

A comma-separated list of names identifying output data objects to OUT (Output-1, Output-2, ...)

be returned by the procedure.

Brackets enclose optional or conditional parameters and arguments. [...]

This notation allows data objects to be specified as inputs and outputs.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 33

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 2:08:59 PM -07'00'

left and s/b

left, and

CACCEPT - DONE

Author: elx-bmartin Subject: Cross-Out Date: 5/6/2008 1:07:48 PM -07'00' REJECT (see response to "field" definition) consisting of more than one bit see other comments on one bit fields Author: wdc-mevans Subject: Highlight Date: 5/25/2008 2:08:34 PM -07'00' TREJECT rows, with s/h rows with Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE with s/b by Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE non-sequentially increasing byte number indicating where a non-sequentially increasing byte number indicates Since a 2-byte field will still have sequential increasing byte numbers, this needs to be worded to still cover that case. Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 2:08:46 PM -07'00' bit 31 and bit 31, and

4 General

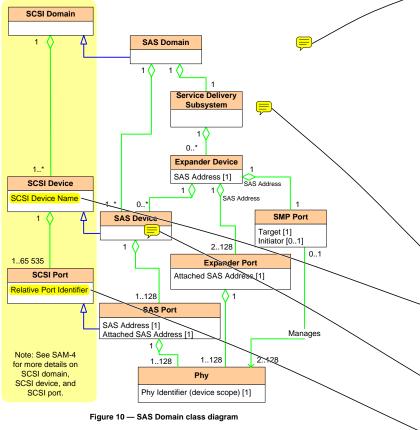
4.1 Architecture

4.1.1 Architecture overview

A SAS domain (see 4.1.9) contains one or more SAS devices and a service delivery subsystem. A SAS domain may be a SCSI domain (see SAM-4).

A SAS device (see 4.1.6) contains one or more SAS ports (see 4.1.4). A SAS device may be a SCSI device (see SAM-4).

A SAS port (see 4.1.4) contains one or more phys (see 4.1.2). A SAS port may be a SCSI port (see SAM-4).


The service delivery subsystem (see 4.1.8) in a SAS domain may contain expander devices (see 4.1.7).

Expander devices contain expander ports (see 4.1.4) and one SMP port.

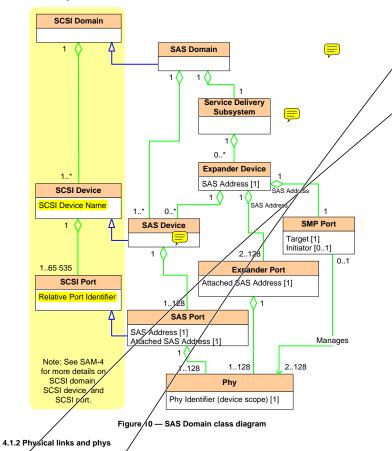
An expander port contains one or more phys (see 4.1.2).

An expander device shares its phys with the SAS device(s) contained within the expander device.

Figure 10 shows the class diagram for a SAS domain, showing the relationships between SAS Domain, SCSI Domain, Service Delivery Subsystem, Expander Device, Expander Port, SAS Device, SCSI Device, SAS Port, SCSI Port, and Phy classes. Not all attributes are shown.

4.1.2 Physical links and phys

A physical link is a set of four wires used as two differential signal pairs. One differential signal transmits in one direction while the other differential signal transmits in the opposite direction. Data may be transmitted in both directions simultaneously.


A physical phy contains a transceiver which electrically interfaces to a physical link, which attaches to another physical phy. A virtual phy contains a vendor-specific interface to another virtual phy.

```
Author: Isi-bbesmer
Subject: Note
Date: 5/25/2008 2:39:55 PM -07'00'
   ACCEPT - DONE (This means phy identifiers are 0 through 254 with identifier 255 reserved, representing 1 through 255 possible
    figure 10: changed 1..128 to 1..255
   figure 10: changed 2.. to 2..255
   figure 16: changed [0..128] to [0..255] (zero to 255 possible phys) figure 16: changed 2..128 to 2..255
    also figure 38: 0..128 to 0..255
    also figure 38: 1..128 to 1..255
    also figure 39: 1..128 to 1..255
   also figure 39: 0..128 to 0..255
   in figure 50, not table 50: 128 to 255, deleted two unnecessary sentences
   I suggest we increase the number of allowed expander phys to 255.
    Note: We need to reserve Phyldentifier 0xFF (255) for SMP REPORT BROADCASTS special usage.
   Changes needed:
   Figure 10
   Figure 16
   Section 4.2.8 Phy identifiers shall be greater than or equal to 00h and less than 80h
    Table 8 (7-bit value)
    Table 50
Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
   extend yellow underneath Service Delivery Subsystem, since that class is also defined in SAM-4. Add to Note in bottom of yellow.
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
   SCSI Device Name
   add [1] to emphasize that SAS requires this attribute
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
    add a Device Name [1] attribute to the SAS Device class
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
   Relative Port Identifier
```

Comments from page 35 continued on next page

Page: 35

Figure 10 shows the class diagram for a SAS domain, showing the relationships between SAS Domain, SCSI Domain, Service Delivery Subsystem, Expander Device, Expander Port, SAS Device, SCSI Device, SAS Port, SCSI Port, and Phy classes. Not all attributes are shown.

A physical link is a set of four wirey used as two differential signal pairs. One differential signal transmits in one direction while the other differential signal transmits in the opposite direction. Data may be transmitted in both directions simultaneously.

A physical phy contains a transceiver which electrically interfaces to a physical link, which attaches to another physical phy. A virtual phy contains a vendor-specific interface to another virtual phy.

Working Draft Serial Attached SCSI - 2 (SAS-2)

add [1] to emphasize that SAS requires this attribute

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 2:40:28 PM -07'00'
TREJECT (why replace one word with four that have the exact same dictionary meaning?)
simultaneously
s/b
at the same time

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Add

35

Virtual phys have vendor-specific variations of the state machines defined in this standard; the interface to other state machines complies with this standard, but the vendor-specific interface is different.

so the UML diagrams can just claim there is [1] SL_IR and XL state machine in an expander logical phy, rather than use [0..1] and cause confusion.

Phys are contained in ports (see 4.1.4). Phys interface to a service delivery subsystem (see 4.1.8). Figure 11 shows two phys attached with a physical link.

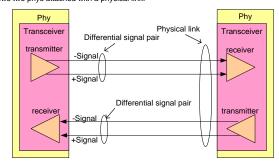


Figure 11 — Physical links and phys

An attached phy is the phy to which a phy is attached over a physical link.

A device (i.e., a SAS device (see 4.1.6) or expander device (see 4.1.7)) contains one or more phys. Each phy has:

- a) a SAS address (see 4.2.2), inherited from the SAS port (see 4.1.4) or expander device;
- b) a phy identifier (see 4.2.8) which is unique within the device;
- c) optionally, support for being an SSP initiator phy;
- d) optionally, support for being an STP initiator phy;
- e) optionally, support for being an SMP initiator phy;
- f) optionally, support for being an SSP target phy;
- g) optionally, support for being an STP target phy; and
- h) optionally, support for being an SMP target phy.

A phy may be used as one or two logical phys based on multiplexing (see 6.10).

During the identification sequence (see 7.9), a logical phy:

- a) transmits an IDENTIFY address frame including the device type (i.e., end device or expander device)
 of the device containing the phy, the SAS address of the SAS port or expander device containing the
 logical phy, and other information; and
- receives an IDENTIFY address frame containing the same set of information from the attached logical phy, including the attached device type, the attached SAS address, the attached device name, and other attached information.

The transceiver follows the electrical specifications defined in 5.3. Phys transmit and receive bits at physical link rates defined in 5.3. The physical link rates supported by a phy are specified or indicated by the following fields in the SMP DISCOVER response (see 10.4.3.10), the SMP PHY CONTROL request (see 10.4.3.28), and the Phy Control and Discover mode page (see 10.2.7.5):

c) the NEGOTIATED PHYSICAL LINK RATE field;

36

- d) the HARDWARE MINIMUM PHYSICAL LINK RATE field;
- e) the HARDWARE MAXIMUM PHYSICAL LINK RATE field;
- f) the PROGRAMMED MINIMUM PHYSICAL LINK RATE field; and
- g) the PROGRAMMED MAXIMUM PHYSICAL LINK RATE field.

The bits are part of dwords (see 6.2.1), each of which has been encoded using 8b10b coding into four 10-bit characters (see 6.2).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 36

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

The bits are part of dwords (see 6.2.1), each of which has been encoded using 8b10b coding into four 10-bit characters (see 6.2).

The bits are parts of 10-bit characters (see 6.3), which are parts of dwords (see 6.4).

Figure 12 defines the Phy classes, showing the relationships between the following classes:

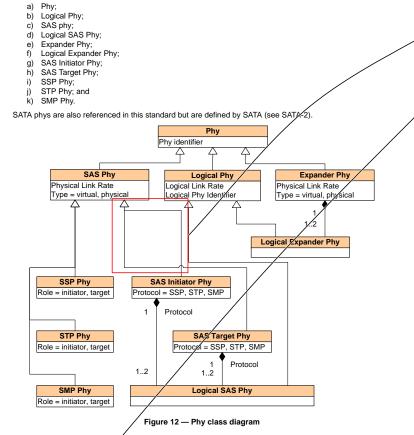


Figure 13 shows example objects instantiated from the SAS Phy class, including:

- a) SSP initiator phy;
- b) SSP target phy,
- c) virtual SMP initiator phy;
- d) virtual SMP target phy;
- e) STP initiator phy;
- f) logical SAS phy.

Page: 37

Author: Isi-gpenokie
Subject: Rectangle
Date: 525/2008 3:36:54 PM -07'00'

ACCEPT - DONE

This should be fixed so the line merge with no hop.

Author: RElliott
Subject: Highlighight
Date: 7/9/2008 6:59:38 AM -07'00'

ACCEPT - DONE

(from Ralph Weber, ENDL)

A SAS phy is represented by one of these objects during each connection. A SAS phy may be represented by different phy objects in different connections.

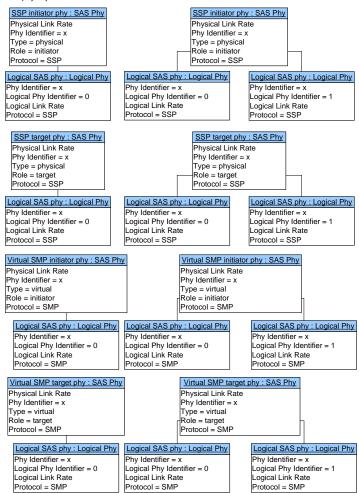


Figure 13 — SAS phy object diagram

28 January 2008 T10/1760-D Revision 14

Figure 3 shows the objects instantiated from the Expander Phy class, including:

- a) expander phy;
- b) virtual expander phy; and
- c) logical expander phy.

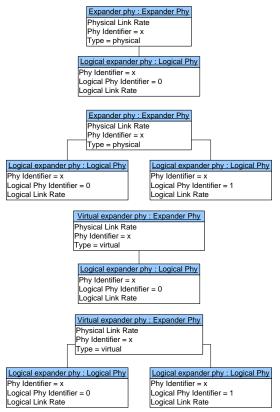


Figure 14 — Expander phy object diagram

4.1.3 Logical links

A physical link with a physical link rate greater than 1.5 Gbps may be multiplexed into two logical links as defined in table 6.

Table 6 — Logical links

Physical link rate	Logical link(s)
6 Gbps	One 6 Gbps logical link
о обра	Two 3 Gbps logical links
3 Gbps	One 3 Gbps logical link
3 Обра	Two 1.5 Gbps logical links
1.5 Gbps	One 1.5 Gbps logical link

Multiplexing is defined in 6.10.

4.1.4 Ports (narrow ports and wide ports)

A port contains one or more phys. Ports in a device are associated with mysical phys based on the identification sequence (see 7.9). Ports are associated with virtual phys based on the design of the device.

A port is created from one or more physical phys if, string the identification sequence (see 7.9), they:

- a) transmitted the same SAS address (see 4.2) that the other physical phys in that port also transmitted in their outgoing IDENTIFY address frames (i.e., the SAS address is the same); and
- b) received the same SAS address that the other physical phys in that port also received in their incoming IDENTIFY address transes (i.e., the attached SAS address is the same).

A port is a wide port if there are more than one phy in the port. A port is a narrow port if there is only one phy in the port.

A wide link is the set of physical links that attach a wide port to another wide port. A narrow link is the physical link that attaches a narrow port to another parrow port.

Attaching phys within a wide port to other phys in the same wide port (i.e., the SAS address transmitted in the outgoing IDENTIFY address frame is the same as the SAS address received in the incoming IDENTIFY address frame) is outside the scope of this standard.

Phys that are able to become part of the same wide port shall-set the DEVICE TYPE field, BREAK_REPLY CAPABLE bit, SSP INITIATOR PORT bit, STP INITIATOR PORT bit, SSP TARGET PORT bit, STP TARGET PORT bit, STP TARGET PORT bit, and SAS ADDRESS field in the IDENTIFY address frame (see 7.8.2) transmitted during the identification sequence to the same set of values on each phy in the wide port. Recipient wide ports are not required to check the consistency of these fields across their phys.

Page: 40 Author: elx-bmartin

```
Subject: Highlight
Date: 5/25/2008 2:43:07 PM -07'00'

ACCEPT - DONE
are
s.b.
is

Author: Isi-bday
Subject: Highlight
Date: 5/25/2008 2:43:00 PM -07'00'

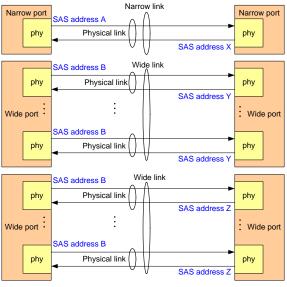
ACCEPT - DONE
are
s/b
is

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 2:41:35 PM -07'00'

TACCEPT - DONE (you read what on the Internet? "it" is totally unclear based on other comments :-))
there are more than one
s/b
there is more than one
```

Author: elx-bmartin
Subject: Highlight
Date: 5/25/2008 2:42:30 PM -07'00'
DACCEPT - DONE ("Attaching a phy within a wide port to another phy in the same port")
wide

why is this only for wide ports shouldn't this be for wide or narrow? If removing this wide, remove the next wide in this sentence.


Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

[I read it on the internet.]

add "the" several times in this paragraph

28 January 2008 T10/1760-D Revision 14

Figure 15 shows examples of narrow ports and wide ports, with a representation of the SAS address transmitted during the identification sequence. Although several phys on the left transmit SAS addresses of B, only phys attached to the same SAS addresses become part of the same ports. The set of phys with SAS address B attached to the set of phys with SAS address Y become one port, while the set of phys with SAS address B attached to the set of phys with SAS address Z become another port.

Each horizontal line represents a differential signal pair

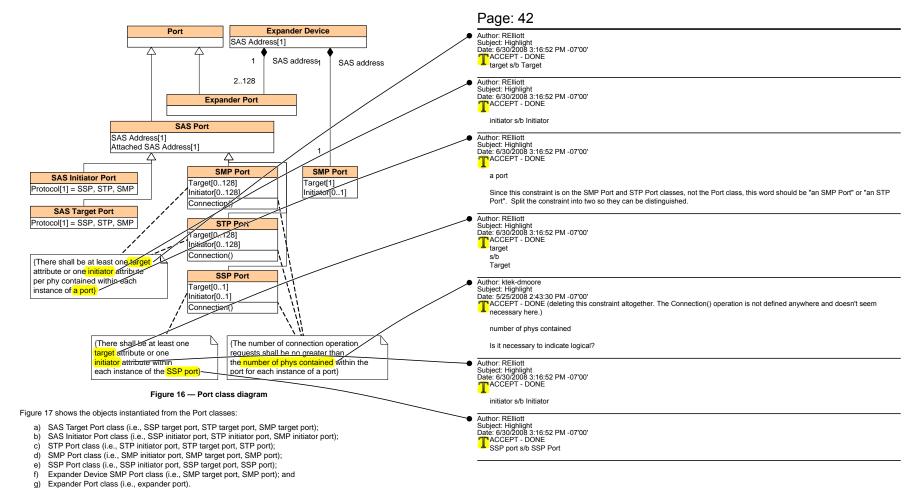
Figure 15 — Ports (narrow ports and wide ports)

In figures in this standard that show ports but not phys, the phy level of detail is not shown; however, each port always contains one or more phys.

Figure 16 defines the Port classes, showing the relationships between the following classes:

- a) Port;
- b) Expander Port;
- c) SAS Port;
- d) SAS Initiator Port;
- e) SAS Target Port;
- SSP Port;
- g) STP Port; and
- h) SMP Port.

Working Draft Serial Attached SCSI - 2 (SAS-2)


Page: 41

41

Author: Isi-gpenokie Subject: Highlight Date: 5/17/2008 11:24:59 AM -07'00'

TREJECT (joining them with a semicolon strengthens the fact that this is still discussing the subset of "figures in this standard that show ports but not phys")

Should be << detail is not shown. However, each port

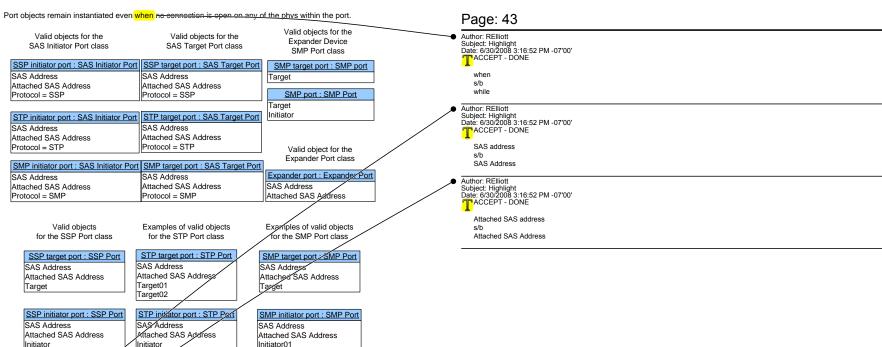


Figure 17 — Port object diagram

STP port : STP Port

Attached SAS Address

SAS Address

Target01

Target02

Initiator

Initiator02

Target01

Target02

Initiator01 Initiator02

SAS Address

SMP port : SMP port

Attached SAS Address

4.1.5 Application clients and device servers

SSP port : SS/P Port

Attached SAS address

SAS address

Initiator

Target

This standard defines the following application clients:

 a) a SCSI application client (see SAM-4) is the source of SCSI commands and task management function requests. A SCSI application client uses an SSP initiator port to interface to a service delivery subsystem;

- b) an ATA application client (see ATA8-AAM) is the source of ATA commands and device management operation requests. An ATA application client uses an STP initiator port to interface to a service delivery subsystem; and
- c) a management application client is the source of management function requests. A management application client uses an SMP initiator port to interface to a service delivery subsystem.

This standard defines the following device servers:

- a) a SCSI device server (see SAM-4) processes SCSI commands. A SCSI device server uses an SSP target port to interface to a service delivery subsystem;
- b) an ATA device server (see ATA8-AAM) processes ATA commands. An device server uses an STP target port to interface to a service delivery subsystem; and
- c) a management device server processes management functions. A management device server uses an SMP target port to interface to a service delivery subsystem;

4.1.6 SAS devices

A SAS device contains one or more SAS ports, each containing one sr more phys (i.e., a SAS port may be a narrow port or a wide port)

Figure 18 shows examples of SAS devices with different port and phy configurations.

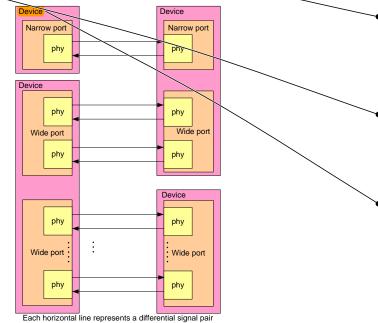


Figure 18 — SAS devices

Page: 44

Author: elx-bmartin Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' TACCEPT - DONE

An device

s.b.

An ATA device

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

s/b

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

A SCSI to ATA translation layer (see SAT-2) may be implemented to enable SCSI application clients to communicate with ATA devices.

per Isi-bbesmer comment in 2.3

Author: stx-ghoulder
Subject: Highlight
Date: 5/25/2008 2:44:19 PM -07'00'
TREJECT (figure 18 shows devices, while figure 15 limits itself to ports. In some sense the phys could be removed from this figure to avoid including multiple levels of hierarchy, but that would be less useful.)

Figure 18 is the same as figure 15 except that it shows less detail in some respects. Why can't this figure be deleted and the reference changed to figure 15?

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

Device SAS device

4 times in figure 18

An end device is a SAS device that is not contained in an expander device (see 4.1.7).

4.1.7 Expander devices

Expander devices are part of a service delivery subsystem and facilitate communication between multiple SAS devices. Expander devices contain two or more external expander ports. Each expander device contains one SMP target port and one management device server, contains one SMP initiator port and one management application client if it is self-configuring and may contain one SMP initiator port and one management application client if it is not self-configuring, and may contain SAS devices (e.g., an expander device may include an SSP target port for access to a logical unit with a peripheral device type set to 0Dh (i.e., enclosure services device) (see SPC-4 and SES-2)).

Figure 19 shows an expander device.

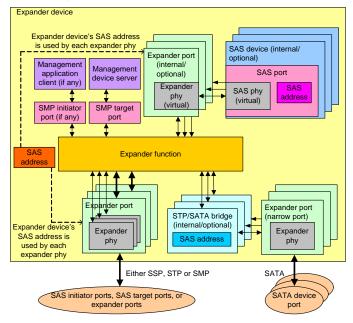


Figure 19 — Expander device

See 4.6 for a detailed model of an expander device.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 45

Author: elx-bmartin

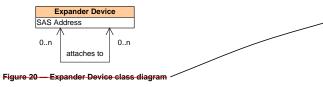
Subject: Highlight Date: 5/8/2008 3:25:03 PM -07'00'

ACCEPT - DONE (changing "it" per Mark's comment)

Each expander device contains one SMP target port and one management device server, contains one SMP initiator port and one management application client if it is self-configuring and may contain one SMP initiator port and one management application client if it is not self-configuring, and may contain SAS devices (e.g., an expander device may include an SSP target port for access to a logical unit with a peripheral device type set to 0Dh (i.e., enclosure services device) (see SPC-4 and SES-2)).

Make this an a) b) list

Each expander device:


- a) contains one SMP target port and one management device server;
- b) contains one SMP initiator port and one management application client if it is self-configuring;
- c) may contain one SMP initiator port and one management application client if it is not self-configuring; and
- d) may contain SAS devices (e.g., an expander device may include an SSP target port for access to a logical unit with a peripheral device type set to 0Dh (i.e., enclosure services device) (see SPC-4 and SES-2)).

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 2:45:47 PM -07'00' ACCEPT - DONE

> Each expander device contains one SMP target port and one management device server, contains one SMP initiator port and one management application client if it is self-configuring and may contain one SMP initiator port and one management application client if it is not self-configuring, and may contain SAS devices (e.g., an expander device may include an SSP target port for access to a logical unit with a peripheral device type set to 0Dh (i.e., enclosure services device) (see SPC-4 and SES-2)).

- Each expander device:
- a) contains one SMP target port and one management device server;
- b) contains one SMP initiator port and one management application client, if the expander device is self-configuring;
- c) may contain one SMP initiator port and one management application client, if the expander device is not self-configuring; and
- d) may contain SAS devices (e.g., an expander device may include an SSP target port for access to a logical unit with a peripheral device type set to 0Dh (i.e., enclosure services device) (see SPC-4 and SES-2)).

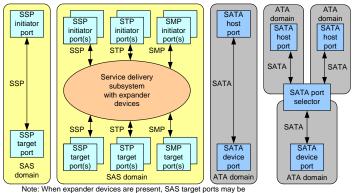
Figure 20 defines the Expander Device class.

Each expander phy has one of the following routing attributes (see 4.6.7.1):

- a) direct routing attribute;
- b) table routing attribute; or
- c) subtractive routing attribute.

Expander devices with expander phys with the table routing attribute contain an expander route table (see 4.6.7.3). An externally configurable expander device depends on a management application. Client within the SAS domain to use the discover process (see 4.7) and the configuration subprocess (see 4.8) to configure the expander route table. A self-configuring expander device contains a management application client and an SMP initiator port to perform the discover process (see 4.7) to configure its own expander route table.

4.1.8 Service delivery subsystem


A service delivery subsystem is either:

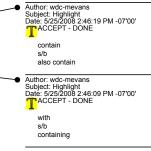
- a) a set of physical links between a SAS initiator port and a SAS target port; or
- b) a set of physical links and expander devices, supporting more than two SAS ports.

See 4.1.10 for rules on constructing service delivery subsystems from multiple expander devices.

4.1.9 Domains

Figure 21 shows examples of SAS domains and ATA domains.

located in SAS devices contained in expander devices.


Figure 21 — Domains

Page: 46

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

Delete Figure 20 — Expander Device class diagram

This is not useful any more, now that fanout/edge expanders are gone. There is no "attaches to" link shown for SAS Devices in any other figure, so there is no need to show that for Expander Devices.

Figure 22 shows a SAS domain bridging to one or more ATA domains.

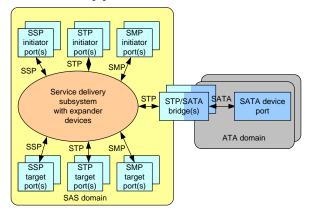


Figure 22 — SAS domain bridging to ATA domains

Figure 23 shows two SAS domains bridging to one or more ATA domains containing SATA devices with SATA port selectors.

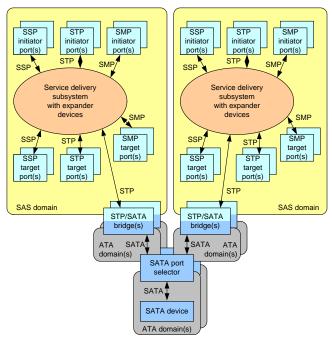


Figure 23 — SAS domains bridging to ATA domains with SATA port selectors

28 January 2008 T10/1760-D Revision 14

Figure 24 shows SAS initiator devices and SAS target devices with SAS ports in the same SAS domains and in different SAS domains. When a SAS device has ports in different SAS domains, the ports may have the same SAS address (see 4.2); when its ports are in the same SAS domain, they shall have different SAS addresses.

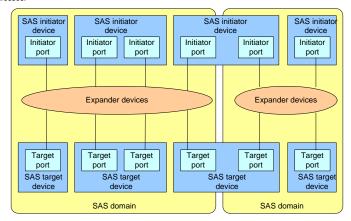


Figure 24 — Devices spanning SAS domains

4.1.10 Expander device topologies

4.1.10.1 Expander device topology overview

More than one expander device may be part of a service delivery subsystem.

To avoid an overflow of an expander route index during the configuration subprocess (see 4.8), a SAS domain containing an externally configurable expander device shall be constructed such that the number of expander route indexes available for each expander phy with the table routing attribute is greater than or equal to the number of SAS addresses addressable through that expander phy.

4.1.10.2 Expander device topologies

Figure 25 shows an example of an expander topology with one expander device.

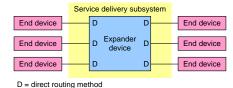


Figure 25 — Single expander device topology example

Working Draft Serial Attached SCSI - 2 (SAS-2)

Figure 26 shows examples of expander topologies with multiple expander devices.

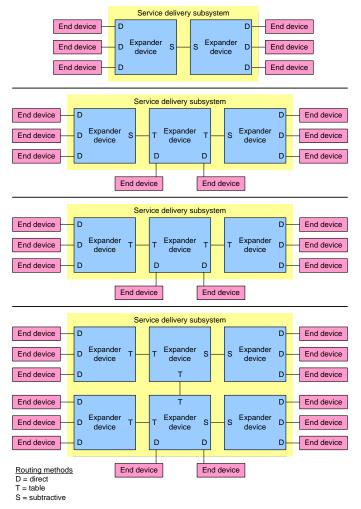
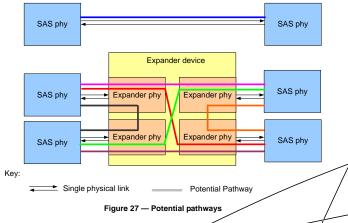


Figure 26 — Multiple expander device topologies

Page: 51


T10/1760-D Revision 14

A potential pathway is a set of logical links between a SAS initiator phy and a SAS target phy. When a SAS initiator phy is directly attached to a SAS target phy with a non-multiplexed physical link, there is one potential pathway. When the physical link is multiplexed or there are expander devices between a SAS initiator phy and a SAS target phy, it is possible that there is more than one potential pathway, each consisting of a set of logical links between the SAS initiator phy and the SAS target phy. The physical links may or may not be using the same physical link rate.

A pathway is a set of logical links between a SAS initiator phy and a SAS target phy being used by a connection (see 4.1.12).

Figure 27 shows examples of potential pathways.

4.1.11 Pathways

A partial pathway is the set of logical links participating in a connection request that have net yet conveyed a connection response (see 7.12).

A partial pathway is blocked when path resources it requires are field by another partial pathway (see 7.12).

4.1.12 Connections

A connection is a temporary association between a SAS initiator phy and a SAS target phy. During a connection all dwords from the SAS initiator phy are forwarded to the SAS target phy, and all dwords from the SAS target phy are forwarded to the SAS initiator phy.

A connection is pending when an OPEN address frame has been delivered along a completed pathway to the destination phy but the destination phy has not yet responded to the connection request. A connection is established when an OPEN_ACCEPT is received by the source phy.

A connection enables communication for one protocol: SSP, STP, or SMP. For SSP and STP, connections may be opened and closed multiple times during the processing of a command (see 7.12).

The connection rate is the effective rate of dwords through the pathway between a SAS initiator phy and a SAS target phy, established through the connection request. Every logical phy shall support a 1.5 Gbps connection rate regardless of its logical link rate.

No more than one connection is active on a logical link at a time. If the connection is an SSP or SMP connection and there are no dwords to transmit associated with that connection, idle dwords are transmitted.

Author: wdc-mevans Subject: Highlight Date: 6/3/2008 4:05:57 PM -07'00' REJECT (There are 22 uses of "directly." Both "directly attached" and "attached directly" appear. Arguably, some of them could be dropped. However, some of them provide emphasis that they're discussing devices directly attached vs attached behind some (other) expander. I'm inclined to leave them alone.) Global directly attached to a SAS target phy with a non-multiplexed physical link attached to a SAS target phy via a non-multiplexed physical link (i.e., without any expander devices in the service delivery [It might be best to put "directly attached" in the definitions clause. These terms are used often, and never clearly defined.] Author: Isi-bbesmer Subject: Highlight Date: 5/25/2008 2:48:07 PM -07'00' REJECT (waiting on a fully established connection is not considered "blocked" - that's only for partials waiting on partials) another partial pathway another pathway or partial pathway or perhaps another connection or partial pathway Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE s/b that it Author: Isi-bday Subject: Highlight Date: 8/27/2008 3:44:05 PM -07'00' ACCEPT - DONE (yes - ", all dwords... that are not deletable primitives", twice in the sentence) dwords Does this sentence need a small caveat to allow for deletable primitives to not be forwarded? Author: Isi-bhesmer Date: 6/3/2008 4:24:50 PM -07'00' ACCEPT - DONE (", all non-deletable dwords") Not all dwords are necessarily forwarded (ie. all Deletable Primitives, Broadcast Primitives, etc). Author: wdc-mevans Date: 5/25/2008 2:48:28 PM -07'00' PREJECT (added sentence instead: "A source phy transmits an OPEN address frame (see 7.8.3) specifying the SAS address of a destination phy to attempt to establish a connection.")

Comments from page 51 continued on next page

OPEN address frame (see [insert cross reference]) from a phy attempting to establish a connection (i.e., the source phy)

OPEN address frame

4.1.11 Pathways

A potential pathway is a set of logical links between a SAS initiator phy and a SAS target phy. When a SAS initiator phy is directly attached to a SAS target phy with a non-multiplexed physical link, there is one potential pathway. When the physical link is multiplexed or there are expander devices between a SAS initiator phy and a SAS target phy, it is possible that there is more than one potential pathway, each consisting of a set of logical links between the SAS initiator phy and the SAS target phy. The physical links may or may not be using the same physical link rate.

A pathway is a set of logical links between a SAS initiator phy and a SAS target phy being used by a connection (see 4.1.12).

Figure 27 shows examples of potential pathways.

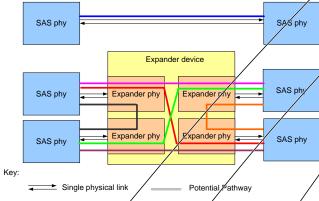


Figure 27 — Potential pathways

A partial pathway is the set of logical links participating in a connection request that have not yet conveyed a connection response (see 7.12).

A partial pathway is blocked where path resources it requires are held by another partial pathway (see 7.12).

4.1.12 Connections

A connection is a temporary association between a SAS initiator phy and a SAS target phy. During a connection all dwords from the SAS initiator phy are forwarded to the SAS target phy, and all dwords from the SAS target phy are forwarded to the SAS initiator phy.

A connection is pending when an OPEN arthress frame has been delivered along a completed pathway to the destination phy but the destination phy has not yet responded to the connection request. A connection is established when an OPEN_ACCEPT is received by the source phy.

A connection enables communication for one protocol: SSP, STP, of SMP. For SSP and STP, connections may be opened and closed multiple times during the processing of a command (see 7.12).

The connection rate is the effective rate of dwords through the pathway between a SAS initiator phy and a SAS target phy, established through the connection request. Every logical phy shall support a 1.5 Gbps connection rate regardless of its logical link rate.

No more than one connection is active on a logical link at a time. If the connection is an SSP or SMP connection and there are no dwords to transmit associated with that connection, idle dwords are transmitted.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: wdc-meyans

Subject: Highlight
Date: 5/25/2008 2:48:54 PM -07'00'

"TREJECT (Added a sentence instead - "A source phy transmits an OPEN address frame (see 7.8.3) specifying the SAS address of a destination phy to attempt to establish a connection.")

destination phy

phy with which the source phy is attempting to establish a connection (i.e., the destination phy),

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 2:48:42 PM -07'00'

*ACCEPT - DONE (Changed to "when the source phy receives an OPEN_ACCEPT (see 7.x) from the destination phy.")

OPEN ACCEPT

OPEN_ACCEPT (see [insert cross reference]) transmitted from the destination phy

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 2:49:14 PM -07'00'

**REJECT (this is section 4.1.12, just a broad introduction to the concept of connections; the details are in chapter 7)

through the connection request.

51

during the connection request (i.e., the connection rate value contained in the OPEN address frame)...

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 2:49:37 PM -07'00'

*REJECT (Yes, this is still true. This is the connection rate (covered by chapter 7 rate matching), not the physical link rate (covered by chapter 5 physical layer - SAS-2 does still require 1.5 Gbps be supported) or the logical link rate (covered by chapter 6 multiplexing). The connection rate of 1.5 Gbps will probably be required forever.)

Is this still true in SAS-2? Even it is, this does not seem like the correct place to specify it as there a many more words in the physical sections.

T10/1760-D Revision 14

28 January 2008

If the connection is an STP connection and there are no dwords to transmit associated with that connection. then SATA_SYNCs, SATA_CONTs, or vendor-specific scrambled data dwords are transmitted as defined in SATA-2. If there is no connection on a logical link then idle dwords are transmitted.

The number of connections established by a SAS port shall not exceed the number of SAS logical phys within the SAS port (i.e., only one connection per SAS logical phy is allowed). There shall be a separate connection on each logical link.

If multiple potential pathways exist between the SAS initiator port(s) and the SAS target port(s), multiple connections may be established by a SAS port between the following:

- a) one SAS initiator port to multiple SAS target ports;
- b) one SAS target port to multiple SAS initiator ports; or
- c) one SAS initiator port to one SAS target port.

Once a connection is established, the pathway used for that connection shall not be changed (i.e., all the logical links that make up the pathway remain dedicated to the connection until it is closed).

Figure 28 shows examples of connections between wide and narrow ports. All the connections shown may occur simultaneously. Additionali

- a) the connections labeled A and B are an example of one SAS initiator port with connections to multiple SAS target ports;
- b) the connections labeled A and C are an example of one SAS target part with connections to multiple SAS initiator ports;
- c) the connections labeled E and F are an example of multiple connections between one SAS initiator port and one SAS target port; and
- d) the connections labeled C, D, E, and F are an example of one SAS initiator port with connections to multiple SAS target ports with one of those SAS target ports having multiple connections with that SAS initiator port.

Page: 52

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE s/b the connection

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 2:50:41 PM -07'00'

TREJECT

Additionally s/h

In addition:

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 2:49:58 PM -07'00'

REJECT (why replace one word with 4 that have the exact same dictionary meaning?)

simultaneously

s/b

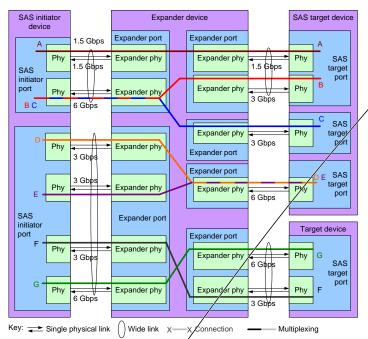
at the same time

Author: stx-ghoulder

Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
ACCEPT - DONE (A, B, and C all originate from one initiator port, so should all be listed)

A and B seem to be examples of one initiator port attached to one target port (wide link). I think you mean B and C as an example of one initiator port attached to multiple target ports.

Author: stx-ahoulder


Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'

TACCEPT - DONE (deleting this item, since it is no longer accurate after the figure was changed for multiplexing)

A and C

This seems to illustrate one SAS initiator port with connections to multiple SAS target ports. D and E illustrates connection to multiple initiator phys, but they might still the same initiator port.

28 January 2008 T10/1760-D Revision 14

Note: The expander device, each SAS initiator port, and each SAS target port has a unique SAS address. Connections D and E represent a wide \$AS initiator port with two simultaneous connections to a narrow SAS target port support/ng multiplexing. Connections F and G represent a wide SAS initiator port with two simultaneous connections to a wide SAS target port.

Figure 28 — My tiple connections on wide ports

4.1.13 Broadcasts

Broadcasts are used to notify all https://example.com/physis/ in the SAS domain about certain events. Broadcasts are transmitted using BROADCAST (see 7.2.6.4) and/or the SMP ZONED BROADCAST function (see 10.4.3.20).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 53

Author: Isi-bbesmer

Subject: Highlight Date: 5/25/2008 2:51:17 PM -07'00'

ACCEPT - DONE (changed "all phys" to "SAS ports and expander devices".

An expander device only needs to forward a Broadcast on one phy of a wide port, so "phys" is too narrow.

The term "ports" covers both "SAS ports" (which is correct) and "expander ports" (which is incorrect) - if expander A forwards a Broadcast to expander B, it is not necessarily going to reach every expander port in expander B. The expander device (specifically the BPP) is the terminus.

With zoning, the word "all" is no longer true, as only ports in affected zones will receive Broadcasts. Deleting the word "all" seems sufficient to fix this.

Also making a similar change in 7.2.6.4

logical phys??

ports??

53

Table 7 defines the Broadcast types.

Table 7 — Broadcast types (part 1 of 2)

		Table 7 — Broadcast types (part 1 or 2)
Broadcast	Primitive ^a	Description
Broadcast (Change)	yes	Originated by an expander device to notify SAS initiator ports that a SAS domain change has occurred (see 7.11). May also be originated by SAS initiator ports. Ignored by SAS target ports.
Broadcast (Reserved Change 0)	yes	Reserved. SAS ports (i.e, SAS initiator ports and SAS target ports) shall process this Broadcast the same as Broadcast (Change).
Broadcast (Reserved Change 1)	yes	Reserved. SAS ports shall process this Broadcast the same as Broadcast (Change).
Broadcast	V00	Originated by a logical unit with a peripheral device type set to 0Dh (i.e., enclosure services device) (see SPC-4 and SES-2) accessible through a SAS target port in the SAS domain to notify SAS initiator ports of an as
(SES)	yes	(SSP initiator ports should poll all the logical units in the SAS domain with peripheral device types set to 0Dh to determine the source.
		SAS target ports shall ignore this Broadcast.
Broadcast (Expander)	yes	Originated by an expander device to notify SAS initiator ports that an expander event has occurred, including: a) the expander device is temporarily going to have reduced functionality for a period of time (see 4.6.8); b) a phy event peak value detector has reached its threshold value, or c) a phy event peak value detector has been cleared by an SMP CONFIGURE PHY EVENT function (see 10.4.3.30).
		Expander events do not include SAS domain changes, which are communicated with Broadcast (Change).
Broadcast		Originated by an SSP target port when an event occurs that causes one or more unit attention conditions to be established for one or more logical units accessible through the SSP target port.
(Asynchronous Event)	yes	An SSP target port shall only originate one Broadcast (Asynchronous Event) for each event that affects multiple logical units accessible through the SSP target port (e.g., only one Broadcast (Asynchronous Event) is originated when a hard reset occurs).

All Broadcasts are supported by the SMP ZONED BROADCAST function (see 10.4.3.20), which defines additional reserved Broadcast types. Broadcasts labeled "yes" are also transmitted via BROADCAST primitive sequences (see 7.2.6.4).

Page: 54

Author: Isi-bbesmer Subject: Highlight Date: 5/25/2008 3:38:06 PM -07'00' ACCEPT - DONE Ignored by SAS target ports.

(Same as Broadcast(SES))

SAS target ports shall ignore this Broadcast.

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 2:51:35 PM -07'00'

REJECT (Deletable primitives are not required to make it across the elasticity buffer; that is not the case for BROADCAST

primitives. "Ignored" just means the state machines ignore them. Broadcasts don't always arrive in primitives, either, with the ZONED BROADCAST function - that's why they're mixed case Broadcasts rather than all-caps BROADCASTs now. Defining their handling as the same as deletable primitives wouldn't make sense.)

Global Ignored by SAS target ports.

SAS target ports shall ignore this primitive (i.e., a target port shall process the primitive the same as a deletable primitive).

[There are several places in this table where it is defined that a port shall ignore a primitive when what is meant is that the port shall process the primitive the same as a deletable primitive. There are several solutions:

a) add the "i.e." as in this recommended change for each occurrence;

b) replace "ignored" with "process the same as a deletable primitive"; or

c) add the keyword "ignored" and define it as "process the same as a deletable primitive".

Item (b) is probably the safest as you wouldn't know how or where else "ignored" may be used without a big search, and item (b) would require fewer words overall.]

Author: elx-bmartin

Subject: Highlight
Date: 5/25/2008 2:51:51 PM -07'00'

TACCEPT - DONE (changed to "A SCSI application client should...". as it's not something that the port layer or SSP link layer does on its own.)

SSP initiator ports should poll all the logical units in the SAS domain with

peripheral device types set to 0Dh to determine the source.

Why should SSP initiator ports poll? Isn't this the responsibility of a specific management application?

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 2:52:39 PM -07'00'

ACCEPT - DONE (just deleting temporarily, leaving "going to have reduced". It has not actually started reducing anything yet.)

temporarily going to have reduced

s/b

reducing

Author: Isi-bbesmer

Subject: Note Date: 5/25/2008 2:52:58 PM -07'00'

ACCEPT - DONE (For Broadcast (Asynchronous Event), added "SAS ports other than SSP initiator ports shall ignore this

Broadcast." For Broadcast (Expander), added "SAS target ports shall ignore this Broadcast.")

Should this also have this text?

SAS target ports shall ignore this Broadcast.

Comments from page 54 continued on next page

T10/1760-D Revision 14

Table 7 defines the Broadcast types.

Table 7 — Broadcast types (part 1 of 2)

Broadcast	Primitive ^a	Description
Broadcast (Change)	yes	Originated by an expander device to notify SAS initiator ports that a SAS domain change has occurred (see 7.11). May also be originated by SAS initiator ports. Ignored by SAS target ports.
Broadcast (Reserved Change 0)	yes	Reserved. SAS ports (i.e, SAS initiator ports and SAS target ports) shall process this Broadcast the same as Broadcast (Change).
Broadcast (Reserved Change 1)	yes	Reserved. SAS ports shall process this Broadcast the same as Broadcast (Change).
Broadcast (SES)	yes	Originated by a logical unit with a peripheral device type set to 0Dh (i.e., enclosure services device) (see SPC-4 and SES-2) accessible through a SAS target port in the SAS domain to notify SAS initiator ports of a asynchronous event. SSP initiator ports should poll all the logical units in the SAS domain with peripheral device types set to 0Dh to determine the source.
		SAS target ports shall ignore this Broadcast.
Broadcast (Expander)	yes	Originated by an expander device to notify SAS initiator ports that an expander event has occurred, including: a) the expander device is temporaxiy going to have reduced functionality for a period of time (see 4.6.%); b) a phy event peak value defector has reached its threshold value; or c) a phy event peak value detector has been cleared by an SMP CONFIGURE PHY EVENT function (see 10.4.3.30). Expander events on on include SAS domain changes, which are
		communicated with Broadcast (Change). Originated by an SSP target port when an event occurs that causes one
Broadcast (Asynchronous Event)	yes	or more unit attention conditions to be established for one or more logical units accessible through the SSP target port. An SSP target port shall only originate one Broadcast (Asynchronous Event) for each event that affects multiple logical units accessible through the SSP target port (e.g., only one Broadcast (Asynchronous Event) is originated when a hard reset occurs).

^a All Broadcasts are supported by the SMP ZONED BROADCAST function (see 10.4.3.20), which defines additional reserved Broadcast types. Broadcasts labeled "yes" are also transmitted via BROADCAST primitive sequences (see 7.2.6.4).

Working Draft Serial Attached SCSI - 2 (SAS-2)

54

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

event occurs

28 January 2008

event occurs (e.g., a hard reset)

to help alleviate an Isi-bbesmer comment on 4.4.2

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

fix formatting of last paragraph in Broadcast (Asynchronous Event) description

Table 7 — Broadcast types (part 2 of 2)

Broadcast	Primitive ^a	Description
Broadcast (Reserved 3)	yes	Reserved. SAS ports shall ignore this Broadcast.
Broadcast (Reserved 4)	yes	Reserved. SAS ports shall ignore this Broadcast.
Broadcast (Zone Activate)	no	Initiates the zone activate step (see 4.9.6.4). Devices that are not locked zoning expander devices shall ignore this Broadcast

^a All Broadcasts are supported by the SMP ZONED BROADCAST function (see 10.4.3.20), which defines additional reserved Broadcast types. Broadcasts labeled "yes" are also transmitted via BROADCAST primitive sequences (see 7.2.6.4).

an expander port receives a Broadcast, the BPP (see 4.6.5) shall forward the Broadcast en ar least one phy in each other expander port if zoning is disabled, or forward the Broadcast as described in 4.9.5 if zoning is enabled.

An expander device is not required to queue mattiple identical Broadcasts for the same expander port. If a second identical Broadcast is requested before the first Broadcast has been transmitted, the second Broadcast may be ignored.

AS device or an expander device is not required to maintain originated Broadcast count information in non-volatile storage or across reset events.

A SAS device or expander device may implement counters for Broadcasts it originates and report them in the REPORT BROADCAST response (see 10.4.3.9). If supported, the SAS device or expander device shall, for each combination of Broadcast type and Broadcast reason that the SAS device or expander device supports:

- a) if the Broadcast is related to a phy, then maintain a separate broadcast counter for each phy; and
- b) if the Broadcast is not related to a phy, then maintain one originated broadcast counter.

Broadcast (Change)s originated by an expander device are counted and reported in the REPORT GENERAL response (see 10.4.3.4) and other SMP response frames containing an EXPANDER CHANGE COUNT field.

An expander device may implement counters for Broadcasts received from attached end devices and report them in the REPORT BROADCAST response (see 10.4.3.9).

See 4.11 for details on phy events.

4.2 Names and identifiers

4.2.1 Names and identifiers overview

Device names are worldwide unique names for devices within a transport protocol. Port names are worldwide unique names for ports within a transport protocol. Port identifiers are the values by which ports are identified within a domain. Phy identifiers are the values by which phys are identified within a device.

Page: 55 Author: Isi-bbesmer

```
Subject: Note
Date: 5/25/2008 2:53:18 PM -07'00'
REJECT ("or forward... as described in 4.9.5" covers that)

This does not specify the special broadcast zoning rules specified in 4.9.5

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b
then the
```

Author: Isi-bbesmer
Subject: Note
Date: 5/25/2008 2:53:30 PM -07'00'

This paragraph should be located after the counters themselves are described (ie. just before the See 4.11 paragraph).

Author: wdc-mevans
 Subject: Highlight
 Date: 5/25/2008 2:53:50 PM -07'00'
 PREJECT ("it" is better, referring to the subject of the sentence "A SAS device or expander device" without restating it incorrectly as
 "the device")

that the device

Author: RElliott
Subject: Highlight

s/h

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b
then the

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

This is a << or >> as both cases can't be true at the same time.

Table 8 describes the definitions of names and identifiers for SAS.

Table 8 — Names and identifiers

Attribute	Format	SAS usage	Reference
Device name	NAA IEEE Registered format (see 4.2.2) for: a) SAS devices and expander devices; and b) SATA devices with worldwide names	Reperted in: a) the IDENTIFY address frame (see 7.8.2) DEVICE NAME field; b) the Device Identification VPD page (see 10.2.11.2); and c) the DISCOVER response (SEE 19.4.3.10) ATTACHED DEVICE NAME field.	4.2.4 and 4.2.5
Port name	Not defined	, · · · ·	4.2.6
Port identifier	NAA IEEE Registered format (see 4.2.2)	Reported in the IDENTIFY address frame (see 7.8.2) for SAS ports.	4.2.7
Phy identifier	7-bit value	Phy identifier	4.2.8

Table 9 describes how various SAM-4 attributes are implemented in SSP.

Table 9 - SAM-4 attribute mapping

SAM-4 attribute	SSP implementation
Initiator port identifier	SAS address of an SSP initiator port
Initiator port name	Not defined
Target port identifier	SAS address of an SSP target port
Target port name	Not defined
SCSI device name	Device name of SAS device containing an SSP port

4.2.2 NAA IEEE Registered format identifier

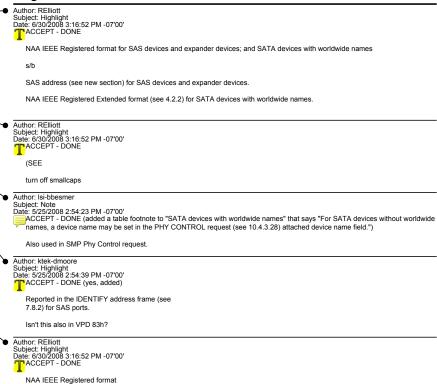

Table 10 defines the NAA IEEE Registered format identifier used by device names and port sentifiers. This format is the same as that defined in SPC-4.

Table 10 — NAA IEEE Registered format

Byte\Bit	7	6	5	4	3	2	1	0
0		NAA (5h)						
1				IEEE CON	ADANY ID	•		
2		-		ILLE COI	MFAINT ID			
3		=		(LSB)				
4						•		
5		-	VENDOR-SPECIFIC IDENTIFIER					
6		-	VL	INDOK-3F LO	I IC IDENTII I	-K		
7		=						

The NAA field contains 5h.

Page: 56

Comments from page 56 continued on next page

SAS address (see new section)

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Author: RElliott

7-bit value s/b 8-bit value T10/1760-D Revision 14

28 January 2008

Table 8 describes the definitions of names and identifiers for SAS.

Table 8 — Names and identifiers

Attribute	Format	SAS usage	Reference
Device name	NAA IEEE Registered format (see 4.2.2) for: a) SAS devices and expander devices; and b) SATA devices with worldwide names	Reported in: a) the IDENTIFY address frame (see 7.8.2) DEVICE NAME field; b) the Device Identification VPD page (see 10.2.11.2); and c) the DISCOVER response (SEE 10.4.3.10) ATTACHED DEVICE NAME field.	4.2.4 and 4.2.5
Port name	Not defined		4.2.6
Port identifier	NAA IEEE Registered format (see 4.2.2)	Reported in the IDENTIFY address frame (see 7.8.2) for SAS ports.	4/2.7
Phy identifier	7-bit value	Phy identifier	4.2.8

Table 9 describes how various SAM-4 attributes are implemented in SSP.

Table 9 — SAM-4 attribute mapping

SAM-4 attribute	SSP implementation
Initiator port identifier	SAS address of an SSP initiator port
Initiator port name	Not defined
Target port identifier	SAS address of an SSP target port
Target port name	Not defined
SCSI device name	Device name of SAS device containing an SSP port

4.2.2 NAA IEEE Registered format identifier

Table 10 defines the NAA IEEE Registered format identifier uses by device names and port identifiers. This format is the same as that defined in SPC-4.

Table 10 — NAA IEEE Rygistered format

			_					
Byte\Bit	7	6	5	4/	3	2	1	0
0		NAA	(5h)		(MSB)			
1				IEEE COI	MPANY ID			
2		_			/ 10			
3				(LSB)				
4								
5		_ /	/ ,	ENDOR-SPEC	IFIC IDENTIFIE	:R		
6		_ /	•					
7								

The NAA field contains 5h.

56

Working Draft Serial Attached SCSI - 2 (SAS-2)

per Isi-bbesmer comment on figure 10

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

contains 5h

is set to the value defined in table 10.

The IEEE COMPANY ID field contains a 24-bit canonical form company identifier (i.e., organizationally unique identifier or OUI) assigned by the IEEE.

Bit 5 of byte 1, which serves as the UNIVERSALLY/LOCALLY ADMINISTERED ADDRESS bit, shall be set to zero.

Bit 4 of byte 1, which serves as the INDIVIDUAL/GROUP ADDRESS bit, shall be set to zero.

NOTE 10 - Information about IEEE company identifiers may be obtained from the IEEE Registration Authority web site at http://standards.ieee.org/regauth/oui.

The VENDOR-SPECIFIC IDENTIFIER field contains a 36-bit value that is assigned by the organization associated with the company identifier in the IEEE COMPANY ID field. The VENDOR-SPECIFIC IDENTIFIER field shall be assigned so the NAA IEEE Registered format identifier is worldwide unique.

An identifier value of 00000000_00000000h indicates an invalid identifier.

4.2.3 Hashed SAS addresses

SSP frames include hashed versions of SAS addresses of SAS ports (i.e., NAA IEEE Registered formal identifiers for SAS ports) to provide an additional level of verification of proper frame routing.

The code used for the hashing algorithm is a cyclic binary Bese. Chaudhuri, and Hocquenghem (BCH) (63, 39, 9) code. Table 11 lists the parameters for the code.

Table 11 — Hashed SAS address code parameter

Parameter	Value
Number of bits per codeword	63
Number of data bits	39
Number of redundant bits	24
Minimum distance of the code	9

The generator polynomial for this code is:

$$G(x) = (x^6 + x + 1)(x^6 + x^4 + x^2 + x + 1)(x^6 + x^5 + x^2 + x + 1)(x^6 + x^3 + 1)$$

After multiplication of the factors, the generator polynomial is:

$$G(x) = x^{24} + x^{23} + x^{22} + x^{20} + x^{19} + x^{17} + x^{16} + x^{13} + x^{10} + x^9 + x^8 + x^6 + x^5 + x^4 + x^2 + x + 1$$

Annex E contains additional information on SAS address hashing

4.2.4 Device names and expander device SAS addresses

Each expander device, SAS initiator device, SAS target device, and SAS target/initiator device shall include an NAA IEEE Registered format identifier (see 4.2.2) as its device name. The device name of an expander device is called its SAS address. An NAA IEEE Registered format identifier used as a device name shall not be used as any other name or identifier (e.g., a device name, port name, port identifier, or logical unit name (see SAM-4)).

SAS devices and expander devices report their device names in the IDENTIFY address frame (see 7.8.2).

NOTE 11 - When a set of expander phys transmit the same SAS address in the identification sequence but receive different SAS addresses, indicating they are attached to separate SAS ports or expander ports, they become part of separate expander ports in the same domain.

Logical units accessed through SSP target ports report SAS target device names through SCSI vital product data (see 10.2.11).

Page: 57 Author: wdc-mevans

```
Subject: Highlight
Date: 5/25/2008 2:55:08 PM -07'00'
 ACCEPT - DONE (as "identifier (OUI))" since that's how acronyms are introduced)
   identifier or OUI)
   s/b
   identifier, or OUI)
Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE (moved into new section for SAS address)
    The sentence about 00000000_00000000h doesn't belong in a subsection where NAA is defined as containing 5h. NAA is really
   Oh in that identifier
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
   00000000 00000000h
   should use a space like most numbers
   (_ is allowed, but should be used only where it helps readability)
Author: hpq-relliott
Subject: Note
Date: 5/25/2008 2:55:30 PM -07'00'
   ACCEPT - DONE
   (Added the NAA Locally Assigned format per SPC-4 as 4.2.3.
   Added this as a new SAS address section:
   4.2.4 SAS address
   A SAS address is an identifier using either:
   a) the NAA IEEE Registered format (see 4.2.2); or
   b) the NAA Locally Assigned format (see 4.2.3).
   A SAS address should use the NAA IEEE Registered format (see 4.2.2).
   and made other adjustments to match (noted in other editor comments)
   Allow NAA=3h for software-generated SAS addresses?
   (from Doug Gilbert)
Author: RElliott
Subject: Cross-Out
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
   delete (i.e., NAA IEEE Registered format identifiers for SAS ports)
   to allow for NAA Locally Assigned as well. This i.e. is not necessary anyway.
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
```

57

The IEEE COMPANY ID field contains a 24-bit canonical form company identifier (i.e., organizationally unique identifier or OUI) assigned by the IEEE.

Bit 5 of byte 1, which serves as the UNIVERSALLY/LOCALLY ADMINISTERED ADDRESS bit, shall be set to zero. Bit 4 of byte 1, which serves as the INDIVIDUAL/GROUP ADDRESS bit, shall be set to zero.

NOTE 10 - Information about IEEE company identifiers may be obtained from the IEEE Registration Authority web site at http://standards.ieee.org/regauth/oui.

The VENDOR-SPECIFIC IDENTIFIER field contains a 36-bit value that is assigned by the organization associated with the company identifier in the IEEE COMPANY ID field. The VENDOR-SPECIFIC IDENTIFIER field shall be assigned so the NAA IEEE Registered format identifier is worldwide unique.

An identifier value of 00000000 00000000h indicates an invalid identifier.

4.2.3 Hashed SAS addresses

SSP frames include hashed versions of SAS addresses of SAS ports (i.e., NAA IEEE Registered format identifiers for SAS ports) to provide an additional level of verification of proper frame routing.

The code used for the hashing algorithm is a cyclic binary Bose, Chaudhuri, and Hocquenghem (BCH) (63, 39, 9) code. Table 11 lists the parameters for the code.

Table 11 — Hashed SAS address code parameter

Parameter	Value
Number of bits per codeword	63
Number of data bits	39
Number of redundant bits	24
Minimum distance of the code	9

The generator polynomial for this code is:

$$G(x) = (x^6 + x + 1)(x^6 + x^4 + x^2 + x + 1)(x^6 + x^5 + x^2 + x + 1)(x^6 + x^2 + x + 1)$$

After multiplication of the factors, the generator polynomial is:

$$G(x) = x^{24} + x^{23} + x^{22} + x^{20} + x^{19} + x^{17} + x^{16} + x^{13} + x^{10} + x^{$$

Annex E contains additional information on SAS address hashing

4.2.4 Device names and expander device SAS address:

Each expander device, SAS initiator device, SAS target device, and SAS target nitiator device shall include an NAA IEEE Registered format identifier (see 4.2.2) as its device name. The device name of an expander device is called its SAS address. An NAA IEEE Registered format identifier used as a device name shall not be used as any other name or identifier (e.g., a device name, port name, port identifier, or logical unit name (see SAM-4)).

SAS devices and expander devices report their device names in the IDENTIFY address frame (see 7.8.2).

NOTE 11 - When a set of expander phys transmit the same SAS address in the identification sequence but receive different SAS addresses, indicating they are attached to separate SAS ports or expander ports, they become part of separate expander ports in the same domain.

Logical units accessed through SSP target ports report SAS target device names through SCSI vital product data (see 10.2.11).

Working Draft Serial Attached SCSI - 2 (SAS-2)

parameter s/h

parameters

Author: Isi-gpenokie

Subject: Highlight Date: 5/25/2008 2:55:53 PM -07'00'

ACCEPT - DONE (as "Each expander device and SAS device shall...")

This << device, SAS target device, and SAS target/initiator device shall include >> should be << device, and SAS target device shall include >>

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

an NAA IEEE Registered format identifier (see 4.2.2)

a SAS address (see new section)

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

An NAA IEEE Registered format identifier

A SAS address

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

This is too broad a statement.

Add:

, except:

a) the SAS address of an expander device is the same as the SAS address of the SMP port in that expander device.

28 January 2008

4.2.5 Device name for SATA devices with world wide names

Table 12 defines the NAA IEEE Registered format identifier used by device names for SATA devices that provide world wide names in their IDENTIFY (PACKET) DEVICE data.

Table 12 — Device name created from the IDENTIFY (PACKET) DEVICE world wide name

Subformat field name (see table 10)	Specific bits in	Contents ^a
NAA	Byte 0 bits 7:4	IDENTIFY (PACKET) DEVICE data word 108 bits 15:12 b
IEEE COMPANY_ID	Byte 0 bits 3:0	IDENTIFY (PACKET) DEVICE data word 108 bits 11:8
	Byte 1	IDENTIFY (PACKET) DEVICE data word 108 bits 7:0
	Byte 2	IDENTIFY (PACKET) DEVICE data word 109 bits 15:8
	Byte 3 bits 7:4	IDENTIFY (PACKET) DEVICE data word 109 bits 7:4
VENDOR SPECIFIC IDENTIFIER	Byte 3 bits 3:0	IDENTIFY (PACKET) DEVICE data word 109 bits 3:0
	Byte 4	IDENTIFY (PACKET) DEVICE data word 110 bits 15:8
	Byte 5	IDENTIFY (PACKET) DEVICE data word 110 bits 7:0
	Byte 6	IDENTIFY (PACKET) DEVICE data word 111 bits 15:8
	Byte 7	IDENTIFY (PACKET) DEVICE data word 111 bits 7:0

IDENTIFY (PACKET) DEVICE data words 108-111 contain the world wide name field (see ATA8-ACS).
 This 4-bit field is required to be set to 5h (i.e., IEEE Registered) by ATA8-ACS.

4.2.6 Port names

Port names are not defined in SAS.

NOTE 12 - The SAS addresses used by SAS ports in different SAS domains may be the same (e.g., when a set of phys transmit the same SAS address in the identification sequence but receive different SAS addresses, indicating they are attached to two separate SAS domains) so the SAS address serves as a port identifier (see 4.2.7) rather than a port name.

4.2.7 Port identifiers and SAS port SAS addresses

Each SAS initiator port, SAS target port (e.g., including the STP target port in sour STP/SA/A bridge), and SAS target/initiator port shall include an NAA IEEE Registered format identifier (see 4.2.2) as its port identifier. The port identifier of a SAS port is called its SAS address. An NAA IEEE Registered format identifier used as a port identifier shall not be used as any other name or identifier (e.g., a device name, port name, or logical unit name (see SAM-41) except as a port identifier in one or more other SAS domains (see 4.1.4).

Expander ports do not have port identifiers.

SAS ports in end devices report their port identifiers in the IDENTIFY address frame (see 7.8.2). Expanded devices containing SAS ports (e.g., SAS ports attached to virtual phys, or STP target ports in STP/SATb bridges) report the port identifiers of those SAS ports in the SMP DISCOVER response (see 10.4.3.10).

NOTE 13 - When a set of SAS phys transmit the same SAS address in the identification sequence but receive different SAS addresses, indicating they are attached to more than one SAS domain, they become part of separate SAS ports in separate domains. Each SAS port shares the same SAS address.

Port identifiers are used as source and destination SAS addresses in the OPEN address frame (see 7.8.3). Logical units accessed through SSP target ports report SAS target port identifiers through SCSI vital product data (see 10.2.11).

Page: 58

Author: elx-bmartin

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
   name (see table 10)
   name (see table 10 in 4.2.2)
Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 2:56:28 PM -07'00'
TACCEPT - DONE (as "Each SAS port shall...")
    This << SAS initiator port, SAS target port (e.g., including the STP target port in each STP/SATA bridge), and
   SAS target/initiator port shall >> should be << SAS initiator port and SAS target port (e.g., including the STP target port in each
   STP/SATA bridge) shall >>
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
   an NAA IEEE Registered format identifier (see 4.2.2)
   a SAS Address (see new section)
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
    An NAA IEEE Registered format identifier
   A SAS address
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
   except
   To be correct, also add:
   the SAS address of an SMP port in an expander device is the same as the SAS address of the expander device containing that
Author: Isi-bbesmer
Subject: Note
Date: 5/25/2008 2:56:57 PM -07'00'
ACCEPT - DONE (added "NOTE: The SMP port in an expander device has a port identifier that is the same as the device name of the
    expander device (see 4.6.2), and is used for addressing an expander device. Expander ports are not individually addressed.
    Need to explain why this statement is being made? (because they use device name instead).
```

Comments from page 58 continued on next page

4.2.5 Device name for SATA devices with world wide names

Table 12 defines the NAA IEEE Registered format identifier used by device names for SATA devices that provide world wide names in their IDENTIFY (PACKET) DEVICE data.

Table 12 — Device name created from the IDENTIFY (PACKET) DEVICE world wide name

Subformat field name (see table 10)	Specific bits in	Contents ^a
NAA	Byte 0 bits 7:4	IDENTIFY (PACKET) DEVICE data word 108 bits 15:12 b
IEEE COMPANY_ID	Byte 0 bits 3:0	IDENTIFY (PACKET) DEVICE data word 108 bits 11:8
	Byte 1	IDENTIFY (PACKET) DEVICE data word 108 bits 7:0
	Byte 2	IDENTIFY (PACKET) DEVICE data word 109 bits 15:8
	Byte 3 bits 7:4	IDENTIFY (PACKET) DEVICE data word 109 bits 7:4
VENDOR SPECIFIC IDENTIFIER	Byte 3 bits 3:0	IDENTIFY (PACKET) DEVICE data word 109 bits 3:0
	Byte 4	IDENTIFY (PACKET) DEVICE data word 110 bits 15:8
	Byte 5	IDENTIFY (PACKET) DEVICE data word 110 bits 7:0
	Byte 6	IDENTIFY (PACKET) DEVICE data word 111 bits 15/8
	Byte 7	IDENTIFY (PACKET) DEVICE data word 111 bits/1:0
a IDENTIEV (PACKET) DEVICE data words 108 111 contain the world wide name field (see ATAS ACS)		

IDENTIFY (PACKET) DEVICE data words 108-111 contain the world wide name field (seg/ATA8-ACS). b This 4-bit field is required to be set to 5h (i.e., IEEE Registered) by ATA8-ACS.

4.2.6 Port names

58

Port names are not defined in SAS.

NOTE 12 - The SAS addresses used by SAS ports in different SAS domains may be the same (e.g., when a set of phys transmit the same SAS address in the identification sequence but rezeive different SAS addresses, indicating they are attached to two separate SAS domains) so the AS address serves as a port identifier (see 4.2.7) rather than a port name.

4.2.7 Port identifiers and SAS port SAS addresses

Each SAS initiator port, SAS target port (e.g., including the STP target port in each STP/SATA bridge), and SAS target/initiator port shall include an NAA IEEE Registered format identifier (see 4.2.2) as its port identifier. The port identifier of a SAS port is called its SAS address. An N/A IEEE Registered format identifier used as a port identifier shall not be used as any other name or identifier (e.g., a device name, port name, or logical unit name (see SAM-4)) except as a port identifier in one or more other SAS domains (see 4.1.4).

Expander ports do not have port identifiers.

SAS ports in end devices report their port identifiers in the IDENTIFY address frame (see 7.8.2). Expander devices containing SAS ports (e.g., SAS ports attacked to virtual phys, or STP target ports in STP/SATA bridges) report the port identifiers of those SAS pots in the SMP DISCOVER response (see 10.4.3.10).

NOTE 13 - When a set of SAS phys transmit the same SAS address in the identification sequence but receive different SAS addresses, indicating they are attached to more than one SAS domain, they become part of separate SAS ports in separate domains. Each SAS port shares the same SAS address.

Port identifiers are used as source and destination SAS addresses in the OPEN address frame (see 7.8.3).

Logical units accessed through SSP target ports report SAS target port identifiers through SCSI vital product data (see 10.2.11).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Subject: Comment on Text
Date: 5/25/2008 257:11 PM -07'00'
TACCEPT - DONE (yes, that is an issue - "don't do that" is the basic answer. Adding "See figure 46 in 4.8.2 for an example of what happens if they are not in separate SAS domains." That section advises the configuration subprocess to disable phys if it detects a multi-path problem/loop introduced by doing this.)

Cann't this also be a configuration issue where they are attached to two different expanders in the same SAS domain? What mechanism is there to determine that they are in different SAS domains?

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

domains

SAS domains

28 January 2008 T10/1760-D Revision 14

4.2.8 Phy identifiers

Each SAS phy and expander phy shall be assigned an identifier called a phy identifier that is unique within the SAS device and/or expander device. Each SAS logical phy within a SAS phy shall use the same phy identifier. Each expander logical phy within an expander phy shall use the same phy identifier. The phy identifier is used for management functions (see 10.4).

Phy identifiers shall be greater than or equal to 00h and less than 80h, and should be numbered starting with 00h. In an expander device or in a SAS device containing an SMP target port, phy identifiers shall be less than the value of the NUMBER OF PHYS field in the SMP REPORT GENERAL response (see 10.4.3.4). In a SAS device containing an SSP target port, phy identifiers shall be less than the value of the NUMBER OF PHYS field in the Phy Control And Discover mode page (see 10.2.7.5).

4.3 State machines

4.3.1 State machine overview

Figure 29 shows the state machines for SAS devices, their relationships to each other and to the SAS Device, SAS Port, and SAS Phy classes.

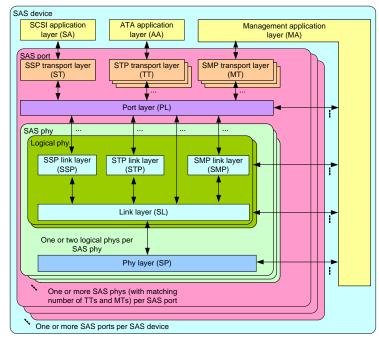


Figure 29 — State machines for SAS devices

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 59

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

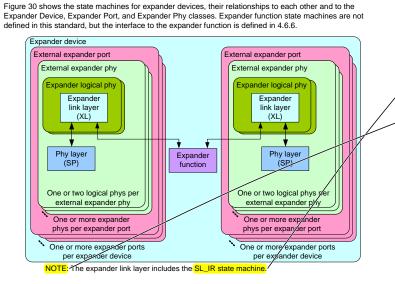
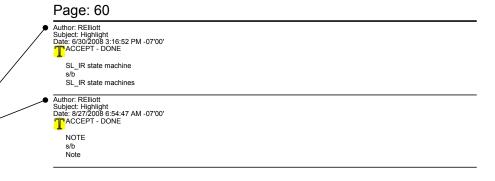
less than 80h

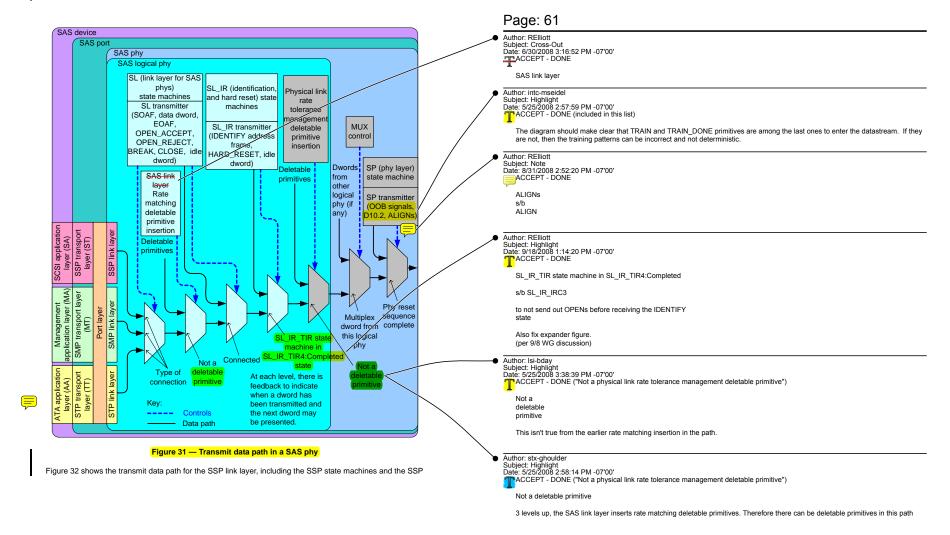
s/b

59

less than or equal to FEh

per Isi-bbesmer comment on figure 10


Figure 30 — State machines for expander devices

4.3.2 Transmit data path

Figure 31 shows the transmit data path in a SAS phy, showing the relationship between:

- a) the SP state machine (see 6.8) and the SP transmitter (see 6.8.2);
- b) multiplexing (see 6.10);
- c) the SL_IR state machines (see 7.9.4) and the SL_IR transmitter (see 7.9.4.2);
- d) physical link rate tolerance management (see 7.3);
- e) the SL state machines (see 7.14) and the SL transmitter (see 7.14.2);
- f) rate matching (see 7.13); and
- g) the SSP transmit data path (see figure 32), SMP transmit data path (see figure 33), and STP transmit data path (see figure 34).

Comments from page 61 continued on next page

when rate matching.

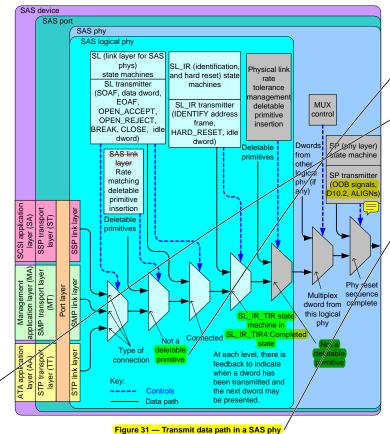


Figure 32 shows the transmit data path for the SSP link layer, including the SSP state machines and the SSP

 $transmitter (see 7.16.8 \ and \ 7.16.8.2), and the communication to the port layer, SSP transport layer, and SCSI application layer. Only the SSP link layer (i.e., not the port, transport, or application layer) transmits dwords.$

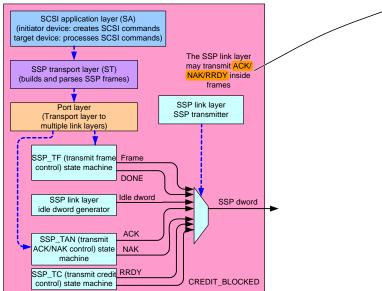


Figure 32 — SSP link, port, SSP transport, and SCSI application layer state machines

Figure 33 shows the transmit data path for the SMP link layer, including the SMP state machines and the SMP

Author: Isi-bday Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

ACK/NAK/RRDY

needs to include CREDIT_BLOCKED

28 January 2008 T10/1760-D Revision 14

transmitter (see 7.18.5 and 7.18.5.2), and the communication to the port layer, SMP transport layer, and management application layer. Only the SMP link layer (i.e., not the port, transport, or application layer) transmits dwords

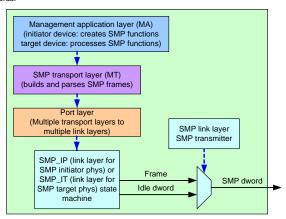


Figure 33 — SMP link, port, SMP transport, and management application layer state machines

Figure 34 shows the transmit data path for the STP link layer, including the SSP state machines and the SSP

transmitter (see 7.17.8), and communication to the port layer, STP transport layer, and ATA application layer. Only the STP link layer (i.e., not the port, transport, or application layer) transmits dwords.

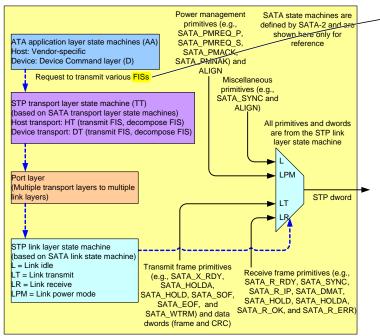
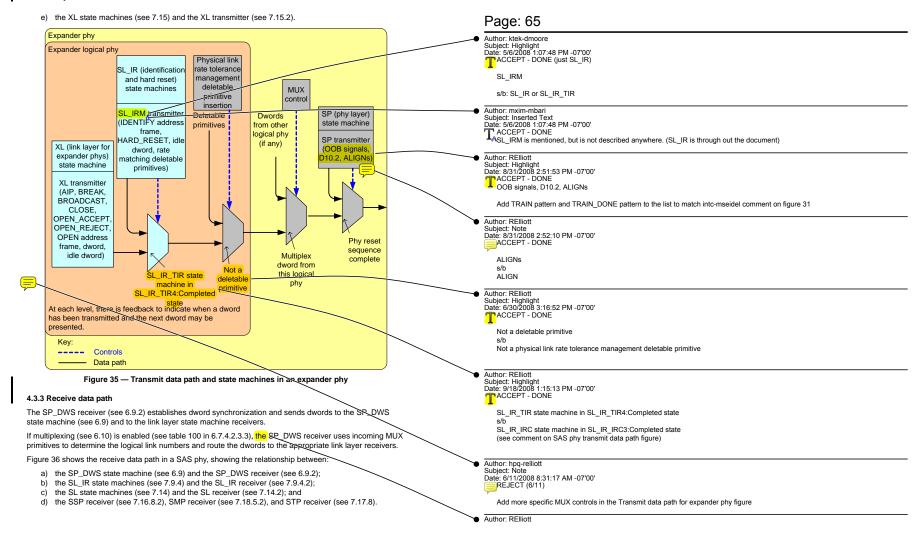


Figure 34 — STP link, port, STP transport, and ATA application layer state machines


Figure 35 shows the transmit data path in an expander phy, showing the relationship between:

- a) the SP state machine (see 6.8) and the SP transmitter (see 6.8.2);
- b) multiplexing (see 6.10);
- c) the SL_IR state machines (see 7.9.4) and the SL_IR transmitter (see 7.9.4.2);
- d) physical link rate tolerance management (see 7.3); and

Page: 64

Author: Isi-bbesmer
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
TACCEPT - DONE
FISs
s/b
FISes

(FISes used in several other locations)

Comments from page 65 continued on next page

e) the XL state machines (see 7.15) and the XL transmitter (see 7.15.2).

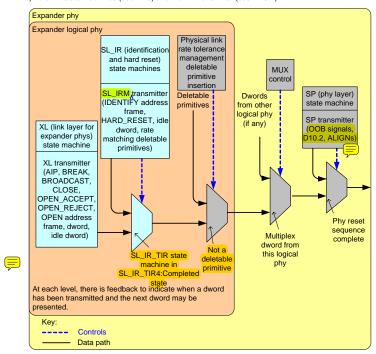


Figure 35 — Transmit data path and state machines in an expander phy

4.3.3 Receive data path

The SP_DWS receiver (see 6.9.2) establishes dword synchronization and sends dwords to the SP_DWS state machine (see 6.9) and to the link layer state machine receivers.

If multiplexing (see 6.10) is enabled (see table 100 in 6.7.4.2.3.3), the SP_DWS receiver uses incoming MUX primitives to determine the logical link numbers and route the dwords to the appropriate link layer receivers.

Figure 36 shows the receive data path in a SAS phy, showing the relationship between:

- a) the SP_DWS state machine (see 6.9) and the SP_DWS receiver (see 6.9.2);
- b) the SL_IR state machines (see 7.9.4) and the SL_IR receiver (see 7.9.4.2);
- c) the SL state machines (see 7.14) and the SL receiver (see 7.14.2); and
- d) the SSP receiver (see 7.16.8.2), SMP receiver (see 7.18.5.2), and STP receiver (see 7.17.8).

65

Working Draft Serial Attached SCSI - 2 (SAS-2)

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b
then the

See figure 168 in 7.3.1 for more information about the elasticity buffer, which is not shown in figure 36.

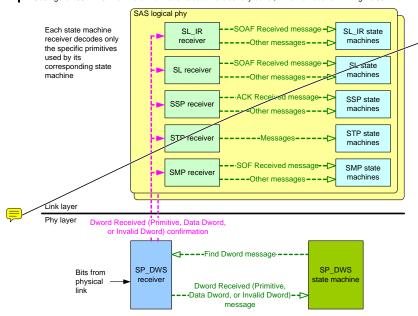


Figure 36 — Receive data path in a SAS phy

Figure 37 shows the receive data path in an expander phy showing the relationship between:

- a) the SP_DWS state machine (see 6.9) and the SP_DWS receiver (see 6.9.2);
- b) the SL_IR state machines (see 7.9.4) and the SL_IR receiver (see 7.9.4.2); and
- c) the XL state machines (see 7.15) and the XL receiver (see 7.15.2).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 66

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Add messages to figure 35 Receive data path:

- Add message from the SW_DWS to SP_DWS receiver: Sync Acquired: this lets the SP_DWS receiver know when to start sending Dword Received confirmations to the link layer. Find Dword tells it when to stop.
- 2. Add the SP receiver and SP state machine
- 3. Add messages from the SP_DWS to SP receiver Sync Acquired: the lets it know when to start sending ALIGN Received, TRAIN_DONE Received, and Dword Received messages to the SP state machine Sync Lost: this lets it know when to stop sending them
- 4. Add messages from the SP state machine to the SP receiver:

ALIGN Received TRAIN_DONE Received Dword Received Other messages

28 January 2008

T10/1760-D Revision 14

See figure 168 in 7.3.1 for more information about the elasticity buffer, which is not shown in figure 37.

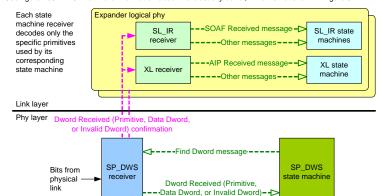
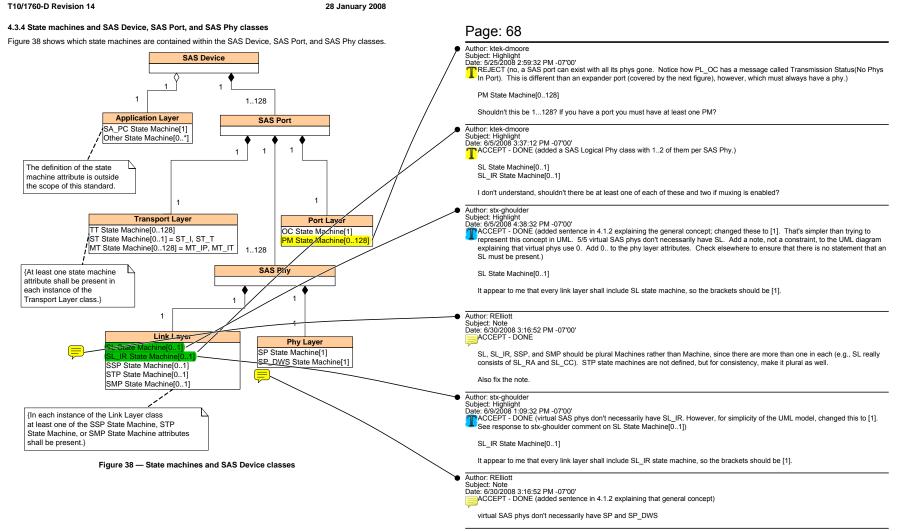
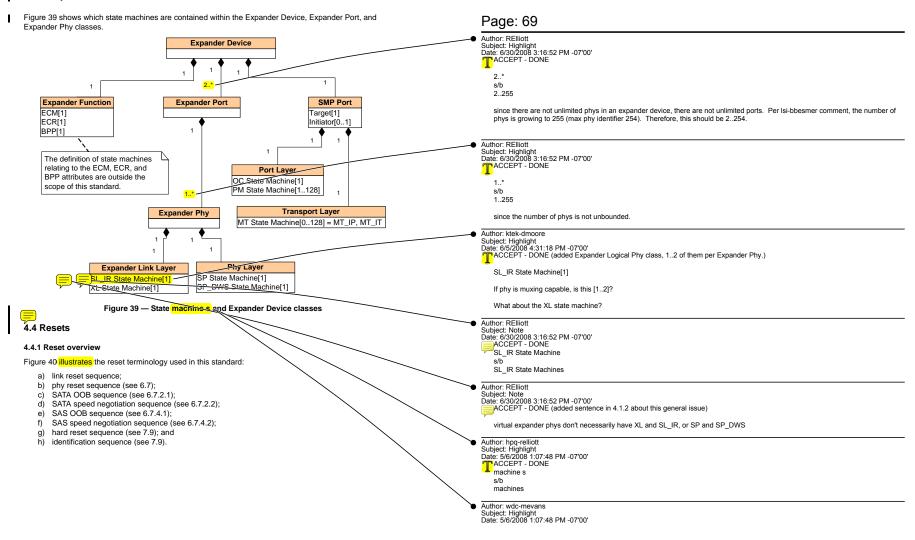
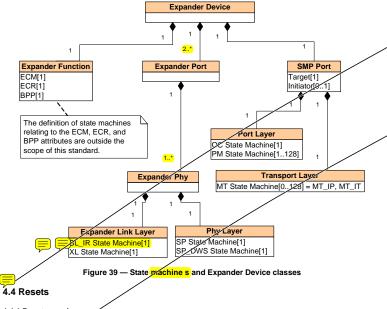



Figure 37 — Receive data path in an expander phy


message

This page contains no comments

Working Draft Serial Attached SCSI - 2 (SAS-2)


68

28 January 2008

T10/1760-D Revision 14

Figure 39 shows which state machines are contained within the Expander Device, Expander Port, and Expander Phy classes.

4.4.1 Reset overview

Figure 40 illustrates the reset terminology used in this standard:

- a) link reset sequence;
- b) phy reset sequence (see 6.7);
- c) SATA OOB sequence (see 6.7.2.1);
- d) SATA speed negotiation sequence (see 6.7.2.2);
- e) SAS OOB sequence (see 6.7.4.1);
- f) SAS speed negotiation sequence (see 6.7.4.2);
- g) hard reset sequence (see 7.9); and
- h) identification sequence (see 7.9).

Author: hpq-relliott

Subject: Note
Date: 6/23/2008 3:30:40 PM -07'00'
ACCEPT - DONE (added SMP Phy, SMP Logical Phy, and Link Layer. SMP Phy contains Phy Layer (sharing it with Expander

This figure does not show an SMP phy and associated link layer state machines below the SMP Port since figure 16 does not do so. If the expander allows more than one connection at a time to its SMP target port, then it's effectively a wide SMP port and has multiple phys and link layers. If it only allows one at a time, then it's effectively a narrow SMP port and only has one phy and link layer.

Author: RElliott

Subject: Highlight
Date: 7/17/2008 3:01:44 PM -07'00'
ACCEPT - DONE (7/15 global change "illustrates" to "shows" in cases like this.)

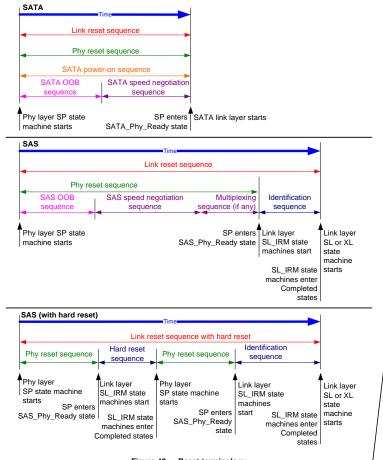


Figure 40 — Reset terminology

The phy reset sequences, including the OOB sequence, the speed negotiation sequence, and the multiplexing sequence, if any, are implemented by the SP state machine and are described in 6.7 and 6.8. The hard reset sequence and identification sequence are implemented by the SL_IR state machine and are described in 7.9.

70

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 70

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

SP state machine... in 6.7 and 6.8
s/b
SP state machine and the SP_DWS state machine... in 6.7, 6.8, and 6.9
because SP_DWS is also very involved
```

The link reset sequence has no effect on the transport layer and application layer. The HARD_RESET_primitive sequence may be used during the identification sequence to initiate a hard reset. The link reset sequence serves as a hard reset for SATA devices (see SATA-2).

4.4.2 Hard reset

4.4.2.1 Hard reset overview

After the phy reset sequence, if a phy receives a HARD_RESET primitive before an IDENTIFY address frame, it shall be considered a reset event and initiate a hard reset of the port containing that phy.

When a port processes a hard reset, it shall stop transmitting valid dwords on each of the physicontained in that port. Each phy may then participate in new phy reset sequences (e.g., respond to incoming COMINITs) and shall originate a new link reset sequence if one is not detected. The hard reset shall not affect any other ports in the device.

If a SAS device is contained in an expander device, its SSP ports, STP ports, and/or SATA ports shall initiate a hard reset when an SMP PHY CONTROL function with a phy operation of HARD RESET and phy identifies specifying a virtual expander phy attached to such a SAS port is processed (see 10.4.3.28).

4.4.2.2 Additional hard reset processing by SAS ports

If the port processing the hard reset is an SSP port, the hard reset causes a Transport Reset event notification to the SCSI application layer (see 10.2.5), and the SCSI device shall perform the actions defined for hard reset in SAM-4. After processing the hard reset, each logical unit to which the SSP target port has access shall establish a unit-attention condition for all SSP initiator ports with the additional sense code set to SCSI BUS RESET OCCURRED-(see SAM-4 and SPC-4).

If the port processing the hard reservic an STP port in an STP SATA bridge, the SATA hast port shall originate a link reset sequence.

If the port processing the hard reset is an STP port start is not in an STP/SATA bridge, the STP target device shall perform the actions defined for power-on or hardware-teset in ATAS-AAM.

4.4.2.3 Additional hard reset processing by expander ports

If the port processing a hard reset is an expander port, the expander device shall not originate a hard reset sequence on any of its other phys.

If the port processing a hard reset is an expander port, the expander function and other expender ports in the expander device shall not be affected by hard reset. SAS devices contained in the expander device, shall not be affected by hard resets received by external expander ports in the expander device.

4.5 I_T nexus loss

When a SAS port receives OPEN_REJECT (NO DESTINATION), OPEN_REJECT (PATHWAY BLOCKED), OPEN_REJECT (RESERVED INITIALIZE 1), OPEN_REJECT (RESERVED INITIALIZE 1), OPEN_REJECT (RESERVED STOP 1), or an Open Timeout timer expires (see 7.12.2) in response to a connection request, it shall retry the connection request until:

- a) the connection is established;
- b) for SSP target ports, the time indicated by the I_T NEXUS LOSS TIME field in the Protocol-Specific Port mode page (see 10.2.7.4) expires; or
- c) the I_T nexus loss timer, if any, expires (see 4.7.1, 8.2.2.1, 10.2.7.4, and 10.4.3.18).

An I T nexus loss occurs in a SAS port when:

- a) the LT nexus loss timer expires; or
- b) the SAS port receives an abandon-class OPEN_REJECT (see table 122 in 7.2.6.10).

I_T nexus loss is handled by the port layer state machines (see 8.2.2.3). In some cases, the I_T nexus loss timer is overridden for connection requests through self-configuring expander devices as described in 4.7.1.

Page: 71

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

The HARD_RESET primitive sequence may be used during the identification sequence to initiate a hard reset.

s/

A hard reset sequence replaces the identification sequence to initiate a hard reset.

to not change levels (this section is not talking about IDENTIFY address frames, so should not be talking about HARD_RESET primitives)

Author: RElliott Subject: Highlight Date: 11/6/2008 12:05:38 PM ACCEPT - DONE

after:

The link reset sequence has no effect on the transport layer and application layer

add:

unless it disrupts frame transmission

since the statement is not quite true.

from Bill Martin, Emulex T10 reflector email on 11/4

Author: wdc-mevans

Subject: Highlight Date: 5/22/2008 1:40:38 PM -07'00'

TACCEPT - DONE (as "then the phy shall consider this to be a reset event causing a hard reset of the port containing that phy...". Also see similar wording in 7.9.1)

it shall be considered a reset event and initiate a hard reset of the port containing that phy.

s/b

then this shall be considered a reset event, and the port containing the phy shall process a hard reset.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b
then the

Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
TACCEPT - DONE
to the
s/b

to be sent to the

Author: Isi-bbesmer

Subject: Note Date: 5/25/2008 3:00:53 PM -07'00'

REJECT (I don't think so. SAM defines that hard reset causes a unit attention condition and SAS already steps on its toes by repeating the additional sense code in this paragraph. Other parts of SAS explains that unit attention conditions beget Broadcast (Asynchronous Event)s. In the definition of Broadcast (Asynchronous Event), though, I will add an "(e.g. hard reset)" to the

Comments from page 71 continued on next page

The link reset sequence has no effect on the transport layer and application layer. The HARD_RESET primitive sequence may be used during the identification sequence to initiate a hard reset. The link reset sequence serves as a hard reset for SATA devices (see SATA-2).

4.4.2 Hard reset

4.4.2.1 Hard reset overview

After the phy reset sequence, if a phy receives a HARD RESET primitive before an IDENTIFY address frame, it shall be considered a reset event and initiate a hard reset of the port containing that phy.

When a port processes a hard reset, it shall stop transmitting valid dwords on each of the phys contained in that port. Each phy may then participate in new phy reset sequences (e.g., respond to incoming COMINITs) and shall originate a new link reset sequence if one is not detected. The hard reset shall not affect any other ports in the device.

If a SAS device is contained in an expander device, its SSP ports, STP ports, and/or SATA ports shall/initiate a hard reset when an SMP PHY CONTROL function with a phy operation of HARD RESET and phy dentifier specifying a virtual expander phy attached to such a SAS port is processed (see 10.4.3.28).

4.4.2.2 Additional hard reset processing by SAS ports

If the port processing the hard reset is an SSP port, the hard reset causes a Transport Reset event notification to the SCSI application layer (see 10.2.5), and the SCSI device shall perform the actions defined for harm reset in SAM-4. After processing the hard reset, each logical unit to which the SSP target port has access shall establish a unit attention condition for all SSP initiator ports with the additional vense code set BUS RESET OCCURRED (see SAM-4 and SPC-4).

If the port processing the hard reset is an STP port in an STP/SATA bridge, the SATA host port shall originate a link reset sequence.

If the port processing the hard reset is an STP port that is not in an STP/SATA/sridge, the STP target devices shall perform the actions defined for power-on or hardware reset in ATA8-AAM.

4.4.2.3 Additional hard reset processing by expander ports

If the port processing a hard reset is an expander port, the expander device shall not originate a hard reset sequence on any of its other phys.

If the port processing a hard reset is an expander port, the expander function and other expander ports in the expander device shall not be affected by hard reset. SAS devices contained in the expander device shall not be affected by hard resets received by external expander ports in the expander device.

4.5 I T nexus loss

When a SAS port receives OPEN_REJECT (NO DESTINATION) OPEN_REJECT (PATHWAY BLOCKED), OPEN_REJECT (RESERVED INITIALIZE 1), OPEN_REJECT (RESERVED INITIALIZE 1), OPEN_REJECT (RESERVED STOP 0), OPEN_REJECT (RESERVED STOP 1), or an Open Timeout timer expires (see 7.12.2) in response to a connection request, it shall retry the connection request until:

- a) the connection is established;
- b) for SSP target ports, the time indicated by the I T NEXUS LOSS TIME field in the Protocol-Specific Port mode page (see 10.2.7.4) expires: or
- c) the I T nexus loss timer, if any, expires (see 4.7.1, 8.2.2.1, 10.2.7.4, and 10.4.3.18).

An I T nexus loss occurs in a SAS port when:

- a) the LT nexus loss timer expires: or
- b) the SAS port receives an abandon-class OPEN_REJECT (see table 122 in 7.2.6.10).

I_T nexus loss is handled by the port layer state machines (see 8.2.2.3). In some cases, the I_T nexus loss timer is overridden for connection requests through self-configuring expander devices as described in 4.7.1.

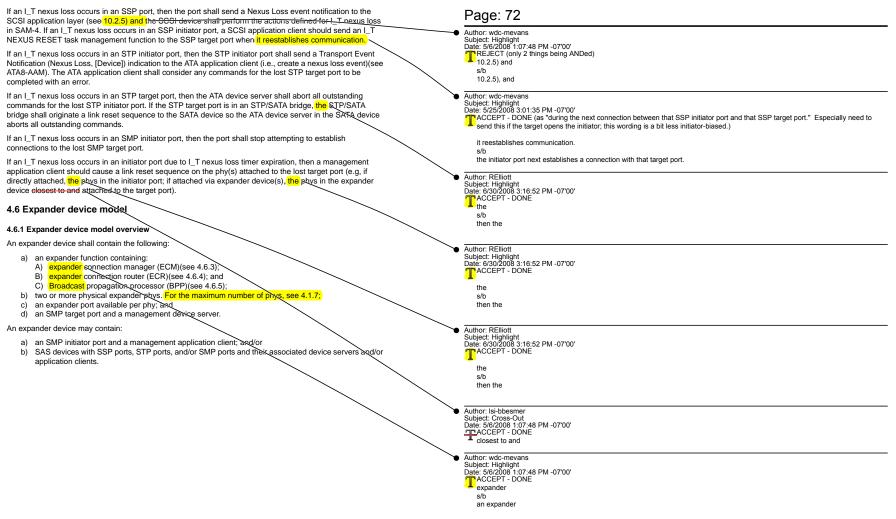
Working Draft Serial Attached SCSI - 2 (SAS-2)

definition)

Should BROADCAST(ASYNC) be mentioned here?

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE the then the

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TRACCEPT - DONE the s/h


then the

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b then the

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the

Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 3:01:12 PM -07'00' REJECT (first noun/subject convention) s/b the SAS port

Comments from page 72 continued on next page

If an I_T nexus loss occurs in an SSP port, then the port shall send a Nexus Loss event notification to the SCSI application layer (see 10.2.5) and the SCSI device shall perform the actions defined for I_T nexus loss in SAM-4. If an I_T nexus loss occurs in an SSP initiator port, a SCSI application client should send an I_T NEXUS RESET task management function to the SSP target port when it reestablishes communication.

If an I_T nexus loss occurs in an STP initiator port, then the STP initiator port shall send a Transport Event Notification (Nexus Loss, [Device]) indication to the ATA application client (i.e., create a nexus loss every (see ATA8-AAM). The ATA application client shall consider any commands for the lost STP target port to be completed with an error.

If an I_T nexus loss occurs in an STP target port, then the ATA device server shall about at outstanding commands for the lost STP initiator port. If the STP target port is in an STP/SATA bridge, the STP/SATA bridge shall originate a link reset sequence to the SATA device so the ATA device server in the SATA device aborts all outstanding commands.

If an I_T nexus loss occurs in an SMP initiator port, then the port shall step attempting to establish connections to the lost SMP target port.

If an I_T nexus loss occurs in an initiator port due to I_T nexus loss timer expiration, then a management application client should cause a link reset sequence on the dny(s) attached to the lost target port (e.g., if directly attached, the phys in the initiator port; if attached via expande device(s), the phys in the expander device elessest to and attached to the target port).

4.6 Expander device model

4.6.1 Expander device model overview

An expander device shall contain the following:

- a) an expander function containing:
 - A) expander connection manager (ECM)(see 4.6.3);
 - B) expander connection router (ECR)(see 4.6.4); and
 - C) Broadcast propagation processor (BPP)(see 4.6.5);
- b) two or more physical expander phys. For the maximum number of phys, see 4.1.7;
- c) an expander port available per phy; and
- d) an SMP target port and a management device server.

An expander device may contain:

- a) an SMP initiator port and a management application client; and/or
- SAS devices with SSP ports, STP ports, and/or SMP ports and their associated device servers and/or application clients.

Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
ACCEPT - DONE
expander
s/b
an expander

Author: wdc-mevans
Subject: Highlight
Date: 56/2008 1:07:48 PM -07'00'
TACCEPT - DONE
Broadcast
sh

a Broadcast

Author: elx-bmartin Subject: Comment on Text Date: 5/25/2008 3:02:13 PM -07'00'

TACCEPT - DONE (deleting this. It was probably once pointing to the phy identifier section, but lost its way. Since the definition of SAS port does not mention there is an implied maximum number of phys in a port, it seems safe to drop that here too.)

4.1.7 does not specify a maximum number of phys in the expander.

Author: Isi-bbesmer
Subject: Highlight
Date: 5/25/2008 3:40:01 PM -07'00'
TACCEPT - DONE (see response to elx-bmartin comment)
maximum number of phys is not specified in 4.1.7

Figure 41 shows a model of an expander device showing the state machines in each expander port. The internal SMP ports are not shown.

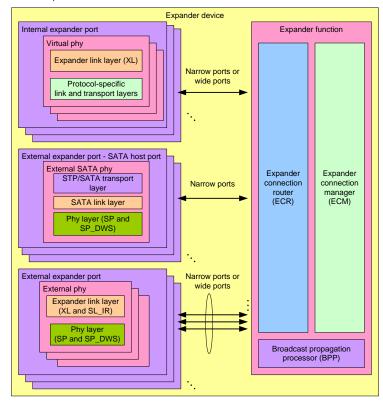


Figure 41 — Expander device model

4.6.2 Expander ports

An external expander port contains one or more physical phys (see 4.1.2). Since each phy in the expander device has the same SAS address, expander ports are created based on the attached SAS addresses (see 4.1.4).

Each phy in an expander port shall have the same routing attribute (see 4.6.7.1). The management device server shall return the same value in the ROUTING ATTRIBUTE field for each phy in an expander port in the SMP DISCOVER response (see 10.4.3.10).

73

Working Draft Serial Attached SCSI - 2 (SAS-2)

This page contains no comments

Each phy in an expander port containing phys with table routing attributes in an externally configurable expander device shall have the same number of routing table entries (see 4.6.7.3).

A set of expander phys with table routing attributes in an expander device not supporting table-to-table attachments using the same external connector (see 5.2.3.3) is called an enclosure out port. A set of expander phys with subtractive routing attributes using the same external connector is called an enclosure in port. A set of expander phys with table routing attributes in an expander device supporting table-to-table attachments using the same external connector is called an enclosure universal port.

Each phy in an expander port shall have the same zone phy information (see 4.9.3.1). The zone phy information associated with each of the phys in an expander port is treated as the zoning properties of the

Each expander logical phy contains an expander link layer with an XL state machine (see 7.15) and an SL_IR state machine (see 7.9.4). The XL state machine in each expander logical phy within an expander port processes connection requests independently of the XL state machines in other expander logical phys.

An internal expander port contains a virtual phy with an expander link layer and a protocol-specific transport layer (e.g., to provide access as an SSP target port to a logical unit with a peripheral device type set to 0Dh (i.e., enclosure services device) (see SPC-4 and SES-2)).

Each expander device shall include one internal SMP port using the expander device's SAS address.

Any additional internal SAS ports shall be inside SAS devices contained in the expander device, and thus have SAS addresses different from that of the expander device. These SAS ports shall be attached to internal expander ports with virtual phys.

Each STP/SATA bridge shall have a unique SAS address. This SAS address is reported in the ATTACHED SAS ADDRESS field in the SMP DISCOVER response (see 10.4.3.10) for the expander phy containing the STP/SATA bridge (i.e., the expander phy attached to the SATA device or SATA port selector).

4.6.3 Expander connection manager (ECM)

The ECM performs the following functions:

- a) maps a destination SAS address in a connection request to a destination phy using direct, subtractive, or table routing methods;
- b) arbitrates and assigns or denies path resources for connection requests following SAS arbitration and pathway recovery rules; and
- c) configures the ECR.

4.6.4 Expander connection router (ECR)

The ECR routes messages between pairs of expander logical phys as copressioned by the ECM. Enough routing resources shall be provided to support at least one connection.

When forwarding dwords during a connection from a source proy with a higher physical link rate to a destination pay with a lower physical link rate, rate matching (see 7.13) ensures the dwords are at a connection rate equal to or less than the lower physical link rate. However, the ECR may be requested to forward more dwords than the destination phy is able to accept if:

- a) an invalid dword occurs during a deletable primitive;
- b) an invalid dword occurs during a CLOSE; or
- c) multiple invalid dwords occur during a BREAK.
- The ECR may discard dwords if needed and count them as elasticity buffer overflows (see 4.11).

When forwarding dwords from a SATA physical link with a higher physical link rate to a SAS logical link with a lower logical link rate, the SATA host port in the STP/SATA bridge shall throttle incoming FISes with SATA HOLD (see 7.17.2).

NOTE 14 - If SATA_HOLD is deasserted for n dwords, the SATA device sends up to (21+n) more data dwords. SATA_HOLD does not affect primitives (see SATA-2). The STP/SATA bridge may expand or contract repeated and continued primitives without changing their functional meaning.

Page: 74

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

REJECT (general rule added in 4.1.2 that virtual phys have vendor-specific variations of state machines should suffice)

Each expander logical phy contains an expander link layer with an XL state machine (see 7.15) and an SL_IR state machine (see

This is not necessarily true for virtual phys, where this interface is vendor-specific. It has to behave as if it has an XL state machine, forwarding connection requests internally, but they're not transmitted as frames by an XL transmitter. The meaning of SL_IR is simply that it must know the attached SAS address.

Author: RElliott

Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

an SL_IR state machine

one set of SL_IR state machines

Author: Isi-gpenokie Subject: Highlight

Date: 5/25/2008 3:02:42 PM -07'00'

TORELECT "thus" implies this rule is a derivative of some other rules. Without that word (or some phrase like "therefore" or "because of that"), it sounds like there might be an option to not do this. Technically the clause could be omitted, but that would be very confusing, requiring the reader to realize what "inside SAS devices contained in" implies. It could be a NOTE, but you are already complaining about too many NOTEs (like Emperor Joseph II to Mozart))

This << device, and thus have SAS addresses different >> should be << device, and shall have a SAS addresses different >>

Author: wdc-mevans

Subject: Cross-Out Date: 5/25/2008 3:03:04 PM -07'00'

ACCEPT - DONE

source

[Delete this word, as the phy with the higher physical rate may be either the source or destination phy.]

Author: Isi-bbesmer

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

ACCEPT - DONE

physical

logical

Author: RElliott

Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

Mark's comments assume that "source" always means source of the OPEN. That is usually true, except for some other specific terms like "crosstalk source." Annotated a few changes in 7.12.8 and other places where a bare "source" should be reworded.

Author: wdc-mevans Subject: Cross-Out Date: 5/25/2008 3:40:28 PM -07'00'

Comments from page 74 continued on next page

Each phy in an expander port containing phys with table routing attributes in an externally configurable expander device shall have the same number of routing table entries (see 4.6.7.3).

A set of expander phys with table routing attributes in an expander device not supporting table-to-table attachments using the same external connector (see 5.2.3.3) is called an enclosure out port. A set of expander phys with subtractive routing attributes using the same external connector is called an enclosure in port. A set of expander phys with table routing attributes in an expander device supporting table-to-table attachments using the same external connector is called an enclosure universal port.

Each phy in an expander port shall have the same zone phy information (see 4.9.3.1). The zone phy information associated with each of the phys in an expander port is treated as the zoning properties of the

Each expander logical phy contains an expander link layer with an XL state machine (see 7.15) and an SL state machine (see 7.9.4). The XL state machine in each expander logical phy within an expander port processes connection requests independently of the XL state machines in other expander logical phys,

An internal expander port contains a virtual phy with an expander link layer and a protocol-specific xansport layer (e.g., to provide access as an SSP target port to a logical unit with a peripheral device type set to 0Dh (i.e., enclosure services device) (see SPC-4 and SES-2)).

Each expander device shall include one internal SMP port using the expander device's SAS address.

Any additional internal SAS ports shall be inside SAS devices contained in the expander device, and the have SAS addresses different from that of the expander device. These SAS ports shall be attached to internal expander ports with virtual phys.

Each STP/SATA bridge shall have a unique SAS address. This SAS address is reported in the ATTACHED SAS ADDRESS field in the SMP DISCOVER response (see 10.4.3.10) for the expander phy containing the STP/SATA bridge (i.e., the expander phy attached to the SATA device or SATA port selector)

4.6.3 Expander connection manager (ECM)

The ECM performs the following functions:

- a) maps a destination SAS address in a connection request to a destination by using direct, subtractive, or table routing methods;
- b) arbitrates and assigns or denies path resources for connection requests following SAS arbitration and pathway recovery rules; and
- c) configures the ECR.

4.6.4 Expander connection router (ECR)

The ECR routes messages between pairs of expander logical phys as configured by the ECM. Enough routing resources shall be provided to support at least one connection

When forwarding dwords during a connection from a source phy with a higher physical link rate to a destination phy with a lower physical link rate, rate matching (see 7.13) ensures the dwords are at connection rate equal to or less than the lower physical link rate. However, the ECR may be requested to forward more dwords than the destination phy is able to accept if:

- a) an invalid dword occurs during a deletable primitive;
- b) an invalid dword occurs during a CLOSE; or
- c) multiple invalid dwords occur during a BREAK.
- The ECR may discard dwords if needed and count them as elasticity buffer overflows (see 4.11)

When forwarding dwords from a SATA physical link with a nigher physical link rate lower logical link rate, the SATA host port in the STP/SATA bridge shall throttle incoming FISes with SATA HOLD (see 7.17.2).

NOTE 14 - if SATA_HOLD is dease dwords. SATA_HOLD does not affect primitives (see SATA-2). The STP/SATA bridge may expand or contract repeated and continued primitives without changing their functional meaning.

ACCEPT - DONE destination [Delete this word, as the phy with the higher physical rate may be either the source or destination phy.] Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

ACCEPT - DONE physical logical

Author: Isi-bbesmer Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' TACCEPT - DONE physical

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:03:18 PM -07'00' TACCEPT - DONE

destination receiving

logical

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE sends is allowed to transmit

Author: ktek-dmoore

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

ACCEPT - DONE (changed to "detected", the word used in chapter 7 to represent a receiver receiving a continued primitive sequence such as SATA_HOLD. Off-topic: In physical layer specs, "deasserted" generally means to stop driving/tristate, while "negated" generally means to actively drive to the tristated value (1)" - that was used in later parallel SCSI standards to avoid the long rise times provided by SCSI terminators.)

deasserted s/b negated

Last time I checked Webster's 'deasserted' was not a word.

Author: Isi-apenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

Light This << deasserted for n dwords, the SATA device >> should be << deasserted for n dwords, then the SATA device >>

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
PREJECT (the first sentence is explaining something defined in SATA, not under control of this standard. This second is just commentary on why it works.)

This looks like it should not be in a note.

Comments from page 74 continued on next page

Each phy in an expander port containing phys with table routing attributes in an externally configurable expander device shall have the same number of routing table entries (see 4.6.7.3).

A set of expander phys with table routing attributes in an expander device not supporting table-to-table attachments using the same external connector (see 5.2.3.3) is called an enclosure out port. A set of expander phys with subtractive routing attributes using the same external connector is called an enclosure in port. A set of expander phys with table routing attributes in an expander device supporting table-to-table attachments using the same external connector is called an enclosure universal port.

Each phy in an expander port shall have the same zone phy information (see 4.9.3.1). The zone phy information associated with each of the phys in an expander port is treated as the zoning properties of the expander port.

Each expander logical phy contains an expander link layer with an XL state machine (see 7.15) and an SL_IR state machine (see 7.9.4). The XL state machine in each expander logical phy within an expander port processes connection requests independently of the XL state machines in other expander logical phys.

An internal expander port contains a virtual phy with an expander link layer and a protocol-specific transport layer (e.g., to provide access as an SSP target port to a logical unit with a peripheral device type set to 0Dh (i.e., enclosure services device) (see SPC-4 and SES-2)).

Each expander device shall include one internal SMP port using the expander device's SAS address.

Any additional internal SAS ports shall be inside SAS devices contained in the expander device, and thus have SAS addresses different from that of the expander device. These SAS ports shall be attached to internal expander ports with virtual phys.

Each STP/SATA bridge shall have a unique SAS address. This SAS address is reported in the ATTACHED SAS ADDRESS field in the SMP DISCOVER response (see 10.4.3.10) for the expander phy containing the STP/SATA bridge (i.e., the expander phy attached to the SATA device or SATA port selector).

4.6.3 Expander connection manager (ECM)

The ECM performs the following functions:

- a) maps a destination SAS address in a connection request to a destination phy using direct, subtractive, or table routing methods;
- arbitrates and assigns or denies path resources for connection requests following SAS arbitration and pathway recovery rules; and
- c) configures the ECR.

4.6.4 Expander connection router (ECR)

The ECR routes messages between pairs of expander logical phys as configured by the ECM. Enough routing resources shall be provided to support at least one connection.

74

When forwarding dwords during a connection from a seurce phy with a higher physical link rate to a destination phy with a lower physical link rate, rate matching (see 7.13) ensures the dwords are at a connection rate equal to or less than the lower physical link rate. However, the ECR may be requested to forward more dwords than the destination phy is able to accept if:

- a) an invalid dword occurs during a deletable primitive;
- b) an invalid dword occurs during a CLOSE; or
- c) multiple invalid dwords occur during a BREAK.
- The ECR may discard dwords if needed and count them as elasticity buffer overflows (see 4.11).

When forwarding dwords from a SATA physical link with a higher physical link rate to a SAS logical link with a lower logical link rate, the SATA host port in the STP/SATA bridge shall throttle incoming FISes with SATA HOLD (see 7.17.2).

NOTE 14 - If SATA_HOLD is deasserted for n dwords, the SATA device sends up to (21+n) more data dwords. SATA_HOLD does not affect primitives (see SATA-2). The STP/SATA bridge may expand or contract repeated and continued primitives without changing their functional meaning.

Working Draft Serial Attached SCSI - 2 (SAS-2)

28 January 2008

T10/1760-D Revision 14

When forwarding dwords from a SAS logical link with a lower logical link rate to a SATA physical link with a higher physical link rate, the SATA host port in the STP/SATA bridge shall perform a process similar to rate matching (see 7.13) by inserting ALIGN (0) and/or SATA_HOLD on the SATA physical link whenever it underflows

NOTE 15 - SATA requires that ALIGN 0) be sent in pairs (see SATA-2).

4.6.5 Broadcast propagation processor (BPP)

The BPP receives Broadcasts from each expander logical phy or from the management device serves on behalf of an expander logical phy and requests transmission of those Broadcasts of all expander ports except the expander port from which the Broadcast was received.

In a zoning expander device with zoning enabled (see 4.9.2), Broadcasts are forwarded as described in 4.9.5.

4.6.6 Expander device interfaces

4.6.6.1 Expander device interface overview

The expander device arbitrates and routes between expander logical phys. All routing occurs between expander logical phys, not expander ports. The interaction between an XL state machine and the expander function consists of requests, confirmations, indications, and responses. This interaction is called the expander device interface.

Page: 75

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

Accept - DoNE

sent
s/b
transmitted

Author: Isi-bday
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'

ACCEPT - DONE

0)
s/b
(0)

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'

TACCEPT - DONE

Taccept - DONE
This is a missing << (>> . It should << ALIGN (0) be sent >>

Figure 42 describes the interfaces present within an expander device.

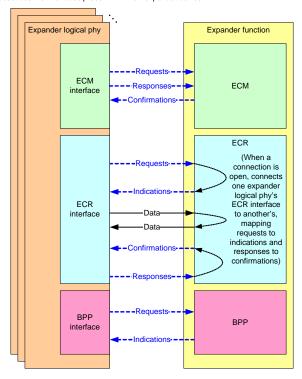


Figure 42 — Expander device interfaces

This page contains no comments

4.6.6.2 Expander device interfaces detail

Figure 43 shows the interface requests, confirmations, indications, and responses used by an expander device to manage connections.

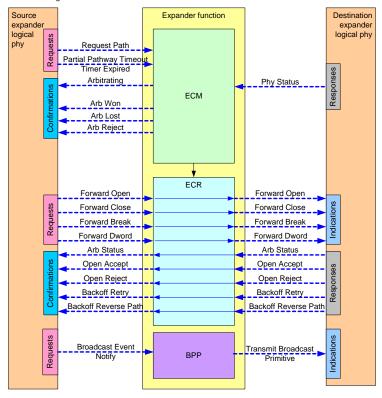


Figure 43 — Expander device interface detail

This page contains no comments

4.6.6.3 ECM interface

78

Table 13 describes the requests from an expander <u>logical phy</u> to the <u>ECM. The XL state machine</u> (see 7.15) defines specifically when each request is sent.

Table 13 — Expander logical phy to ECM requests

Request	Description
Request Path (arguments)	Request for a connection.
Partial Pathway Timeout Timer Expired	The Partial Pathway Timeout Timer expired.

Table 14 describes the responses from an expander logical phy to the ECM. The XL state machine (see 7.15) defines specifically when each response is sent.

Table 14 — Expander logical phy to ECM responses

Response	Description
Phy Status (Partial Pathway)	Response meaning that an expander logical phy: a) is being used for an unblocked partial pathway; or b) is waiting on another expander logical phy being used for a partial pathway.
Phy Status (Blocked Partial Pathway)	Response meaning that an expander logical phy: a) is being used for a blocked partial pathway; or b) is waiting on another expander logical phy being used for a blocked partial pathway.
Phy Status (Connection)	Response meaning that an expander logical phy: a) is being used for a connection; or b) is waiting on another expander logical phy being used for a connection.

Table 15 describes the confirmations from the ECM to an expander logical phy. These confirmations are sent in confirmation of a Request Path request. See 7.12.4 for specific definitions for when each confirmation is sent.

Table 15 — ECM to expander logical phy confirmations (part 1 of 2)

Confirmation	Description	
Arbitrating (Normal)	Confirmation that the ECM has received the Request Path request.	
Arbitrating (Waiting On Partial)	Confirmation that the ECM is waiting on a partial pathway (see 4.1.11).	
Arbitrating (Blocked On Partial)	Confirmation that the ECM is waiting on a blocked partial pathway (see 4.1.11).	
Arbitrating (Waiting On Connection)	Confirmation that the ECM is waiting for a connection to complete (see 4.1.12).	
Arb Won	Confirmation that an expander logical phy has won path arbitration.	
Arb Lost	Confirmation that an expander logical phy has lost path arbitration.	

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 78

```
Author: wdc-mevans
Subject: Cross-Out
Date: 3/6/2006 1.07.48 PM -07'00'
TREJECT (matches "specific" after table 14)

specifically
s/b
[Delete the unnecessary word.]

Author: wdc-mevans
Subject: Cross-Out
Date: 3/6/2008 1:07.48 PM -07'00'
TREJECT (matches "specific" after table 14)

specifically
s/b
[Delete the unnecessary word.]
```

Table 15 — ECM to expander logical phy confirmations (part 2 of 2)

Confirmation	Description	
Arb Reject (No Destination)	Confirmation that the request is rejected because the expander device is not configuring (see 4.8) and there is no path to the destination.	
Arb Reject (Bad Destination)	Confirmation that the request is rejected because the path to the destination maps back to the requesting expander port.	
Arb Reject (Connection Rate Not Supported)	Confirmation that the request is rejected because there is a destination port capable of routing to the requested destination SAS address but no phys within the destination port are configured to support the requested connection rate.	
Arb Reject (Zone Violation)	Confirmation that the request is rejected because the expander device is not locked and there is a zoning violation (see 4.9.3).	
Arb Reject (Pathway Blocked)	Confirmation that the request is rejected because the requesting expander logical phy needs to back off according to SAS pathway recovery rules.	
Arb Reject (Retry)	Confirmation that the request is rejected because: a) the expander device is configuring (see 4.7.2) and the ECM would otherwise have returned Arb Reject (No Destination); b) the expander device is locked (see 4.9.6.2) and the ECM would otherwise have returned Arb Reject (Zone Violation); or c) the expander device has reduced functionality (see 4.6.8 and 7.12.4.2.5).	

4.6.6.4 ECR interface

Table 16 describes the requests from an expander logical phy to the ECR and the corresponding indications from the ECR to another expander logical phy. The XL state machine (see 7.15) defines specifically when each request is sent.

Table 16 — Expander logical phy to ECR to expander logical phy requests and indications

Request/indication	Description
Forward Open (arguments)	Request/indication to forward an OPEN address frame.
Forward Close	Request/indication to forward a CLOSE.
Forward Break	Request/indication to forward a BREAK.
Forward Dword	Request/indication to forward a dword.

Page: 79

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
configuring (see 4.8)
s/b
configuring (see 4.7.2)
```

which covers the discover process in a self-configuring expander, not just the configuration subprocess.

Table 17 describes the responses from an expander logical phy to the ECR and the corresponding confirmations from the ECR to another expander logical phy. These responses are sent in response to a Forward Open indication. The XL state machine (see 7.15) defines specifically when each response is sent.

Table 17 — Expander logical phy to ECR to expander logical phy responses and confirmations

Response/confirmation	Description
Arb Status (Normal)	Confirmation/response that AIP (NORMAL) has been received.
Arb Status (Waiting On Partial)	Confirmation/response that AIP (WAITING ON PARTIAL) has been received.
Arb Status (Waiting On Connection)	Confirmation/response that AIP (WAITING ON CONNECTION) has been received.
Arb Status (Waiting On Device)	Confirmation/response that either: a) AIP (WAITING ON DEVICE) has been received; or b) the expander logical phy has completed the forwarding of an OPEN address frame and has entered the XL6:Open_Response_Wait state.
Open Accept	Confirmation/response that OPEN_ACCEPT has been received.
Open Reject	Confirmation/response that OPEN_REJECT has been received.
Backoff Retry	Confirmation/response that: a) a higher priority OPEN address frame has been received (see 7.12.3); and b) the source SAS address and connection rate of the received OPEN address frame are not equal to the destination SAS address and connection rate of the transmitted OPEN address frame.
Backoff Reverse Path	Confirmation/response that: a) a higher priority OPEN address frame has been received (see 7.12.3); and b) the source SAS address and connection rate of the received OPEN address frame are equal to the destination SAS address and connection rate of the transmitted OPEN address frame.

4.6.6.5 BPP interface

80

Table 18 describes the requests from an expander logical phy to the BPP. Requests from the management device server about SMP ZONED BROADCAST requests received from the SMP target port in zoning

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 80

Author: wdc-mevans
Subject: Cross-Out
Date: 5/6/2008 1:07:48 PM -07'00'
TREJECT (matches "specific" after table 14)
s/b
[Delete the unnecessary word.]

expander devices with zoning enabled are not described. See 4.9.5 for more information on how zoning expander devices with zoning enabled handle Broadcasts.

Table 18 — Expander logical phy to BPP requests

Request	Description
Broadcast Event Notify (Phy Not Ready)	Request to originate a Broadcast (Change) because the expander logical phy's SP state machine transitioned from the SP15:SAS_PHY_Ready or SP22:SATA_PHY_Ready state to the SP0:OOB_COMINIT state (see 6.8).
Broadcast Event Notify (SATA Spinup Hold)	Request to originate a Broadcast (Change) because the SATA spinus hold state has been reached (see 6.8 and 6.11) by the expander phy.
Broadcast Event Notify (Identification Sequence Complete)	Request to originate a Broadcast (Change) because the expander logical phy has completed the identification sequence (see 7.9).
Broadcast Event Notify (SATA Port Selector Change)	Request to originate a Broadcast (Change) because the expander phy detected that a SATA port selector appeared or disappeared.
Broadcast Event Notify (Change Received)	Request to forward a Broadcast (Change) because the expander logical phy received a Broadcast (Change). See 7.11 and 7.15.
Broadcast Event Notify (Reserved Change 0 Received)	Request to forward a Broadcast (Reserved Change 0) because the expander logical phy received a Broadcast (Reserved Change 0). See 7.11 and 7.15.
Broadcast Event Notify (Reserved Change 1 Received)	Request to forward a Broadcast (Reserved Change 1) because the expander logical phy received a Broadcast (Reserved Change 1). See 7.11 and 7.15.
Broadcast Event Notify (SES Received)	Request to forward a Broadcast (SES) because the expander logical phy received a Broadcast (SES). See 7.15.
Broadcast Event Notify (Expander Received)	Request to forward a Broadcast (Expander) because the expander logical phy received a Broadcast (Expander). See 7.15.
Broadcast Event Notify (Asynchronous Event Received)	Request to forward a Broadcast (Asynchronovs Event) because the expander logical phy received a Broadcast (Asynchronous Event). See 7.15.
Broadcast Event Notify (Reserved 3 Received)	Request to forward a Broadcast (Reserved 3) because the expander logical phy received a Broadcast (Reserved 3). See 7.15.
Broadcast Event Notify (Reserved 4 Received)	Request to forward a Broadcast (Reserved 4) because the expander logical phy received a Broadcast (Reserved 4). See 7.15.

Table 19 describes the indications from the BPP to an expander / gical phy. Indications to the management application client to generate SMP ZONED BROADCAST functions from the SMP initiator port in a zoning expander device with zoning enabled are not described. See 4.9.5 for more information on how zoning expander devices with zoning enabled handle Broadcasts.

Table 19 — BPP to expander logical phy indications

Message	Description
Transmit Broadcast (type)	Indication to transmit a BROADCAST with the specified type.

81

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 81

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
TREJECT (nothing wrong with "because")

Change all the << because ... ed...>> terms to << as a result of ing...>> in this table. For example << Broadcast (Change) as a result of the expander phy detecting that a SATA port

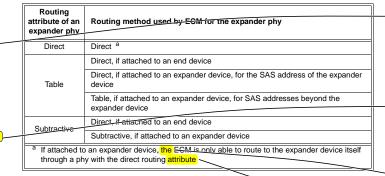
Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

This << are not described. See >> should be << are not described by this standard. See >>

4.6.7 Expander device routing

4.6.7.1 Routing attributes and routing methods

Each expander phy in an expander device shall support one of the following routing attributes:


- a) direct routing attribute;
- b) table routing attribute; or
- c) subtractive reuting attribute.

The routing attributes allow the ECM to determine which routing method to use when routing connection requests to the expander logical phys in the expander phy.

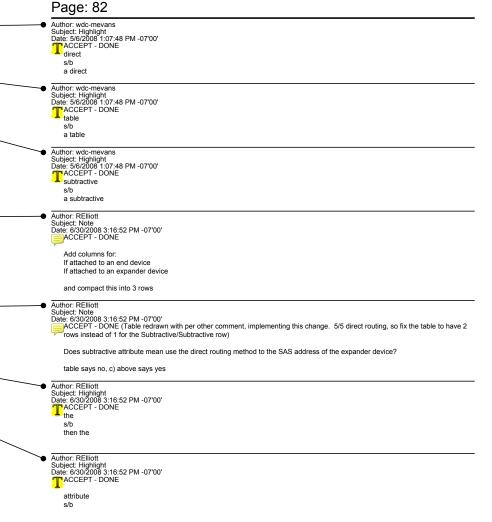
- a) the table routing method routes connection requests to attached expander devices using an expander route table;
- the subtractive routing method routes unresolved connection requests to an attached expanded device; or
- the direct routing method routes connection requests to attached end devices, the SMP port of an attached expander device, or SAS devices contained in the expander device.

Table 20 describes the routing methods that the ECM uses based on the routing attributes of an expander phy.

Table 20 — Routing attributes and routing methods

An expander device may have zero or more phys with the table routing attribute

An expander device shall have at most one defined port containing phys with the subtractive routing attribute.


An expander device that does not support table-to-table attachment shall only use phys with the table routing attribute to attach to phys with the subtractive routing attribute in other expander devices.

If multiple phys within an expander device have subtractive routing attributes and are attached to expander devices, they shall attach to phys with identical SAS addresses (i.e., the same expander port).

If multiple phys within an expander device have subtractive routing attributes and are attached to expander devices that do not have identical SAS addresses, the application client that is performing the discover process (see 4.7) shall report an error in a vendor-specific manner.

4.6.7.2 Connection request routing

The ECM shall determine how to route a connection request from a source expander logical phy to a destination expander logical phy in a different expander port if the destination expander logical phy is enabled, operating at a valid logical link rate (e.g., the SMP DISCOVER response reports a NEGOTIATED LOGICAL LINK

Comments from page 82 continued on next page

28 January 2008

4.6.7 Expander device routing

4.6.7.1 Routing attributes and routing methods

Each expander phy in an expander device shall support one of the following routing attributes:

- a) direct routing attribute;
- b) table routing attribute; or
- c) subtractive routing attribute.

The routing attributes allow the ECM to determine which routing method to use when routing connection requests to the expander logical phys in the expander phy:

- a) the table routing method routes connection requests to attached expander devices using an expander route table.
- the subtractive routing method routes unresolved connection requests to an attached expander device; or
- c) the direct routing method routes connection requests to attached end devices, the SMP port of an attached expander device, or SAS devices contained in the expander device.

Table 20 describes the routing methods that the ECM uses based on the routing attributes of an expander phy.

Table 20 — Routing attributes and routing methods

Routing attribute of an expander phy	Routing method used by ECM for the expander why
Direct	Direct ^a
	Direct, if attached to an end device
Table	Direct, if attached to an expander device, for the SAS address of the expander device
	Table, if attached to an expander device, for SAS addresses beyond the expander device
Subtractive	Direct, if attached to an end device
Odbiractive	Subtractive, if attached to an expander device
a If attached to an expander device, the ECM is only able to route to the expander device itse	

An expander revice may have zero or more phys with the table routing attribute.

An expander device shall have at most one defined port containing phys with the subtractive routing attribute.

An expander device that does not support table-to-table attachment shall only use phys with the table routing attribute to attach to phys with the subtractive routing attribute in other expander devices.

If multiple phys within an expander device have <u>subtractive routing attributes and are attached to purpose</u> devices, they shall attach to phys with identical SAS addresses (i.e., the same expander <u>port).</u>

If multiple phys within an expander device have subtractive routing attributes and are attached to expander devices that do not have identical SAS addresses, the application client that is performing the discover process (see 4.7) shall report an error in a vendor-specific manner.

4.6.7.2 Connection request routing

The ECM shall determine how to route a connection request from a source expander logical phy to a destination expander logical phy in a different expander port if the destination expander logical phy is enabled, operating at a valid logical link rate (e.g., the SMP DISCOVER response reports a NEGOTIATED LOGICAL LINK

attribute.

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

Reword this as:

Author: Isi-bhesmer

If an expander device that does not support table-to-table attachment, its table-routing phys shall not be attached to table routing phys in other expander devices (e.g., they may be attached to subtractive routing phys).

and place into the new section

Subject: Highlight
Date: 6/9/2008 1:38:08 PM -07'00'
ACCEPT - DONE (True. Added pointer to REPORT GENERAL, and to DISCOVER itself (which is oddly missing):

"The SMP REPORT GENERAL function (see 10.4.3.4) reports whether or not the expander device is self-configuring and supports table-to-table attachment. The SMP DISCOVER function (see 10.4.3.10) reports the routing attribute of each expander phy (see 10.4.3.1) at 10.4.3.4.1.

Added " A self-configuring expander device may support table-to-table attachment (i.e., having its table routing phys attached to the table routing phys of other expander devices). An externally configurable expander device shall not support table-to-table attachment." to the zero or more phys paragraph.

REPORT GENERAL adds a rule that table-to-table attachment is ONLY allowed in a self-configuring expander:

A TABLE TO TABLE SUPPORTED bit set to one indicates that the expander device is a self-configuring expander device that supports its table routing phys being attached to table routing phys in other expander devices. The TABLE TO TABLE SUPPORTED bit shall only be set to one if the EXTERNALLY CONFIGURABLE ROUTE TABLE bit is set to zero. A TABLE TO TABLE SUPPORTED bit set to zero indicates that the expander device is not a self-configuring expander device that supports its table routing phys being attached to table routing phys in other expander devices.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Create a section "Expander device topology routing attribute restrictions" for the rules about how expanders are hooked together (vs. the rules for how each is individually constructed)

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
 port
 s/b
device

although both are true, the earlier part of the sentence refers to expander devices, so that is the better level to discuss

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

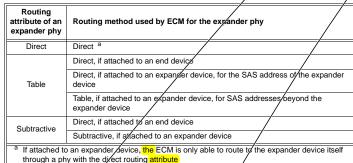
shall attach s/b shall be attached

Comments from page 82 continued on next page

4.6.7 Expander device routing

4.6.7.1 Routing attributes and routing methods

Each expander phy in an expander device shall support one of the following routing attributes:


- a) direct routing attribute;
- b) table routing attribute; or
- c) subtractive routing attribute.

The routing attributes allow the ECM to determine which routing method to use when routing connection requests to the expander logical phys in the expander phy:

- a) the table routing method routes connection requests to attached expander devices using an expander route table;
- the subtractive routing method routes unresolved connection requests to an attached expander device; or
- c) the direct routing method routes connection requests to attached end devices, the SMP port of an attached expander device, or SAS devices contained in the expander device.

Table 20 describes the routing methods that the ECM uses based on the routing attributes of an expander phy.

Table 20 — Routing attributes and routing methods

An expander device may have zero or more phys with the table routing attribute.

An expander device shall have at most one defined port containing phys with the subtractive routing attribute.

82

An expander device that does not support table-to-table attachment shall only use phys with the table routing attribute to attach to phys with the subtractive routing attribute in other expander devices.

If multiple phys within an expander device have subtractive routing attributes and are attached to expander devices, they shall attach to phys with identical SAS addregses (i.e., the same expander port).

If multiple phys within an expander device have subtractive routing attributes and are attached to expander devices that do not have identical SAS addresses, the application client that is performing the discover process (see 4.7) shall report an error in a vendor-specific manner.

4.6.7.2 Connection request routing

The ECM shall determine how to route a connection request from a source expander logical phy to a destination expander logical phy in a different expander port if the destination expander logical phy is enabled, operating at a valid logical link rate (e.g., the SMP DISCOVER response reports a NEGOTIATED LOGICAL LINK

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 3:05:21 PM -07'00'
TREJECT (but added "then" even though it wasn't requested)
they
s/b
the phys in the expander device

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the s/b
then the

RATE field set to G1 (i.e., 8h), G2 (i.e., 9h), or G3 (i.e., Ah)), and not excluded because of zoning (see 4.9.2) using the following precedence:

- route to an expander logical phy with the direct routing attribute or table routing attribute when the destination SAS address matches the attached SAS address:
- route to an expander logical phy with the table routing attribute when the destination SAS address matches an enabled SAS address in the expander route table;
- 3) route to an expander logical phy with the subtractive routing attribute; and -
- 4) return an Arb Reject confirmation (see 4.6.6.3) to the source expander logical phy.

If the destination expander logical phy only matches an expander logical phy in the same expander port from which the connection request originated, then the ECM shall return an Arb Reject confirmation (see 4.6.6.3).

If the destination SAS address of a connection request matches a disabled SAS address in an expander route table, then the ECM shall ignore the match.

4.6.7.3 Expander route table

4.6.7.3.1 Expander route table overview

An expander device that supports the table routing method shall contain an expander route table. The expander route table is a structure that provides an association between destination SAS addresses (i.e., routed SAS addresses) and the expander phys to which connection requests to those destination SAS addresses are forwarded.

Zoning expander devices include additional fields in their expander route tables (see 4.9.3.4).

Table 21 defines the types of expander route tables.

Table 21 — Expander route table types

Туре	SMP functions to access	Reference
Phy-based	REPORT ROUTE INFORMATION (see 10.4.3.13) and CONFIGURE ROUTE INFORMATION (see 10.4.3.27)	4.6.7.3.2
Expander-based	REPORT EXPANDER ROUTE TABLE LIST (see 10.4.3.17)	4.6.7.3.3

Page: 83

Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 3:05:36 PM -07'00'
PREJECT (nothing wrong with "because")

Change to << as a result of >>

 Author: Isi-gpenokie Subject: Highlight
 Subject: Highlight
 Date: 5/6/2008 1:07:48 PM -07'00'
 TREJECT (ordered list, they all must be considered)

This is an << or >> as you cannot route to all. Only one of the items will be valid.

4.6.7.3.2 Phy-based expander route table

Figure 44 shows a representation of a phy-based expander route table.

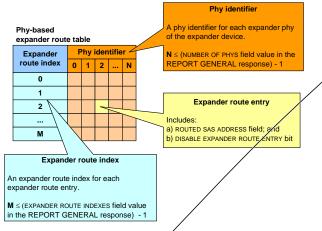


Figure 44 — Phy-based expander route table

For each expander route index and phy identifier combination, the phy-based expander route table contains an expander route entry containing a ROUTED SAS DDRESS field and a DISABLE EXPANDER ROUTE ENTRY bif.

A management application client may access a specific expander route entry within a phy-based expander route table with the SMP REPORT ROUTE INFORMATION function (see 10.4.3.13) and the SMP CONFIGURE ROUTE INFORMATION function (see 10.4.3.27).

An expander device reports the maximum expander route index in the EXPANDER ROUTE INDEXES field and indicates if the phy-based expander route table is configurable in the CONFIGURABLE ROUTE TABLE bit in the SMP REPORT GENERAL response (see 10.4.3.4).

Each expander route entry shall be disabled after power on.

Page: 84

Author: RElliott

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

This << SAS>> is in regular caps when it should be in small caps.

Subject: Highlight
Date: 10/17/2008 12:16:20 PM -07'00'

CONFIGURABLE ROUTE TABLE bit
s/b
EXTERNALLY CONFIGURABLE ROUTE TABLE bit

T10/1760-D Revision 14

4.6.7.3.3 Expander-based expander route table

Figure 45 shows a representation of an expander-based expander route table.

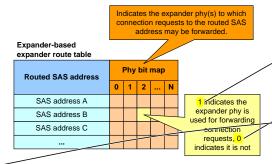


Figure 45 — Expander-based expander route table

For each routed SAS address, the expander-based expander route table contains a phy bit map.

A management application client may access an expander-based expander route table with the SMP REPORT EXPANDER ROUTE TABLE LIST function (see 10.4.3.17).

An expander device reports the size of its expander-based expander route table in the MAXIMUM NUMBER OF ROUTED SAS ADDRESSES field in the SMP REPORT GENERAL response (see 10.4.3.4).

4.6.8 Expander device reduced functionality

An expander device shall originate a Broadcast (Expander) to indicate that it is going to temporarily have reduced functionality for a period of time (e.g., if during a microcode update, it disables the ECM and ECR access to its SMP target port or to one or more expander phys, or if it sysperiences reduced performance). The maximum period of time that the expander device is going to have reduced functionality is indicated:

- a) in the REPORT SUPPORTED OPERATION CODES command parameter data (see SPC-4) for the WRITE BUFFER command reported by a logical unit with a peripheral device type set to 0Dh (i.e., enclosure services device) accessed via an SSP target port contained in the expander device; and
- from the contents of the MAXIMUM REDUCED FUNCTIONALITY TIME field in the REPORT GENERAL response (see 10.4.3.4).

After the expander device originates a Broadcast (Expander) it shall:

- a) set the REDUCED FUNCTIONALITY bit to one in the REPORT GENERAL response (see 10.4.3.4);
- b) initialize the reduced functionality delay timer to the value indicated by the INTUAL REDUCED FUNCTIONALITY DELAY field in the REPORT GENERAL response (see 10.4.3.4) and start the reduced functionality delay timer;
- c) wait for the reduced functionality delay timer to expire before reducing any expander functions; and
- on stop or restart the reduced functionality delay timer until after the expander device enters the reduced functionality condition.

If the expander device receives a connection request that maps to an expander phy or its SMP target port that is not accessible because of the reduced functionality, then the expander device shall respond with an OPEN REJECT (RETRY) until the operation that caused the expander device to have reduced functionality is complete.

Page: 85 Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 3:40:55 PM -07'00' REJECT (number looks better for a figure) Change to << one >> to be consistent with how we talk about bit settings. Author: Isi-apenokie Subject: Highlight Date: 5/25/2008 3:41:01 PM -07'00' TREJECT (number looks better for a figure) Change to << zero >> to be consistent with how we talk about bit settings. Author: hpq-relliott Subject: Note Date: 5/17/2008 11:27:48 AM -07'00' ACCEPT - DONE (added "Routed SAS addresses are not necessarily sorted in any particular order.") Add a note that the addresses in the expander-based expander route table are not sorted in any particular order. Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:06:09 PM -07'00' ACCEPT - DONE (just deleting temporarily, leaving "going to have reduced". It has not actually started reducing anything yet.) going to temporarily have reduced reducina Author: hpq-relliott Date: 9/4/2008 6:36:31 AM -07'00' ACCEPT - DONE (created a 4.6.9 Broadcast (Expander) handling) Move the application client handling of Broadcast (Expander) to another section; it may not belong here. Add "and Broadcast (Expander)" to the title of 4.6.8. Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:07:58 PM -07'00' REJECT (this is still part of the if clause not the then clause. Added a comma after the if to clarify this is not an if...then construct. Changed "it" to "expander device" here as well, although not strictly necessary) then the expander device Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:07:34 PM -07'00' REJECT s/b the expander device Author: Isi-bday

Comments from page 85 continued on next page

Subject: Highlight Date: 5/25/2008 3:08:22 PM -07'00'

4.6.7.3.3 Expander-based expander route table

Figure 45 shows a representation of an expander-based expander route table.

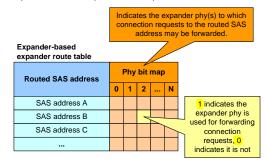


Figure 45 — Expander-based expander route table

For each routed SAS address, the expander-based expander route table contains a phy bit map.

A management application client may access an expander-based expander route table with the SMP REPORT EXPANDER ROUTE TABLE LIST function (see 10.4.3.17).

An expander device reports the size of its expander-based expander route table in the MAXIMUM NUMBER OF ROUTED SAS ADDRESSES field in the SMP REPORT GENERAL response (see 10.4.3.4).

4.6.8 Expander device reduced functionality

An expander device shall originate a Broadcast (Expander) to indicate that it is going to temporarily have reduced functionality for a period of time (e.g., if during a microcode update, if disables the ECM and ECR access to its SMP target port or to one or more expander phys, or if it experiences reduced performance). The maximum period of time that the expander device is going to have reduced functionality is indicated:

- a) in the REPORT SUPPORTED OPERATION CODES command parameter data (see SPC-4) for the WRITE BUFFER command reported by a logical unit with a peripheral device type set to 0Dh (i.e., enclosure services device) accessed via an SSP target port contained in the expander device; and
- b) from the contents of the MAXIMUM REDUCED FUNCTIONALITY TIME field in the REPORT GENERAL response (see 10.4.3.4).

After the expander device originates a Broadcast (Expander) it shall:

- a) set the REDUCED FUNCTIONALITY bit to one in the REPORT GENERAL response (see 10.4.3.4);
- initialize the reduced functionality delay timer to the value indicated by the INITIAL REDUCED FUNCTIONALITY DELAY field in the REPORT GENERAL response (see 10.4.3.4) and start the reduced functionality delay timer;
- c) wait for the reduced functionality delay timer to expire before reducing any expander functions; and
- d) not stop or restart the reduced functionality delay timer until after the expander device enters the reduced functionality condition.

If the expander device receives a connection request that maps to an expander phy or its SMP target port that is not accessible because of the reduced functionality, then the expander device shall respond with an OPEN REJECT (RETRY) until the operation that caused the expander device to have reduced functionality is complete.

Working Draft Serial Attached SCSI - 2 (SAS-2)

TACCEPT - DONE (as " to indicate that it is going to have reduced functionality for a period of time, it shall". Wordy, and being in the section probably suffices since it says "the expander device" (tying it to the one in the previous paragraph, but will go with wordy here. Could also try "After it originates the Broadcast (Expander), it shall", but that would set off the anti-lit fanatics)

Broadcast (Expander) it shall:

S/D/

Broadcast (Expander) to indicate reduced functionality it shall:

Don't want the following actions to take place for the PVD phy event threshold case. Maybe just being in this section is sufficient?

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

functions

85

functionality

After the operation that caused the expander device to have reduced functionality is complete, the expander

- 1) set the REDUCED FUNCTIONALITY bit to zero in the REPORT GENERAL response (see 10.4.3.4); and
- 2) originate a Broadcast (Change) or a link reset sequence on each expander physical sequence on each expander physical sequence or each expander physical sequence physical sequence or each expander physical sequence physical sequ

After receiving a Broadcast (Expander), a management application client behind an SMP initiator port should issue a REPORT GENERAL function (see 10.4.3.4) to all expander devices to determine:

- a) the expander devices, if any, that are reducing their functionality (i.e., the REDUCED FUNCTIONALITY bit is set to one in the REPORT GENERAL response)(see 4.6.8); and
- b) the amount of time remaining until the reduced functionality occurs (i.e., the contents of the TIME TO REDUCED FUNCTIONALITY field in the REPORT GENERAL response).

4.7 Discover process

4.7.1 Discover process overview

Management application clients direct an SMP initiator port to request SMP functions from an SMP target port. Management application clients are located in every SAS initiator device and every self-configuring expander device. A management application client performs a discover process to discover all the SAS devices and expander devices in the SAS domain (i.e., determining their device types, SAS addresses, and supported protocols). A SAS initiator device uses this information to determine SAS addresses to which it is able to establish connections. A self-configuring expander device uses this information to fill in its expander

A management application client performing the discover process shall perform a level-order (i.e., breadth-first) traversal of the SAS domain. The order of traversal shall be to discover:

- 1) the device(s) to which the device containing the management application client is attached
- 2) if an attached device is an expander device, seery device attached to that expander device; and
- 3) for each expander device found, every device attached to that expander device.

This order is repeated until all expander devices have been traversed. If the management application client discovers an externally configurable expander device that is not located beyond a self-configuring expander device with the CONFIGURES OTHERS bit set to one in the REPORT GENERAL response (see 10.4.3.4) it wisel perform the configuration subprocess (see 4.8) to configure the expander route table before attempting to establish connections with devices attached two levels (see 4.8.4) beyond that externally configurable

If an end device is directly attached to a self-configuring expander device with the CONFIGURES OTHERS bit set to one in the REPORT GENERAL response (see 10.4.3.4), then the management application client in that end device is not required to perform the configuration subprocess. If all the expander devices in the SAS domain are self-configuring expander devices, then management application clients in end devices are not required to perform the configuration subprocess.

If the management application client is inside a self-configuring expander device, then the process shall be repeated on each expander port.

Page: 86

Author: hpq-relliott

Subject: Note Date: 9/4/2008 6:36:06 AM -07'00' ACCEPT - DONE (

- 9/4 added: If an expander device is found that is reducing its functionality, then the management application client should:
- a) terminate any outstanding I_T_L_Q nexuses whose connections are through that expander device; and
- b) not create any new I T L Q nexuses whose connections go through that expander device.

There are more specific things it could do, but this communicates the key concepts.

5/5 the intro to 07-008r8 item A) second sentence and B) have some words that might fit here.)

Mention what the application client is supposed to do when it determines that an expander device is going to have reduced

- complete all I/Os before the reduced functionality occurs
- do not start new I/Os
- do not open new connections after the time expires

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:09:01 PM -07'00' ACCEPT - DONE

to

s/b with

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE (as part of rewrite)

everv

s/b

then every

Author: hpq-relliott

Subject: Highlight
Date: 6/4/2008 7:04:20 AM -07'00'
ACCEPT - DONE (rewrote as:

- "The management application client shall discover devices in the following order:
- 1) the device(s) to which the device containing the management application client is attached;
- 2) for each expander phy with the subtractive routing attribute or the table routing attribute, if the attached device is an expander device, then every device attached to that expander device; and
- 3) repeat step 2) for each additional expander device found attached to that expander device.
- The discover process completes when all expander devices have been traversed.

after "is an expander device"

"and the expander phy has the subtractive routing attribute or the table routing attribute.

If an expander is attached, but the routing attribute is direct, every address beyond the attached expander device is inaccessible.

Author: wdc-mevans Subject: Highlight Date: 5/8/2008 3:53:17 PM -07'00'

After the operation that caused the expander device to have reduced functionality is complete, the expander device shall:

- 1) set the REDUCED FUNCTIONALITY bit to zero in the REPORT GENERAL response (see 10.4.3.4); and
- 2) originate a Broadcast (Change) or a link reset sequence on each expander phy.

After receiving a Broadcast (Expander), a management application client behind an SMP initiator port should issue a REPORT GENERAL function (see 10.4.3.4) to all expander devices to determine:

- the expander devices, if any, that are reducing their functionality (i.e., the REDUCED FUNCTIONALITY bit is set to one in the REPORT GENERAL response)(see 4.6.8); and
- b) the amount of time remaining until the reduced functionality occurs (i.e., the contents of the TIME TO REDUCED FUNCTIONALITY field in the REPORT GENERAL response).

4.7 Discover process

4.7.1 Discover process overview

Management application clients direct an SMP initiator port to request SMP functions from an SMF target port. Management application clients are located in every SAS initiator device and every self-configuring expander device. A management application client performs a discover process to discover all the SAS devices and expander devices in the SAS domain (i.e., determining their device types, SAS addresses, and supported protocols). A SAS initiator device uses this information to determine SAS addresses to which it is able to establish connections. A self-configuring expander device uses this information to fill in its expander

A management application client performing the discover process shall perform a level-order (i.e., breadth-first) traversal of the SAS domain. The order of traversal shall be to discover:

- 1) the device(s) to which the device containing the management application client is attached;
- 2) if an attached device is an expander device, every device attached to that expander device; and
- 3) for each expander device found, every device attached to that expander device.

This order is repeated until all expander devices have been travelised. If the management application client discovers an externally configurable expander device that is not located beyond a self-configuring expander device with the CONFIGURES OTHERS of the set to one in the REFORT GENERAL response (see 10.4.3.4) it shall perform the configuration subprecess (see 4.8) to configure the expander route table before attempting to establish connections with reviews attached two levels (see 4.8.4) beyond that externally configurable expander device.

If an end device is directly attached to a self-configuring expander device with the CONFIGURES OTHERS bit set to one in the REPORT GENERAL response (see 10.4.3.4), then the management application client in that end device is not required to perform the configuration subprocess. If all the expander devices in the SAS domain are self-configuring expander devices, then management application clients in end devices are not required to perform the configuration subprocess.

If the management application client is inside a self-configuring expander device, then the process shall be repeated on each expander port.

TACCEPT - DONE 10.4.3.4) it

10.4.3.4), then the management application client

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

> two levels s/b

two or more levels

to match Isi-bbesmer comment in 4.8.1

Author: Isi-bbesmer

Subject: Highlight Date: 6/3/2008 4:50:46 PM -07'00'

ACCEPT - DONE (added "or self-configuring expander device, but kept "end device" which fits better with the last sentence)

a SAS initiator device or self-configuring expander device

Author: Isi-bbesmer

Subject: Highlight Date: 6/3/2008 4:50:22 PM -07'00'

REJECT (that change would create uncertainty about which "self-configuring expander device" is being referred to, when combined with the other change in this sentence. Rewording the sentence to make "management application client" the first noun/subject. and then use "it" to disambiguate:

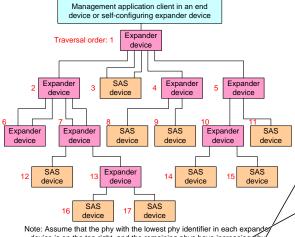
"If a management application client is in an end device or a self-configuring expander device that is directly attached to a selfconfiguring expander device B with the configures others bit set to one in the REPORT GENERAL response (see 10.4.3.4), then it is not required to perform the configuration subprocess.")

SAS initiator device or self-configuring expander device

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

process

discover process


T10/1760-D Revision 14

Page: 87

TACCEPT - DONE
and 4.7.2

4.7.2, and 4.9.6.3

Note: Assume that the phy with the lowest phy identifier in each expand device is on the top right, and the remaining phys have increasing phy identifiers assigned in a counter-clockwise direction

Figure 46 — Level-order traversal example

The management application client determines whether an expander device or SAS device is attached at each point in the traversal. For the first device (i.e., the device directly attached), this is determined from the DEVICE TYPE field in the IDENTIFY address frame (see 1.8.2) information received by the phy that the management application client is using. For other devices (i.e., devices not directly attached), this is determined from ATTACHED DEVICE TYPE field fine SMP DISCOVER response (see 10.4.3.10).

If an expander device is attached, the management application client shall use the SMP REPORT GENERAL function (see 10.4.3.4) to determine how many phys are in the expander device and then use the SMP DISCOVER function (see 10.4.3.10) and/or the SMP DISCOVER LIST function (see 10.4.3.15) to determine what is attached to each expander phy (e.g., the device type, SAS address, and supported protocol(s)).

NOTE 16 - Expander devices compliant with previous versions of this standard do not implement the SMP DISCOVER LIST function.

If the expander device's EXTERNALLY CONFIGURABLE ROUTE TABLE bit is set to zero in the SMP REPORT GENERAL response, its own management application client shall configure its own expander route table as described in 4.8.

While a self-configuring expander device's CONFIGURING bit is set to one in the SMP REPORT GENERAL response, connection requests for destination forts two or more levels beyond the self-configuring expander device that would otherwise have returned PEN_REJECT (NO DESTINATION) return OPEN_REJECT (RETRY) instead (see 4.6.6.3 and 4.7.2):

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE device directly attached device that is directly attached Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE devices not directly attached devices that are not directly attached Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

as the CONFIGURING bit is split into SELF CONFIGURING and ZONE CONFIGURING bits

If a SAS device is attached, the discover process is not required to obtain any more information about the SAS device. Additional discovery software may access that SAS device, however.

- if the SAS device supports an SMP target port, the sanagement application client may use SMP functions (e.g., REPORT GENERAL and REPORT MANUFACTURER INFORMATION) to determine additional information about the SAS target device;
- if the SAS device supports an SSP target port, a SCSI application client may transmit SCSI commands (e.g., iNQUIRY and REPORT LUNS) to extermine additional significant about the SCSI target device; and
- if the end device supports an STP target port, an ATA application client may transmit ATA commands (e.g., IDENTIFY DEVICE and IDENTIFY PACKET DEVICE) to determine additional information about the ATA device.

The result of the discover process is that the management application client has the secessary information (e.g., the device type, SAS address, and supported protocol(s)) to communicate with early SAS device and expander device in the SAS domain and each externally configurable expander device is configured with the necessary expander route entries to allow routing of connection requests through the SAS domain.

If the discover process occurs and any phy within the expander device is in the process of a link reset sequence resulting from an SMP PHY CONTROL function (see 10.4.3.28) phy operation of LINK RESE For HARD RESET, then the management device server shall set the NEGOTIATED PHYSICAL LINK RATE field (see table 279) to RESET. IN PROGRESS in the SMP DISCOVER response (see 10.4.3.40).

The discover process may be aborted prior to completion and restarted if there is an indication that it may be based on incorrect information (e.g., reception of a Broadcast (Change) or a change in the EXPANDER COUNT field returned in an SMP response).

Annex L contains an example implementation of how a management application client may perform the discover process.

4.7.2 Discover process in a self-configuring expander device

The management application client of a self-configuring expander device shall configure:

- a) the expander routing table in that expander device; and
- the expander routing table in each externally configurable expander device in the SAS domain that is not located behind another self-configuring expander device.

When a self-configuring expander device receives a Broadcast (Change) the management application client shall start the discover process using the expander port that received the Broadcast (Change). If a change to the expander route table is identified then the management device server shall set its CONFIGURING bit to one in the SMP REPORT GENERAL response (see 10.4.3.4).

If zoning is enabled, the management application client in a self-configuring expander device shall use the SMP DISCOVER response (see 10.4.3.10) or SMP DISCOVER LIST response (see 10.4.3.15) values to set the zone group values in the zoning expander route table (see 4.9.3.4).

The management application client shall set the CONFIGURING bit to zero when the discover process is complete. When the CONFIGURING bit changes from one to zero:

- a) a zoning expander device with zoning enabled shall originate a Broadcast (Change) on each
 expander port that has access to the expander port through which the discover process was
 performed based on the zone permission table; and
- an expander device with zoning disabled shall originate a Broadcast (Change) on each expander port other than the one through which the discover process was performed.

When a Broadcast (Change) has been received by a self-configuring expander device, all previously valid SAS addresses shall continue to be routable until they are determined to be no longer valid. When a change has been identified, all unaffected SAS addresses shall continue to be routable.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TCACCEPT - DONE however s/h however, as follows Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the. s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE then a Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE s/b then n Author: Isi-bday Subject: Cross-Out Date: 5/25/2008 3:10:02 PM -07'00' TACCEPT - DONE ("any phy" was misleading too. Only the phy being reset is subject to being reported as RESET_IN_PROGRESS. Deleted the paragraph as requested.) If the discover process occurs and any phy within the expander device is in the process of a link reset sequence resulting from an SMP PHY CONTROL function (see 10.4.3.28) phy operation of LINK RESET or HARD RESET, then the management device server shall set the NEGOTIATED PHYSICAL LINK RATE field (see table 279) to RESET IN PROGRESS in the SMP DISCOVER response (see 10.4.3.10) This statement is not entirely accurate. All the rules are listed in the SP state machine. For example, if previous value was UNSUPPORTED PHY ATTACHED, the SMP PHY CONTROL will not change that value to RESET IN PROGRESS. Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

Page: 88

If a SAS device is attached, the discover process is not required to obtain any more information about the SAS device. Additional discovery software may access that SAS device, however:

- a) if the SAS device supports an SMP target port, the management application client may use SMP functions (e.g., REPORT GENERAL and REPORT MANUFACTURER INFORMATION) to determine additional information about the SAS target device;
- if the SAS device supports an SSP target port, a SCSI application client may transmit SCSI commands (e.g., iNQUIRY and REPORT LUNS) to determine additional information about the SCSI target device; and
- c) if the end device supports an STP target port, an ATA application client may transmit ATA commands (e.g., IDENTIFY DEVICE and IDENTIFY PACKET DEVICE) to determine additional information about the ATA device.

The result of the discover process is that the management application effect has the necessary information (e.g., the device type, SAS address, and supported protocol(s)) communicate with each SAS device and expander device in the SAS domain and each externally enfigurable expander device is configured with the necessary expander route entries to allow routing promection requests through the SAS domain.

If the discover process occurs and any phy within the expander device is in the process of a link reset sequence resulting from an SMP PHY CONTROL function (see 10.4.3.28) phy operation of LINK RESET or HARD RESET, then the management device server shall set the NEGOTIATED PHYSICAL LINK RATE field (see table 279) to RESET. IN PROGRESS in the SMP DISCOVER response (see 10.4.3.10).

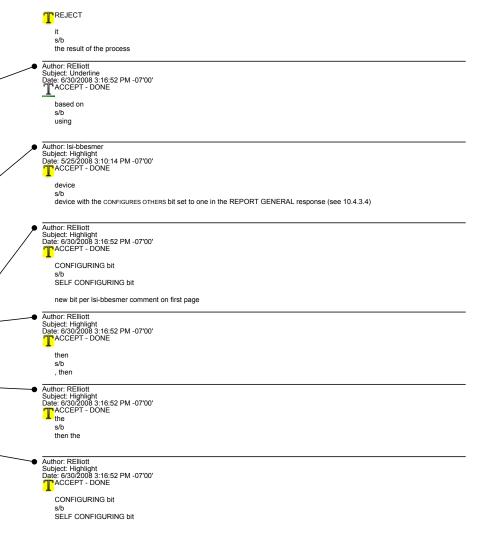
The discover purcess may be aborted prior to completion and restarted if there is an indication that it may be based on incorrect information (e.g., reception of a Broadcast (Change) or a change in the EXPANDEX CHANGE COUNT field returned in an SMP response).

Annex L contains an example implementation of how a management application client may verform the discover process.

4.7.2 Discover process in a self-configuring expander device

The management application client of a self-configuring expander device shall configure:

- a) the expander routing table in that expander device; and
- b) the expander routing table in each externally configurable expander device in the SAS domain that not located behind another self-configuring expander device.


When a self-configuring expander device receives a Broadcast (Change) the management application clight shall start the discover process using the expander per that received the Broadcast (Change). If a change to the expander route table is identified then the management device server shall set its CONFIGURING bit to one in the SMP REPORT GENERAL response (see 10.4.3.4).

If zoning is enabled, the management application client in a self-configuring expander device shall use the SMP DISCOVER response (see 10.4.3.10) or SMP DISCOVER LIST response (see 10.4.3.15) values to set the zone group values in the zoning expander route table (see 4.9.3.1).

The management application client shall set the CONFIGURING bit to zero when the discover process is complete. When the CONFIGURING bit changes from one to zero:

- a) a zoning expander device with zoning enabled shall originate a Broadcast (Change) on each
 expander port that has access to the expander port through which the discover process was
 performed based on the zone permission table; and
- an expander device with zoning disabled shall originate a Broadcast (Change) on each expander port other than the one through which the discover process was performed.

When a Broadcast (Change) has been received by a self-configuring expander device, all previously valid SAS addresses shall continue to be routable until they are determined to be no longer valid. When a change has been identified, all unaffected SAS addresses shall continue to be routable.

Comments from page 88 continued on next page

If a SAS device is attached, the discover process is not required to obtain any more information about the SAS device. Additional discovery software may access that SAS device, however:

- a) if the SAS device supports an SMP target port, the management application client may use SMP functions (e.g., REPORT GENERAL and REPORT MANUFACTURER INFORMATION) to determine additional information about the SAS target device;
- if the SAS device supports an SSP target port, a SCSI application client may transmit SCSI commands (e.g., INQUIRY and REPORT LUNS) to determine additional information about the SCSI target device; and
- c) if the end device supports an STP target port, an ATA application client may transmit ATA commands (e.g., IDENTIFY DEVICE and IDENTIFY PACKET DEVICE) to determine additional information about the ATA device.

The result of the discover process is that the management application client has the necessary information (e.g., the device type, SAS address, and supported protocol(s)) to communicate with each SAS device and expander device in the SAS domain and each externally configurable expander device is configure, with the necessary expander route entries to allow routing of connection requests through the SAS domain.

If the discover process occurs and any phy within the expander device is in the process of a link reset sequence resulting from an SMP_PHY_CONTROL function (see 10.4.3.28) phy operation of LINK RESET of HARD RESET, then the management device server shall set the NEGOTIATED PHYSICAL LINK RATE field (see table 279) to RESET—IN_PROGRESS in the SMP_DISCOVER response (see 10.4.3.10).

The discover process may be aborted prior to completion and restarted if there is an indication that it may be based on incorrect information (e.g., reception of a Broadcast (Change) or a change in the EXMANDER CHANGE COUNT field returned in an SMP response).

Annex L contains an example implementation of how a management application client may perform the discover process.

4.7.2 Discover process in a self-configuring expander device

The management application client of a self-configuring expande/ device shall configure:

a) the expander routing table in that expander device; and

88

 the expander routing table in each externally configurable expander device in the SAS domain that is not located behind another self-configuring expander device.

When a self-configuring expander device receives a Byoadcast (Change) the management application client shall start the discover process using the expander rout that received the Broadcast (Change). If a change to the expander route table is identified then the management device server shall set its CONFIGURING bit to one in the SMP REPORT GENERAL response (see A0.4.3.4).

If zoning is enabled, the management application of ent in a self-configuring expander device shall use the SMP DISCOVER response (see 10.4.3.15) values to set the zone group values in the zoning expander oute table for all SAS addresses in the zoning expander oute table (see 4.9.3.4).

The management application client shall set the CONFIGURING bit to zero when the discover process is complete. When the CONFIGURING bit changes from one to zero:

- a) a zoning expander device with zoning enabled shall originate a Broadcast (Change) of each
 expander port that has access to the expander port through which the discover process was
 performed based on the zone permission table; and
- an expander device with zoning disabled shall originate a Broadcast (Change) or each expander po other than the one through which the discover process was performed.

When a Broadcast (Change) has been received by a self-configuring expander devize, all previously valid SAS addresses shall continue to be routable until they are determined to be no log ger valid. When a change has been identified, all unaffected SAS addresses shall continue to be routable.

Working Draft Serial Attached SCSI - 2 (SAS-2)

new bit per Isi-bbesmer comment on first page

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

> management application client s/b management device server

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

CONFIGURING bit s/b SELF CONFIGURING bit

new bit per Isi-bbesmer comment on first page. Broadcast (Change) will trigger based on the individual bits, not the OR of the two.

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 3:10:36 PM -07'00'

PACCEPT - DONE ("After receiving a Broadcast (Change), a self-configuring expander device shall continue to route connecton requests for each previously valid SAS address until it determines that it is no longer valid. After determining that a SAS address is no longer valid, the self-configuring expander device shall continue to route connection requests for other SAS addresses.")

all previously valid SAS addresses shall continue to be routable until they are determined to be no longer valid.

the expander device continues to be able to route requests to and responses from all SAS addresses in the expander's route table until the addresses are determined to no longer be valid.

Author: wdc-mevans
Subject: Highlight
Date: 525/2008 3:10:51 PM -07'00'

ACCEPT - DONE (see previous comment for rewrite of paragraph)

all unaffected SAS addresses shall continue to be routable. s/b

the expander device continues to be able to route requests to and responses from all SAS addresses in the expander's route table that were not affected by the change...

While the CONFIGURING bit is set to one, the expander device shall return OPEN REJECT (RETRY) for any connection requests that would otherwise have resulted in OPEN REJECT (NO DESTINATION) (see

The management application client in a self-configuring expander device shall maintain self-configuration status for the last vendor-specific number of errors encountered during self-configuration and should maintain at least one self-configuration status per phy. The management device server shall assign descriptors to the statuses sequentially starting at 0001h and shall return the descriptors in the SMP REPORT SELF-CONFIGURATION STATUS response (see 10.4.3.6). The management device server shall return the index of the last self-configuration status descriptor in the SMP REPORT GENERAL response (see 10.4.3.4), the SMP REPORT SELF-CONFIGURATION STATUS response (see 10.4.3.6), and the SMP DISCOVER LIST response (see 10.4.3.15). The management device server shall wrap the index to 0001h when the highest supported descriptor index has been used.

The management device server shall support self-configuration status descriptor indexes from 0001h to FFFFh. The actual number of self-configuration status descriptors that the management device server maintains for retrieval with the REPORT SELF-CONFIGURATION STATUS request is vendor specific and is indicated by the MAXIMUM NUMBER OF STORED SELF-CONFIGURATION STATUS DESCRIPTORS field defined in the REPORT GENERAL response (see 10.4.3.4). The volatility of these stored descripters is vendor specific. The management device server shall replace the least recently recorded seif-configuration status descriptor with a new one once the number of recorded descriptors exceeds the value indicated by the MAXIMUM NUMBER OF STORED SELF-CONFIGURATION STATUS DESCRIPTORS field.

4.7.3 Enabling multiplexing

A management application client may configure multiplexing (see 6.10) in expander devices. Self-configuring expander devices may configure multiplexing for their own phys. The choice of whether or not to enable multiplexing on a physical link is vendor-specific.

If the SAS domain contains all 6 Gbps target phys, then the management application clients should disable multiplexing on every phy.

If the SAS domain contains all 3 Gbps target phys, then the management application clients should:

- a) multiplex each 6 Gbps physical link into two 3 Gbps logical links; and
- b) not multiplex 3 Gbps physical links.

If the SAS domain contains all 1.5 Gbps target phys, then the management application client should:

- a) multiplex each 6 Gbps physical link into two 3 Gbps logical links; and
- b) multiplex each 3 Gbps physical link into two 1.5 Gbps logical links.

NOTE 17 - Rate matching is used for 1.5 Gbps connections carried on 3 Gbps logical links.

4.8 Configuration subprocess

4.8.1 Configuration subprocess overview

As part of the discover process (see 4.7), when it discovers externally configurable expander device, the management application client performs the configuration subprocess to configure the expander routing table in that externally configurable expander device with SAS addresses discovered two levels beyond each table routing phy in that externally configurable expander device. A single discover process performs the configuration subprocess at least once per externally configurable expander device.

The routing table in an expander device needs to be configured before connections are able to be established with devices attached two levels beyond that expander device.

4.8.2 Allowed topologies

hthe management application client detects an externally configurable expander device phy with the table duting attribute attached to an expander device phy with either the direct routing attribute or the table routing attribute, it shall report an error in a vendor-specific manner.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 89

```
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
   CONFIGURING bit
   SELF CONFIGURING bit
```

new bit per Isi-bbesmer comment on first page

Although this is also true for the ZONE CONFIGURING bit (and thus for the combined CONFIGURING bit), this is not the appropriate section for that rule.

```
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
  least recently recorded
   s/b
  oldest
```

to match wdc-mevans comment in 4.11

Author: Isi-bbesmer

6 3 1.5

Subject: Note Date: 5/25/2008 3:11:11 PM -07'00'

REJECT (All that are listed are the obvious correct choices - all targets being the same rate. There is no good way to guess the proper choice in mixed cases - it depends on which targets (the fast or slow ones) are more important for the workload.)

Several permutations are not specified:

```
0 0 0
          N/A
0 0 1
           Rule 3
           Rule 2
           Not Specified -> Rule 2?
1 0 0
           Rule 1
           Not Specified -> Rule 1?
1 0 1
1 1 0
           Not Specified -> Rule 1?
1 1 1
          Not Specified -> Rule 1?
Rule 1 = No MP
Rule 2 = MP 6 to 3, No MP for 3
Rule 3 = MP 6 to 3, 3 to 1.5
```

Author: Isi-bbesmer

89

Subject: Note Date: 5/25/2008 3:11:24 PM -07'00'

ACCEPT - DONE (replacing "target phys" with "SAS phys" so both initiators and targets are considered equal. Expander phys are not "SAS phys". This means a case like one 6 Gbps initiator and all 3 Gbps targets is no longer covered by any "should" level

This seems to be written from the perspective of a single SAS initiator device, however consider the case of Self Config Expanders performing this, then these rules need to consider both target phys and intiator phys. Another case to consider is multiple SAS Initiator devices with mixed rates (ie. 1 at 3G another at 6G).

Comments from page 89 continued on next page

While the CONFIGURING bit is set to one, the expander device shall return OPEN_REJECT (RETRY) for any connection requests that would otherwise have resulted in OPEN REJECT (NO DESTINATION) (see

The management application client in a self-configuring expander device shall maintain self-configuration status for the last vendor-specific number of errors encountered during self-configuration and should maintain at least one self-configuration status per phy. The management device server shall assign descriptors to the statuses sequentially starting at 0001h and shall return the descriptors in the SMP REPORT SELF-CONFIGURATION STATUS response (see 10.4.3.6). The management device server shall return the index of the last self-configuration status descriptor in the SMP REPORT GENERAL response (see 10.4.3.4), the SMP REPORT SELF-CONFIGURATION STATUS response (see 10.4.3.6), and the SMP DISCOVER LIST response (see 10.4.3.15). The management device server shall wrap the index to 0001h when the highest supported descriptor index has been used.

The management device server shall support self-configuration status descriptor indexes from 0001h to FFFFh. The actual number of self-configuration status descriptors that the management device server maintains for retrieval with the REPORT SELF-CONFIGURATION STATUS request is vendor specific and is indicated by the MAXIMUM NUMBER OF STORED SELF-CONFIGURATION STATUS DESCRIPTORS field defined in the REPORT GENERAL response (see 10.4.3.4). The volatility of these stored descriptors is vendor specific. The/ management device server shall replace the least recently recorded self-configuration status descriptor with new one once the number of recorded descriptors exceeds the value indicated by the MAXIMUM NUMBER OF, STORED SELF-CONFIGURATION STATUS DESCRIPTORS field.

4.7.3 Enabling multiplexing

A management application client may configure multiplexing (see 6.10) in expander devices. Self-conf/guring, expander devices may configure multiplexing for their own phys. The choice of whether or not to enable multiplexing on a physical link is vendor-specific.

If the SAS domain contains all 6 Gbps target phys, then the management application clients should disable multiplexing on every phy.

If the SAS domain contains all 3 Gbps target phys, then the management application clients sho

- a) multiplex each 6 Gbps physical link into two 3 Gbps logical links; and
- b) not multiplex 3 Gbps physical links.

If the SAS domain contains all 1.5 Gbps target phys, then the management application client/

- a) multiplex each 6 Gbps physical link into two 3 Gbps logical links; and
- b) multiplex each 3 Gbps physical link into two 1.5 Gbps logical links

NOTE 17 - Rate matching is used for 1.5 Gbps connections carried

4.8 Configuration subprocess

4.8.1 Configuration subprocess overview

As part of the discover process (see 4.7), when it discovers externally configurable expander device, the management application client performs the configuration subprocess to configure the expander routing table in that externally configurable expander device with SAS addresses discovered two levels beyond each table routing phy in that externally configurable expander device. A single discover process performs the configuration subprocess at least once per externally configurable expander device.

The routing table in an expander device needs to be configured before connections are able to be established with devices attached two levels beyond that expander device.

4.8.2 Allowed topologies

he management application client detects an externally configurable expander device phy with the table uting attribute attached to an expander device phy with either the direct routing attribute or the table routing attribute, it shall report an error in a vendor-specific manner.

Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00' *REJECT (true, but this note (being in a section called "Enabling multiplexing" is explaining that after multiplexing 6 Gbps down to 3 Gbps, rate matching is still needed. Wording suggestions are welcome to clarify this.) RM is also used for: - 3 Gbps connections on 6 Gbps logical links - 1.5 Gbps connections on 6 Gbps logical links Perhaps more generic note: Rate matching is used for lower rate connections across higher rate logical links. Author: ktek-dmoore Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' REJECT (true, but this note (being in a section called "Enabling multiplexing" is explaining that after multiplexing 6 Gbps down to 3 Gbps, rate matching is still needed. Wording suggestions are welcome to clarify this.) Rate matching is used for 1.5 Gbps connections carried on 3 Gbps logical links. Isn't rate matching allowed on any speed link? If I choose to not enable rate matching, can't I talk to a 3Gbps device attached to an expander talking to a 6Gps HBA? Author: Isi-bbesmer Subject: Highlight Date: 5/25/2008 3:11:58 PM -07'00' ACCEPT - DONE (but keeping "it") it discovers externally the management application client discovers an externally Author: Isi-bbesmer Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' PACCEPT - DONE (also in 4.7.1) two levels two levels or more Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE two levels two or more levels to match Isi-bbesmer comment in prev paragraph Author: elx-bmartin Subject: Comment on Text Date: 5/6/2008 1:07:48 PM -07'00' REJECT (table-to-table is only allowed for self-configuring expanders, not externally configurable expanders)

table to table is now allowed. This always reports an error on this. This needs to be qualified by whether the expander supports

REJECT (only self-configuring expanders are allowed to set the TABLE TO TABLE bit to one. If an externally configurable

Author: Isi-bbesmer

table to table routing.

Date: 5/25/2008 3:12:27 PM -07'00'

Author: Isi-bbesmer Subject: Note

While the CONFIGURING bit is set to one, the expander device shall return OPEN REJECT (RETRY) for any connection requests that would otherwise have resulted in OPEN REJECT (NO DESTINATION) (see

The management application client in a self-configuring expander device shall maintain self-configuration status for the last vendor-specific number of errors encountered during self-configuration and should maintain at least one self-configuration status per phy. The management device server shall assign descriptors to the statuses sequentially starting at 0001h and shall return the descriptors in the SMP REPORT SELF-CONFIGURATION STATUS response (see 10.4.3.6). The management device server shall return the index of the last self-configuration status descriptor in the SMP REPORT GENERAL response (see 10.4.3.4), the SMP REPORT SELF-CONFIGURATION STATUS response (see 10.4.3.6), and the SMP DISCOVER LIST response (see 10.4.3.15). The management device server shall wrap the index to 0001h when the highest supported descriptor index has been used.

The management device server shall support self-configuration status descriptor indexes from 000/n to FFFFh. The actual number of self-configuration status descriptors that the management device server maintains for retrieval with the REPORT SELF-CONFIGURATION STATUS request is vendor specific and is indicated by the MAXIMUM NUMBER OF STORED SELF-CONFIGURATION STATUS DESCRIPTORS field defined in the REPORT GENERAL response (see 10.4.3.4). The volatility of these stored descriptors in vendor specific. The management device server shall replace the least recently recorded self-configuration status descriptor with a new one once the number of recorded descriptors exceeds the value indicated by the MAXIMUM NUMBER OF STORED SELF-CONFIGURATION STATUS DESCRIPTORS field.

4.7.3 Enabling multiplexing

A management application client may configure multiplexing (see 6.1%) in expander devices. Self-configuring expander devices may configure multiplexing for their own phys. The choice of whether or not to enable multiplexing on a physical link is vendor-specific.

If the SAS domain contains all 6 Gbps target phys, then the management application clients should disable multiplexing on every phy.

If the SAS domain contains all 3 Gbps target phys, then the management application clients should

- a) multiplex each 6 Gbps physical link into two 3 Gbps logical links; and
- b) not multiplex 3 Gbps physical links.

If the SAS domain contains all 1.5 Gbps target phys, then the management application client should:

- a) multiplex each 6 Gbps physical ink into two 3 Gbps logical links; and
- b) multiplex each 3 Gbps physical link into two 1.5 Gbps logical links

NOTE 17 - Rate matching is

4.8 Configuration sub process

4.8.1 Configuration subprocess overview

As part of the discover process (see 4.7), when it discovers externally configurable expander device, the management application client performs the configuration subprocess to configure the expander routing table in that externally configurable expander device with SAS addresses discovered two levels beyond each table routing phy in that externally configurable expander device. A single discover process performs the configuration subprocess at least once per externally configurable expander device.

The routing table in an expander device needs to be configured before connections are able to be established with devices attached two levels beyond that expander device.

4.8.2 Allowed topologies

the management application client detects an externally configurable expander device phy with the table outing attribute attached to an expander device phy with either the direct routing attribute or the table routing attribute, it shall report an error in a vendor-specific manner.

Working Draft Serial Attached SCSI - 2 (SAS-2)

expander device phy is so attached, it's an error.)

Conflicts with Table to Table supported in REPORT GENERAL

Author: RElliott

Subject: Note
Date: 9/3/2008 2:51:01 PM -07'00'
ACCEPT - DONE (reworded first sentence as:

If the management application client detects:

a) an expander phy with the table routing attribute in an externally configurable expander device; or

b) an expander phy with the table routing attribute in a self-configuring expander device with the table to table bit set to zero in the SMP REPORT GENERAL response, attached to:

a) an expander phy with either the direct routing attribute or the table routing attribute in either an externally configurable expander device or a self-configuring expander device.

then it shall report an error in a vendor-specific manner.

This visually separates the two sides being attached, and mentions that self-configuring expanders might have TABLE TO TABLE

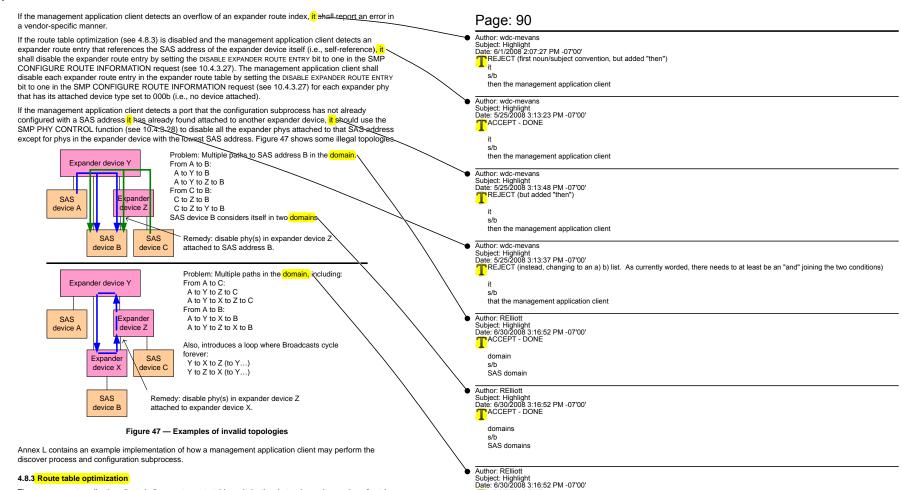
7/15 yes, this is based on feedback from 5/5)

put table-to-table restriction in 4.8.2 (more clearly)

Author: wdc-mevans

Subject: Highlight Date: 6/1/2008 2:07:35 PM -07'00'

REJECT (first noun/subject convention, but added then)


89

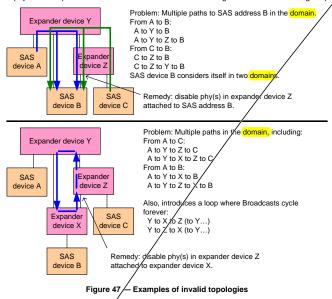
then the management application client

The management application client shall support a route table optimization that reduces the number of entries

required in an expander route table in an externally configurable expander device. The method used to enable

and disable the route table optimization is vendor specific.

ACCEPT - DONE


domain

Comments from page 90 continued on next page

If the management application client detects an overflow of an expander route index, it shall report an error in a vendor-specific manner.

If the route table optimization (see 4.8.3) is disabled and the management application client detects an expander route entry that references the SAS address of the expander device itself (i.e., self-reference), it shall disable the expander route entry by setting the DISABLE EXPANDER ROUTE ENTRY bit to one in the SMP CONFIGURE ROUTE INFORMATION request (see 10.4.3.27). The management application client shall disable each expander route entry in the expander route table by setting the DISABLE EXPANDER ROUTE ENTRY bit to one in the SMP CONFIGURE ROUTE INFORMATION request (see 10.4.3.27) for each expander phy that has its attached device type set to 000b (i.e., no device attached).

If the management application client detects a port that the configuration subprocess has not already configured with a SAS address it has already found attached to another expander device, it should use the SMP PHY CONTROL function (see 10.4.3.28) to disable all the expander phys attached to that SAS address except for phys in the expander device with the lowest SAS address. Figure 47 shows some illegal topologies.

Annex L contains an example implementation of how a management application client may perform the discover process and configuration subprocess.

4.8.3 Route table optimization

90

The management application client shall support a route table optimization that reduces the number of entries required in an expander route table in an externally configurable expander device. The method used to enable and disable the route table optimization is vendor specific.

Working Draft Serial Attached SCSI - 2 (SAS-2)

SAS domain

Author: RElliott Subject: Highlight Date: 10/24/2008 8:21:00 AM -07'00'

4.8.3 Route table optimization

Add "Externally configurable expander device" to avoid confusion

per discussion with Tim Symons, PMC-Sierra

T10/1760-D Revision 14

If the route table optimization is enabled, then the management application client shall exclude discovered SAS addresses from the expander route table when any of the following conditions are met:

- a) in the SMP DISCOVER response (see 10.4.3.10) for the discovered phy:
 - A) the FUNCTION RESULT field is set to a non-zero value (i.e., not SMP FUNCTION ACCEPTED
- b) in the SMP DISCOVER response for the discovered phy:
 - A) the FUNCTION RESULT field is set to zero (i.e., SMP FUNCTION ACCEPTED):
 - B) the ROUTING ATTRIBUTE field is set to 1h (i.e., subtractive) or 2h (i.e., table); and
- C) the ATTACHED DEVICE TYPE field is set to zero (i.e., no device attached);
- c) in the SMP DISCOVER response for the discovered phy:
 - A) the FUNCTION RESULT field is set to zero (i.e., SMP FUNCTION ACCEPTED);
 - B) the ROUTING ATTRIBUTE field is set to 1h (i.e., subtractive) or 2h (i.e., table);
 - C) the ATTACHED DEVICE TYPE field is set to a non-zero value (e.g., end device or expander device);
 - D) the ATTACHED SAS ADDRESS field contains the SAS address of the expander device being configured (i.e. a self-referencing address);
- d) in the SMP DISCOVER response for the discovered phy:
 - A) the FUNCTION RESULT field is set to zero (i.e., SMP FUNCTION ACCEPTED);
 - B) the ROUTING ATTRIBUTE field is set to 1h (i.e., subtractive) or 2h (i.e., table);
 - C) the ATTACHED DEVICE TYPE field is set to a non-zero value (e.g., end device or expander device);
 - D) the ATTACHED SAS ADDRESS field contains the SAS address of a device directly attached to the expander device being configured;

- e) in the SMP DISCOVER response for the discovered phy:
- A) the FUNCTION RESULT field is set to zero (i.e., SMP FUNCTION ACCEPTED);
- B) the ROUTING ATTRIBUTE field is set to 1h (i.e., subtractive) or 2h (i.e., table);
- C) the ATTACHED DEVICE TYPE field is set to a non-zero value (e.g., end device or expander device);
- D) the ATTACHED SAS ADDRESS field contains a SAS address that already exists in the expander route

If the discovered SAS address being included in the expander route table is for a device that is currently not attached (i.e., the ATTACHED DEVICE TYPE field is set to zero (i.e., no device attached) and the ROUTE ATTRIBUTE field is set to 0h (i.e., direct)). then the entry shall be inserted with the ROUTED SAS ADDRESS field set to 00000000 00000000h and the DISABLE EXPANDER ROUTE ENTRY bit set to one (see 10.4.3.27).

If route table optimization is disabled, then all SAS addresses shall be qualified for insertion in the expander

If the management application client supports route table optimization, then the management application, client should provide a vendor-specific method for initiating a check of the resulting expander route tables. The check should be performed under the following situations:

- a) when an I_T nexus loss occurs for a destination port that is expected to be present;
- b) when a discover process has been completed;
- when another SMP initiator port is discovered in the SAS domain; of
- when a self-configuring expander device is discovered in the SAS domain.

If the management application client detects an inconsistency in the expander route tables when route tables optimization is enabled (e.g., detects entries that appear to have been filled in by a discover process with route table optimization disabled), then the management application client shall report an error in a vendor-specific manner and shall disable route table optimization. The management application client should then re-initiate a discover process with route table optimization disabled.

4.8.4 Expander route index order

The expander route table stiall be configured for each expander phy that has a table routing attribute

Page: 91

Author: Isi-bbesmer

Subject: Highlight Date: 5/25/2008 3:14:14 PM -07'00'

REJECT (5/5 This is the same rule as in SAS-1.1. In SAS-2, it is true that phys can come and go due to zoning, but we cannot change the optimization rule to leave a slot for it without breaking SAS-1.1 compatibility. The best advice is to use all selfconfiguring expanders with zoning.)

What about PHY VACANT?

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

i.e.

s/b i.e.,

Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

REJECT (only 2 items being anded)

attached) and s/b

attached), and

Author: Isi-gpenokie

TACCEPT - DONE (The conventions section defines both. SAS mostly uses spaces; agree to change most of the rest to use space as well. The only except is the G(x) polynomial definition, where there are 9 hex digits starting with a 1. 1<space>04C11DB7h is not as clear as 1_04C11DB7h - it looks line it means "one 04C11DB7h". Usually there are multiple digits together and it is obvious

Global - There needs to be consistency here. I other places an << _ >> is used. Here a space is used << 00000000 00000000 >> one or the other needs to be selected and used throughout the standard.

Author: RElliott

Subject: Highlight
Date: 10/30/2008 3:45:35 PM -07'00'

ACCEPT - DONE

4.8.4 Expander route index order

Add "Externally configurable expander device" to avoid confusion

per discussion with Tim Symons, PMC-Sierra

Author: RElliott Subject: Highlight

Date: 10/24/2008 8:21:34 AM -07'00'

expander route table

Add "in an externally configurable expander device" to avoid confusion

per discussion with Tim Symons, PMC-Sierra

Comments from page 91 continued on next page

28 January 2008 T10/1760-D Revision 14

If the route table optimization is enabled, then the management application client shall exclude discovered SAS addresses from the expander route table when any of the following conditions are met:

- a) in the SMP DISCOVER response (see 10.4.3.10) for the discovered phy:
- A) the FUNCTION RESULT field is set to a non-zero value (i.e., not SMP FUNCTION ACCEPTED);
- b) in the SMP DISCOVER response for the discovered phy:
 - A) the FUNCTION RESULT field is set to zero (i.e., SMP FUNCTION ACCEPTED);
 - B) the ROUTING ATTRIBUTE field is set to 1h (i.e., subtractive) or 2h (i.e., table); and
- C) the ATTACHED DEVICE TYPE field is set to zero (i.e., no device attached);
- c) in the SMP DISCOVER response for the discovered phy:
 - A) the FUNCTION RESULT field is set to zero (i.e., SMP FUNCTION ACCEPTED);
 - B) the ROUTING ATTRIBUTE field is set to 1h (i.e., subtractive) or 2h (i.e., table);
 - C) the ATTACHED DEVICE TYPE field is set to a non-zero value (e.g., end device or expander device);
 and
 - D) the ATTACHED SAS ADDRESS field contains the SAS address of the expander device being configured (i.e. a self-referencing address);
- d) in the SMP DISCOVER response for the discovered phy:
 - A) the FUNCTION RESULT field is set to zero (i.e., SMP FUNCTION ACCEPTED);
 - B) the ROUTING ATTRIBUTE field is set to 1h (i.e., subtractive) or 2h (i.e., table);
 - C) the ATTACHED DEVICE TYPE field is set to a non-zero value (e.g., end device or expander device); and
 - D) the ATTACHED SAS ADDRESS field contains the SAS address of a device directly attached to the expander device being configured;

or

- e) in the SMP DISCOVER response for the discovered phy:
 - A) the FUNCTION RESULT field is set to zero (i.e., SMP FUNCTION ACCEPTED);
 - B) the ROUTING ATTRIBUTE field is set to 1h (i.e., subtractive) or 2h (i.e., table);
 - C) the ATTACHED DEVICE TYPE field is set to a non-zero value (e.g., end device or expander device);
 - D) the ATTACHED SAS ADDRESS field contains a SAS address that already exists in the expander route table.

If the discovered SAS address being included in the expander route table is for a device that is currently not attached (i.e., the ATTACHED DEVICE TYPE field is set to zero (i.e., no device attached) and the ROUTE ATTRIBUTE field is set to 0h (i.e., direct)), then the entry shall be inserted with the ROUTED SAS ADDRESS field set to 00000000 0000000h and the DISABLE EXPANDER ROUTE ENTRY bit set to one (see 10.4.3.27).

If route table optimization is disabled, then all SAS addresses shall be qualified for insertion in the expander route table

If the management application client supports route table optimization, then the management application client should provide a vendor-specific method for initiating a check of the resulting expander route tables. The check should be performed under the following situations:

- a) when an I_T nexus loss occurs for a destination port that is expected to be present;
- b) when a discover process has been completed;
- c) when another SMP initiator port is discovered in the SAS domain; or
- d) when a self-configuring expander device is discovered in the SAS domain.

If the management application client detects an inconsistency in the expander route tables when route table optimization is enabled (e.g., detects entries that appear to have been filled in by a discover process with route table optimization disabled), then the management application client shall report an error in a vendor-specific manner and shall disable route table optimization. The management application client should then re-initiate a discover process with route table optimization disabled.

4.8.4 Expander route index order

The expander route table shall be configured for each expander phy that has a table routing attribute.

If the phy is not attached to an expander device, every expander route entry for that phy shall be disabled (i.e., the ROUTED SAS ADDRESS field shall be set to 00000000 0000000h and the DISABLE EXPANDER ROUTE ENTRY. bit shall be set to one).

If the phy is attached to an expander device, the expander route table shall be configured for that phy as follows. For purposes of configuring the expander route table for that phy, the expander devices attached to the expander phy are assigned levels:

- 1) the expander device in which the expander route table is being sonfigured is level 0;
- 2) the attached expander device is considered level 1;
- devices attached to the level 1 expander device, except for the level 0 expander device, are considered level 2;
- devices attached to level 2 expander devices, except for level 1 expander devices, are sonsidered level 3; and
- 5) for each n greater than 3, devices attached to level n-1 expander devices, except for level n-2 expander devices, are considered level n.

The expander route table for each expander phy shall be configured starting from expander route index 0 by level (e.g., if there are three levels, then all level 1 entries first, then all level 2 entries, then all level 3 entries) up to the value of the EXPANDER ROUTE INDEXES field reported by the SMP REPORT GENERAL function (see 10.4.3.4).

Assuming the level 1 expander device has expander phys attached to N phys with qualified SAS addresses (see 4.8.3), the first N-entries shall be used for those SAS addresses in expander phy order (i.e., the addresses attached to lower expander phy numbers first).

For each of the level 2 devices that:

- a) is an expander device attached to M phys with qualified SAS addresses; and
- b) is attached to an expander phy in the sevel 1 expander device with the table routing attribute,

the next M entries shall be used for the level 2 expander device's qualified SAS addresses in expander phy order (i.e., lower phy numbers first).

This process shall repeat for all levels of expander devices.

SAS addresses of devices attached beyond expander phys that are attached bable-to-table shall not be included in the expander route table. The SAS address of the first expander device that is attached table-to-table shall be included and the SAS address of every device attached beyond that expander device shall not be included.

NOTE 18 - Not including those SAS addresses provides compatibility with management application clients compliant with previous versions of this standard. End devices in SAS doseains containing externally configurable expander devices and table-to-table attachments may not be able-to establish connections to each other. End devices in SAS domains containing only self-configuring expander sevices compliant with this standard (i.e., supporting table-to-table attachments) are able to establish connections to any other end

```
Page: 92
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
   every
   s/b
   then every
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 3:14:54 PM -07'00'
TREJECT (this is referring to the phy in the first paragraph of the section that has a table routing attribute)
   the phy
   s/b
   a phy
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
   the
   s/b
   then the
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 3:14:59 PM -07'00'
the phy
   s/b
   a phy
Author: Isi-bday
Subject: Highlight
Date: 5/25/2008 3:15:12 PM -07'00'
ACCEPT - DONE
   Assuming the level 1...
   Suggest
   If the level 1...
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
   s/b
   then the
Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
TACCEPT - DONE
```

Comments from page 92 continued on next page

repeat

If the phy is not attached to an expander device, every expander route entry for that phy shall be disabled (i.e., the ROUTED SAS ADDRESS field shall be set to 00000000 0000000h and the DISABLE EXPANDER ROUTE ENTRY bit shall be set to one).

If the phy is attached to an expander device, the expander route table shall be configured for that phy as follows. For purposes of configuring the expander route table for that phy, the expander devices attached to the expander phy are assigned levels:

- 1) the expander device in which the expander route table is being configured is level 0;
- 2) the attached expander device is considered level 1;
- devices attached to the level 1 expander device, except for the level 0 expander device, are considered level 2;
- devices attached to level 2 expander devices, except for level 1 expander devices, are considered level 3: and
- for each n greater than 3, devices attached to level n-1 expander devices, except for level n-2 expander devices, are considered level n.

The expander route table for each expander phy shall be configured starting from expander route index 0 by level (e.g., if there are three levels, then all level 1 entries first, then all level 2 entries, then all level 3 entries) up to the value of the EXPANDER ROUTE INDEXES field reported by the SMP REPORT GENERAL function (see 10.4.3.4).

Assuming the level 1 expander device has expander phys attached to N phys with qualified SAS addresses (see 4.8.3), the first N entries shall be used for those SAS addresses in expander phy order (i.e., the addresses attached to lower expander phy numbers first).

For each of the level 2 devices that:

92

- a) is an expander device attached to M phys with qualified SAS addresses; and
- b) is attached to an expander phy in the level 1 expander device with the table routing attribute,

the next M entries shall be used for the level 2 expander device's qualified SAS addresses in expander phy order (i.e., lower phy numbers first).

This process shall repeat for all levels of expander devices.

SAS addresses of devices attached beyond expander phys that are attached table-to-table shall not be included in the expander route table. The SAS address of the first expander device that is attached table-to-table shall be included and the SAS address of every device attached beyond that expander device shall not be included.

NOTE 18 - Not including those SAS addresses provides compatibility with management application clients compliant with previous versions of this standard. End devices in SAS domains containing externally configurable expander devices and table-to-table attachments may not be able to establish connections to each other. End devices in SAS domains containing only self-configuring expander devices compliant with/
this standard (i.e., supporting table-to-table attachments) are able to establish connections to any other end device.

Working Draft Serial Attached SCSI - 2 (SAS-2)

be repeated

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 3:15:25 PM -07'00'

This statement implies that all expander compliant with this standard will support table-to-table routing. That is not correct. So this << devices compliant with this standard (i.e., supporting table-to-table attachments) are >> should be << devices supporting table-to-table attachments are >>

28 January 2008 T10/1760-D Revision 14

Figure 48 shows an example of a route table that does not include SAS addresses beyond a table-to-table attachment.

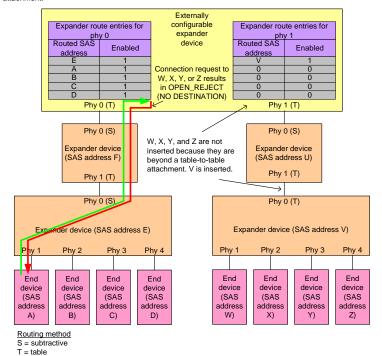


Figure 48 — Externally configurable expander device and table-to-table attachment

After the expander route table has been configured with entries for all levels of expander devices, all remaining expander route entries, if any, shall be disabled (i.e., the ROUTED SAS ADDRESS field shall be set to 00000000 000000000 and the DISABLE EXPANDER ROUTE ENTRY bit shall be set to one). The management application client is not required to disable entries if the topology of expander devices has not changed.

This page contains no comments

Figure 49 shows a portion of a SAS domain, where phy A in expander device R is being configured.

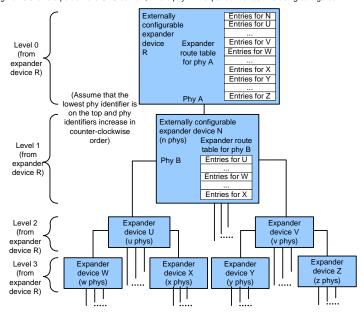


Figure 49 — Expander route index levels example

This page contains no comments

28 January 2008 T10/1760-D Revision 14

Table 22 shows how the expander route table is configured for externally configurable expander device R phy A in figure 49.

Table 22 — Expander route table levels for externally configurable expander device R phy A

Expander route index Expander route entry contents				
Level 1 (from device R) entries				
0 (≤ n entries)	0 (≤ n entries) Qualified SAS addresses attached to expander device N			
Level 2 (from device R)	entries			
(≤ u entries)	Qualified SAS addresses attached to expander device U			
	additional qualified SAS addresses for expander devices at level 2			
(≤ v entries)	Qualified SAS addresses attached to expander device V			
Level 3 (from device R)	entries			
(≤ w entries)	Qualified SAS addresses attached to expander device W			
	additional qualified SAS addresses for expander devices at level 3			
(≤ x entries)	Qualified SAS addresses attached to expander device X			
(≤ y entries)	Qualified SAS addresses attached to expander device Y			
	additional qualified SAS addresses for expander devices at level 3			
(≤ z entries)	Qualified SAS addresses attached to expander device Z			
Entries for additional levels				
Disabled entries				

Table 23 shows how the expander route table is configured for externally configurable expander device N phy B in figure 49.

Table 23 — Expander route table levels for externally configurable expander device N $\,$

Expander route index	Expander route entry contents		
Level 1 (from	device N) entries		
(≤ u entries)	Qualified SAS addresses attached to expander device U		
Level 2 (from	device N) entries		
(≤ w entries)	Qualified SAS addresses attached to expander device W		
	additional qualified SAS addresses for expander devices at level 2		
(≤ x entries)	Qualified SAS addresses attached to expander device X		
Entries for additional levels			
Disabled entries			

95

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 95

Author: elx-bmartin
Subject: Comment on Text
Date: 6/3/2008 4:52:54 PM -07'00'
REJECT (Figure 49 already states that)

Assumes that phys in the expanders are numbered counter clockwise from the left side.

Figure 50 shows an example topology.

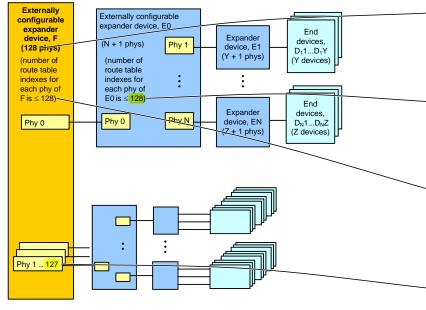


Figure 50 — Expander route index order example

Table 24 shows the expander route index order for externally configurable expander device E0 phy 1 in figure 50.

Table 24 — Expander route entries for externally configurable expander device E0 phy 1

	Expander oute index	Expander route entry contents		
ī	Level 1 entries			
	0	SAS address (e.g., D ₁ 1) of the device attached to phy 1 of expander device E1		
	1	SAS address (e.g., D ₁ 2) of the device attached to phy 2 of expander device E1		
	Y - 1	SAS address (e.g., D ₁ Y) of the device attached to phy Y of expander device E1		
L	Level 2 and b	eyond		
		No entries		
[Disabled entri	es		
		Any remaining entries are disabled		

Page: 96

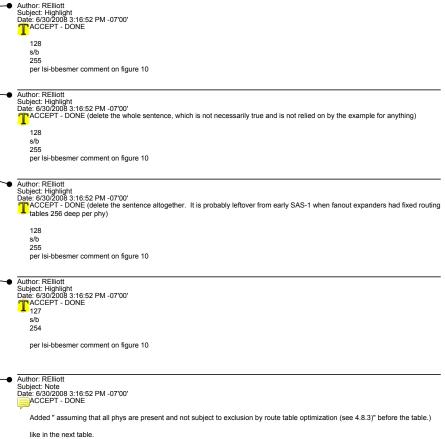


Table 25 shows the expander route index order for externally configurable expander device F phy 0 in figure

Table 25 — Expander route entries for externally configurable expander device F phy 0

Expander route index	Expander route entry contents			
Level 1 entries				
0	SAS address (e.g., E1) of the device attached to phy 1 of expander device E0			
	additional qualified SAS addresses for expander device E0			
N - 1	SAS address (e.g., EN) of the device attached to phy N of expander device E0			
Level 2 entrie	S			
N	SAS address (e.g., D ₁ 1) of the device attached to phy 1 of expander device E1			
	additional qualified SAS addresses for expander device E1			
	SAS address (e.g., D ₁ Y) of the device attached to phy Y of expander device E1			
	additional qualified SAS addresses for expander devices E2 through EN-1			
	SAS address (e.g., D _N 1) of the device attached to phy 1 of expander device EN			
	additional qualified SAS addresses for expander device EN			
	SAS address (e.g., D _N Z) of the device attached to phy Z of expander device EN			
Level 3 and b	Level 3 and beyond			
	No entries since all devices attached to E1 through EN, except for E0, are end devices			
Disabled entri	ies			
	Any remaining entries are disabled			

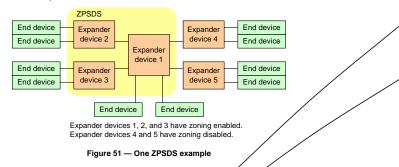
4.9 Zoning

4.9.1 Zoning overview

SAS zoning is implemented by a set of zoning expander devices with zoning enabled that define a zoned portion of a service delivery subsystem (ZPSDS). The zoning expander devices control whether a phy is permitted to participate in a connection to another phy.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 97


97

Author: Isi-bbesmer
Subject: Highlight
Date: 6/3/2008 4:56:30 PM -07'00'
TACCEPT - DONE (5/5: Add a table footnote that this example assumes that all phys are present and not subject to removal because of route table optimization.

6/3: Added " assuming that all phys are present and not subject to exclusion by route table optimization (see 4.8.3)" before the

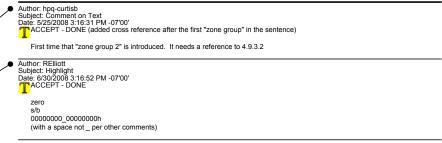
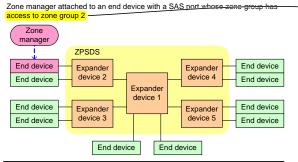
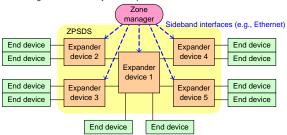

may not be true if route table optimization is enabled

Figure 51 shows an example of one ZPSDS in a SAS domain.


A ZPSDS has a zone manager responsible for its configuration. The zone manager man have access to an end device with a SAS port whose zone group has access to zone group 2, or man have access to one or more zoning expander devices through a sideband interface (e.g., Ethernet) oviside the scope of this standard. The SAS address reported for a sideband zone manager is zero.

Page: 98



28 January 2008 T10/1760-D Revision 14

Figure 52 shows examples of zone manager locations in a SAS domain.

Zone manager attached directly to the expander devices in the ZPSDS

Zone manager attached directly to one expander device in the ZPSDS

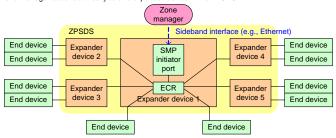


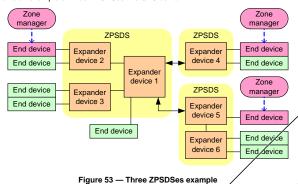
Figure 52 — Zone manager location examples

There may be any number of non-overlapping ZPSDSes in a service delivery subsystem, particularly as a SAS domain is being reconfigured (e.g., as a user is attaching enclosures together). A SAS domain with more than one ZPSDS should be transitory. A ZPSDS may encompass some or all of a service delivery subsystem.

99

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 99


Author: ktek-dmoore

Subject: Highlight
Date: 5/26/2008 3:16:52 PM -07'00'
PREJECT (5/5 there is no ZPSDS if zoning is not enabled... not sure it needs to be stated)

access to zone group 2

This implies that zoning must already be enabled, an there are zone permission tables already in use. Should this be noted?

Figure 53 shows an example of three ZPSDSes in a SAS domain.

The zone manager assigns zone groups (see 4.9.3.2) to all zoning expander phys inside the ZPSDS. There are 128 or 256 zone groups mumbered 0 through 127 or 255. All phys in a wide port shall by assigned to the same zone group. Zone groups are assigned to zoning expander phys as part of the zony phy information (see 4.9.3.1) and are stored along with SAS addresses in the zoning expander route table (see 4.9.3.4). The zone groups assigned in one ZPSDS have no relationship to the zone groups assigned in another ZPSDS.

The zone manager shall assign each zoning expander phy attached to another zoning expander phy inside a ZPSDS to zone group 1. The zone manager shall assign each zoning expander phy on the boundary of the ZPSDS (i.e., with the INSIDE ZPSDS bit set to zero) to a zone group. All phys in the SAS domain beyond that boundary zoning expander phy are considered to be in the same zone group as that zoning expander phy.

Each zoning expander device contains a zone permission table (see § 9.3.3) that controls whether a connection is allowed between phys based on their zone groups. As defined in 4.9.3.5, a requested connection shall only be established if the zone permission table indicates that access between the zone group of the source port and the zone group of the sarget port is allowed.

The zoning expander route table (see 4.9.3.4) is an extended version of the expander route table (see 4.6.7 that also includes the zone group of each SAS address.

A zoning expander device may support physical presence detection and/or a zone manager password of allow management access. The zone manager password is 32 bytes long and is specified in table 26.

Table 26 — Zone manager password

Code	Name	Description
00000000 00000000 00000000 00000000 000000	ZERO	Well-known value that provides access to any zone manager that presents it
00000000 00000000h FFFFFFFF FFFFFFFFFFF	DISABLED	Well-known value that does not provide access to any zone manager (e.g., zone manager password usage is disabled)
All others		Random value, providing access only to a zone manager that presents the correct value

Page: 100

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

This << numbered 0 through 127 or 255. All phys >> should be << numbered 0 through 127 or 0 through 255. All phys >>

Author: ktek-dmoore
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
TACCEPT - DONE
target port
s/b "destination port"

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

A zoning expander device may support physical presence detection and/or a zone manager password to

allow management access.

Physical presence detection is a mechanism used to allow management access. The definition of physical presence detection is vendor-specific (e.g., a user physically pressing a button or inserting a key).

The zone manager password is a value used to allow management access.

Reason: In 4.9.2, the "may" rule will appear. This section just defines what they mean.

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE (5/5 group prefers a), don't implement the functions if password is not supported. Added "if supported" throughout the standard wherever needed. Deleted lines making the functions mandatory for all zoning expander devices.)

Should zone manager password be

a) totally optional (SMP functions related to it are optional)

b) mandatory, but expander is allowed to implement only the DISABLED value (SMP functions fail if another value is programmed)

c) mandatory

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Add:

The definition of physical presence detection is vendor-specific.

from 4.9.2, since this is the first use of the term.

Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 3:17:21 PM -07'00'

There should be << . >> at the end of the sentences in this table. That would add 3 periods.

The expander device:

- a) shall maintain a current value:
- b) shall maintain a shadow value;
- c) may maintain a saved value; and
- d) shall have a default value

for each the following settings:

- a) zoning enabled;
- b) the zone permission table;
- c) zone phy information; and/or

the zone manager password.

Support or lack of support for saved values for one setting does not imply support or lack of support for saved values for any other setting (e.g., the expander device may maintain a saved value for zoning enabled but not

For each setting, after power on or expander reduced functionality, the expander device shall set the current value to the saved value, if any, or the default value, if there is no saved value.

Table 27 describes the reasons for which a zoning expander device accepts the SMP ZONE LOCK function after power on.

Table 27 — Zowing expander device zoning configuration after power of

Value after power on			Reason(s) t	hat the SMP ZON	E LOCK function is accepted
Zoning enabled	Zone permission table saved	Zone manager password	Physical presence asserted	SMP initiator port has access to zone group 2	ZONE MANAGER PASSWOOD field in the ZONE LOUK request set to the zone manager password
		ZERO			yes
no	no yes or no	DISABLED		no	no
		All others			yes
		ZERO			yes
	no	DISABLED	yes	no	no
yes		All others			yes
yes	yes	ZERO			yes
		DISABLED		yes	no
		All others			yes

4.9.2 Zoning expander device requirements

In addition to the requirements for expander devices described in 4.6, a zoning expander device shall:

- a) contain a zoning expander route table (see 4.9.3.4);
- b) contain current and shadow zone permission tables that supports 128 or 256 zone groups (see
- c) contain current and shadow zone phy information for each phy;
- d) if zoning is enabled, allow or deny connection requests based on the active zone permission table
- e) set the ZONING SUPPORTED bit to one in its SMP REPORT GENERAL response (see 10.4.3.4);
- f) support the ZONING ENABLED bit in the SMP REPORT GENERAL response;
- g) support the zone lock inactivity timer;
- h) be self-configuring;

Page: 101

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE each s/b each of

Author: elx-bmartin Subject: Comment on Text Daté: 5/25/2008 3:17:40 PM -07'00'

TACCEPT - DONE (but this triggers a question about how mandatory/optional is the zone manager password; new comment added)

this should just be and

Author: Isi-bbesmer Subject: Highlight Date: 5/25/2008 3:43:38 PM -07'00'

TACCEPT - DONE (but this triggers a question about how mandatory/optional is the zone manager password; new comment added)

and/or s/b and

I don't see the reason for the "or" case here, as all 4 settings need to be maintained.

Author: RElliott Subject: Note Date: 9/2/2008 4:10:21 PM -07'00' ACCEPT - DONE

There is no shadow zone manager password, so move it into its own list, just offering current, saved, and default values.

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

expander reduced functionality

expander device reduced functionality

Author: Isi-gpenokie Subject: Highlight Date: 5/17/2008 2:00:07 PM -07'00'

TREJECT (Deleting the table per other comments. The answer would have been: "reason(s)" is used in the table header, so that word fits well in the description. There are 3 columns in the table, where "yes" means go ahead and "no" means nothing.)

This << describes the reasons for which a zoning expander device accepts the SMP >> should be << describes when a zoning expander device accepts the SMP >>

Author: Isi-bbesmer

ACCEPT - DONE (Deleting the table. The rules are fully described in the ZONE LOCK description. 5/5 WG considered adding "The zone values that are saved impacts the acceptance of the ZONE LOCK function (see 10.x.x.x) after power on as shown in table 27" to explain better why this is here. George thinks more rows might be worthwhile if it helps.)

This table does not seem to belong in the "zoning overview" section.

Author: elx-bmartin

Comments from page 101 continued on next page

The expander device:

- a) shall maintain a current value:
- b) shall maintain a shadow value;
- c) may maintain a saved value; and
- d) shall have a default value,

for each the following settings:

- a) zoning enabled;
- b) the zone permission table;
- c) zone phy information; and/or
- d) the zone manager password.

Support or lack of support for saved values for one setting does not imply support or lack of support for saved values for any other setting (e.g., the expander device may maintain a saved value for zoning enabled but not for the zone permission table).

For each setting, after power on or expander reduced functionality, the expander device shall set the current value to the saved value, if any, or the default value, if there is no saved value.

Table 27 describes the reasons for which a zoning expander device accepts the SMP ZONE LOCK function after power on.

Table 27 — Zoning expander device zoning configuration after power on

Value after power on		Reason(s) that the SMP ZONE LOCK function is accepte			di	
Zoning enabled	Zone permission table saved	Zone manager password	Physical presence asserted	SMP initiator port has access to zone group 2	ZONE MANAGER PASSWORD field in the ZONE LOCK request set to the zone manager password	
		ZERO			yes	Г
no yes or no	DISABLED		no/	no	Π	
		All others				yes
		ZERO			yes	
	no	DISABLED	yes	no	no	7
	All others			yes		
yes		ZERO			yes	
	yes	DISABLED		yes	no	
		All others			yes	

4.9.2 Zoning expander device requirements

In addition to the requirements for expander devices described in 4.6, a zoning expander device sha

- a) contain a zoning expander route table (see 4.9.3.4);
- b) contain current and shadow zone permission tables that supports 128 or 256 zone groups (see
- c) contain current and shadow zone phy information for each phy;
- d) if zoning is enabled, allow or deny connection requests based on the active zone permission table
- e) set the ZONING SUPPORTED bit to one in its SMP REPORT GENERAL response (see 10.4.3.4);
- f) support the ZONING ENABLED bit in the SMP REPORT GENERAL response;
- g) support the zone lock inactivity timer;
- h) be self-configuring;

Working Draft Serial Attached SCSI - 2 (SAS-2)

Subject: Comment on Text

Date: 5/17/2008 2:01:52 PM -07'00'

TREJECT (Deleting the table per other comments. There are actually 3 columns of results in this table, not 1. If the SMP initiator port has access to zone group 2, then that means zoning enabled + zone permission table saved is enough to get a "yes". "no"s

This table could collapse to three rows since the only dependency is that the zone manager password must match and the value of the zone manager password,

Author: Isi-gpenokie Subject: Rectangle

Date: 5/17/2008 2:02:06 PM -07'00'

REJECT (Deleting the table per other comments. In this table, the lookup values are centered, the values retrieved are leftustified. If we used a vertical double-line to separate them, the formatting hint would not be needed. But, we don't.)

Center all the << yes >> and << no >> in these 3 columns and center the cell headings.

Author: elx-bmartin

Subject: Comment on Text

Date: 5/17/2008 2:02:34 PM -07'00'

REJECT (Deleting the table per other comments. This table is apparently confusing. Yes means yes, No means "not for this reason, but maybe for some other reason" - not quite the same as "not applicable".)

shouldn't this be N/A since with zoning not enabled you cannot determine that a device has access to a specific zone group?

Author: Isi-bbesmer

Subject: Highlight Date: 5/16/2008 7:58:41 AM -07'00'

ACCEPT - DONE

active s/h

current?

the term "active zone permission" only occurs twice in the doc, here and in the glossary.

(unless global comment to change current to active is accepted)

Author: Isi-bbesmer

Subject: Highlight Date: 6/4/2008 7:13:03 AM -07'00'

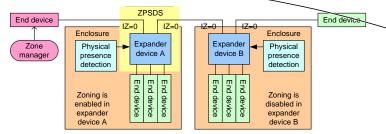
ACCEPT - DONE (5/5 changed item e) and f) to "support fields related to zoning in the REPORT GENERAL response" to cover everything. Did not get rid of the "shall" before the list and just state a list of is/does words. It is distinguishing between some shall and may rules, so probably not a good idea.)

support for several other Report General fields are also required:

NUMBER OF ZONE GROUPS

ZONE LOCKED

101


T10/1760-D Revision 14

28 January 2008

- i) contain an SMP initiator port (see 4.6.1); and
- i) support zoning-related SMP functions.

A zoning expander device may include physical presence detection to allow locking (see 4.9.6.2). The definition of physical presence detection is vendor-specific.

Figure 54 shows an example of two enclosures with physical presence detection where zoning is enabled in the expander device in the left enclosure, but is not enabled in the expander devices in the right enclosure. The zone manager is able to configure zoning in zoning expander device A because the zone group of its SMP initiator port has access to zone group 2. However, it is not able to enable or configure zoning in expander device B unless physical presence is asserted exit presents the correct zone manager password for that expander device.

The ZPSDS is extended as shown below after the zone manager on the left:

- 1) uses the ZONE LOCK function to lock expander devices A and B with physical presence asserted in expander B or providing the correct zone manager password;
- 2) uses the CONFIGURE ZONE PHY INFORMATION function and the CONFIGURE ZONE

PERMISSION TABLE function to configure each expander device, including setting the INSIDE ZPSDS bit to one in each expander phy that is going to be inside the ZPSDS;

- 3) uses the ENABLE DISABLE ZONING function to enable zoning in expander device B;
- 4) uses the ZONE ACTIVATE function to activate the changes; and
- 5) uses the ZONE UNLOCK function to unlock expander devices A and B.

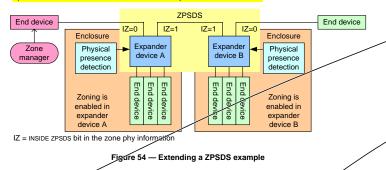


Figure 55 shows an example of two enclosures with physical presence detection where zoning is enabled in both the expander devices. The zone manager is able to configure zoning in zoning expander device A because the zone group of its SMP initiator port has access to zone group 2. However, it is not able to

Page: 102

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

> A zoning expander device may include physical presence detection to allow locking (see 4.9.6.2). The definition of physical presence detection is vendor-specific.

A zoning expander device may support physical presence detection and/or a zone manager password to allow management

to match changes in 4.9.1

Author: wdc-mevans

Subject: Highlight Date: 6/4/2008 7:21:59 AM -07'00'

ACCEPT - DONE (this is not the first occurrence - it was discussed in 4.9.1 and is used several times ahead of this in 4.9.2, including "The definition of physical presence detection is vendor-specific." However, will rewrite 4.9.1 and 4.9.2 to more clearly define it - see other comments)

Global

physical presence is asserted

This is the first occurrence of this phrase, and it is used many times, particularly in clause 10. However, there is no definition for this phrase, and it is not possible to determine its meaning from the context. It is recommended that this phrase be defined in the definitions clause or replaced throughout the draft.]

Author: Isi-bbesmer

Subject: Highlight Date: 5/17/2008 2:10:43 PM -07'00'

ACCEPT - DONE (5/5 cannot cross reference from inside a Visio figure. Maybe delete the words though. 5/5 Break into two diagrams so the reference can be inserted.)

Could this not simply be replaced with:

The ZPSDS is extended as shown below after the zone manager completes zone configuration (see 4.9.6).

Author: Isi-bbesmer

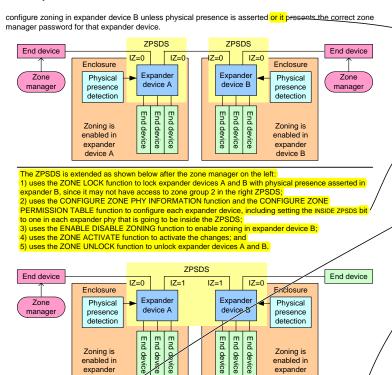
Subject: Highlight Date: 5/25/2008 3:19:22 PM -07'00'

ACCEPT - DONE (both expander)

both the expander

s/b

both of the expander


both expander

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 3:19:33 PM -07'00'

TREJECT.

the zone manager

IZ = INSIDE ZPSDS bit in the zone phy information

Figure 55 — Overtaking a ZPSDS example

device B

4.9.3 Zoning operation

4.9.3.1 Zone phy information

ch phy of a zoning expander device shall support the following zone phy information fields:

- a) INSIDE ZPSDS bit;
- b) REQUESTED INSIDE ZPSDS bit;
- c) INSIDE ZPSDS PERSISTENT bit;
- d) ZONE GROUP PERSISTENT bit; and

device A

e) ZONE GROUP field.

Page: 103

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:19:43 PM -07'00' TREJECT or it s/b , or the zone manager Author: Isi-bbesmer Subject: Highlight
Date: 5/17/2008 2:10:18 PM -07'00' *TACCEPT - DONE (5/5 cannot cross reference, but WG is okay with deleting text like this. Make sure the basic rules cover everything.) Could this not simply be replaced with: The ZPSDS is extended as shown below after the zone manager completes zone configuration (see 4.9.6). Author: Isi-bbesmer Subject: Note Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE This seems to be duplicate of below paragraph. Author: elx-bmartin Subject: Cross-Out Date: 5/6/2008 1:07:48 PM -07:00'

DACCEPT - DONE

This is duplicated in table 28 with additional information in the table, so remove this.

Each phy of a zoning expander device shall support the zone phy information fields defined in table 28.

Table 28 — Zone phy information

Field	Description	Recommended default	
INSIDE ZPSDS bit	Indicates if the phy is inside or on the boundary of a ZPSDS	iV/A a	
REQUESTED INSIDE ZPSDS bit	Used to establish the boundary of the ZPSDS	0	
INSIDE ZPSDS PERSISTENT bit	Used to determine the value of the INSURE ZPSDS bit after a link reset sequence	0	
ZONE GROUP PERSISTENT bit	Used to determine the zone group of the phy after a link reset sequence when the INSIDE ZPSDS bit is set to zero	0	
ZONE GROUP field The zone group to which the phy belongs 00h			
The INSIDE ZPSDS bit is determined from the values exchanged during the link reset sequence.			

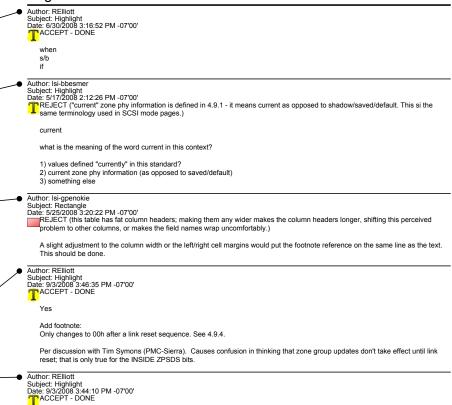
Table 29 lists the usage of the current values of the zone phy information fields.

Table 29 — Zone phy information usage

Field	Transmitted in IDENTIFY address frame a	Indicated in DISCOVER function and DISCOVER LIST function b	Attached value indicated in DISCOVER function c	Programmable with the CONFIGURE ZONE PHY INFORMATION function d	Changeable by the expander device after a link reset sequence e
INSIDE ZPSDS bit	No	Yes	No	No	Yes
REQUESTED INSIDE ZPSDS bit	Yes	Yes	Yes	Yes	Yes
INSIDE ZPSDS PERSISTENT bit	Yes	Yes	Yes	Yes	No
ZONE GROUP PERSISTENT bit	No	Yes	No	Yes	No
ZONE GROUP field	No	Yes	No	Yes	Yes

- a Defined in the IDENTIFY address frame (see 7.8.2).
- b Defined in the DISCOVER response (see 10.4.3.10) and the DISCOVER LIST response SHORT-FORMAT descriptor (see 10.4.3.15.4).
- C Defined in the DISCOVER response (see 10.4.3.10).
- Defined in the zone phy configuration descriptor (see 10.4.3.25.3). The saved values are also
- programmable with this function.

 e See table 33 in 4.9.4.


All phys in an expander port shall have the same zone phy information.

The expander device shall preserve the zone phy information while zoning is disabled and there is no power loss and no expander device reduced functionality (see 4.6.8).

The INSIDE ZPSDS bit indicates if the phy is inside or on the boundary of a ZPSDS. An INSIDE ZPSDS bit set to zero indicates that the phy is attached to an end device, an expander device that does not support zoning, or a zoning expander device with zoning disabled, or a zoning expander device with zoning enabled that is outside the ZPSDS (i.e., is in another ZPSDS). An INSIDE ZPSDS bit set to one indicates that the phy is

Page: 104

28 January 2008

Add comment that zone activation is needed to make the change take effect.

The CONFIGURE ZONE PHY INFORMATION function updates shadow values; the activate step (see 4.9.6.4) copies them into current and saved values.

Author: RElliott Subject: Highlight

d

Each phy of a zoning expander device shall support the zone phy information fields defined in table 28.

Table 28 — Zone phy information

Field	Description	Recommended default		
INSIDE ZPSDS bit	Indicates if the phy is inside or on the boundary of a ZPSDS	N/A ^a		
REQUESTED INSIDE ZPSDS bit Used to establish the boundary of the ZPSDS 0		0		
INSIDE ZPSDS PERSISTENT bit	Used to determine the value of the INSIDE ZPSDS bit after a link reset sequence	0		
ZONE GROUP PERSISTENT bit Used to determine the zone group of the phy after a link reset sequence when the INSIDE ZPSDS bit is set to zero 0		0		
ZONE GROUP field The zone group to which the phy belongs 00h				
The INSIDE ZPSDS bit is determined from the values exchanged during the link reset sequence.				

Table 29 lists the usage of the current values of the zone phy information fields.

Table 29 - Zone phy information usage

Field	Transmitted in IDENTIFY address frame a	Indicated in DISCOVER function and DISCOVER LIST function b	Attached value indicated in DISCOVER function ^c	Programmable with the CONFIGURE ZONE PHY INFORMATION function d	Changeable by the expander device after a link reset sequence e
INSIDE ZPSDS bit	No	Yes	No	No	Yes
REQUESTED INSIDE ZPSDS bit	Yes	Yes	Yes	Yes	Yes
INSIDE ZPSDS PERSISTENT bit	Yes	Yes	Yes	Yes	No
ZONE GROUP PERSISTENT bit	No	Yes	No	Yes	No
ZONE GROUP field	No	Yes	No	Yes	Yes

- a Defined in the IDENTIFY address frame (see 7.8.2).
- b Defined in the DISCOVER response (see 10.4.3.10) and the DISCOVER LIST response SHORT FORMAT descriptor (see 10.4.3.15.4).
- Defined in the DISCOVER response (see 10.4.3.10).
- Defined in the zone phy configuration descriptor (see 10.4.3.25.3). The saved values are also
- programmable with this function.

 e See table 33 in 4.9.4.

104

All phys in an expander port shall have the same zone phy information.

The expander device shall preserve the zone phy information while zoning is disabled and there is no power loss and no expander device reduced functionality (see 4.6.8).

The INSIDE ZPSDS bit indicates if the phy is inside or on the boundary of a ZPSDS. An INSIDE ZPSDS bit set to zero indicates that the phy is attached to an end device, an expander device that does not support zoning, or a zoning expander device with zoning disabled, or a zoning expander device with zoning enabled that is outside the ZPSDS (i.e., is in another ZPSDS). An INSIDE ZPSDS bit set to one indicates that the phy is

Working Draft Serial Attached SCSI - 2 (SAS-2)

Date: 9/3/2008 3:42:19 PM -07'00'

See table 33

See table 34

but better yet, just delete the table reference since the table only covers the INSIDE ZPSDS bits, not the ZONE GROUP field

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 3:20:40 PM -07'00'

- PACCEPT DONE (as "The expander device shall preserve the zone phy information while:
- a) zoning is disabled;
- b) no power loss occurs; and
- c) there is no expander device reduced functionality (see 4.6.8).

while zoning is disabled and there is no power loss and no expander device reduced functionality (see 4.6.8).

- a) zoning is disabled;
- b) no power loss occurs; and
- c) there is no reduction in expander device functionality (see 4.6.8).

Author: wdc-meyans

Subject: Highlight
Subject: Highlight
Date: 5/17/2008 2:24:43 PM -07'00'

""ACCEPT - DONE (This is the definition of zone phy information bits, not the definition of fields in DISCOVER, so they only exist in a
""ACCEPT - DONE (This is the definition of zone phy information bits, not the definition of fields in DISCOVER, so they only exist in a zoning expander device. So, the proposed a)of an "expander device does not support zoning" are unnecessary. The wording "supports zoning, but" is unnecessary in b). Added sentences about setting each bit/field to zero in the DISCOVER response outside of zoning expander devices.

5/5 this seems complete as edited. Check that other bits/fields are defined as zero if the expander device does not support zoning.)

that the phy is attached to an end device, an expander device that does not support zoning, or a zoning expander device with zoning disabled, or a zoning expander device with zoning enabled that is outside the ZPSDS (i.e., is in another ZPSDS).

- a) the expander device does not support zoning;
- b) the expander device supports zoning, but zoning is disabled;
- c) the phy is attached to an end device;
- d) the phy is attached to an expander device that does not support zoning;
- e) the phy is attached to an expander device that supports zoning, but zoning is disabled; or
- f) the phy is attached to an expander device that supports zoning, zoning is enabled, but is outside the ZPSDS (i.e., is in another

28 January 2008 T10/1760-D Revision 14

attached to a zoning expander device with zoning enabled and is thus isside a ZPSDS. The INSIDE ZPSDS bit only changes following a link reset sequence (see 4.9.4), based on:

- a) the REQUESTED INSIDE ZPSDS bit;
- b) the REQUESTED INSIDE ZPSDS bit received in the incoming IDENTIFY address frame (see 7.8.2):
- c) the INSIDE ZPSDS PERSISTENT bit; and
- d) the INSIDE ZPSDS PERSISTENT bit received in the incoming IDENTIFY address frame.

The REQUESTED INSIDE ZPSDS bit is used to establish the boundary of the ZPSDS. The REQUESTED INSIDE ZPSDS bit is used to determine the values of other zone phy information fields after a link reset sequence (see 4.9.4).

The INSIDE ZPSDS PERSISTENT bit is used to determine the value of the INSIDE ZPSDS bit after a link reset sequence (see 4.9.4).

The ZONE GROUP field contains the zone group to which the phy belongs. The zone group of the SMP initiator port and SMP target port in a zoning expander device shall be 01h. 4.9.3.2 defines more about zone groups.

The ZONE GROUP PERSISTENT bit is used to determine the method of determining the zone group of the phy after a link reset sequence when the inside zerous bit is set to zero (see 4.9.4).

Page: 105

Author: Isi-bday
Subject: Cross-Out
Date: 5/25/2008 3:44:14 PM -07'00'
TREJECT (see response to wdc-mevans comment)
thus

Author: wdc-mevans
Subject: Cross-Out
Date: 5/17/2008 2:15:16 PM -07'00'
TREJECT (without thus or therefore, it seems like these are two conditions being ANDed together. That is not the case; this and is
just stating the result of the first and only condition being met. An i.e. could work, but that loses the hint that one condition causes the other)

thus
s/b
[Delete the unnecessary word.]

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
when

s/b if

4.9.3.2 Zone groups

The zone groups are defined in table 30.

Table 30 — Zone groups

-	Configurable	
Zone group	in zone permission table a	Description
0	No	Phys in zone group 0 have access to phys in zone group 1 and do not have access to phys in other zone groups.
1	No	Phys in zone group 1 have access to phys in all zone groups.
2	Yes	Phys in zone group 2 have access to phys in the zone groups indicated by the zone permission table. A management device server in a zoning expander device with zoning enabled only allows management application clients using phys in zone groups with access to zone group 2 to perform the following SMP functions: a) CONFIGURE GENERAL (see 10.4.3.18); and b) ZONE LOCK (see 10.4.3.21) and SMP zone configuration functions (see 4.9.6.1) performed while the zoning expander device is locked. A management device server in a zoning expander device with zoning enabled only allows management application clients to perform certain SMP phy-based control and configuration functions (e.g., PHY CONTROL, PHY TEST FUNCTION, and CONFIGURE PHY EVENT) if the zone group of the management application client's phy has access to zone group 2 or the zone group of the specified phy.
3	Yes	Phys in zone group 3 have access to phys in the zone groups indicated by the zone permission table. A management device server in a zoning expander device with coning enabled only allows management application clients using a my in a zone group with access to zone group 3 to perform certain SMP zoning-related functions (i.e., ZONED BROADCAST (see 10.4.3.20)).
4 to 7	Reserved	
8 to 255	Yes	Phys in zone groups 8 through 255 have access to phys in the zone groups indicated by the zone permission table.

PERMISSION TABLE function (see 10.4.3.26).

4.9.3.3 Zone permission table

The zone permission table specifies access permission between zone groups. If a bit in the zone permission table is set to one then connection requests shall be permitted between physically a zone groups. If a bit in the zone permission table is set to zero then connection requests between priys in the zone groups shall be rejected with OPEN REJECT (ZONE VIOLATION) or OPEN REJECT (RETRY) as described in 4.9.3.5.

Page: 106

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
     in zone
     s/b
     in the zone
Author: elx-bmartin
Subject: Comment on Text
Date: 5/17/2008 2:25:42 PM -07'00'
TACCEPT - DONE (5/5 accept:
b) ZONE LOCK; and
     c) SMP .... )
     make this item c, and delete the and at the end of item a)
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 3:21:22 PM -07'00'
TREJECT (connections are 1:1, we don't allow party line connections)
     between
     s/b
     among
     [The rule is: use "between" for two items or more than two specified items (i.e., "between phy a, phy b, and phy c"), otherwise, for
     more than two unspecified items, "among" is used.]
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 3:21:42 PM -07'00'
  REJECT (connections are 1:1)
     between
     s/b
     among
Aumor: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 Author: RElliott
     then
     s/b
      , then
 Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 3:21:36 PM -07'00'
     between
     s/b
     among
```

The zone permission table structure is shown in table 31.

Table 31 — Zone permission table

Destination	Source zone group (i.e., s) ^{a b}					
zone group (i.e., d)	0 1		2 to 3	4 to 7	8 to (z-1) ^C	
0	0	1	0	0	0	
1	1	1	1	1		
2 to 3	0	1			ZP[s = 8 to (z-1), d = 2 to 3]	
4 to 7	0	1	Reserved		Reserved	
8 to (z-1) ^c	0	1			ZP[s = 8 to (z-1), d = 8 to (z-1)]	

- Shading identifies configurable zone groups.
- b All reserved ZP bits shall be set to zero (e.g., bits ZP[4 to 7, 4 to (z-1)] are set to zero).
- ^C The number of zone groups (i.e., z) is reported in NUMBER OF ZONE GROUPS field in the REPORT GENERAL response (see 10.4.3.4).

A ZP[s, d] bit set to one specifies that the source zone group (i.e., s) has permission to access the destination zone group (i.e., d). A ZP[s, d] bit set to zero specifies that the source zone group (i.e., s) does not have permission to access the destination zone group (i.e., d).

If ZP[s, d] is set to a value, ZP[d,s] shall be set to the same value.

The zoning expander device shall preserve the zone permission table while zoning is disabled and may or may not preserve the zone permission table through power loss. If the zoning expander device preserves that zoning is enabled and does not preserve the zone permission table, it shall set the zone permission table to grant minimal permissions on power on as specified in table 32.

Table 32 — Zone permission table granting minimal permissions

Destination	Source zone group (i.e., s) a b					
zone group (i.e., d)	0	1	2 to 3	4 to 7	8 to (z-1) °	
0	0	1	0	0	0	
1	1	1	1	1	1	
2 to 3	0	1	0	Reserved	0	
4 to 7	0	1	Reserved	Reserved	Reserved	
8 to (z-1) ^c	0	1	0	Reserved	0	

- a Shading identifies configurable zone groups.
- b All reserved ZP bits shall be set to zero (e.g., bits ZP[4 to 7, 4 to (z-1)] are set to zero). ^c The number of zone groups (i.e., z) is reported in NUMBER OF ZONE GROUPS field in the REPORT GENERAL response (see 10.4.3.4).

If a zone manager enables zoning on zoning capable expander devices that report different values in the NUMBER OF ZONE GROUPS field in the REPORT GENERAL response (see 10.4.3.4)(e.g., some support 128 and others support 256), then the zone manager shall:

a) configure all zoning enabled expander devices contained within the ZPSDS to use the highest commonly supported number of zone groups (e.g., 128);

Page: 107

Author: Isi-gpenokie

Subject: Highlight Date: 5/25/2008 3:21:56 PM -07'00'

REJECT (3.8 only applies to procedures/functions. 3.2 even defines [s, d] notation for ZPSDS)

Global - The conventions section defines [...] as << Brackets enclose optional or conditional parameters and arguments >> That definition does not seem to fit here. Either the definition needs to change or a new convention needs to be defined.

Author: elx-bmartin

Subject: Highlight Date: 5/25/2008 3:22:12 PM -07'00'

TACCEPT - DONE (and added space before s)

If ZP[s, d] is set to a value, ZP[d,s] shall be set to the same value

ZP[s,d] has to be set to a value. Reword to:

ZP[d,s] shall be set to the same value as ZP[s,d]

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 3:22:24 PM -07'00'

ACCEPT - DONE

that

s/b whether or not

Author: Isi-bbesmer

Subject: Highlight Date: 6/4/2008 7:43:19 AM -07'00'

*ACCEPT - DONE (5/5 "may or may not preserve the ZPT through power loss or expander device reduced functionality". Change "on power on" in last sentence of this paragraph to "after power on or expander device reduced functionality")

power loss.

s/b

there is no power

loss and no expander device reduced functionality (see 4.6.8).

Author: RElliott

Subject: Highlight Date: 7/17/2008 3:02:34 PM -07'00'

ACCEPT - DONE (7/14)

zone permission table

current zone permission table

Author: wdc-mevans

Subject: Highlight
Date: 5/25/2008 3:22:47 PM -07'00'

"REJECT (first noun/subject convention, but added "then")

then the zoning expander device

 configure the zone phy information in all the zoning expander devices to set each phy to a zone group less than the highest commonly supported number of zone groups; and

 c) configure the zone permission table in all the zoning expander devices to set each entry to zero that is higher than the highest commonly supported number of zone groups.

4.9.3.4 Zoning expander route table

A zoning expander route table is an expander-based expander route table (see 4.6.7.3) that is able to hold the zone group of each routed SAS address.

Figure 56 shows a representation of the zoning expander route table.

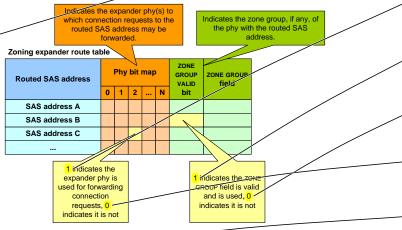
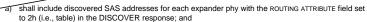
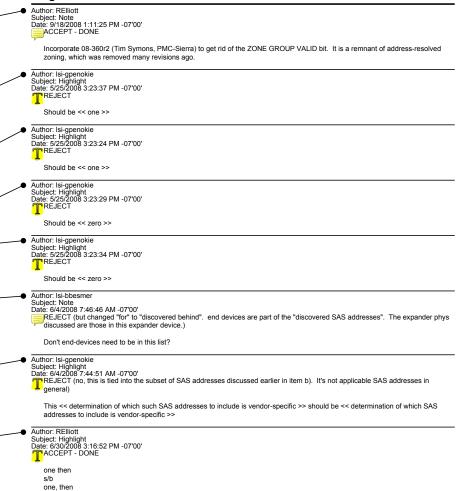



Figure 56 — Zoning expander route table

The zoning expander route table:

b) may include discovered SAS addresses for expander phys with the ROUTING ATTRIBUTE field set to 1h (i.e., subtractive) in the DISCOVER response as long as they do not prevent inclusion of SAS addresses for expander phys with the ROUTING ATTRIBUTE field set to 2h (i.e., table). The determination of which such SAS addresses to include is vendor-specific.


The total number of routed SAS addresses shall not exceed the value indicated in the MAXIMUM NUMBER OF ROUTED SAS ADDRESSES field in the REPORT GENERAL response.

4.9.3.5 Source zone group and destination zone group determination

When a zoning expander device with zoning enabled receives an OPEN address trame (see 7.8.3):

- a) the zone group of the source port (i.e., s) is identified as defined in table 33; and
- b) the zone group of the destination port (i.e. a) is identified as defined in table 34.

If the ZP[s, d] bit is set to one then access between the phys shall be permitted and the zoning expander device shall perform the ECM arbitration procedure. If the ZP[s, d] bit is set to zero then access between the

Page: 108

configure the zone phy information in all the zoning expander devices to set each phy to a zone group less than the highest commonly supported number of zone groups; and

 c) configure the zone permission table in all the zoning expander devices to set each entry to zero that is higher than the highest commonly supported number of zone groups.

4.9.3.4 Zoning expander route table

A zoning expander route table is an expander-based expander route table (see 4.6.7.3) that is able to hold the zone group of each routed SAS address.

Figure 56 shows a representation of the zoning expander route table.

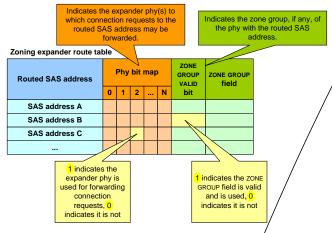


Figure 56 — Zoning expander route table

The zoning expander route table:

108

- a) shall include discovered SAS addresses for each expander phy with the ROUTING ATTRIBUTE field set to 2h (i.e., table) in the DISCOVER response; and
- b) may include discovered SAS addresses for expander phys with the COUTING ATTRIBUTE field set to 1h (i.e., subtractive) in the DISCOVER response as long as they do not prevent inclusion of SAS addresses for expander phys with the ROUTING ATTRIBUTE field set to 2h (i.e., table). The determination of which such SAS addresses to include is vendor/specific.

The total number of routed SAS addresses shall not exceed the value indicated in the MAXIMUM NUMBER OF ROUTED SAS ADDRESSES field in the REPORT GENERAL response.

4.9.3.5 Source zone group and destination zone group determi/ation

When a zoning expander device with zoning enabled receives an PEN address frame (see 7.8.3):

- a) the zone group of the source port (i.e., s) is identified as/defined in table 33; and
- b) the zone group of the destination port (i.e., d) is identified as defined in table 34.

If the ZP[s, d] bit is set to one then access between the phys shall be permitted and the zoning expander device shall perform the ECM arbitration procedure. If the ZP[s, d] bit is set to zero then access between the

Working Draft Serial Attached SCSI - 2 (SAS-2)

28 January 2008 T10/1760-D Revision 14

phys is not permitted and the zoning expander device shall transmit an OPEN_REJECT in response to the

- OPEN_REJECT (RETRY) if the zoning expander devise is locked; and
 OPEN_REJECT (ZONE VIOLATION) if the zoning expander device is unlocked.

Zoning expander devices with zoning enabled shall follow the rules in table 33 to determine the zone group of the source port.

Table 33 — Source zone group determination

INSIDE ZPSDS bit of the expander phy that received the OPEN address frame	Source zone group
0	Zone group of the receiving expander phy
1	Source zone group specified by the SOURCE ZONE GROUP field in the received OPEN address frame

Zoning expander devices with zoning enabled shall follow the rules in table 34 to determine the zone group of the destination port.

Table 34 — Destination zone group determination

Routing method of the destination expander phy	Destination zone group		
Direct	Zone group of the destination expander phy		
Subtractive	If the ZONE GROUP VALID bit is set to one, then the zone group stored in the zoning expander route table for the destination SAS address. If the ZONE GROUP VALID bit is set to zero, then the zone group of the		
	destination expander phy (i.e., the subtractive routing phy).		
Table	If the ZONE GROUP VALID bit is set to one, then the zone group stored in the zoning expander route table for the destination SAS address.		
	If the ZONE GROUP VALID bit is set to zero, then the zone group of the destination expander phy (i.e., the table routing phy).		

Page: 109

```
Author: Isi-bday
Subject: Cross-Out
Date: 5/6/2008 1:07:48 PM -07'00'
TEREJECT (prefer to keep the "in response to the connection request" part)
     an OPEN_REJECT in response to the
     connection request as follows
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 3:24:10 PM -07'00'
     permitted and
     s/b
     permitted, and
 Author: wdc-mevans
Subject: Highlight
Date: 5/17/2008 2:26:57 PM -07'00'
ACCEPT - DONE
     phys
     s/b
     source and destination phys
```

Figure 57 shows an example of a ZPSDS.

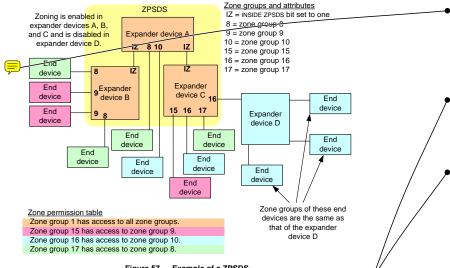
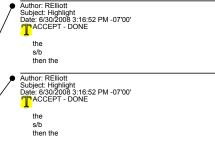


Figure 57 — Example of a ZPSDS

4.9.4 Zone phy information and link reset sequences

At the completion of a link reset sequence (see 4.4), if a SATA device is attached to an expander phy, thy zoning expander device with zoning enabled shall set the INSIDE ZPSDS bit to zero for that expander phy


At the completion of a link reset sequence, if a SATA device is not attached to an expander phy, the 2oning expander device with zoning enabled shall update the current zone phy information fields as defined in table 35 based on:

- a) the REQUESTED INSIDE ZPSDS bit and the INSIDE ZPSDS PERSISTENT bit in the zone phy information (i.e., the bits transmitted in the outgoing IDENTIFY address frame (see 7.8.2)); and
- b) the REQUESTED INSIDE ZPSDS bit and INSIDE ZPSDS PERSISTENT bit received in the incoming IDENTIFY address frame.

Page: 110

Author: Isi-bbesmer Subject: Note Date: 6/4/2008 7:52:52 AM -07'00' ACCEPT - DONE (This is the first location where all the terms used in the figure have been introduced. However, I agree it is unlikley location. Moved into 4.9.1 as the first figure in the zoning section. In that location, it uses a bunch of terms that have not yet been introduced, but I think that's also a reasonable approach - show the terms in a figure, then define them.)

This is a really cool diagram:), just don't understand what this has to do with "Source zone group and destination zone group determination".

28 January 2008 T10/1760-D Revision 14

Table 35 — Zone phy information fields after a link reset sequence

REQUESTED INSIDE ZPSDS bit		INSIDE ZPSDS PERSISTENT bit		Zone phy information field changes
Transmitted	Received	Transmitted Received		
0	0 or 1			The zoning expander device shall set the INSIDE
1	0	0 01 1	0 01 1	ZPSDS bit to zero.
		0	0	If the SAS address received in the IDENTIFY
		0	1	address frame during the identification sequence is different from the SAS address
1	1 1	0	prior to the completion of the link reset sequence, then the zoning expander device shall: a) set the REQUESTED INSIDE ZPSDS bit to zero; and b) set the INSIDE ZPSDS bit to zero. If the SAS address received in the IDENTIFY address frame during the identification sequence is the same as the SAS address prior to the completion of the link reset sequence, then the zoning expander device shall: a) set the INSIDE ZPSDS bit to one; and b) set the ZONE GROUP field to 01h.	
		1	1	The zoning expander device shall: a) set the INSIDE ZPSDS bit to one; and b) set the ZONE GROUP field to 01h.

This page contains no comments

If the ZONE GROUP PERSISTENT bit is set to one, then a link reset sequence (see 4.4) shall not cause the zone group of an expander phy to change unless the INSIDE ZPSDS bit changes from zero to one as specified in table 35. If the ZONE GROUP PERSISTENT bit is set to zero, then table 36 specifies events based on the initial condition of an expander phy that shall cause a zoning expander device with zoning enabled to change the ZONE GROUP field of the expander phy to its reset value (i.e., the saved value, if any, or the default value (e.g., 00h) if there is no saved value).

Table 36 — Events that cause the ZONE GROUP field to be reset when the ZONE GROUP PERSISTENT bit set

Initial condition	Event after the initial condition is established		
Completed link reset sequence with a SAS device attached	A subsequent link reset sequence completes and: a) the SAS address received in the IDENTIFY address frame (see 7.8.2) during the identification sequence is different from the SAS address prior to the completion of the link reset sequence; or b) a SATA device is attached.		
Completed link reset sequence with a SATA device attached	Either: a) A subsequent limit reset sequence completes and: A) a hot-plug timeout (see 6.7.5) occurred between the time of the initial condition and the time the limit reset sequence completed; B) the zoning expander device has detested the possibility that a new SATA device has been inserted. The method of detestion is outside the scope of this standard (e.g., an enclosure services process reposts a change in the ELEMENT STATUS CODE field in the Device or Array Device element (see SES-2), or a change in the WORLD WIDE NAME field in the attached SATA device's IDENTIFY (PACKET) DEVICE data (see ATA8-ACS)); or C) a SAS phy or expander phy is attached; or b) The expander phy is disabled with the SMP PHY CONTROL function (see 10.4.3.28) DISABLE phy operation.		

4.9.5 Broadcast processing in a zoning expander device with zoning exabled

The BPP determines the source zone group(s) of the Broadcast as follows:

- a) if the BPP receives a Broadcast Event Notify message from an expander logical phy (i.e., a zoning expander logical phy received a BROADCAST), the Broadcast has a single source zone group set to the zone group of that expander phy; and
- b) if the BPP receives a message from the management device server indicating that it received an SMP ZONED BROADCAST request from an SMP initiator port that has access to 255g group 3, the Broadcast has each of the source zone groups specified in the SMP ZONED BROADCAST request.

The BPP forwards the Broadcast to each expander port other than the one on which the Broadcast was received (i.e., the expander port that received the BROADCAST or SMP ZONED BROADCAST request) is

- a) the Broadcast is not a Broadcast (Zone Activate) and any of the source zone groups have access to the zone group of the expander port;
- the Broadcast is a Broadcast (Zone Activate), the BPP is in a locked zoning expander device, the INSIDE ZPSDS bit is set to one, and the source zone group has access to zone group 2; or
- the Broadcast is a Broadcast (Zone Activate), the BPP is not in a locked zoning expander device, and
 any of the source zone groups have access to the zone group of the expander port.

To forward a Broadcast to an expander port:

if the expander port's INSIDE ZPSDS bit is set to one, then the BPP shall request that the SMP initiator
port establish a connection on at least one phy in the expander port to the SMP target port of the
attached expander device and transmit an SMP ZONED BROADCAST request specifying the source
zone group(s); or

Page: 112

```
Author: elx-bmartin
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
 ACCEPT - DONE
   bit set
   S.B.
   bit is set
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
    when
    s/b
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
   s/b
   а
    (part of global change to lowercase a)b)c) list entries)
Author: Isi-bday
Subject: Highlight
Date: 5/25/2008 3:24:53 PM -07'00'
   REJECT (yes, that is the intended behavior. This is the paranoid mode where zone permissions are lost if there is a fair chance
    that the drive was changed out. Taking a whole hot-plug timeout is the only indication that it might have happened. If software
   determines it is the same drive, it can reestablish the permissions.)
   a hot-plug timeout
   So is this the correct thing to do if the very next COMINIT is not detected by the SATA device, and a hot plug time expires until the
    expander tries again to do the link reset sequence?
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
    The
   s/b
   the
    (part of global change to lowercase a)b)c) list entries)
Author: RElliott
Subject: Highlight
Date: 8/30/2008 10:38:34 AM -07'00'
ACCEPT - DONE
    Broadcast Event Notify message
```

If the ZONE GROUP PERSISTENT bit is set to one, then a link reset sequence (see 4.4) shall not cause the zone group of an expander phy to change unless the INSIDE ZPSDS bit changes from zero to one as specified in table 35. If the ZONE GROUP PERSISTENT bit is set to zero, then table 36 specifies events based on the initial condition of an expander phy that shall cause a zoning expander device with zoning enabled to change the ZONE GROUP field of the expander phy to its reset value (i.e., the saved value, if any, or the default value (e.g., 00h) if there is no saved value).

Table 36 — Events that cause the ZONE GROUP field to be reset when the ZONE GROUP PERSISTENT bit set to zero

Initial condition	Event after the initial condition is established		
Completed link reset sequence with a SAS device attached	A subsequent link reset sequence completes and: a) the SAS address received in the IDENTIFY address frame (see 7.8.2) during the identification sequence is different from the SAS address prior to the completion of the link reset sequence; or b) a SATA device is attached.		
Completed link reset sequence with a SATA device attached	Either: a) A subsequent link reset sequence completes and: A) a hot-plug timeout (see 6.7.5) occurred between the time of the initial condition and the time the link reset sequence completed; B) the zoning expander device has detected the possibility that a new SATA device has been inserted. The method of detection is outside the scope of this standard (e.g., an enclosure services process reports a change in the ELEMENT STATUS CODE field in the Device or Array Device element (see SES-2), or a change in the WORLD WIDE NAME field/in the attached SATA device's IDENTIFY (PACKET) DEVICE data (see TA8-ACS)); or C) a SAS phy or expander phy is attached; or b) The expander phy is disabled with the SMP MY CONTROL function (see 10.4.3.28) DISABLE phy operation.		

4.9.5 Broadcast processing in a zoning expander device with zoning enabled

The BPP determines the source zone group(s) of the Broadcast as follows:

- a) if the BPP receives a Broadcast Event Notify myssagy from an expander logical phy (i.e., a zoning expander logical phy received a BROADCAS (), the Broadcast has a single source zone group set to the zone group of that expander phy; and
- b) if the BPP receives a message from the management device server indicating that it received an MP ZONED BROADCAST request from an SMP initiator port that has access to zone group 3, the Broadcast has each of the source zone groups specified in the SMP ZONED BROADCAST request.

The BPP forwards the Broadcast to each expander port other than the one on which the Broadcast was received (i.e., the expander port that received the BROADCAST or SMP ZONED BROADCAST request) if:

- a) the Broadcast is not a Broadcast (Zone Activate) and any of the source zone groups have access to the zone group of the expander port;
- b) the Broadcast is a Broadcast (Zone Activate), the BPP is in a locked zoning expander device, the INSIDE ZPSDS bit is set to one, and the source zone group has access to zone group 2; or
- the Broadcast is a Broadcast (Zone Activate), the BPP is not in a locked zoning expander device, and
 any of the source zone groups have access to the zone group of the expander port.

To forward a Broadcast to an expander port:

112

a) if the expander port's INSIDE ZPSDS bit is set to one, then the BPP shall request that the SMP initiator
port establish a connection on at least one phy in the expander port to the SMP target port of the
attached expander device and transmit an SMP ZONED BROADCAST request specifying the source
zone group(s); or

Working Draft Serial Attached SCSI - 2 (SAS-2)

s/b request

```
Author: RElliott
Subject: Highlight
Date: 8/30/2008 10:43:01 AM -07'00'
 ACCEPT - DONE
    s/b
   then the
Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 3:25:07 PM -07'00'
 TACCEPT - DONE
   Unless the BPP can get both of these messages at the same time this is an << or >>.
Subject: Highlight
Date: 9/18/2008 12:57:10 PM -07'00'
 ACCEPT - DONE (9/8 just fix the "it", leave vague otherwise)
    message from the management device server indicating that it received an SMP
   ZONED BROADCAST request from an SMP initiator port that has access to zone group 3,
   should this message (probably "request") have a name? Is it just an argument to an existing Broadcast Event Notify request?
Author: RElliott
Subject: Highlight
Date: 8/30/2008 10:43:15 AM -07'00'
ACCEPT - DONE
   the
    s/b
   then the
```

b) if the expander port's INSIDE ZPSDS bit is set to zero, then the BPP shall send a Transmit Broadcast message to at least one phy in the expander port, causing it to transmit a BROADCAST.

4.9.6 Zone configuration

4.9.6.1 Zone configuration overview

Zoning expander devices implement a lock to coordinate zoning configuration by zone manager(s).

There are four steps in the zone configuration process:

- 1) lock (see 4.9.6.2);
- load (see 4.9.6.3);
- activate (see 4.9.6.4); and
- 4) unlock (see 4.9.6.5).

The management device server in a zoning expander device only accepts SMP zone configuration function requests, SMP ZONE ACTIVATE requests, and SMP ZONE UNLOCK requests when it is locked, and only accepts SMP zone configuration function requests from the zone manager that locked the zoning expander device (i.e., the active zone manager). SMP zone configuration functions change zoning expander shadow values. When changes are complete, the zone manager activates the changes and the zoning expander device sets the zoning expander active values equal to the zoning expander shadow values. The zerie manager then unlocks the zoning expander devices

For a ZPSDS to function correctly, all zoning expander devices are required to have identical values in their zone permission tables. To change zone permission tables, a zone manager device locks all zoning expander devices in a ZPSDS

To change zone phy information, a zone manager locks only the zoning expander devices containing the phys to be changed.

When a zoning expander device with zoning disabled is being added to a ZPSDS (see figure 54 in 4.9.1) or two or more ZPSDSes are being merged (see figure 55 in 4.9.1), the zone manager locks all of the zoning expander devices that are to be included in the final ZPSDS. The zone parager configures the zone phy information in each zoning expander device (e.g., sets the REQUESTED INSIDE ZPSDS bit to one for phys inside the final ZPSDS) and configures all of the zone permission tables to be identical.

If the zone lock inactivity timer expires then the zoning expander device performs the unlock step. The zoning expander device is unlocked and the zoning expander shadow values are not activated.

4.9.6.2 Lock step

The lock step ensures that the same zone manager locks each zoning expander device. A zone manager sends the SMP ZONE LOCK request (see 10.4.3.21) to lock a zoning expander device. A zoning expander device is locked when the ZONE LOCKED bit is set to one in the SMP REPORT GENERAL response and after the SAS address of the zone management server device has been stored. The management device server in a locked zoning expander device processes SMP zone configuration function requests, SMP ZONE ACTIVATE requests, and SMP ZONE UNLOCK requests.

If more than one zone manager attempts to lock a group of zoning expander devices, the following rules ensure that any concurrent requests are resolved:

- 1) If the first SMP ZOINE LOCK response received by a zone manager has the FUNCTION RESULT field set to ZONE LOCK VIOLATION (see 10.4.3.3), then the group of zoning expander devices is locked by another zone manager and the zone manager should originate no further requests until it receives a Broadcast (Change);
- 2) If at least one SMP ZONE LOCK request is successful and at least one other response has: A) the FUNCTION RESULT field set to ZONE LOCK VIOLATION (see 10.4.3.3); and B) the CONFIGURING bit set to one (see 4.9.6.3).

then a zoning expander device is locked and being configured by another zone manager. The zone manager that failed to lock the zoning expander devices should unlock all zoning expander devices Page: 113

Author: Isi-bbesmer

Subject: Highlight Date: 5/25/2008 3:25:24 PM -07'00'

REJECT (this is an overview, the shalls are elsewhere)

shall only accept

Author: Isi-bbesmer

Date: 6/4/2008 10:25:39 AM -07'00'

REJECT (Although discussed in the WG as follows, I think it reads fine. Changing "when" to "while" though, since it's for the entire duration, not just when the lock occurs 5/5 This is not a list of the only things the expander accents, it is saying the expander only access these things under certain conditions. Need to reword: try putting the list first, or create an alb) list. "These are only accepted when locked". Or invert, these are rejected when not locked. Avoid "only accepts".)

Do we need to add REPORT GENERAL to this list, so other devices can determine if the expander is configuring.

Author: Isi-bbesmer

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

ACCEPT - DONE

zoning expander devices are required

zoning expander devices within the ZPSDS are required

Author: RElliott

Subject: Highlight Date: 8/31/2008 3:10:22 PM -07'00'

ACCEPT - DONE

If the zone lock inactivity timer expires then

When the zone lock inactivity timer expires

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

when

s/h while

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

s/b

then the

Author: Isi-gpenokie Subject: Rectangle Date: 6/4/2008 10:40:14 AM -07'00'

ACCEPT - DONE (Although discussed in the WG, the original comment seems OK as long as the outer items remain "and"ed since 2) and 3) could both be true. 5/5 the order is really 1) followed by 2) and 3) in parallel. Put the 1) text into the paragraph somehow, then use an unordered list for 2) and 3).)

Comments from page 113 continued on next page

b) if the expander port's INSIDE ZPSDS bit is set to zero, then the BPP shall send a Transmit Broadcast message to at least one phy in the expander port, causing it to transmit a BROADCAST.

4.9.6 Zone configuration

4.9.6.1 Zone configuration overview

Zoning expander devices implement a lock to coordinate zoning configuration by zone manager(s).

There are four steps in the zone configuration process:

- 1) lock (see 4.9.6.2);
- load (see 4.9.6.3);
- activate (see 4.9.6.4); and
- 4) unlock (see 4.9.6.5).

The management device server in a zoning expander device only accepts SMP zone configuration fynction requests, SMP ZONE ACTIVATE requests, and SMP ZONE UNLOCK requests when it is locked, and only accepts SMP zone configuration function requests from the zone manager that locked the zoning expander device (i.e., the active zone manager). SMP zone configuration functions change zoning expander shadow values. When changes are complete, the zone manager activates the changes and the zoning expander device sets the zoning expander active values equal to the zoning expander shadow values. The zone manager then unlocks the zoning expander devices.

For a ZPSDS to function correctly, all zoning expander devices are required to have identical values in their zone permission tables. To change zone permission tables, a zone manager device ocks all zoning expander devices in a ZPSDS.

To change zone phy information, a zone manager locks only the zoning expander devices containing the phys to be changed.

When a zoning expander device with zoning disabled is being added to a ZPSDS (see figure 54 in 4.9.1) or two or more ZPSDSes are being merged (see figure 55 in 4.9.1), the zore manager locks all of the zoning expander devices that are to be included in the final ZPSDS. The zone manager configures the zone phy information in each zoning expander device (e.g., sets the REQUESTED INSIDE ZPSDS bit to one for phys inside the final ZPSDS) and configures all of the zone permission tables to be identical.

If the zone lock inactivity timer expires then the zoning expander device performs the unlock step. The zoning expander device is unlocked and the zoning expander shadow values are not activated.

4.9.6.2 Lock step

The lock step ensures that the same zone manager locks each zoning expander device. A zone manager sends the SMP ZONE LOCK request (see 10.4.3.21) to lock a zoning expander device. A zoning expande device is locked when the ZONE LOCKED bit is set to one in the SMP EPORT GENERAL response and affer the SAS address of the zone management server device has been stored. The management device server in a locked zoning expander device processes SMF zone configuration function requests, SMP ZONE ACTIVATE requests, and SMP ZONE UNLOCK requests.

If more than one zone manager attempts to lock a group of zoning expander devices, the following rules ensure that any concurrent requests are resolved:

- 1) If the first SMP ZONE LOCK response received by a zone manager has the FUNCTION RESULT field set to ZONE LOCK VIOLATION (see 10.4/3.3), then the group of zoning expander devices is locked by another zone manager and the zone manager should originate no further requests until it receives a Broadcast (Change);
- 2) If at least one SMP ZONE LOWK request is successful and at least one other response has: A) the FUNCTION RESULT find set to ZO/E LOCK VIOLATION (see 10.4.3.3); and B) the CONFIGURING bit set to one (see 4.9.6.3),

then a zoning expander device is locked and being configured by another zone manager. The zone manager that failed to lock the zoning expander devices should unlock all zoning expander devices

Working Draft Serial Attached SCSI - 2 (SAS-2)

This does not appear to be an ordered list. Change it to an a.b.c list.

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:25:50 PM -07'00' ACCEPT - DONE

manager and

manager, and

Author: Isi-bbesmer

Subject: Highlight Date: 6/4/2008 10:40:52 AM -07'00'

*ACCEPT - DONE (configuring bit split into two bits, so ZONE CONFIGURING used here; see comment on page i; per 5/5 WG)

This requires 2 SMP requests to each expander:

- 1) Zone Lock
- 2) Report General

The Lock state could change between these 2 states.

Probably the easiest change here is to add a copy of the CONFIGURING Bit in the ZONE LOCK response.

Author: RElliott

Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

CONFIGURING bit

ZONE CONFIGURING bit

new bit per Isi-bbesmer comment on first page

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

a zoning expander device

113

at least one zoning expander device

that it has locked. When a Broadcast (Change) event is received, then the zone manager should retry the lock step; and

- 3) If at least one SMP ZONE LOCK request is successful and st least one other response has:
 - A) the FUNCTION RESULT field set to ZONE LOCK VIOLATION (see 10.4.3.3); and
 - B) the CONFISURING bit set to zero,

then another zone manager has locked at least one zoning expander device in the group of zoning expander devices and the zone manager shall evaluate the ACTIVE ZONE MANAGER SAS ABORESS field in the SMP ZONE LOCK response:

- A) if the returned SAS address has a lower numeric value than the SMP port SAS address of the zone manager, then the zone manager, then the zone manager with the higher quineric value SAS address shall repeat the SMP ZONE LOCK request to all zoning expander sevices that it has not already locked until all required zoning expander devices are locked, or until allocadoset (Change) is received; or
- B) if the returned ACTIVE ZONE MANAGER SAS ADDRESS field has a higher numeric value than the SMP port SAS address of the zone manager, then he zone manager with the lower insertic value SAS address shall originate an SMP ZONE UNLOCK request to unlock all zoning expander devices that it locked.

The lock step is complete after a zone manager receives a successful SMP ZONE LOCK response from all required zoning expander devices.

4.9.6.3 Load step

The load step stores SMP zone configuration information as zoning expander shadow values. A zoning expander device only processes SMP zone configuration function requests originated by the active zone manager when it is locked.

The SMP zone configuration functions are:

- a) SMP CONFIGURE ZONE PHY INFORMATION (see 10.4.3.25);
- b) SMP CONFIGURE ZONE PERMISSION TABLE (see 10.4.3.26); and
- c) SMP ENABLE DISABLE ZONING (see 10.4.3.19).

After a locked zoning expander device processes any SMP zone configuration function request, it sets the CONFIGURING bit to one in the SMP REPORT GENERAL response (see 10.4.3.4).

SMP zone configuration functions change the zoning expander shadow values and do not affect the zoning expander active values. The zoning expander shadow values become zoning expander active values during the activate step (see 4.9.6.4).

If the active zone manager receives a response to an SMP zone configuration function with the FUNCTION RESULT field set to ZONE LOCK VIOLATION (see 10.4.3.3), then it should valock all locked zoning expander devices

The load step may be skipped when a locked zoning expander device is unlocked:

- a) by a zone manager with a higher SAS address during the lock step (see 4.9.6.2);
- b) because the zone lock inactivity timer expires.

4.9.6.4 Activate step

The activate step copies the zoning expander shadow register values to the zoning expander active values. The active zone manager issues one of the following:

- a) a Broadcast (Zone Activate) (see 4.1.13); or
- b) an SMP ZONE ACTIVATE request (see 10.4.3.22) to all locked zoning expander devices.

After a locked zoning expander device receives a Broadcast (Zone Activate) or processes an SMP ZONE ACTIVATE request, then the zoning expander device shall set the zoning expander active values equal to the zoning expander shadow values.

If the active zone manager receives an SMP ZONE ACTIVATE response with the FUNCTION RESULT field set to ZONE LOCK VIOLATION (see 10.4.3.3), then it should unlock all locked zoning expander devices.

Page: 114

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 3:27:05 PM -07'00'

This is a list of conditions of which any one could occur to it is an << or >> list.

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:26:39 PM -07'00'

successful and s/b

successful, and

Author: Isi-bbesmer Subject: Highlight Date: 6/4/2008 10:41:22 AM -07'00'

Date: 6/4/2008 10:41:22 AM -07'00'
TACCEPT - DONE (changed to ZONE CONFIGURING bit; see comment on first page)

See comment for 2)

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

CONFIGURING bit s/b ZONE CONFIGURING bit

new bit per Isi-bbesmer comment on first page

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:27:20 PM -07'00'

devices and s/b

devices, and

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:27:27 PM -07'00'

> response: s/b response as follows:

response as lone

Author: RElliott Subject: Highlight

Comments from page 114 continued on next page

114

that it has locked. When a Broadcast (Change) event is received, then the zone manager should retry the lock step; and

- 3) If at least one SMP ZONE LOCK request is successful and at least one other response has:
 - A) the FUNCTION RESULT field set to ZONE LOCK VIOLATION (see 10.4.3.3); and
 - B) the CONFIGURING bit set to zero,

then another zone manager has locked at least one zoning expander device in the group of zoning expander devices and the zone manager shall evaluate the ACTIVE ZONE MANAGER SAS ADDRESS field in the SMP ZONE LOCK response:

- A) if the returned SAS address has a lower numeric value than the SMP port SAS address of the zone manager, then the zone manager with the higher numeric value SAS address shall repeat the SMP ZONE LOCK request to all zoning expander devices that it has not already locked until all required zoning expander devices are locked, or until a Broadcast (Change) is received; or
- B) if the returned ACTIVE ZONE MANAGER SAS ADDRESS field has a higher numeric value than the SMP port SAS address of the zone manager, then the zone manager with the lower numeric value SAS address shall originate an SMP ZONE UNLOCK request to unlock all zoning expander devices that it locked.

The lock step is complete after a zone manager receives a successful SMP ZONE LOCK response from all required zoning expander devices.

4.9.6.3 Load step

The load step stores SMP zone configuration information as zoning expander shadow values. A zoning expander device only processes SMP zone configuration function requests originated by the active zone manager when it is locked.

The SMP zone configuration functions are:

- a) SMP CONFIGURE ZONE PHY INFORMATION (See 10.4.3.25);
- b) SMP CONFIGURE ZONE, ERMISSION TABLE (see 10.4.3.26); and
- c) SMP ENABLE DISABLE ZONING (see 10.4.3.19).

After a locked zoping expander device processes any SMP zone configuration function request, it sets the CONFIGURATED bit to one in the SMP REPORT GENERAL response (see 10.4.3.4).

SMP zone configuration functions change the zoning expander shadow values and do not affect the zoning expander active values. The zoning expander shadow values become zoning expander active values during the activate step (see 4.9.6.4).

If the active zone manager receives a response to an SMP zone configuration with the FUNCTION RESULT field set to ZONE LOCK VIOLATION (see 10.4.3.3), then it should unlock all locked zoning expander devisions.

The load step may be skipped when a locked zoning expander device is unlocked:

- a) by a zone manager with a higher SAS address during the lock step (see 4.9.6.2): c
- b) because the zone lock inactivity timer expires.

4.9.6.4 Activate step

The activate step copies the zoning expander shadow register values to the zoning expander active values. The active zone manager issues one of the following:

- a) a Broadcast (Zone Activate) (see 4.1.13); or
- b) an SMP ZONE ACTIVATE request (see 10.4.3.22) to all locked zoning expander devices.

After a locked zoning expander device receives a Broadcast (Zone Activate) or processes an SMP ZONE ACTIVATE request, then the zoning expander device shall set the zoning expander active values equal to the zoning expander shadow values.

If the active zone manager receives an SMP ZONE ACTIVATE response with the FUNCTION RESULT field set to ZONE LOCK VIOLATION (see 10.4.3.3), then it should unlock all locked zoning expander devices.

ACCEPT - DONE when s/b while Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:27:48 PM -07'00' REJECT (first noun/subject convention) the locked zoning expander Author: RElliott Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE CONFIGURING bit ZONE CONFIGURING bit new bit per Isi-bbesmer comment on first page Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE While the zone configuring bit is set to one, the expander device shall return OPEN_REJECT (RETRY) for any connection requests that would otherwise have resulted in OPEN_REJECT (NO DESTINATION) (see 4.6.6.3). to support splitting the CONFIGURING bit per Isi-bbesmer comment on first page Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:27:55 PM -07'00' REJECT (first noun/subject convention) the active zone manager Author: RElliott Subject: Note Date: 9/3/2008 4:16:36 PM -07'00' ACCEPT - DONE b) saves the zoning expander shadow values, if saving was requested. by merging into 1st sentence.

Date: 6/30/2008 3:16:52 PM -07'00'

Don't want to save before activation, or expanders will be inconsistent if a power loss occurs.

(per discussion with Tim Symons, PMC-Sierra and Brad Besmer, LSI)

that it has locked. When a Broadcast (Change) event is received, then the zone manager should retry

- 3) If at least one SMP ZONE LOCK request is successful and at least one other response has:
 - A) the FUNCTION RESULT field set to ZONE LOCK VIOLATION (see 10.4.3.3); and
 - B) the CONFIGURING bit set to zero,

then another zone manager has locked at least one zoning expander device in the group of zoning expander devices and the zone manager shall evaluate the ACTIVE ZONE MANAGER SAS ADDRESS field in the SMP ZONE LOCK response:

- A) if the returned SAS address has a lower numeric value than the SMP port SAS address of the/ zone manager, then the zone manager with the higher numeric value SAS address shall repeat the SMP ZONE LOCK request to all zoning expander devices that it has not already locked until all required zoning expander devices are locked, or until a Broadcast (Change) is received; or
- B) if the returned ACTIVE ZONE MANAGER SAS ADDRESS field has a higher numeric value than the SMP port SAS address of the zone manager, then the zone manager with the lower numeric value SAS address shall originate an SMP ZONE UNLOCK request to unlock all zoning expander devices that it locked

The lock step is complete after a zone manager receives a successful SMP ZONE LOCK response from all required zoning expander devices.

4.9.6.3 Load step

The load step stores SMP zone configuration information as zoning expander stadow values. A zoni/g expander device only processes SMP zone configuration function requests or/ginated by the active/zone manager when it is locked.

The SMP zone configuration functions are:

- a) SMP CONFIGURE ZONE PHY INFORMATION (see 10.4.3.2%);
- b) SMP CONFIGURE ZONE PERMISSION TABLE (see 10.4.7.26); and
- c) SMP ENABLE DISABLE ZONING (see 10.4.3.19).

After a locked zoning expander device processes any SMP zone configuration function request, it sets the CONFIGURING bit to one in the SMP REPORT GENERAL response (see 10.4.3.4).

SMP zone configuration functions change the zoning exparder shadow values and do not affect the zoning expander active values. The zoning expander shadow values become zoning explander active values during the activate step (see 4.9.6.4).

If the active zone manager receives a response to an SMP zone configuration function with the FUNCTION RESULT field set to ZONE LOCK VIOLATION (see 1/0.4.3.3), then it should unlock all locked zoning expander

The load step may be skipped when a locked zoning expander device is unlocked:

- a) by a zone manager with a higher SAS address during the lock step (see 4.9.6.2); or
- b) because the zone lock inactivity timer expires.

4.9.6.4 Activate step

114

The activate step copies the zoning expander shadow register/values to the zoning expander active values. The active zone manager issues one of the following:

- a) a Broadcast (Zone Activate) (see 4.1.13); or
- b) an SMP ZONE ACTIVATE request (see 10.4.3.22) to all locked zoning expander devices.

After a locked zoning expander device receives a Broadcast (Zone Activate) or processes an SMP ZONE ACTIVATE request, then the zoning expander device shall set the zoning expander active values equal to the zoning expander shadow values.

If the active zone manager receives an SMP ZONE ACTIVATE response with the FUNCTION RESULT field set to ZONE LOCK VIOLATION (see 10.4.3.3), then it should unlock all locked zoning expander devices.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE issues s/h originates

the active zone manager

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:28:06 PM -07'00' REJECT (first noun/subject convention)

The activate step may be skipped when a locked zoning expander device is unlocked:

- a) by a zone manager with a higher SAS address during the lock step (see 4.9.6.2); or
- b) because the zone lock inactivity timer expires.

4.9.6.5 Unlock step

The unlock step ensures that the active zone manager unlocks the locked zering expander devices, or if the zone manager fails then the zone lock inactivity timer expires and the zoning expander devices unlock.

If the active zone manager originated Broadcast (Zone Activate), then it sends an SMP ZONE UNLOCK request (see 10.4.3.23) with the ACTIVATE REQUIRED bit set to one to each of the Locked zoning expander device has performed the activate step before it performs the unlock step. If it receives an SMP ZONE UNLOCK response with the FUNCTION RESULT field set to NOT ACTIVATED (see 10.4.3.3), then the zone manager stries the SMP ZONE UNLOCK request a vendor-specific number of times, then originates an SMP ZONE ACTIVATE request to each locked zoning expander device.

If the active zone manager originated SMP ZONE ACTIVATE request(s), then after all the SMP ZONE ACTIVATE functions have successfully completed seems an SMP ZONE UNLOCK request with the ACTIVATE REQUIRED bit set to zero to each of the locked zoning expender devices. If it receives an SMP ZONE UNLOCK response with the FUNCTION RESULT field set to BUSY (see 18.4.3.3) than the zone manager retries the SMP ZONE UNLOCK request.

When the SMP ZONE UNLOCK request is successful or the zone lock inactivity timer expires, then the zoning expander device is unlocked and shall:

- a) set the ZONE LOCKED bit to zero in the SMP REPORT GENERAL response (see 10.4.3.4);
- b) set the CONFIGURING bit to zero in the SMP REPORT GENERAL response
- c) if the zone lock timer expired, originate a Broadcast (Change) from zone group 1;
- d) if the management device server processed an SMP ZONE UNLOCK request, originate a Broadcast (Change) (see 7.11) from either:
 - A) each zone group whose zone permission table entries or zone phy information has changed; o
 - B) zone group 1.

When all SMP ZONE UNLOCK requests are successful the configuration process is complete.

4.9.6.6 Zone lock inactivity timer

The zone lock inactivity timer is supported by all zoning expander devices. The use of a timer ensures that if the zone manager disappears without performing the unlock step that all locked zoning expander devices are unlocked.

When a zoning expander device processes an SMP ZONE LOCK request (see 10.4.3.21) then the zone lock inactivity timer default value is set to the value of the ZONE LOCK INACTIVITY TIME LIMIT field.

The zone lock inactivity timer is initialized and started if the default value is non-zero and:

- a) the zoning expander device completes processing of any SMP zone configuration function request or SMP ZONE ACTIVATE request while the ZONE LOCKED bit is set to one in the SMP REPORT GENERAL response (see 10.4.3.4); or
- b) the zoning expander device completes processing of a successful SMP ZONE LOCK request.

The zone lock inactivity timer is stopped if:

- a) the ZONE LOCK INACTIVITY TIME LIMIT field is set to zero in an SMP ZONE LOCK request; or
- the ZONE LOCKED bit is set to zero in the SMP REPORT GENERAL response (e.g., an SMP ZONE UNLOCK request (see 10.4.3.23) is processed, or the zone lock inactivity timer expires).

If the zone lock inactivity timer expires then the zoning expander device:

- a) sets the ZONE LOCKED bit to zero in the SMP REPORT GENERAL response;
- b) sets the CONFIGURING bit to zero in the SMP REPORT GENERAL response; and
- c) sends Broadcast (Change) on all ports.

Page: 115 Author: wdc-mevans Subject: Highlight Date: 5/25/2008 3:28:31 PM -07'00' ACCEPT - DONE expires and s/b expires and Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 3:28:22 PM -07'00' TACCEPT - DONE (made into an a)b) list) fails then fails, then Author: wdc-mevans Subject: Highlight Date: 5/22/2008 7:11:15 AM -07'00' REJECT (first noun/subject convention) s/b the active zone manager Author: wdc-mevans Date: 6/4/2008 1:37:20 PM -07'00' TACCEPT - DONE (reworded sentence as: "This ensures that the activate step precedes the unlock step in each zoning expander device.") the zoning expander device Author: wdc-mevans Subject: Highlight Date: 6/4/2008 1:37:58 PM -07'00' ACCEPT - DONE s/h the active zone manager Author: Isi-gpenokie Subject: Highlight Date: 6/4/2008 1:35:32 PM -07'00' TACCEPT - DONE This << If it receives an SMP ZONE >> should be << If the zone manager receives an SMP ZONE >> Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' the zone manager s/b

Comments from page 115 continued on next page

The activate step may be skipped when a locked zoning expander device is unlocked:

- a) by a zone manager with a higher SAS address during the lock step (see 4.9.6.2); or
- b) because the zone lock inactivity timer expires.

4.9.6.5 Unlock step

The unlock step ensures that the active zone manager unlocks the locked zoning expander devices, or if ne zone manager fails then the zone lock inactivity timer expires and the zoning expander devices uplock.

If the active zone manager originated Broadcast (Zone Activate), then it sends an SMP ZOME UNLOCK request (see 10.4.3.23) with the ACTIVATE REQUIRED bit set to one to each of the locked Zoning expander devices. This ensures that each zoning expander device has performed the activate step before it performs the unlock step. If it receives an SMP ZONE UNLOCK response with the FUNCTION RESULT field set to NOT ACTIVATED (see 10.4.3.3), then the zone manager retries the SMP ZONE UNLOCK request a vendor-specific number of times, then originates an SMP ZONE ACTIVATE request to each locked zoning expander device.

If the active zone manager originated SMP ZONE ACTIVATE request(s), then after all the SMP ZONE ACTIVATE functions have successfully completed it sends an SMP ZONE UNLOCK request with the ACTIVATE REQUIRED bit set to zero to each of the locked zoning expander devices. If it receives an SMP ZONE UNLOCK response with the FUNCTION RESULT field set to BUSY (see 10.4.3.3), then the zone manager retries the SMP ZONE UNLOCK request.

When the SMP ZONE UNLOCK request is successful or the zone lock inactivity timer expires, then the zoning expander device is unlocked and shall:

- a) set the ZONE LOCKED bit to zero in the SMP REPORT GENERAL response (see 10.4.3.4):
- b) set the CONFIGURING bit to zero in the SMP REPORT GENERAL response;
- c) if the zone lock timer expired, originate a Breadcast (Change) from zone group 1; and
- d) if the management device sever processed an SMP ZONE UNLOCK request, originate a Broadcast (Change) (see 7.11) from either:
 - A) each zone group whose zone permission table entries or zone phy information has changed; or B) zone group 1.

When all SMP ZONE DNL OCK requests are successful the configuration process is complete.

4.9.6.6 Zone lock inactivity timer

The zone lock inactivity timer is supported by all zoning expander devices. The use of a semer ensures that if the zone manager disappears without performing the unlock step that all locked zoning expander devices are unlocked.

When a zoning expander device processes an SMP ZONE LOCK resuest (see 10.4.3.21) then the zone lock inactivity timer default value is set to the value of the ZONE LOCK INACTIVITY TIME LIMIT field.

The zone lock inactivity timer is initialized and started if the default value is non-zero and:

- a) the zoning expander device completes processing of any SMP zone configuration function request or SMP ZONE ACTIVATE request while the ZONE LOCKED bit is set to one in the SMP REPORT GENERAL response (see 10.4.3.4); or
- b) the zoning expander device completes processing of a successful SMP ZONE LOCK request.

The zone lock inactivity timer is stopped if:

- a) the ZONE LOCK INACTIVITY TIME LIMIT field is set to zero in an SMP ZONE LOCK request; or
- b) the ZONE LOCKED bit is set to zero in the SMP REPORT GENERAL response (e.g., an SMP ZONE UNLOCK request (see 10.4.3.23) is processed, or the zone lock inactivity timer expires).

If the zone lock inactivity timer expires then the zoning expander device:

- a) sets the ZONE LOCKED bit to zero in the SMP REPORT GENERAL response;
- b) sets the **CONFIGURING** bit to zero in the SMP REPORT GENERAL response; and
- c) sends Broadcast (Change) on all ports.

Author: wdc-mevans Subject: Highlight Date: 6/1/2008 2:09:17 PM -07'00' REJECT (first noun/subject convention, but added a comma) the active zone manager Author: wdc-mevans Subject: Highlight
Date: 6/4/2008 1:38:30 PM -07'00' s/h the active zone manager Author: Isi-gpenokie Subject: Highlight Date: 6/4/2008 1:38:43 PM -07'00' ACCEPT - DONE ("If the active zone manager...") This << If it receives an SMP ZONE >> should be << If the zone manager receives an SMP ZONE >> Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the zone manager s/b to follow first noun/subject convention Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE CONFIGURING bit ZONE CONFIGURING bit new bit per Isi-bbesmer comment on first page Author: RElliott Subject: Highlight Date: 8/31/2008 3:12:28 PM -07'00' ACCEPT - DONE zone lock timer zone lock inactivity timer Author: RElliott Subject: Note Date: 8/31/2008 3:37:49 PM -07'00' ACCEPT - DONE (7/14 per comment in 10.4.3.23)

(making the sentence conform to first noun/subject convention)

Comments from page 115 continued on next page

The activate step may be skipped when a locked zoning expander device is unlocked:

- a) by a zone manager with a higher SAS address during the lock step (see 4.9.6.2); or
- b) because the zone lock inactivity timer expires.

4.9.6.5 Unlock step

The unlock step ensures that the active zone manager unlocks the locked zoning expander devices, or if the zone manager fails then the zone lock inactivity timer expires and the zoning expander devices unlock.

If the active zone manager originated Broadcast (Zone Activate), then it sends an SMP ZONE UNLOCK request (see 10.4.3.23) with the ACTIVATE REQUIRED bit set to one to each of the locked zoning expander devices. This ensures that each zoning expander device has performed the activate step before it performs the unlock step. If it receives an SMP ZONE UNLOCK response with the FUNCTION RESULT field set to NOT ACTIVATED (see 10.4.3.3), then the zone manager retries the SMP ZONE UNLOCK request a vendor-specific number of times, then originates an SMP ZONE ACTIVATE request to each locked zoning expander device.

If the active zone manager originated SMP ZONE ACTIVATE request(s), then after all the SMP ZONE, ACTIVATE functions have successfully completed it sends an SMP ZONE UNLOCK request with the ACTIVATE REQUIRED bit set to zero to each of the locked zoning expander devices. If it receives an SMP ZONE/UNLOCK response with the FUNCTION RESULT field set to BUSY (see 10.4.3.3), then the zone manager retries the SMP ZONE UNLOCK request.

When the SMP ZONE UNLOCK request is successful or the zone lock inactivity timer expires, then the zoning expander device is unlocked and shall:

- a) set the ZONE LOCKED bit to zero in the SMP REPORT GENERAL response (see/10.4.3.4)
- b) set the **CONFIGURING** bit to zero in the SMP REPORT GENERAL response;
- c) if the zone lock timer expired, originate a Broadcast (Change) from zone group 1; and
- d) if the management device server processed an SMP ZONE UNLOCK-regulest, originate a Broadcast (Change) (see 7.11) from either:
 - A) each zone group whose zone permission table entrige or zone phy information has changed; or
 - B) zone group 1.

When all SMP ZONE UNLOCK requests are successful the configurat process is complete.

4.9.6.6 Zone lock inactivity timer

The zone lock inactivity timer is supported by all zoning expander devices. The use of a timer ensures that if the zone manager disappears without performing the unlock step that all locked zoning expander devices are

When a zoning expander device processes an SMP ZONE LOCK request (see 10.4.3.21) then the zone lock inactivity timer default value is set to the value of the ZONE LOCK INACTIVITY TIME LIMIT field.

The zone lock inactivity timer is initialized and started if the default value is non-zero and:

- a) the zoning expander device completes processing of any SMP zone configuration varietion request or SMP ZONE ACTIVATE request while the ZONE LOCKED bit is set to one in the SMP REPORT GENERAL response (see 10.4.3.4); or
- b) the zoning expander device completes processing of a successful SMP ZONE LOCK request.

The zone lock inactivity timer is stopped if:

- a) the ZONE LOCK INACTIVITY TIME LIMIT field is set to Zero in an SMP ZONE LOCK request; or
- b) the ZONE LOCKED bit is set to zero in the SMP REFORT GENERAL response (e.g., an SMP ZONE UNLOCK request (see 10.4.3.23) is processed, or the zone lock inactivity timer expires).

If the zone lock inactivity timer expires then the zoning expander device:

- a) sets the ZONE LOCKED bit to zero in the SMP REPORT GENERAL response;
- b) sets the CONFIGURING bit to zero in the SMP REPORT GENERAL response; and
- c) sends Broadcast (Change) on all ports.

Working Draft Serial Attached SCSI - 2 (SAS-2)

preface d) by: if the zone configuring bit was set to one,

which is wording in 10.4.3.23 that is missing here. Then, delete the duplicate rule in 10.4.3.23

Author: Isi-bbesmer Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' TACCEPT - DONE

> configuration zone configuration

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

> successful s/b successful,

Author: Isi-bbesmer

Subject: Highlight Date: 5/25/2008 3:45:59 PM -07'00'

REJECT (that shall is in 4.9.2. Deleting this sentence per lsi-gpenokie comment, and dropping the word "mandatory" from the new wording)

is s/h shall be

Author: Isi-gpenokie

Subject: Highlight Date: 5/25/2008 3:30:03 PM -07'00'

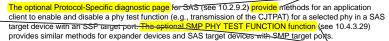
ACCEPT - DONE (without "mandatory", which is already specified in 4.9.2)

This << The zone lock inactivity timer is supported by all zoning expander devices. The use of a timer ensures that if the zone manager disappears >> should be << The mandatory zone lock inactivity timer (see x.x.x) ensures that if the zone manager disappears >>

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

> CONFIGURING bit ZONE CONFIGURING bit

new bit per Isi-bbesmer comment on first page


If the zone lock inactivity timer expires while the zoning expander device is processing an SMP configuration function then the zoning expander device may complete the request successfully or return a function result of ZONE LOCK VIOLATION.

4.9.6.7 Enable a zoning expander device

If a zoning expander device has the ZONING SUPPORTED bit set to one and the ZONING ENABLED bit set to zero in the REPORT GENERAL response (see 10.4.3.4), then a zone manager configures the zoning expander device using the zone configuration process. This ensures that the zone permission table is the same in all zoning expander devices inside the ZPSDS

Changes made by the SMP ENABLE DISABLE ZONING function sent by the active zone manager become active during the activate step (see 4.9.6.4).

4.19 Phy test functions

The application client sends a SEND DIAGNOSTIC command with the Protocol-Specific diagnostic page or an SMP PHY TEST FUNCTION function specifying the phy in the SAS target device that is to perform the phy test function and the phy test function to be performed. If the phy test function requires a specific phy test pattern and/or phy test pattern physical link rate, then it also specifies the phy test pattern and phy test pattern

The SEND DIAGNOSTIC command may be sent through any SSP target part to any logical unit in the SAS target device that contains the phy that is to perform the phy test function.

For the SEND DIAGNOSTIC command, the phy shall begin the specified phy text function after the SSP target port receives an ACK for the RESPONSE frame transmitted in response to the SEND DIAGNOSTIC command that requested the phy test function. For the SMP PHY TEST FUNCTION function, the phy shall begin the specified phy test function after the SMP target port transmits the SMP response frame.

The phy test function on one phy may affect the previously negotiated settings on other phys. (e.g., in a device with a common SSC clock, the SSC modulation type may change from none to down-spreading even on phys that negotiated no SSC)

Once a SAS phy has begun performing a phy test function, it shall ignore its receiver. To stop a SAS phy from performing a phy test function, an application client sends a SEND DIAGNOSTIC command or an SINP PHY TEST FUNCTION function to a SAS phy in the SAS target device that is not performing a phy test function requesting a phy test function of 00h (i.e., STOP). If no such phy is available, the phy test function only slops on power loss.

4.11 Phy events

Phys shall count the following events using saturating counters and report them in the Protocol-Specific Port log page (see 10.2.8.1) and/or the SMP REPORT PHY ERROR LOG function (see 10.4.3.11):

- a) invalid dwords received;
- b) dwords received with running disparity errors;
- c) loss of dword synchronization; and
- d) phy reset problems.

NOTE 19 - This standard also defines wrapping counters that count those same events (see table 37).

The saturating counters are each up to 4 bytes wide.

Phys may also count certain events (e.g., elasticity buffer overflows) using wrapping counters and record peak values for certain events (e.g., the longest connection time) using peak value detectors, reporting them in the Protocol-Specific Port log page (see 10.2.8.1), SMP REPORT PHY EVENT function (see 10.4.3.14), and/or

Page: 116

Author: hpq-relliott Subject: Note Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE

Move 4.10 text into 4.10.1 Phy test functions overview, allowing room for subsections for each phy test function

Author: intc-mseidel Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

"provide" in first sentence s/b "provides"

Author: Isi-gpenokie

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

TREJECT (when added, people wanted to ensure that all this was clearly labeled optional. In the rewrite per hpq-relliott comment, this is simplified to a statement that "Each phy test function is optional.")

This << The optional Protocol-Specific diagnostic page >> should be << The Protocol-Specific diagnostic page >>

Author: hpg-relliott Subject: Note Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE

Replace 1st paragraph, first sentence of 2nd paragraph, 3rd paragraph, and 4th paragraph with:

Phy test functions (e.g., transmission of test patterns) are used for phy and interconnect characterization and diagnosis. The phy may be attached to test equipment while performing a phy test function. The following optional mechanisms are defined for invoking phy test functions:

a) the Protocol-Specific diagnostic page for SAS (see 10.2.9.1) invokes a phy test function in a selected phy other than the phy that receives the diagnostic page in a SAS target device with an SSP target port. The SEND DIAGNOSTIC command may be sent through any SSP target port to any logical unit in the SAS target device that contains the phy that is to perform the phy test function. The phy test function starts some time after the SSP target port receives an ACK for the RESPONSE frame transmitted in response to the SEND DIAGNOSTIC command; and

b) the SMP PHY TEST FUNCTION function (see 10.4.3.25) invokes a phy test function in a phy controlled by a management device server other than the phy that receives the function. The phy test function starts some time after the SMP target port transmits the SMP response frame

Each phy test function is optional.

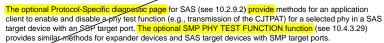
Author: Isi-gpenokie

REJECT (when added, people wanted to ensure that all this was clearly labeled optional. In the rewrite per hpq-relliott comment, this is simplified to a statement that "Each phy test function is optional.")

This << The optional SMP PHY TEST FUNCTION function >> should be << The SMP PHY TEST FUNCTION function >>

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE

Comments from page 116 continued on next page


If the zone lock inactivity timer expires while the zoning expander device is processing an SMP configuration function then the zoning expander device may complete the request successfully or return a function result of ZONE LOCK VIOLATION.

4.9.6.7 Enable a zoning expander device

الله a zoning expander device has the ZONING SUPPORTED bit set to one and the ZONING ENABLED bit set to zero the REPORT GENERAL response (see 10.4.3.4), then a zone manager configures the zoning expander device using the zone configuration process. This ensures that the zone permission table is the same in all zoning expander devices inside the ZPSDS.

Changes made by the SMP ENABLE DISABLE ZONING function sent by the active zone manager become active during the activate step (see 4.9.6.4).

4.10 Phy test functions

The application client sends a SEND DIAGNOSTIC command with the Protocol-Specific diagnostic page or on SMP PHY TEST FUNCTION function specifying the phy in the SAS target device that is to perform the phy test function and the phy test function to be performed. If the phy test function requires a specific phy test pattern and/or phy test pattern physical link rate, then it also specifies the phy test pattern and phy test pattern

The SEND DIAGNOSTIC command may be sent through any SSP target port to any logical unit in the SAS target device that contains the phy that is to perform the phy test function.

For the SEND DIAGNOSTIC command, the phy shall begin the specified phy test function after the SSF target port receives an ACK for the RESPONSE frame transmitted in response to the SEND DIAGNOSTIC command that requested the phy test function. For the SMP PHY TEST FUNCTION function, the phy shall begin the specified phy test function after the SMP target port transmits the SMP response frame.

The phy test function on one phy may affect the previously negotiated settings on other phys (e.g., in a device with a common SSC clock, the SSC modulation type may change from none to down-spreading even on phys that negotiated no SSC)

Once a SAS phy has begun performing a phy test function, it shall ignore its receiver. To stop a SAS phy from performing a phy test function, an application client sends a SEND DIAGNOSTIC command or an SMP PHY TEST FUNCTION function to a SAS phy in the SAS target device that is not performing a phy test function requesting a phy test function of 00h (i.e., STOP). If no such phy is available, the phy test function only stops on power loss.

4.11 Phy events

Phys shall count the following events using saturating counters and report them in the Protocol-Specific Port log page (see 10.2.8.1) and/or the SMP REPORT PHY ERROR LOG function (see 10.4.3.11):

- a) invalid dwords received;
- b) dwords received with running disparity errors;
- c) loss of dword synchronization; and
- d) phy reset problems.

NOTE 19 - This standard also defines wrapping counters that count those same events (see table 37).

The saturating counters are each up to 4 bytes wide.

Phys may also count certain events (e.g., elasticity buffer overflows) using wrapping counters and record peak values for certain events (e.g., the longest connection time) using peak value detectors, reporting them in the Protocol-Specific Port log page (see 10.2.8.1), SMP REPORT PHY EVENT function (see 10.4.3.14), and/or

command s/h command (see SPC-4)

Author: hpq-relliott Subject: Note Date: 6/4/2008 10:28:55 AM -07'00'

Create 4.10.2 Transmit pattern phy test function containing:

4.10.2 Transmit pattern phy test function

While a phy is performing the transmit pattern phy test function, the test equipment attached to that phy:

- a) shall not transmit COMSAS or COMWAKE; and
- b) shall not transmit COMINIT except to stop the phy test function.

While performing the transmit pattern phy test function, a phy:

- a) shall ignore all dwords received; and
- b) shall repeatedly transmit the specified pattern at the specified physical link rate

Author: wdc-mevans

Subject: Highlight Date: 6/4/2008 1:40:17 PM -07'00'

TREJECT (changed to "the mechanism for invoking the phy test function" instead)

it

the application client

Author: intc-mseidel

Subject: Highlight Date: 8/29/2008 11:40:13 AM -07'00'

REJECT (Other changes have embedded this text inside an a)b) list, making it look less like a generic statement about processing the SEND DIAGNOSTIC command. It is worded passively as "The phy test function starts some time after the SSP target port receives the ACK...". I don't think that will mislead anyone into thinking the test function invocation would bypass normal SCSI command processing rules

7/14 clarify that this only applies if GOOD status is being returned. The phy test function is not going to run if CHECK CONDITION is returned. Same for SMP - only function results of 00h mean the test function is beginning.)

5/5 mixing SCSI commands and SMP functions in this comment. Is this comment is asking about how unsupported SMP functions are handled? Or is the wording about starting the function after the ACK too broad, and need to say "command is successful".

If a phy does not support SEND DIAGNOSTIC function, then how does it respond? It is supposed to send a function result of UNKNOWN PHY TEST FUNCTION in the RESPONSE frame. But if it sends a RESPONSE frame and then gets an ACK, it "shall begin the specified phy test function"

The wording should be clarified here and in 10.4.3.29. The same is true for the wording concerned with the SMP PHY TEST FUNCTION.

Author: hpg-relliott

Subject: Highlight Date: 5/25/2008 3:32:44 PM -07'00'

ACCEPT - DONE (5/5 WG ok with concept)

To stop a SAS phy from performing a phy test function, an application client sends a SEND DIAGNOSTIC command or an SMP PHY TEST FUNCTION function to a SAS phy in the SAS target device that is not performing a phy test function requesting a phy test function of 00h (i.e., STOP). If no such phy is available, the phy test function only stops on power loss.

Comments from page 116 continued on next page

If the zone lock inactivity timer expires while the zoning expander device is processing an SMP configuration function then the zoning expander device may complete the request successfully or return a function result of ZONE LOCK VIOLATION.

4.9.6.7 Enable a zoning expander device

If a zoning expander device has the ZONING SUPPORTED bit set to one and the ZONING ENABLED bit set to zero in the REPORT GENERAL response (see 10.4.3.4), then a zone manager configures the zoning expander device using the zone configuration process. This ensures that the zone permission table is the same in all zoning expander devices inside the ZPSDS.

Changes made by the SMP ENABLE DISABLE ZONING function sent by the active zone manager become active during the activate step (see 4.9.6.4).

4.10 Phy test functions

The optional Protocol-Specific diagnostic page for SAS (see 10.2.9.2) provide methods for an application client to enable and disable a phy test function (e.g., transmission of the CJTPAT) for a selected phy in a SAS target device with an SSP target port. The optional SMP PHY TEST FUNCTION function (see 10.4.3.29) provides similar methods for expander devices and SAS target devices with SMP target ports.

The application client sends a SEND DIAGNOSTIC command with the Protocol-Specific diagnostic page or an SMP PHY TEST FUNCTION function specifying the phy in the SAS target device that is to perform the phy test function and the phy test function to be performed. If the phy test function requires a specific phy test pattern and/or phy test pattern physical link rate, then it also specifies the phy test pattern and phy test pattern. physical link rate.

The SEND DIAGNOSTIC command may be sent through any SSP target port to any logical unit in the SAS target device that contains the phy that is to perform the phy test function.

For the SEND DIAGNOSTIC command, the phy shall begin the specified phy test function after the SSP target port receives an ACK for the RESPONSE frame transmitted in response to the SEND DIACNOSTIC command that requested the phy test function. For the SMP PHY TEST FUNCTION function, the phy shall begin the specified phy test function after the SMP target port transmits the SMP response frame.

The phy test function on one phy may affect the previously negotiated settings on other phys/(e.g., in a device with a common SSC clock, the SSC modulation type may change from none to down-sprezding even on phys that negotiated no SSC).

Once a SAS phy has begun performing a phy test function, it shall ignore its receiver. To stop a SAS phy from performing a phy test function, an application client sends a SEND DIAGNOSTIC command or an SMP PHY TEST FUNCTION function to a SAS phy in the SAS target device that is not performing a phy test function requesting a phy test function of 00h (i.e., STOP). If no such phy is available, the phy test function only stops on power loss.

4.11 Phy events

116

Phys shall count the following events using saturating counters and report them in the Protocol-Specific Por log page (see 10.2.8.1) and/or the SMP REPORT PHY ERROR LOG function (see 10.4.3.11):

- a) invalid dwords received;
- b) dwords received with running disparity errors;
- c) loss of dword synchronization; and
- d) phy reset problems.

NOTE 19 - This standard also defines wrapping counters that count those same events (see table 37)

The saturating counters are each up to 4 bytes wide.

Phys may also count certain events (e.g., elasticity buffer overflows) using wrapping counters and record pleak values for certain events (e.g., the longest connection time) using peak value detectors, reporting them in the Protocol-Specific Port log page (see 10.2.8.1), SMP REPORT PHY EVENT function (see 10.4.3.14), and/or

Working Draft Serial Attached SCSI - 2 (SAS-2)

s/b

A phy stops performing a phy test function:

a) after the SCSI device server, if any, processes a Protocol-Specific diagnostic page specifying the phy and specifying a phy test function of 00h (i.e., STOP);

- b) after the management device serve, if any, processes an SMP PHY TEST FUNCTION request specifying the phy and specifying a phy test function of 00h (i.e., STOP);
- c) after the phy receives COMINIT; or
- d) upon power off.

It is vendor-specific how long a phy takes to stop performing the phy test function. After a phy stops performing a phy test function, it performs a link reset sequence

[the technical change here is adding COMINIT. That could be deferred to SAS-2.1]

Author: hpg-relliott

Subject: Highlight Date: 7/14/2008 4:28:03 PM -07'00'

TACCEPT - DONE

Once a SAS phy has begun performing a phy test function, it shall ignore its receiver.

While a phy is performing a phy test function, the link layer receivers (i.e., the SL, IR receiver, SL receiver, SSP receiver, STP receiver, and SMP receiver) shall ignore all incoming dwords and the OOB signal detector shall detect COMINIT. The phy shall ignore any other OOB signals (i.e., COMSAS and COMWAKE).

[the technical change here is honoring COMINIT. That could be deferred to SAS-2.1]

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

TREJECT (moot as the note was deleted per another comment)

fix font in "events (see table 37)."

Author: Isi-gpenokie

Subject: Highlight

Date: 6/4/2008 1:42:07 PM -07'00'

TREJECT (but deleted the note, and changed the first sentence 2 paragraphs down to "Phys may count those events and certain other events...")

Remove note and change to << See tgable xx for a definition of wrapping counters that count those same events. >>

Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

REJECT

them

the events and peak values

the SMP REPORT PHY EVENT LIST function (see 10.4.3.16). The wrapping counters and peak value detectors are each 4 bytes wide. Peak value detectors trigger Broadcast (Expander) under certain circumstances (see 7.2.6.4).

For phys not controlled by SMP target ports, the number of additional events monitored and which events to monitor is vendor-specific.

For phys controlled by SMP target ports, the number of additional events that are simultaneously monitored is vendor-specific, but the SMP CONFIGURE PHY EVENT function (see 10.4.3.30) allows the events to count/record to be specified.

The management device server shall maintain phy events for the last vendor-specific number of events and should maintain at least one phy event per phy. The management device server shall assign descriptors to the events sequentially starting at 0001h and shall return the descriptors in the SMP REPORT PHY EVENT LIST response (see 10.4.3.16). The management device server shall return the index of the descriptor for the last phy event in the SMP REPORT GENERAL response (see 10.4.3.4), the SMP REPORT PHY EVENT LIST response (see 10.4.3.16), and the SMP DISCOVER LIST response (see 10.4.3.15). The management devise server shall wrap the index to 0001h when the highest supported descriptor index has been used.

The management device server shall support phy event list descriptor (see 10.4.3.16.4) indexes from 0001h to FFFFh. The actual number of phy event list descriptors that the management device server maintains for retrieval with the REPORT PHY EVENT LIST request is vendor specific and is indicated by the MAXIMUM NUMBER OF STORED PHY EVENT LIST DESCRIPTORS field defined in the REPORT GENERAL response (see 10.4.3.4). The volatility of these stored descriptors is vendor specific. The management device server shall replace the least recently recorded phy event list descriptor with a new one once the number of recorded descriptors exceeds the value indicated by the MAXIMUM NUMBER OF STORED PHY EVENT LIST DESCRIPTORS field

The PHY EVENT SOURCE field, defined in table 37, is used in the Protocol-Specific Port log page (see 10.2.8.1), the REPORT PHY EVENT function (see 10.4.3.14), the REPORT PHY EVENT LIST function (see 10.4.3.16), and the CONFIGURE PHY EVENT function (see 10.4.3.30) and indicates or specifies the type of phy event in the accompanying PHY EVENT field.

Table 37 — PHY EVENT SOURCE field (part 1 of 4)

Code	Name	Type ^a	Description
00h	No event	N/A	No event. The PHY EVENT field is not valid.
01h	Invalid dword count b	wc	Number of invalid dwords (see 3.1.114) that have been received outside of phy reset sequences (i.e., between when the SP state machine (see 6.8) sends a Phy Layer Ready (SAS) confirmation or Phy Layer Ready (SATA) confirmation
			and when it sends a Phy Layer Not Ready confirmation to the link layer).
02h	Running disparity error count ^b	WC	Number of dwords containing running disparity errors (see 6.2) that have been received outside of phy reset sequences.
03h	Loss of dword synchronization count b	wc	Number of times the phy has restarted the link reset sequence because it lost dword synchronization (i.e., the SP state machine transitioned from SP15:SAS_PHY_Ready or SP22:SATA_PHY_Ready to SP0:OOB_COMINIT (see 6.8)).
04h	Phy reset problem count ^b	wc	Number of times a phy reset problem has occurred (see 6.7.4.2.4).

- The Type column indicates the source type:
- a) WC = wrapping counter;
- b) PVD = peak value detector; and
- c) N/A = not applicable.
- b This standard also defines a saturating counter that counts this event (see 10.2.8.1 and 10.4.3.11).

Page: 117

Author: elx-bmartin Subject: Sticky Note Date: 8/31/2008 3:40:29 PM -07'00' ACCEPT - DONE (7/14 this would help clarify the other elx-bmartin comment, so add it.) add the following sentence:

"Phy events on all logical phys within a phy shall be counted in a single counter associated with the phy."

Author: Isi-gpenokie Subject: Highlight Date: 6/9/2008 1:18:49 PM -07'00' TACCEPT - DONE (as "allows for specification of the events to monitor.")

I cannot parse this so it makes any sense << but the SMP CONFIGURE PHY EVENT function (see 10.4.3.30) allows the events to count/record to be specified.>> this needs to be fixed and the << / >> removed

Author: wdc-mevans Subject: Highlight Date: 5/17/2008 2:28:28 PM -07'00' REJECT (some of them count, some of them record peaks) count/record s/b count and record

Author: wdc-mevans Subject: Highlight
Date: 6/9/2008 1:16:27 PM -07'00'

ACCEPT - DONE (also one other place; comment added)

least recently recorded s/b

Author: elx-bmartin

Subject: Comment on Text
Date: 7/14/2008 4:17:38 PM -07'00'

"THELECT (7/14 allo counters are physical. There is no way to inquire about a specific logical phy's count, since they don't have phy

This table should have one additional field to indicate whether a phy event is on a logical phy or a physical phy. 01h through 04h are definitely physical phy based and 06h and above are definitely logical phy based. 05h is the only one that is difficult to determine which layer it belongs in.

Author: Isi-bbesmer Subject: Note Date: 5/25/2008 3:33:23 PM -07'00' ACCEPT - DONE (shaded labeled subsections added for each region)

Split this table into sections similar to Table 242 on page 554.

Author: RElliott Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE (see 6.2) point to new RD section

the SMP REPORT PHY EVENT LIST function (see 10.4.3.16). The wrapping counters and peak value detectors are each 4 bytes wide. Peak value detectors trigger Broadcast (Expander) under certain circumstances (see 7.2.6.4).

For phys not controlled by SMP target ports, the number of additional events monitored and which events to monitor is vendor-specific.

For phys controlled by SMP target ports, the number of additional events that are simultaneously monitored is vendor-specific, but the SMP CONFIGURE PHY EVENT function (see 10.4.3.30) allows the events to

The management device server shall maintain phy events for the last vendor-specific number of events and should maintain at least one phy event per phy. The management device server shall assign descriptors to the events sequentially starting at 0001h and shall return the descriptors in the SMP REPORT PHY EVENT LIST response (see 10.4.3.16). The management device server shall return the index of the descriptor for the last phy event in the SMP REPORT GENERAL response (see 10.4.3.4), the SMP REPORT PHY EVENT VIST response (see 10.4.3.16), and the SMP DISCOVER LIST response (see 10.4.3.15). The management device server shall wrap the index to 0001h when the highest supported descriptor index has been used. /

The management device server shall support phy event list descriptor (see 10.4.3.16.4) indexes from 0001h to FFFFh. The actual number of phy event list descriptors that the management device server maintains for retrieval with the REPORT PHY EVENT LIST request is vendor specific and is indicated by the MAXIMUM NUMBER OF STORED PHY EVENT LIST DESCRIPTORS field defined in the REPORT GENERAL response (see 10.4.3.4). The volatility of these stored descriptors is vendor specific. The management device server shall replace the least recently recorded phy event list descriptor with a new one once the number of recorded descriptors exceeds the value indicated by the MAXIMUM NUMBER OF STORED PHY EVENY LIST DESCRIPTORS field.

The PHY EVENT SOURCE field, defined in table 37, is used in the Protocol-Specific Port log page (see 10.2.8.1), the REPORT PHY EVENT function (see 10.4.3.14), the REPORT PHY EVENT LyST function (see 10.4.3.16), and the CONFIGURE PHY EVENT function (see 10.4.3.30) and indicates or specifies the type of phy event in the accompanying PHY EVENT field.

Table 37 — PHY EVENT SOURCE field (part 1 of 4)

Code	Name	Type ^a	Description
00h	No event	N/A	No event. The PHY EVENT field is not valid.
01h	Invalid dword count b	wc	Number of invalid dwords (see 3.1.114) that have been received outside of bhy reset sequences (i.e., between when the SP state machine (see 6.8) sends a Phy Layer Ready (SAS) confirmation or Phy Layer Ready (SATA) confirmation and when it serids a Phy Layer Not Ready confirmation to the link layer).
02h	Running disparity error count ^b	wc	Number of awords containing running disparity errors (see 6.2) that have been received outside of phy reset sequences.
03h	Loss of dword synchronization count b	wc	Number of times the phy has restarted the link reset sequence because it lost dword synchronization (i.e., the SP state machine transitioned from SP15:SAS_PHY_Ready or SP2:SATA_PHY_Ready to SP0:OOB_COMINIT (see 6.8)).
04h	Phy reset problem count ^b	wc	Number of times a phy reset problem has occurred (see 6.7.4.2.4).

- a The Type column indicates the source type:
- a) WC = wrapping counter;
- b) PVD = peak value detector; and
- c) N/A = not applicable.
- b This standard also defines a saturating counter that counts this event (see 10.2.8.1 and 10.4.3.11).

117

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: stx-ghoulder Subject: Highlight Date: 5/25/2008 3:33:38 PM -07'00' Date: 5/25/2008 3:33:38 PM -07'00' PREJECT (abbreviations only used within one table are not normally added to 3.2; the table footnote, which repeats on each page, is supposed to suffice)

WC = wrapping counter;

b) PVD = peak value detector; and

The WC and PVD abbreviations should be added to clause 3.2.

Table 37 — PHY EVENT SOURCE field (part 2 of 4)

Code	Name	Type ^a	Description
05h	Elasticity buffer overflow count	wc	Number of times the phy's elasticity buffer (see 7.3) has overflowed outside of phy reset sequences (e.g., because it did not receive a sufficient number of deletable primitives).
06h	Received ERROR count	WC	Number of times the phy received an ERROR primitive.
07h - 1Fh	Reserved for phy layer-ba	ased phy	events
20h	Received address frame error count	WC	Number of times the phy detected an invalid address frame (see 7.8) (e.g., because of a CRC error).
21h	Transmitted abandon-class OPEN_REJECT count	WC	Number of times the phy received an OPEN address frame and transmitted an abandon-class OPEN_REJECT (see 7.2.6.10). In expander devices, forwarded OPEN_REJECTs shall not be counted.
22h	Received abandon-class OPEN_REJECT count	wc	Number of times the phy originated an OPEN address frame and received an abandon-class OPEN_REJECT (see 1.2.6.10). In expander devices, OPEN_REJECTs in response to forwarded OPEN address frames shall not be counted.
23h	Transmitted retry-class OPEN_REJECT count	WC	Number of times the phy received an OPEN address frame and transmitted a retry-class OPEN_REJECT (see 7.2.6.10). In expander devices, forwarded OPEN_REJECTs shall not be counted.
24h	Received retry-class OPEN_REJECT count	wc	Number of times the phy originated an OPEN address frame and received a retry-class OPEN_REJECT (see 7.2.6.70). In expander devices, OPEN_REJECTs in response to forwarded OPEN address frames shall not be counted.
25h	Received AIP (WAITING ON PARTIAL) count	wc	Number of times the phy received an AIP (WAITIVIG ON PARTIAL) or AIP (RESERVED WAITING ON PARTIAL). In expander devices, forwarded AIPs shall be counted.
26h	Received AIP (WAITING ON CONNECTION) count	wc	Number of times the phy received an AIP (WAITING ON CONNECTION). In expander devices, forwarded AIPs shall be counted.
27h	Transmitted BREAK count	WC	Number of times the phy transmitted ABREAK that was not a response to a BREAK it received (e/g., a Close Timeout was detected by the SL state machine interfacing to the SMP target port).
28h	Received BREAK count	WC	Number of times the phy received a BREAK that was not a response to a BREAK that it transmitted.
29h	Break Timeout count	WC	Number of times the phy transmitted a BREAK and did not receive a BREAK or BREAK_REPLY in response (e.g., as detected by the XL state machine and/or the SL state machine interfacing to the SMP target port).

^a The Type column indicates the source type:

Page: 118

Author: Isi-gpenokie
Subject: Cross-Out
Date: 5/6/2008 1:07:48 PM -07'00'
TREJECT

Don't need this word.

Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 3:33:47 PM -07'00'
TREJECT (nothing wrong with "because")

Change to << as a result of >>

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

SL state machine
s/b
SL state machines

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
SL state machine

SL state machines

a) WC = wrapping counter;

b) PVD = peak value detector; and

c) N/A = not applicable.

b This standard also defines a saturating counter that counts this event (see 10.2.8.1 and 10.4.3.11).

Table 37 — PHY EVENT SOURCE field (part 3 of 4)

Code	Name	Type ^a	Description	
2Ah	Connection count	WC	Number of connections in which the phy was involved.	
2Bh	Peak transmitted pathway blocked count	PVD	Peak value of a PATHWAY BLOCKED COUNT field in an OPEN address frame transmitted by the phy. Since the maximum value of the PATHWAY BLOCKED COUNT field is FFh, only byte 3 of the PHY EVENT field is used.	
2Ch	Peak transmitted arbitration wait time	PVD	Peak value of an ARBITRATION WAIT TIME field in an OPEN address frame transmitted by the phy. Since the maximum value of the ARBITRATION WAIT TIME field is FFFFh, only bytes 2 and 3 of the PHY EVENT field are used.	
2Dh	Peak arbitration time	PVD	Peak time in microseconds after transmitting an OPEN address frame that the phy has waited for connection response (e.g., OPEN_ACCEPT or OPEN_REJECT).	
2Eh	Peak connection time	PVD	The peak duration, in microseconds, of any connection in which the phy was involved.	
2Fh - 3Fh	Reserved for SAS arbitra	ion-relate	d phy information	
40h	Transmitted SSP frame count	WC	Number of SSP frames transmitted.	
41h	Received SSP frame count	WC	Number of SSP frames received.	
42h	Transmitted SSP frame error count	WC	Number of times the phy was used in a connection involving the SSP target port, transmitted an SSP frame, and received a NAK or an ACK/NAK timeout.	
43h	Received SSP frame error count	WC	Number of times the phy was used in a connection involving the SSP target port, detected an invalid SSP frame and transmitted a NAK (CRC ERROR) (e.g., because of a CRC error).	
44h	Transmitted CREDIT_BLOCKED count	wc	Number of times the phy transmitted a CREDIT_BLOCKED.	
45h	Received CREDIT_BLOCKED count	wc	Number of times the phy received a CREDIT_BLOCKED.	
46h - 4Fh	Reserved for SSP-related	l phy ever	nts	
50h	Transmitted SATA frame count	WC	Number of STP or SATA frames transmitted.	
51h	Received SATA frame count	WC	Number of STP or SATA frames received.	

^a The Type column indicates the source type:

Page: 119

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 3:34:09 PM -07'00'

This << only bytes 2 and 3 of the PHY EVENT field are used >> should be << only byte 2 and byte 3 of the PHY EVENT field are used >>

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'

REJECT (nothing wrong with "because") Change to << as a result of >>

a) WC = wrapping counter;

b) PVD = peak value detector; and

c) N/A = not applicable.

b This standard also defines a saturating counter that counts this event (see 10.2.8.1 and 10.4.3.11).

Table 37 — PHY EVENT SOURCE field (part 4 of 4)

Code	Name	Type ^a	Description
52h	SATA flow control buffer overflow count	wc	Number of times the phy's STP flow control buffer (eee 7.17.2) has overflowed (e.g., because it received more data dwords than allowed after transmitting SATA_HOLD during an STP connection). In an expander device, this count should be maintained in the expander phy transmitting the SATA_HOLD and receiving the data dwords, but may be maintained in the expander phy receiving the SATA_HOLD and transmitting the data dwords.
53h - 5Fh	Reserved for STP and SA	ATA-relate	ed phy events
60h	Transmitted SMP frame count	WC	Number of SMP frames transmitted.
61h	Received SMP frame count	wc	Number of SMP frames received.
62h	Reserved for SMP-related	d phy eve	nts
63h	Received SMP frame error count	WC Number of times the phy was used to access the SMP target port and the SMP target port detected an invalid SMP fram and transmitted a BREAK (e.g., because of a CRC error).	
64h - 6Fh	Reserved for SMP-related	d phy eve	nts
70h - CFh	Reserved		
D0h - FFh	Vendor specific		
	e Type column indicates the WC = wrapping counter; PVD = peak value detecto		ype:

- b) PVD = peak value detector; andc) N/A = not applicable.
- b This standard also defines a saturating counter that counts this event (see 10.2.8.1 and 10.4.3.11).

Page: 120

Author: Isi-gpenokie Subject: Cross-Out Date: 5/6/2008 1:07:48 PM -07'00' TREJECT Don't need this word.

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
TREJECT (nothing wrong with "because")

Change to << as a result of >>

5 Physical layer

5.1 Physical layer overview

The physical layer defines:

b) transmitter and receiver device electrical characteristics.

Within this standard, references to connector gender use the terms plug and receptacle as equivalent to the terms free and fixed, respectively, that may be used in the references that define the connectors. Fixed and free terminology has no relationship to the application of the connector.

5.2 Passive interconnect

5.2.1 SATA connectors and cable assemblies

Figure 58 shows a schematic representation of the connectors and cables defined by SATA (see SATA-2). A SATA host is analogous to a SAS initiator device and a SATA device is analogous to a SAS target device.

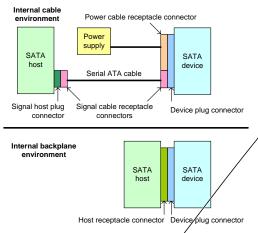


Figure 58 — SATA connectors and cables

5.2.2 SAS connectors and cables

This standard defines SAS Drive cable, SAS Drive backplane, SAS internal cable, and SAS external cable environments.

Page: 121

Author: ibm-ted-vojnovich

Subject: Note Date: 9/18/2008 12:54:19 PM -07'00'

ACCEPT - DONE (As requested by the WG, Jay Neer (Molex)'s 08-322 adds a key to prevent a 10 m Mini SAS 4x cable from being plugged into a SAS-1.1 Mini SAS 4x receptacle, which will solve this problem. The 8x connectors in SAS-2.1 will have adequate sideband signals for the system to detect that an incompatible cable was attached; for the Mini SAS 4x connectors, which have no sidebands, keys are the best alternative.)

Section 5: Lots of good math there. However, I am concerned about the following scenario: Somebody has a SAS 1.1 device (disk for example) and uses a SAS 2.0 cable (I understand that SAS supports up to 10M while SAS 1.1 supports 5M). If the distance limit for SAS 2.0 is longer than SAS 1.1, how does the system behave (I would think SAS 1.1 transceiver would have a hard time working with a cable that is farther in distance). I may be off base here (have not watched the analog side that closely) but would think there needs some way to help the admin trouble shoot this (connector/cable color matching, some impedance sensing, etc). Should that not be specified in the std?

Author: wdc-mevans

Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'

"TREJECT (these are only used for targets, not initiators. In SCSI speak, "device" includes both initiators and targets, so calling it a

"REJECT (these are only used for targets, not initiators. In SCSI speak, "device" includes both initiators and targets, so calling it a "device" connector would imply that SAS initiators might use this connector. That is different from ATA, where "device" means target and "host" means initiator (there is no global term covering both ATA device & host). I think STA recommended the name and capitalization "SAS Drive" back in the SAS-1 era.)

Global

SAS Drive cable, SAS Drive backplane,

121

SAS device cable, SAS device backplane

[These terms came into the SAS 1.1 standard during the letter ballot process, rev 09c to be exact. I'm not aware of:

a) why this became "Drive" in the first place; and

b) the rationale for calling these "Drive" -- especially capitalized -- when none of the other related terms are capitalized. These terms -- especially SAS Drive backplane receptacle are counter intuitive. My recommended change is consistent with standard SCSI naming conventions.]

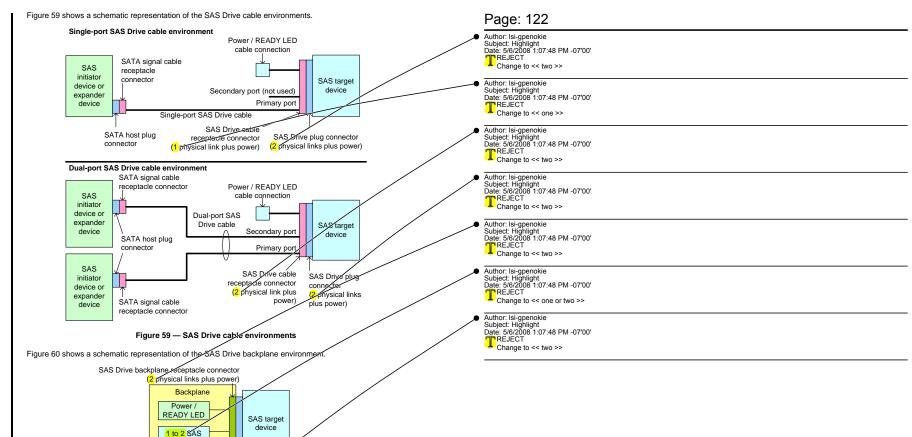


Figure 60 — SAS Drive backplane environment

initiator device(s) or expande

device(s)

SAS Drive plug connector

(2 physical links plus power)

T10/1760-D Revision 14

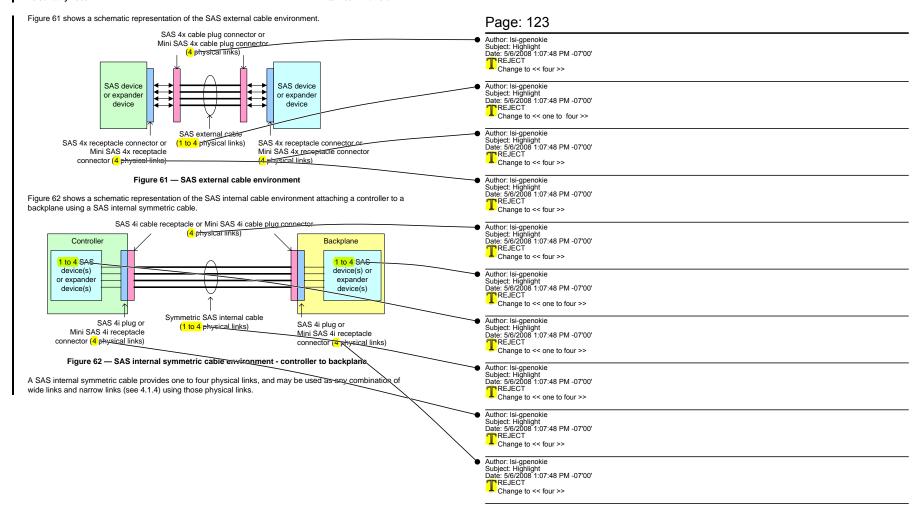
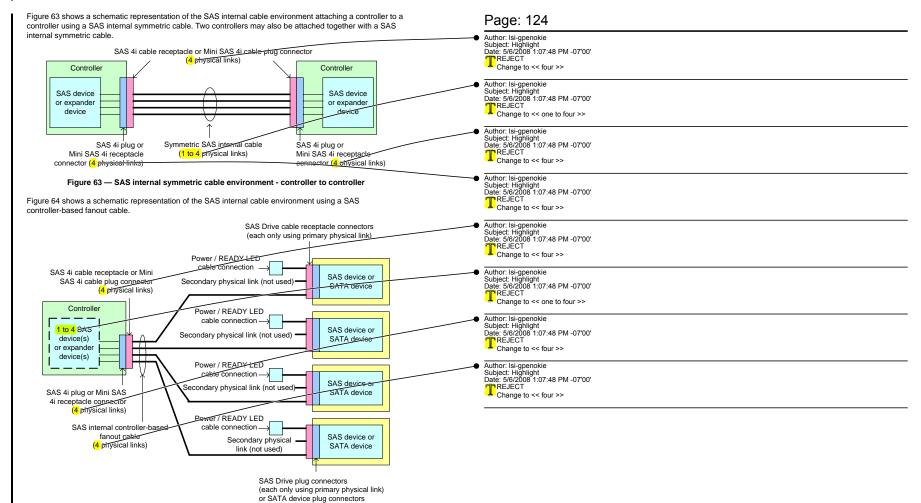
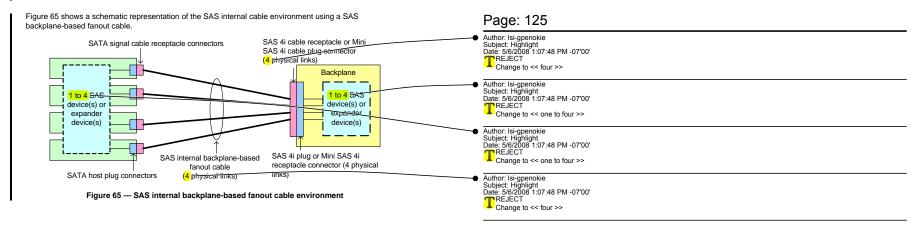




Figure 64 — SAS internal controller-based fanout cable environment

T10/1760-D Revision 14

5.2.3 Connectors

5.2.3.1 Connectors overview

Table 38 summarizes the connectors defined in this standard.

Table 38 — Connectors

	Physical		Attaches to				
Type of connector	ype of connector links Reference		Type of connector	Physical links	Reference		
SATA internal connectors used by SAS							
SATA signal cable receptacle	1	SATA-2	SATA host plug	1	SATA-2		
SATA host plug	1	SATA-2	SATA signal cable receptacle	1	SATA-2		
SATA device plug	1	SATA-2	SAS Drive cable receptacle	1 or 2	5.2.3.2.1.2		
SATA device plug	'	SAIA-2	SAS Drive backplane receptacle	2	5.2.3.2.1.3		
SAS internal connectors - SAS Drive connectors							
CAC Deixa aller	2	5.2.3.2.1.1	SAS Drive cable receptacle	1 or 2	5.2.3.2.1.2		
SAS Drive plug	2	5.2.3.2.1.1	SAS Drive backplane receptacle	2	5.2.3.2.1.3		
SAS Drive cable	1 or 2	5.2.3.2.1.2	SAS Drive plug	2	5.2.3.2.1.		
receptacle	1 01 2	5.2.3.2.1.2	SATA device plug	1	SATA-2		
SAS Drive backplane	2	5.2.3.2.1.3	SAS Drive plug	2	5.2.3.2.1.		
receptacle	2	5.2.3.2.1.3	SATA device plug	1	SATA-2		
SAS internal connectors	s - other						
SAS 4i cable receptacle	4	5.2.3.2.2.1	SAS 4i plug	4	5.2.3.2.2.		
SAS 4i plug	4	5.2.3.2.2.2	SAS 4i cable receptacle	4	5.2.3.2.2.		
Mini SAS 4i cable plug	4	5.2.3.2.3.1	Mini SAS 4i receptacle	4	5.2.3.2.3.		
Mini SAS 4i receptacle	4	5.2.3.2.3.2	Mini SAS 4i cable plug	4	5.2.3.2.3.		
SAS external connectors							
SAS 4x cable plug	4	5.2.3.3.1.1	SAS 4x receptacle	4	5.2.3.3.1.		
SAS 4x receptacle	4	5.2.3.3.1.2	SAS 4x cable plug	4	5.2.3.3.1.		
Mini SAS 4x cable plug	4	5.2.3.3.2.1	Mini SAS 4x receptacle	4	5.2.3.3.2.2		
Mini SAS 4x receptacle	4	5.2.3.3.2.2	Mini SAS 4x plug	4	5.2.3.3.2.		

A SAS icon (see Annex M) should be placed on or near each SAS connector.

5.2.3.2 SAS internal connectors

5.2.3.2.1 SAS Drive connectors

5.2.3.2.1.1 SAS Drive plug connector

The SAS Drive plug connector is the Device Free (Plug) connector defined in SFF-8482.

See SFF-8223, SFF-8323, and SFF-8523 for the SAS Drive plug connector locations on common form factors.

Figure 66 shows the SAS Drive plug connector.

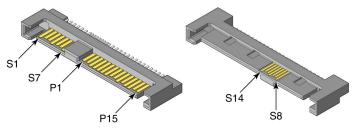


Figure 66 — SAS Drive plug connector

Table 39 (see 5.2.3.2.1.4) defines the pin assignments for the SAS Drive plug connector.

5.2.3.2.1.2 SAS Drive cable receptacle connector

The SAS Drive cable receptacle connector is the Internal Cable Fixed (Receptacle) connector defined in SFF-8482.

The single-port version attaches to:

- a) a SAS Drive plug connector, providing contact for the power pins and only the primary physical link; or
- b) a SATA device plug connector, providing contact for the power pins and the primary physical link.

Figure 67 shows the single-port version of the SAS Drive cable receptacle connector.

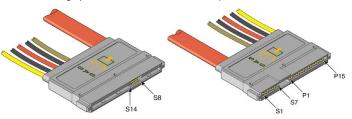


Figure 67 — Single-port SAS Drive cable receptacle connector

The dual-port version attaches to:

a) a SAS Drive plug connector, providing contact for the power pins and only the primary physical link;

 a SAS Drive plug connector, providing contact for the power pins and both the primary and secondary physical links; or

c) a SATA device plug connector, providing contact for the power pins and the primary physical link.

Figure 68 shows the dual-port version of the SAS Drive cable receptacle connector.

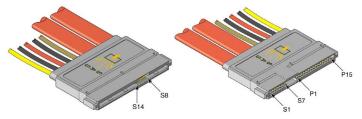


Figure 68 — Dual-port SAS Drive cable receptacle connector

Table 39 (see 5.2.3.2.1.4) defines the pin assignments for the SAS Drive cable receptacle connector. The secondary physical link (i.e., pins S8 through S14) is not supported by the single-port internal cable receptacle.

5.2.3.2.1.3 SAS Drive backplane receptacle connector

The SAS Drive backplane receptacle connector is the Backplane Fixed (Receptacle) connector defined in SFF-8482.

The SAS Drive backplane receptacle connector attaches to:

- a) a SAS Drive plug connector, providing contact for the power pins and only the primary physical link;
- a SAS Drive plug connector, providing contact for the power pins and both primary and secondary physical links; or
- c) a SATA device plug connector, providing contact for the power pins and the primary physical link.

Figure 69 shows the SAS Drive backplane receptacle connector.

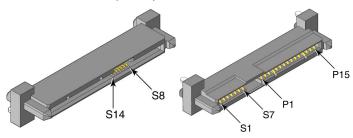


Figure 69 — SAS Drive backplane receptacle connector

Table 39 (see 5.2.3.2.1.4) defines the pin assignments for the SAS Drive backplane receptacle connector.

5.2.3.2.1.4 SAS Drive connector pin assignments

Table 39 defines the SAS target device pin assignments for the SAS Drive plug connector (see 5.2.3.2.1.1), the SAS Drive cable receptacle connector (see 5.2.3.2.1.2), and the SAS Drive hackplane receptacle connector (see 5.2.3.2.1.3). The TP+, TP-, RP+, and RP- signals are used by the primary physical link. The TS+, TS-, RS+, and RS- signals are used by the secondary physical link, if any.

SAS Drive plug connector pin assignments, except for the addition of the secondary physical link when present, are in the same locations as they are in a SATA device plug connector (see SATA-2).

Page: 129

Author: hpq-bolawsky
Subject: Note
Date: 5/23/2008 1:32:05 PM -07'00'
REJECT (Alvin: This paragraph only defines the location, not the properties. Note d of Table 39 specifically states that the electrical properties of SATA for this pin are different.)

Paragraph 2 implies that pin 11 of the power section is defined the same in Serial ATA. Note d clarifies this to some extent but the original SATA-II release identifies this pin as reserved.

Table 39 — SAS Drive connector pin assignments

Segment	Pin	Backplane receptacle	SAS Drive plug and SAS Drive cable receptacle			
	S1	SIGNAL	GROUND			
	S2	TP+	RP+			
	S3	TP-	RP-			
Primary signal segment	S4	SIGNAL GROUND				
	S5	RP-	TP-			
	S6	RP+	TP+			
	S7	SIGNAL	GROUND			
	S8	SIGNAL	GROUND			
	S9	TS+	RS+			
0	S10	TS-	RS-			
Secondary signal segment a	S11	SIGNAL GROUND				
oogmon	S12	RS-	TS-			
	S13	RS+ TS+				
	S14	SIGNAL GROUND				
	P1	V ₃₃ ^c				
	P2	V ₃	3 ^C			
	P3	V ₃₃ , precharge ^c				
	P4	GROUND				
	P5	GROUND				
	P6	GROUND				
	P7	V ₅ , precharge ^c				
Power segment ^b	P8	V ₅ ^c				
	P9	V ₅ °				
	P10	GROUND				
	P11	READY LED d				
	P12	GROUND				
	P13	V ₁₂ , pre	charge ^c			
	P14	V ₁				
	P15	V ₁₂ °				

 ^a S8 through S14 are no-connects on single-port implementations.
 ^b Backplane receptacle connectors and SAS Drive cable receptacle connectors provide V₃₃, V₅, and V₁₂.

SAS Device plug connectors receive V₃₃, V₅, and V₁₂.

^c Behind a SAS Drive plug connector, the precharge pin and each corresponding voltage pin shall be connected together on the SAS target device (e.g., the V₅, precharge pin P7 is connected to the two V₅

pins P8 and P9).

d Electrical characteristics for READY LED are defined in 5.4 and signal behavior is defined in 10.4.1. SATA devices use P11 for activity indication and staggered spin-up disable and have different electrical characteristics (see SATA-2).

5.2.3.2.2 SAS 4i connectors

5.2.3.2.2.1 SAS 4i cable receptacle connector

The SAS 4i cable receptacle connector is the 4 Lane Cable Receptacle (fixed) with Backshell connector defined in SFF-8484.

Figure 70 shows the SAS 4i cable receptacle connector.

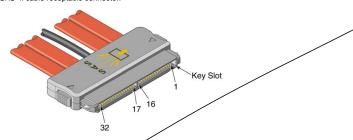


Figure 70 — SAS 4i cable receptacle connector

Table 40 and table 41 (see 5.2.3.2.2.3) define the pin assignments for the SAS 4i cable receptacle connector.

5.2.3.2.2.2 SAS 4i plug connector

The SAS 4i plug connector is the 4 Lane Vertical Plug (free) or 4 Lane R/A Plug (free) connector defined in SFF-8484.

Figure 71 shows the SAS 4i plug connector.

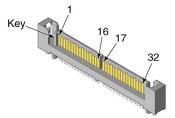


Figure 71 — SAS 4i plug connector

Table 40 and table 41 (see 5.2.3.2.2.3) define the pin assignments for the SAS 4i plug connector.

Page: 131

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' PREJECT (that's how it's named in the reference)

Change to << four >>

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
REJECT (that's how it's named in the reference)

Change to << four >>

5.2.3.2.2.3 SAS 4i connector pin assignments

Table 40 defines the pin assignments for SAS 4i cable receptacle connectors (see 5.2.3.2.2.1) and SAS 4i plug connectors (see 5.2.3.2.2.2) for controller applications using one, two, three, or four of the physical links.

Table 40 — Controller SAS 4i connector pin assignments and physical link usage

Signal	Pin usage based on number of physical links supported by the cable assembly ^a					
	One	Two	Three	Four		
Rx 0+	2	2	2	2		
Rx 0-	3	3	3	3		
Tx 0-	5	5	5	5		
Tx 0+	6	6	6	6		
Rx 1+	N/C	8	8	8		
Rx 1-	N/C	9	9	9		
Tx 1-	N/C	11	11	11		
Tx 1+	N/C	12	12	12		
Sideband 0	14	14	14	14		
Sideband 1	15	15	15	15		
Sideband 2	16	16	16	16		
Sideband 3	17	17	17	17		
Sideband 4	18	18	18	18		
Sideband 5	19	19	19	19		
Rx 2+	N/C	N/C	21	21		
Rx 2-	N/C	N/C	22	22		
Tx 2-	N/C	N/C	24	24		
Tx 2+	N/C	N/C	25	25		
Rx 3+	N/C	N/C	N/C	27		
Rx 3-	N/C	N/C	N/C	28		
Tx 3-	N/C	N/C	N/C	30		
Tx 3+	N/C	N/C	N/C	31		
SIGNAL GROUND	1, 4, 7, 10, 13, 20, 23, 26, 29, 32					
a N/C = not connected						

The use of the sideband signals by a controller is vendor-specific. One implementation of the sideband signals by a controller is an SGPIO initiator interface (see SFF-8485). Other implementations shall be compatible with the signal levels defined in SFF-8485.

Table 41 defines the pin assignments for SAS 4i plug connectors (see 5.2.3.2.2.1) and SAS 4i cable receptacle connectors (see 5.2.3.2.2.1) for backplane applications using one, two, three, or four of the physical links.

Table 41 — Backplane SAS 4i connector pin assignments and physical link usage

Signal		Pin usage based on number of physical links supported by the cable assembly ^a					
	One	Two	Three	Four			
Rx 3+	N/C	N/C	N/C	2			
Rx 3-	N/C	N/C	N/C	3			
Tx 3-	N/C	N/C	N/C	5			
Tx 3+	N/C	N/C	N/C	6			
Rx 2+	N/C	N/C	8	8			
Rx 2-	N/C	N/C	9	9			
Tx 2-	N/C	N/C	11	11			
Tx 2+	N/C	N/C	12	12			
Sideband 5	14	14	14	14			
Sideband 4	15	15	15	15			
Sideband 3	16	16	16	16			
Sideband 2	17	17	17	17			
Sideband 1	18	18	18	18			
Sideband 0	19	19	19	19			
Rx 1+	N/C	21	21	21			
Rx 1-	N/C	22	22	22			
Tx 1-	N/C	24	24	24			
Tx 1+	N/C	25	25	25			
Rx 0+	27	27	27	27			
Rx 0-	28	28	28	28			
Tx 0-	30	30	30	30			
Tx 0+	31	31	31	31			
SIGNAL GROUND	1, 4, 7, 10, 13, 20, 23, 26, 29, 32						
a N/C = not connected							

The use of the sideband signals by a backplane is vendor-specific. One implementation of the sideband signals by a backplane is an SGPIO target interface (see SFF-8485). Other implementations shall be compatible with the signal levels defined in SFF-8485.

5.2.3.2.3 Mini SAS 4i connectors

5.2.3.2.3.1 Mini SAS 4i cable plug connector

The Mini SAS 4i cable plug connector is the free (plug) 36-circuit Unshielded Compact Multilane connector defined in SFF-8087 and SFF-8086.

Figure 72 shows the Mini SAS 4i cable plug connector.

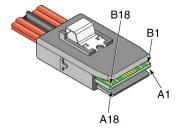


Figure 72 - Mini SAS 4i cable plug connector

Table 42 and table 43 (see 5.2.3.2.3.3) define the pin assignments for the Mini SAS 4i cable plug connector.

5.2.3.2.3.2 Mini SAS 4i receptacle connector

The Mini SAS 4i receptacle connector is the fixed (receptacle) 36-circuit Unshielded Compact Multilane connector defined in SFF-8087 and SFF-8086.

Figure 73 shows the Mini SAS 4i receptacle connector.

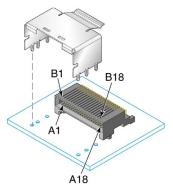


Figure 73 — Mini SAS 4i receptacle connector

Table 42 and table 43 (see 5.2.3.2.3.3) define the pin assignments for the Mini SAS 4i receptacle connector.

5.2.3.2.3.3 Mini SAS 4i connector pin assignments

Table 42 defines the pin assignments for Mini SAS 4i plug connectors (see 5.2.3.2.3.1) and Mini SAS 4i cable receptacle connectors (see 5.2.3.2.3.2) for controller applications using one, two, three, or four of the physical links.

Table 42 — Controller Mini SAS 4i connector pin assignments and physical link usage

Signal			n number of the cable a		Mating level
-	One	Two	Three	Four	ievei
Rx 0+	A2	A2	A2	A2	
Rx 0-	А3	А3	A3	А3	Third
Rx 1+	N/C	A5	A5	A5	IIIIIu
Rx 1-	N/C	A6	A6	A6	
Sideband 7	A8	A8	A8	A8	
Sideband 3	A9	A9	A9	A9	Circ4
Sideband 4	A10	A10	A10	A10	First
Sideband 5	A11	A11	A11	A11	
Rx 2+	N/C	N/C	A13	A13	
Rx 2-	N/C	N/C	A14	A14	Third
Rx 3+	N/C	N/C	N/C	A16	
Rx 3-	N/C	N/C	N/C	A17	
Tx 0+	B2	B2	B2	B2	
Tx 0-	В3	В3	В3	В3	Third
Tx 1+	N/C	B5	B5	B5	Third
Tx 1-	N/C	B6	B6	B6	
Sideband 0	B8	B8	B8	B8	
Sideband 1	B9	В9	B9	B9	First
Sideband 2	B10	B10	B10	B10	First
Sideband 6	B11	B11	B11	B11	
Tx 2+	N/C	N/C	B13	B13	
Tx 2-	N/C	N/C	B14	B14	Third
Tx 3+	N/C	N/C	N/C	B16	Third
Tx 3-	N/C	N/C	N/C	B17	
SIGNAL A1, A4, A7, A12, A15, A18, GROUND B1, B4, B7, B12, B15, B18					First

The use of the sideband signals by a controller is vendor-specific. One implementation of the sideband signals by a controller is an SGPIO initiator interface (see SFF-8485). Other implementations shall be compatible with the signal levels defined in SFF-8485.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 135

Author: hpq-bolawsky
Subject: Note
Date: 5/23/2008 1:41:22 PM -07'00'
ACCEPT - DONE (Alvin: The mating level is a function of the length as described in SFF-8086. There are three levels defined

(second mate optional), so the absence of second level is okay, but not intuitively obvious.

Resolution:

Add a flag for note b at the head of the "Mating level" column.

Add note b: b Mating level applies to the physical dimension of the contact (see SFF-8086).

Done to all 3 tables with "mating level" columns - table 42, 43, and 49.)

Table 42/43

Why are signal pins labeled as third mate and not second?

Table 43 defines the pin assignments for Mini SAS 4i plug connectors (see 5.2.3.2.3.1) and Mini SAS 4i cable receptacle connectors (see 5.2.3.2.3.2) for backplane applications using one, two, three, or four of the physical links.

Table 43 — Backplane Mini SAS 4i connector pin assignments and physical link usage

Signal	Pin usag links sup	Mating			
	One	Two	Three	Four	level
Rx 0+	A2	A2	A2	A2	
Rx 0-	А3	A3	A3	A3	Third
Rx 1+	N/C	A5	A5	A5	Tillia
Rx 1-	N/C	A6	A6	A6	
Sideband 0	A8	A8	A8	A8	
Sideband 1	A9	A9	A9	A9	First
Sideband 2	A10	A10	A10	A10	FIISL
Sideband 6	A11	A11	A11	A11	
Rx 2+	N/C	N/C	A13	A13	
Rx 2-	N/C	N/C	A14	A14	Third
Rx 3+	N/C	N/C	N/C	A16	
Rx 3-	N/C	N/C	N/C	A17	
Tx 0+	B2	B2	B2	B2	
Tx 0-	В3	В3	В3	В3	Third
Tx 1+	N/C	B5	B5	B5	Tilliu
Tx 1-	N/C	B6	B6	В6	
Sideband 7	B8	B8	B8	B8	
Sideband 3	B9	B9	B9	В9	First
Sideband 4	B10	B10	B10	B10	11151
Sideband 5	B11	B11	B11	B11	
Tx 2+	N/C	N/C	B13	B13	
Tx 2-	N/C	N/C	B14	B14	Third
Tx 3+	N/C	N/C	N/C	B16	Third
Tx 3-	N/C	N/C	N/C	B17	
SIGNAL A1, A4, A7, A12, A15, A18, GROUND B1, B4, B7, B12, B15, B18					First
a N/C = not connected					

The use of the sideband signals by a backplane is vendor-specific. One implementation of the sideband signals by a backplane is an SGPIO target interface (see SFF-8485). Other implementations shall be compatible with the signal levels defined in SFF-8485.

Page: 136

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

assembly a

fix footnote cross reference, which points to wrong table

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
Add footnote for Mating level as described in table 42

5.2.3.3 SAS external connectors

5.2.3.3.1 SAS 4x connectors

5.2.3.3.1.1 SAS 4x cable plug connector

The SAS 4x cable plug connector is the 4X free (plug) connector with jack screws defined in SFF-8470. The SAS 4x cable plug connector shall not include keys and may include key slots. Key slots for the SAS 4x cable plug connector are not defined by this standard.

Figure 74 shows the SAS 4x cable plug connector.

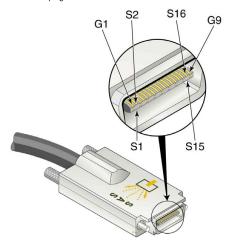


Figure 74 — SAS 4x cable plug connector

Table 46 (see 5.2.3.3.1.3) defines the pin assignments for the SAS 4x cable plug connector. Table 44 defines the icons that should be placed on or near SAS 4x cable plug connectors.

Table 44 — SAS 4x cable plug connector icons

Use	Icon
End of a SAS external cable that attaches to an end device, an enclosure out port, or an enclosure universal port	Diamond
End of a SAS external cable that attaches to an end device, an enclosure in port, or an enclosure universal port	Circle

5.2.3.3.1.2 SAS 4x receptacle connector

The SAS 4x receptacle connector is the 4X fixed (receptacle) connector with jack screws defined in SFF-8470. The SAS 4x receptacle connector shall not include keys and may include key slots. Key slots for the SAS 4x receptacle connector are not defined by this standard.

137

Working Draft Serial Attached SCSI - 2 (SAS-2)

A SAS 4x receptacle connector may be used by one or more SAS devices (e.g., one SAS device using physical links 0 and 3, another using physical link 1, and a third using physical link 2).

A SAS 4x receptacle connector shall be used by no more than one expander device at a time, and all physical links shall be used by the same expander port (i.e., all the expander phys shall have the same routing attribute (e.g., subtractive or table) (see 4.6.2)).

Figure 75 shows the SAS 4x receptacle connector.

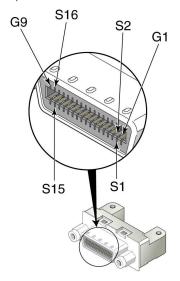


Figure 75 — SAS 4x receptacle connector

Table 46 (see 5.2.3.3.1.3) defines the pin assignments for the SAS 4x receptacle connector.

Table 45 defines the icons that should be placed near SAS 4x receptacle connectors.

Table 45 — SAS 4x receptacle connector icons

Use	Icons	
Enclosure out port (see 4.6.2)	Diamond	
End device or enclosure universal port	Diamond and circle	
Enclosure in port (see 4.6.2)	Circle	

5.2.3.3.1.3 SAS 4x connector pin assignments

Table 46 defines the pin assignments for SAS 4x cable plug connectors (see 5.2.3.3.1.1) and SAS 4x receptacle connectors (see 5.2.3.3.1.2) for applications using one, two, three, or four of the physical links.

Table 46 — SAS 4x connector pin assignments and physical link usage

Signal	Pin usage based on number of physical links supported by the cable assembly ^a			
	One	Two	Three	Four
Rx 0+	S1	S1	S1	S1
Rx 0-	S2	S2	S2	S2
Rx 1+	N/C	S3	S3	S3
Rx 1-	N/C	S4	S4	S4
Rx 2+	N/C	N/C	S5	S5
Rx 2-	N/C	N/C	S6	S6
Rx 3+	N/C	N/C	N/C	S7
Rx 3-	N/C	N/C	N/C	S8
Tx 3-	N/C	N/C	N/C	S9
Tx 3+	N/C	N/C	N/C	S10
Tx 2-	N/C	N/C	S11	S11
Tx 2+	N/C	N/C	S12	S12
Tx 1-	N/C	S13	S13	S13
Tx 1+	N/C	S14	S14	S14
Tx 0-	S15	S15	S15	S15
Tx 0+	S16	S16	S16	S16
SIGNAL GROUND	G1 - G9			
CHASSIS GROUND	Housing			
a N/C = not connected				

SIGNAL GROUND shall not be connected to CHASSIS GROUND in the connector when used in a cable assembly.

5.2.3.3.2 Mini SAS 4x connectors

5.2.3.3.2.1 Mini SAS 4x cable plug connector

The Mini SAS 4x cable plug connector is the free (plug) 26-circuit Shielded Compact Multilane connector defined in SFF-8088 and SFF-8086.

Figure 76 shows the Mini SAS 4x cable plug connector.

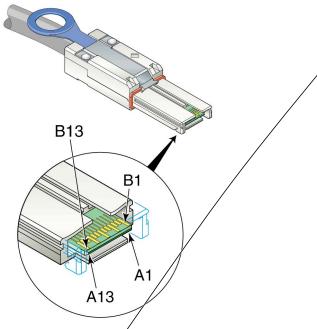


Figure 76 — Mini SAS 4x cable plug connector

If constructed with a pull tab as shown in figure 76, the pull tab should use PANTONE 279 C (i.e., light blue coated)

Table 49 (see 5.2.3.3.2.3) defines the pin assignments for the Mini SAS 4x cable plug connector.

 $\label{eq:miniscond} \mbox{Mini SAS 4x cable plug connectors shall include key slots to allow attachment to Mini SAS 4x receptacle connectors (see 5.2.3.3.2.2) with matching keys.}$

Table 47 defines the icons that shall be placed on or near Mini SAS 4x cable plug connectors and the key slot positions (see SFF-8088) that shall be used by Mini SAS 4x cable plug connectors.

Table 47 — Mini SAS 4x cable plug connector icons and key slot positions

Use	lcon	Key slot positions	Reference
End of a SAS external cable that attaches to an end device, an enclosure out port, or an enclosure universal port	Diamond	2, 4	Figure 77
End of a SAS external cable that attaches to an end device, an enclosure in port, or an enclosure universal port	Circle	4, 6	Figure 78

Page: 140

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b
then the

Figure 77 shows the key slots on the Mini SAS 4x cable plug connector that attaches to an end device or an enclosure universal port (see figure 80 in 5.2.3.3.2.2), or an enclosure out port (see figure 81 in 5.2.3.3.2.2).

Figure 77 — Mini SAS 4x cable plug connector that attaches to an enclosure out port

Figure 78 shows the key slots on the Mini SAS 4x cable plug connector that attaches to an end device or an enclosure universal port (see figure 80 in 5.2.3.3.2.2), or an enclosure in port (see figure 82 in 5.2.3.3.2.2).

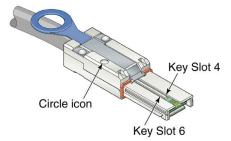


Figure 78 — Mini SAS 4x cable plug connector that attaches to an enclosure in port

5.2.3.3.2.2 Mini SAS 4x receptacle connector

The Mini SAS 4x receptacle connector is the fixed (receptacle) 26-circuit Shielded Compact Multilane connector defined in SFF-8088 and SFF-8086.

A Mini SAS 4x receptacle connector may be used by one or more SAS devices (e.g., one SAS device using physical links 0 and 3, another using physical link 1, and a third using physical link 2).

A Mini SAS 4x receptacle connector shall be used by no more than one expander device at a time, and all physical links shall be used by the same expander port (i.e., all the expander phys shall have the same routing attribute (e.g., subtractive or table) (see 4.6.2)).

Figure 79 shows the Mini SAS 4x receptacle connector.

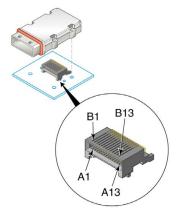


Figure 79 — Mini SAS 4x receptacle connector

Table 49 (see 5.2.3.3.2.3) defines the pin assignments for the Mini SAS 4x receptacle connector.

Mini SAS 4x receptacle connectors shall include keys to prevent attachment to Mini SAS 4x cable plug connectors (see 5.2.3.3.2.1) without matching key slots.

Table 48 defines the icons that shall be placed on or near Mini SAS 4x receptacle connectors and the key positions (see SFF-8088) that shall be used by Mini SAS 4x receptacle connectors.

Table 48 — Mini SAS 4x receptacle connector icons and key positions

Use	Icons	Key position	Reference
End device or enclosure universal port	Diamond and circle	4	Figure 80
Enclosure out port (see 4.6.2)	Diamond	2	Figure 81
Enclosure in port (see 4.6.2)	Circle	6	Figure 82

Figure 80 shows the key on a Mini SAS 4x receptacle connector used by end devices. This connector may be attached to the Mini SAS 4x cable plug shown in figure 77 or the Mini SAS 4x cable plug shown in figure 78 (see 5.2.3.3.2.1).

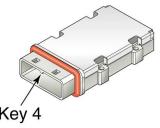


Figure 80 — Mini SAS 4x receptacle connector - end device or enclosure universal port

Figure 81 shows the key on a Mini SAS 4x receptacle connector used by an enclosure out port. This connector may be attached to the Mini SAS 4x cable plug shown in figure 77 (see 5.2.3.3.2.1).

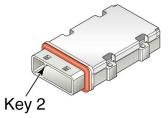


Figure 81 — Mini SAS 4x receptacle connector - enclosure out port

Figure 82 shows the key on a Mini SAS 4x receptacle connector used by an enclosure in port. This connector may be attached to the Mini SAS 4x cable plug shown in figure 78 (see 5.2.3.3.2.1).

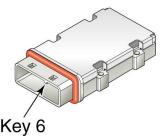


Figure 82 — Mini SAS 4x receptacle connector - enclosure in port

5.2.3.3.2.3 Mini SAS 4x connector pin assignments

Table 49 defines the pin assignments for Mini SAS 4x cable plug connectors (see 5.2.3.3.2.1) and Mini SAS 4x receptacle connectors (see 5.2.3.3.2.2) for applications using one, two, three, or four of the physical links.

Table 49 — Mini SAS 4x connector pin assignments and physical link usage

Signal	Pin usage based on number of physical links supported by the cable assembly ^a			Mating level	
	One	Two	Three	Four	10 401
Rx 0+	A2	A2	A2	A2	
Rx 0-	А3	А3	A3	А3	
Rx 1+	N/C	A5	A5	A5	
Rx 1-	N/C	A6	A6	A6	
Rx 2+	N/C	N/C	A8	A8	
Rx 2-	N/C	N/C	A9	A9	
Rx 3+	N/C	N/C	N/C	A11	
Rx 3-	N/C	N/C	N/C	A12	Third
Tx 0+	B2	B2	B2	B2	mila
Tx 0-	В3	В3	В3	В3	
Tx 1+	N/C	B5	B5	B5	
Tx 1-	N/C	B6	В6	B6	
Tx 2+	N/C	N/C	B8	B8	
Tx 2-	N/C	N/C	В9	B9	
Tx 3+	N/C	N/C	N/C	B11	
Tx 3-	N/C	N/C	N/C	B12	
SIGNAL GROUND	A1, A4, A7, A10, A13 B1, B4, B7, B10, B13				
CHASSIS GROUND		Но	using		N/A
a N/C = not connected					

SIGNAL GROUND shall not be connected to CHASSIS GROUND in the connector when used in a cable assembly.

5.2.4 Cable assemblies

5.2.4.1 SAS internal cable assemblies

5.2.4.1.1 SAS Drive cable assemblies

There are two types of SAS Drive cable assem

- a) single-port SAS Drive cable assembly; and
- b) dual-port SAS Drive cable assembly.

Both SAS Drive cable assemblies shall use:

a) a SAS Drive cable receptacle connector (see 5.2.3.2.1.2) on the SAS target device end; and

Page: 144

Author: hpq-bolawsky Subject: Note Date: 5/23/2008 1:41:28 PM -07'00'

Why are signal pins labeled as third mate and not second?

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

There are two types of SAS Drive cable assemblies:

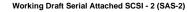
A SAS Drive cable assembly is either: and change "and" to "or"

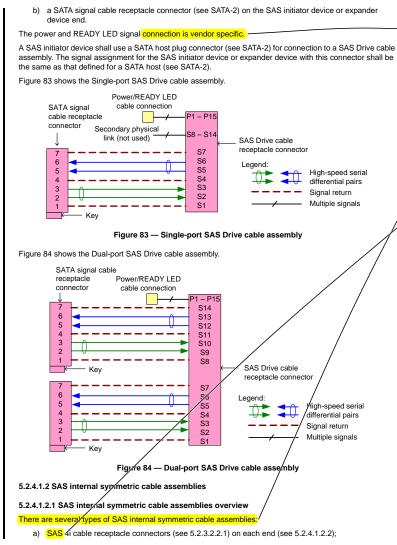
Author: wdc-mevans Subject: Highlight Date: 5/23/2008 2:00:03 PM -07'00'

assembly assemblies

Author: wdc-mevans Subject: Highlight Date: 5/23/2008 2:00:07 PM -07'00'

assembly

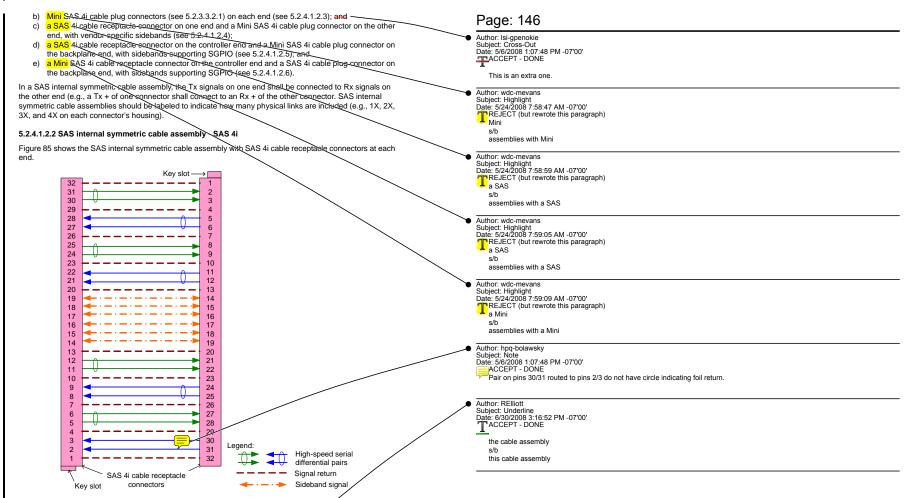

assemblies


Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

Both SAS Drive cable assemblies shall use

A SAS Drive cable assembly has:



145

Page: 145 Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' TREJECT (treat the ANDed noun as one thing) This << connection is vendor specific. >> should be << connection are vendor specific. >> Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE There are several types of SAS internal symmetric cable assemblies s/b A SAS internal symmetric cable assembly has: and change "and" to "or" Author: wdc-mevans Subject: Highlight Date: 5/24/2008 7:58:37 AM -07'00' TREJECT (but rewrote this paragraph) SAS s/b assemblies with SAS

Figure 85 — SAS internal symmetric cable assembly - SAS 4i

In addition to the signal return connections shown in figure 85, the cable assembly may connect one or more

of the signal returns together.

For controller-to-backplane applications, the cable assembly may support one to four physical links.

Page: 147 SIDEBAND signals on the controller are attached to the corresponding SIDEBAND signals on the backplane (e.g., SIDEBAND0 of the controller is attached to SIDEBAND0 of the backplane). Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' For controller-to-controller applications, the cable assembly shall support all four physical links and the controllers should use all four physical links, because one controller's physical links 0 and 1 are attached the ACCEPT - DONE other controller's physical links 3 and 2, respectively. If both controllers use one or two physical links starting the cable assembly with physical links 0, communication is not possible. If both controllers use physical links 0, 1, and 2, then only communication over physical links 1 and 2 is possible. SIDEBAND signals on one controller are not attached s/b this cable assembly to their corresponding SIDEBAND signals on the other controller (e.g., SIDEBAND0 of one controller is attached to SIDEBAND5 of the other controller). Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' 5.2.4.1.2.3 SAS internal symmetric cable assembly - Mini SAS 4i Figure 86 shows the SAS internal cable assembly with Mini SAS 4i cable plug connectors at each end. TACCEPT - DONE the cable assembly B17 A17 B16 A16 this cable assembly A15 B14 A14 Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
PREJECT (i.e. means "in other words", but this is not restating the first part of the sentence, it's explaining the reason for the first B13 A13 B12 A12 B11 A11 B10 A10 part. Expanding "physical links 0 and 1" to "physical link 0 and physical link 1" is too wordy and degrades readability.) B9 Α9 B8 Α8 This << physical links, because one controller's physical links 0 and 1 are attached the other controller's physical links 3 and 2, B7 Α7 respectively.>> should be << links, (i.e., one controller's physical link 0 and physical link 1 are attached to the other controller's В6 A6 physical link 3 and physical link 2, respectively). >> B5 A5 Author: Isi-gpenokie ВЗ АЗ Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' B2 A2 REJECT (too wordy and degrades readability.) **B**1 Α1 A18 B18 This << use physical links 0, 1, and 2, then only >> should be << use physical link 0, physical link 1, and physical link 2, then only A17 B17 A16 **B16** A15 B15 Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' A14 B14 A13 **B13** REJECT (too wordy and degrades readability) A12 B12 A11 This << over physical links 1 and 2 is possible >> should be << over physical link 1 and physical link 2 is possible >> A10 B10 Α9 B9 Author: RElliott 8A B8 Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE Α7 В7 A6 В6 A5 B5 the cable assembly A4 B4 Leaend: АЗ ВЗ High-speed serial this cable assembly A2 B2 differential pairs Α1 B1 Signal return

of the signal returns together.

Mini SAS 4i cable plug connectors

Figure 86 — SAS internal symmetric cable assembly - Mini SAS 43 In addition to the signal return connections shown in figure 86, the cable assembly may connect one or more

Sideband signal

T10/1760-D Revision 14 28 January 2008

The cable assembly may support one to four physical links

For controller-to-backplane applications, SIDEBAND signals on the controller are attached to the corresponding SIDEBAND signals on the backplane (e.g., SIDEBAND0 of the controller is attached to SIDEBAND0 of the backplane).

For controller-to-controller applications, SIDEBAND signals on one controller are not attached to their corresponding SIDEBAND signals on the other controller (e.g., SIDEBAND0 of one controller is attached to SIDEBAND6 of the other controller).

$5.2.4.1.2.4\ SAS$ internal symmetric cable assembly - SAS 4i to Mini SAS 4i with vendor-specific sidebands

Figure 87 shows the SAS internal symmetric cable assembly with a SAS 4i cable receptacle connector at one end and a Mini SAS 4i cable plug connector at the other end, with vendor-specific sidebands.

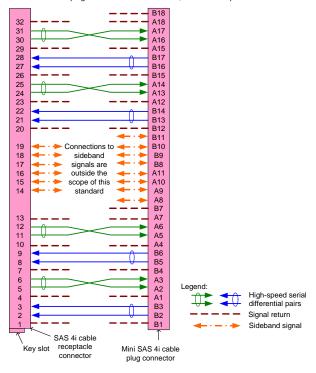


Figure 87 — SAS internal symmetric cable assembly - SAS 4i to Mini SAS 4i with vendor-specific sidebands

Page: 148

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

the cable assembly s/b this cable assembly

NOTE 20 - The cable assembly needs different SIDERAND signal routing based on whether the controller or Page: 149 backplane is using the SAS 4i connector. Author: RElliott The sable assembly shall connect each signal return on one end to at least one signal return on the other end. Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' The cable assembly may connect one or more of the signal returns together. ${\mathbb T}$ ACCEPT - DONE For controller-to-backplane explications with the SAS 4i cable receptacle connector on the controller end, the cable assembly may support one four physical links. the cable assembly s/b For controller-to-controller applications, the cable assembly may support one to four physical links this cable assembly For controller-to-backplane applications with the Mini SAS size able receptacle connector on the controller end, the cable assembly shall support all four physical links and the consoller should use all four physical links, Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' because the controller's physical links 0, 1, 2, and 3 are stached to the backplane's physical links 3, 2, 1, and 0, respectively. If both controllers use one or two physical links starting with physical links 0, communication is not possible. If both controllers use physical links 0, 1, and 2, the only communication ever physical links 1 and 2 is possible. the cable assembly this cable assembly Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' The s/b This throughout this section, to make it clearer that these rules only apply to the connector in figure 87 Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the cable assembly s/b this cable assembly Author: RElliott Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE the cable assembly this cable assembly Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE the cable assembly this cable assembly

Comments from page 149 continued on next page

NOTE 20 - The cable assembly needs different SIDEBAND signal routing based on whether the controller or backplane is using the SAS 4i connector.

The cable assembly shall connect each signal return on one end to at least one signal return on the other end. The cable assembly may connect one or more of the signal returns together.

For controller-to-backplane applications with the SAS 4i cable receptacle connector on the controller end, the cable assembly may support one to four physical links.

For controller applications, the cable assembly may support one to four physical links.

For controller-to-backplane applications with the Mini SAS 41 cable receptacle connector on the controller end; the cable assembly strail support all four physical links and the controller should use all four physical links, because the controller's physical links 0, 1, 2, and 3 are attached to the backplane's physical links 3, 2, 1, and 0, respectively. If both controllers use one or two physical links starting with physical links 0, communication is not possible. If both controllers use physical links 0, 1, and 2, then only communication over physical links 1 and 2 is possible.

Author: hpg-bolawsky
Subject: Note
Date: 6/9/2008 11:47:38 AM -07'00'
REJECT (this is in the "SAS 4i to Mini SAS 4i with vendor-specific sidebands" section, which constrains the statements correctly. The section is about the cable assemblies with SGPIO and explicit controller/backplane sides do not include this paragraph. Changing "The cable assembly" to "This cable assembly" throughout to clarify this.) Lane reversal is only an issue with using the "SAS 4i controller to Mini SAS 4i backplane" cable in an application where the controller is a Mini SAS version. We now have two cable pinouts and use of the "Mini SAS 4i controller to SAS 4i backplane" cable will eliminate the reversal issue. This paragraph needs to be updated based on the addition of the latter pinout option. Author: RElliott

Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the cable assembly

s/b this cable assembly

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' REJECT (see previous section)

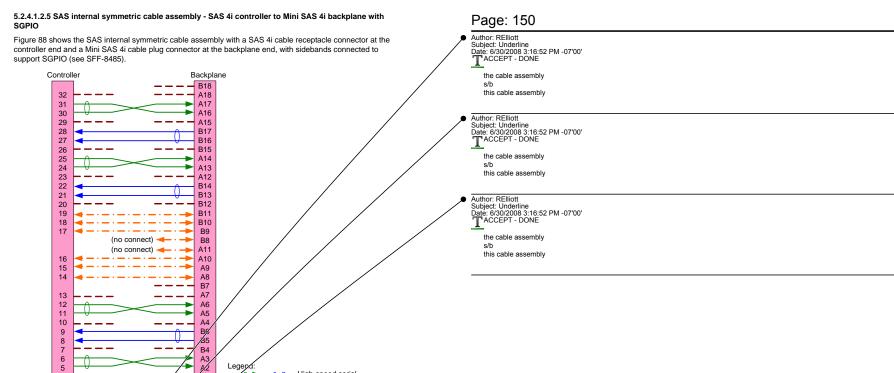
This << physical links, because the controller's physical links 0, 1, 2, and 3 are attached to the backplane's physical links 3, 2, 1, and 0, respectively. >> should be << physical links (i.e., the controller's physical link 0, physical link 1, physical link 2, and physical link 3 are attached to the backplane's physical link 3, physical link 2, physical link 1, and physical link 0, respectively. >>

Author: RElliott Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE both controllers both the controller and the backplane

(from Alvin)

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'


> both controllers both the controller and the backplane

(from Alvin) Author: Isi-gpenokie

Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
PREJECT (see previous section)

This << physical links 0, 1, and 2, then only communication over physical links 1 and 2 is possible >> should be << physical link 0, physical link 1, and physical link 2, then only communication over physical link 1 and physical link 2 is possible >>

T10/1760-D Revision 14 28 January 2008

plug connector Figure 88 — SAS internal syr/imetric cable assembly - SAS 4i controller to Mini SAS 4i backplane with SGPIO

Mixi SAS 4i cable

ВЗ

B2

The cable assembly shall covinect each signal return on one end to at least one signal return on the other end. The cable assembly may connect one or more of the signal returns together.

The cable assembly may support one to four physical links.

SAS 4i cable Key slot receptacle

connegio

2

High-speed serial differential pairs

Signal return

Sideband signal

High-speed serial

differential pairs

Sideband signal

Signal return

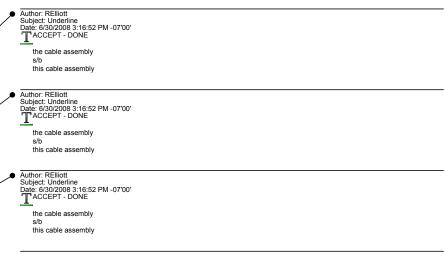
5.2.4.1.2.6 SAS internal symmetric cable assembly - Mini SAS 4i controller to SAS 4i backplane with Figure 89 shows the SAS internal symmetric cable assembly with a Mini SAS 4i cable receptacle connector at the controller end and a SAS 4i cable plug connector at the backplane end, with sidebands connected to support SGPIO (see SFF-8485). Controller Backplane 32 A2 31 АЗ 30 В1 29 B2 28 ВЗ A4 26 A5 25 A6 24 B4 23 B5 22 В6 21 В7 20 B8 19 В9 B10 17 B11 -·- (no connect) A8 -·- (no connect) 16 A9 A10 15 A11 14 A12 13 A13 12 A14 11 B12 10 9 B14 A15 A16 A17 B15

Figure 89 — SAS internal symmetric calcie assembly - Mini SAS 4i controller to SAS 4i backplane with SGPIO

Key slot

The cable assembly shalf connect each signal return on one end to at least one signal return on the other end. The cable assembly may connect one or more of the signal returns together.

The cable assembly may support one to four physical links.


SAS 4i cable

receptacle

Author: hpq-bolawsky
Subject: Note
Date: 5/6/2008 1:07:48 PM -07'00'
ACCEPT - DONE

Positioning of the foil return graphic for pins A5/A6 is in wrong location.

B16

B17

A18 B18

Mini SAS 4i cable

plug connector

T10/1760-D Revision 14 28 January 2008

5.2.4.1.3 SAS internal fanout cable assemblies

5.2.4.1.3.1 SAS internal fanout cable assemblies overview

There are several types of SAS internal fanout cable assemblies:

- a) SAS internal controller-based fanout cable assemblies (see 5.2.4.1.3.2) with:
 - A) a SAS 4i cable receptacle connector on one end (i.e., the controller end) and four SAS Drive cable receptacle connectors on the other end (i.e., the backplane end); and
 - B) a Mini SAS 4i cable plug connector on one end (i.e., the controller end) and four SAS Drive cable receptacle connectors on the other end (i.e., the backplane end);

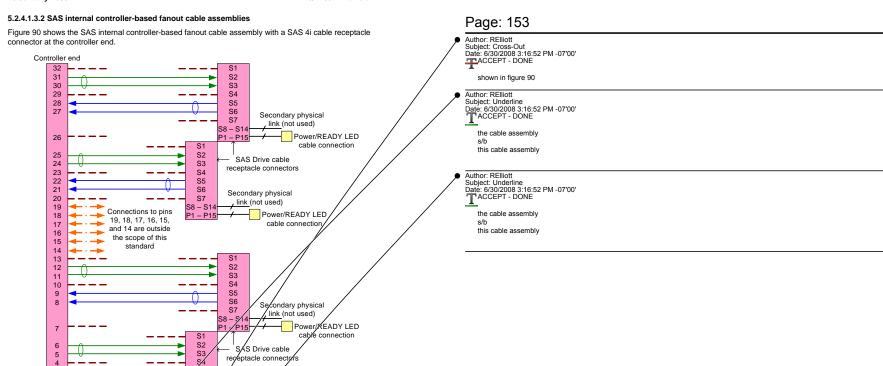
and

- b) SAS internal backplane-based fanout cable assemblies (see 5.2.4.1.3.3) with:
 - A) four SATA signal cable receptacle connectors on one end (i.e., the controller end) and a SAS 4i
 cable receptacle connector on the other end (i.e., the backplane end); and
 - B) four SATA signal cable receptacle connectors on one end (i.e., the controller end) and a Mini SAS 4i cable plug connector on the other end (i.e., the backplane end).

In a SAS internal fanout symmetric cable assembly, the Tx signals on one end shall be connected to Rx signals on the other end (e.g., a Tx + of one connector shall connect to an Rx + of the other connector.

Page: 152

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'


There are several types of SAS internal fanout cable assemblies: s/b
A SAS internal fanout cable assembly is either:

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

and change "and"s to "or"s

This is a missing <<) >> It should be << to an Rx + of the other connector). >>

T10/1760-D Revision 14

The cable assembly shown in figure 90 shall connect each signal return on one end to at least one signal return on the other end. The cable assembly may connect one or more of the signal returns together.

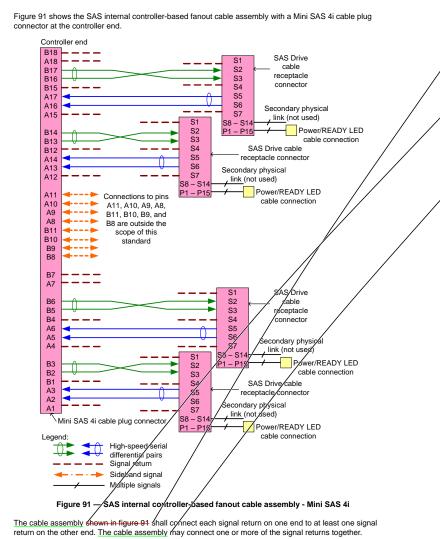
Figure 90 / SAS internal controlle/-based fanout cable assembly - SAS 4i

Legend:

S6

S7

Secondary physical


, link (not/used)

High-speed serial differential pairs Signal return Sideband signal Multiple signals

Power/READY LED cable connection

Key slot

SAS 4i cable receptacle connecto

Page: 154

Author: Relliott
Subject: Cross-Out
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
shown in figure 91

Author: Relliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the cable assembly
s/b
this cable assembly

Author: Relliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the cable assembly

Author: Relliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the cable assembly
s/b
this cable assembly

T10/1760-D Revision 14

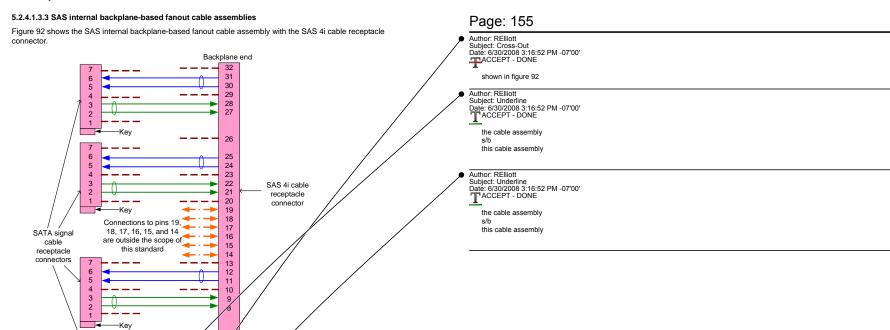
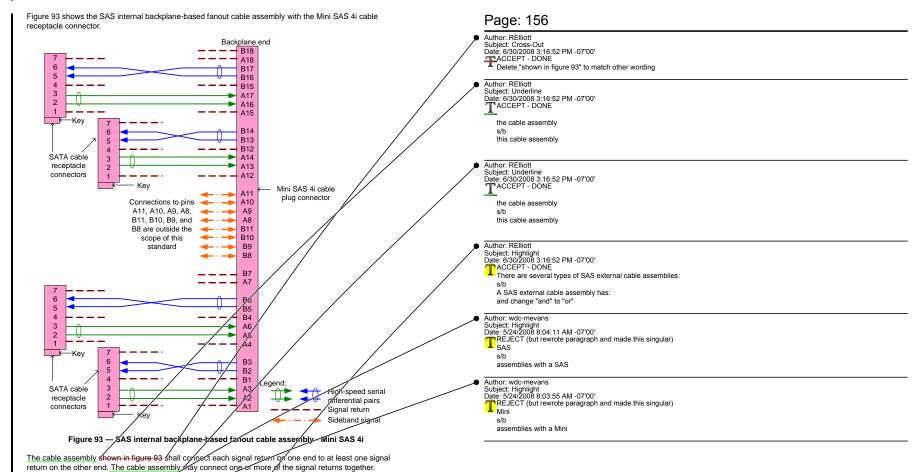


Figure 92 - SAS internal backplans-based fanout cable assembly - SAS 4i

The cable assembly shown in figure 92 shall cox/nect each signal return on one end to at least one signal return on the other end. The cable assembly may connect one or more of the signal returns together.


Key/slot

6 5

High-speed serial differential pairs

- - - - Signal return

✓ · - · → Sideband signal

5.2.4.2 SAS external cable assemblies

5.2.4.2.1 SAS external cable assemblies overview

There are several types of SAS external cable assemblies.

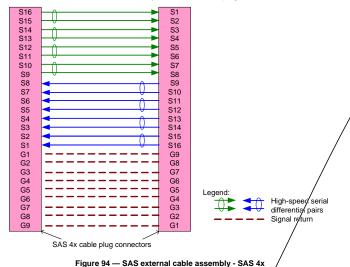
a) SAS 4x cable plug connector (see 5.2.3.3.1.1) at each end (see 5.2.4.2.2); b) Mini SAS 4x cable plug connector (see 5.2.3.3.2.1) at each end (see 5.2.4.2.3); and 28 January 2008

c) SAS 4x cable plug connector at one end and Mini SAS 4x cable plug connector at the other end (see 5.2.4.2.4).

SAS external cable assemblies do not include power or the READY LED signal

Although the connector always supports four physical links, a SAS external sable assembly may support one, two, three, or four physical links. SAS external cable assemblies should be labeled to indicate how many physical links are included (e.g., 1X, 2X, 3X, and 4X on each connector's housing)

The Tx signals on one end shall be connected to the corresponding Rx signals of the other end (e.g., Tx 0+ of one connector shall be connected to Rx 0+ of the other connector).


Signal returns shall not be connected to CHASSIS GROUND in the cable assembly.

In addition to the SAS icon (see Annex M), additional icons are defined for external connectors to guide users into making compatible attachments (i.e., not attaching expander device table routing phys to expander device table routing phys in externally configurable expander devices, which is not allowed by this standard). Connectors that have one or more matching icons are intended to be attached. Connectors that do not have a matching icon should not be attached together.

One end of the SAS external cable assembly shall support being attached to an end device, an enclosure out port, or an enclosure universal port. The other end of the SAS external cable assembly shall support being attached to an end device, an enclosure in port, or an enclosure universal port. If a SAS 4x cable plug connector is used, it should include icons as defined in 5.2.3.3.1.1. If a Mini SAS 4x cable plug connector is used, it shall include icons and key slots as defined in 5.2.3.3.2.1.

5.2.4.2.2 SAS external cable assembly - SAS 4x

Figure 94 shows the SAS external cable assembly with SAS 4x cable plug connectors at each end.

In addition to the signal return connections shown in figure 94, the cable assembly may connect one or more of the signal returns together.

Working Draft Serial Attached SCSI - 2 (SAS-2)

T10/1760-D Revision 14

Page: 157

the cable assembly

this cable assembly

Author: wdc-mevans Subject: Highlight Date: 5/24/2008 8:02:40 AM -07'00' TACCEPT - DONE s/b and a Mini Author: wdc-meyans Subject: Highlight Date: 5/24/2008 8:02:19 AM -07'00' TREJECT (but rewrote paragraph) s/b assemblies with a SAS Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' REJECT (degrades readability) This << may support one, two, three, or four physical links. SAS >> should be << may support one physical link, two physical links, three physical links, or four physical links. SAS >> Author: RElliott Addition National Addition National Additional Addition

5.2.4.2.3 SAS external cable assembly - Mini SAS 4x

Figure 95 shows the SAS external cable assembly with Mini SAS 4x cable plug connectors at each end.

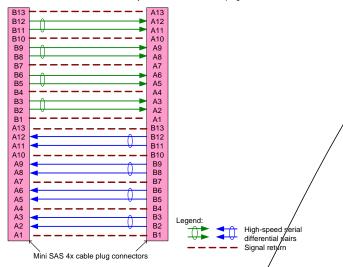


Figure 95 — SAS external cable assembly - Mini SAS 4x

In addition to the signal return connections shown in figure 95, the cable assembly may connect one or more of the signal returns together.

Page: 158

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the cable assembly
s/b
this cable assembly

Figure 96 shows the icons and key slots in the SAS external cable assembly with Mini SAS 4x cable plug connectors at each end

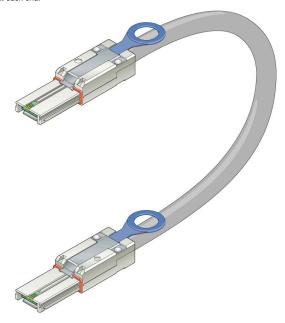


Figure 96 — SAS external cable assembly with Mini SAS 4x cable plug connectors

Although the topology is supported by this standard, a SAS external cable assembly with Mini SAS 4x connectors on each end that attaches an enclosure in port to another enclosure in port is not defined by this standard

This page contains no comments

T10/1760-D Revision 14 28 January 2008

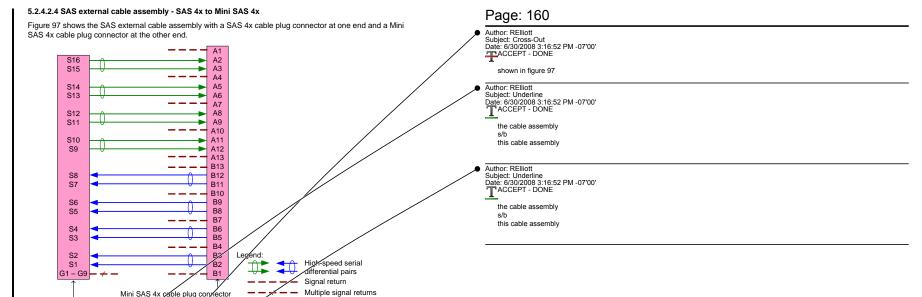


Figure 97 — SAS external cable as embly - SAS 4x to Mini SAS 4x

The cable assembly snown in figure 97 shall copyect each signal return on one end to at least one signal return on the other end. The cable assembly may connect one or more of the signal returns together.

5.2.5 Backplanes

SAS backplane designs should follow the recommendations in SFF-8460.

SAS 4x cable plug connector

Mini SAS 4x cable plug connector

5.2.6 Cable assembly and backplane specifications

Table 50 defines the general characteristics of cable assemblies and backplanes.

Table 50 — General characteristics of cable assemblies and backplanes

Characteristic a, b	Units	Value
Bulk cable or backplane: c, d		
Differential characteristic impedance	ohm	100
Mated connectors:	•	
Differential characteristic impedance ^e	ohm	100
Cable assembly and backplane:		
Minimum S _{DD21} for internal cable assemblies ^{f, g}	dB	6
Minimum S _{DD21} for external cable assemblies and backplanes		See 5.3.3.3

a All measurements are made through mated connector pairs.

- ^b The equivalent maximum TDR rise time from 20 % to 80 % shall be 70 ps. Filtering may be used to obtain the equivalent rise time. The filter consists of the two-way launch/return path of the test fixture, the two-way launch/return path of the test cable, and the software or hardware filtering of the TDR scope. The equivalent rise time is the rise time of the TDR scope output after application of all filter components. When configuring software or hardware filters of the TDR seepe to obtain the equivalent rise time, filtering effects of test cables and test fixtures shall be included.
- The impedance measurement identifies the impedance mismatches present in the bulk exple or backplane when terminated in its characteristic impedance. This measurement excludes mated connectors at both ends of the bulk cable or backplane, when present, but includes any intermediate connectors or splices.
- d Where the bulk cable or backplane has an electrical length of > 4 ns the procedure detailed in SFF-8410, or an equivalent procedure, shall be used to determine the impedance.
- ^e The characteristic impedance is a measurement reference impedance for the test environment. An internal cable assembly may be a TxRx connection segment or a full TxRx connection. The full TxRx connection is required to comply with the requirements for intra-enclosure compliance points defined in 5.3
- ^g The range for this frequency domain measurement is 10 MHz to 4 500 MHz.

Page: 161

Author: RElliott

Subject: Note Date: 10/24/2008 7:58:59 AM -07'00'

ACCEPT - DONE

Merge 5.2.6 and 5.3.3.3 into a "TxRx connection characteristics" section. Change "Cable assembly and backplane" to "TxRx connection".

Author: ibm-jay-diepenbrock Subject: Highlight Date: 5/24/2008 8:14:18 AM -07'00'

TREJECT (Alvin: 1) General characteristics are nominal and tolerances are handled by the s-parameter tables. Rob: 2) Intra-pair skew was purposely removed, because it isn't isn't the right parameter to rate the degradation of signal quality (common mode emissions Scd provide a more complete picture), and the SAS-1.1 value was not being honored in many long cables that work fine. See 06-499 and SFF-8416 for discussion. 3) Channels in SAS-2 are qualified by simulation of their s-parameters in a tool like StatEye. This limits how much ISI they may introduce.)

The mated connector end/backplane impedance conditions are nominal values only. Tolerances need to be specified.

The intra-pair skew requirements have been dropped. They should be added back in.

The inter symbol interference (i.e., jitter) requirements should also be added back in.

Author: mxim-mbari

Subject: Note Date: 9/15/2008 5:34:33 PM -07'00'

REJECT (Alvin: General characteristics are nominal and tolerances are handled by the s-parameter tables)

Impedance value should have min, nom, and max value Or tolerance. TCTF test load in 5.3.2.3 (Page 173) refers back to this section for nominal value

Author: mxim-mbari

Subject: Inserted Text

Date: 5/26/2008 4:54:02 PM -07'00'

TREJECT (Alvin: Reject. Minimum is correct because more negative (a lower minimum) is a worse condition.)

Minimum insertion loss for cables do not seem logical

Author: RElliott

Subject: Note

ACCEPT - DONE (53 ns is decent worst-case number per cable vendors. Added row to the "general electrical characteristics" table right below the Differential impedance row, rather than place in the passive cable section, since this will apply to both passive and SAS-2.1 active cable assemblies.)

The STP flow control budget (section 7.17.2 note 77) assumes 5 ns/m prop delay on a cable. For 10 m, this means:

- one-way prop delay 50 ns
- round-trip prop delay 100 ns
- 26 2/3 ns per dword at 1.5 Gbps
- 100 / 26 2/3 = 3.75 dwords on the wire at 1.5 Gbps
- 100 / 26 2/3 * 2 = 7.5 dwords at 3 Gbps
- 100 / 26 2/3 * 4 = 15 dwords at 6 Gbps

We use that to justify a buffer size of 4 dwords at 1.5 Gbps, 8 dwords at 3 Gbps, and 16 dwords at 6 Gbps.

However, http://www.spectra-strip.amphenol.com/ecpartsearch3.cfm?partID=366 says an Amphenol Spectra-Strip cable has 5.1 ns / m nominal propagation delay, longer than our assumption.

What is a good worst-case propagation delay number to use?

Comments from page 161 continued on next page

28 January 2008 T10/1760-D Revision 14

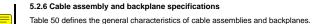


Table 50 — General characteristics of cable assemblies and backplanes

Characteristic ^{a, b}	Units	Value		
Bulk cable or backplane: c, d				
Differential characteristic impedance	ohm	100		
Mated connectors:	•			
Differential characteristic impedance ^e	ohm	100		
Cable assembly and backplane:				
Minimum, S _{DD21} for internal cable assemblies ^{f, g}	dB	-6		
Minimum S _{DD21} for external cable assemblies and backplanes		See 5.3.3.3		

- ^a All measurements are made through mated connector pairs.
- b The equivalent maximum TDR rise time from 20 % to 80 % shall be 70 ps. Filtering may be used to obtain the equivalent rise time. The filter consists of the two-way launch/return path of the test fixture, the two-way launch/return path of the test cable, and the software or hardware filtering of the TDR scope. The equivalent rise time is the rise time of the TDR scope output after application of all filter components. When configuring software or hardware filters of the TDR scope to obtain the equivalent rise time, filtering effects of test cables and test fixtures shall be included.
- ^c The impedance measurement identifies the impedance mismatches present in the bulk cable or backplane when terminated in its characteristic impedance. This measurement excludes mated connectors at both ends of the bulk cable or backplane, when present, but includes any intermediate connectors or splices.
- d Where the bulk cable or backplane has an electrical length of > 4 ns the procedure detailed in SFF-8410, or an equivalent procedure, shall be used to determine the impedance.
- ^e The characteristic impedance is a measurement reference impedance for the test environment. An internal cable assembly may be a TxRx connection segment or a full TxRx connection. The full TxRx connection is required to comply with the requirements for intra-enclosure compliance points defined in 5.3.

161

^g The range for this frequency domain measurement is 10 MHz to 4 500 MHz.

Working Draft Serial Attached SCSI - 2 (SAS-2)

If it were 5.3 ns, then we'd be right at the budget: 5.3 / 26 2/3 = 3.975 dwords at 6 Gbps 5/.3 / 26 2/3 * 4 = 15.9 dwords at 6 Gbps

Worst than 5.3 means our budget is not big enough.

We should probably add a rule in chapter 5 that a SAS cable (or any interconnect) must have a total propagation delay of less than 50 ns (or 53 ns... whatever matches note 77).

Table 51 defines the S-parameter limits of cable assemblies and backplanes. Page: 162 Table 51 — S-parameters of cable assemblies and backplanes Author: Isi-jenkins Subject: Highlight Date: 5/26/2008 4:55:09 PM -07'00' Characteristic a b c ACCEPT - DONE (Alvin: Accept. Reference (dBmV/ dBmV (dBmV) (dB) (MHz) (GHz) Change table title to "Maximum limits for s-parameters of cable assemblies and backplanes". decade) Change sentence preceding table to: Figure 125 100 -5.0 6.0 Table 51 defines the maximum limits of S-parameters of cable assemblies and backplanes. (see 5.3.6.5.2) -77.9 Figure 125 -10 100 S_{DD22} 0 13.3 SQ. To avoid any ambiguity, this table should probably be entitled: "Maximum limits for s-parameters of cable assemblies and Figure 128 -12.7 13.3 100 backplanes" S_{CD22} -26 6.0 (see 5.3.6.5.2) Author: ifx-hnewman Date: 5/6/2008 1:07:48 PM -07'00' S_{CD21} Figure 126 -24 -24 100 -24 0 6.0 TACCEPT - DONE (3 times in this table, and in two other tables as well) Maximum near-end crosstatic (NEXT) for each receive -26 -26 -26 0 6.0 dRmV) nal pair d s/b dB) All measurements are made through mated connector pairs b The range for this frequency domain reasurement is 10 MHz to 6 000 MHz. Author: hpq-bolawsky Specifications apply to any combination of cables and backplanes that are used to form a TxRx Subject: Note Date: 5/6/2008 1:07:48 PM -07'00' connection Determine all valid aggressor/victim near-end crosstalk transfer modes. Over the complete frequency range of this measurement, determine the sum of the crosstalk transfer ratios, measured in the frequency domain, of all crosstalk transfer modes. To remove unwanted bias due to test fixture noise, All three dBmV references are inappropriate. Should be dB. crosstalk sources with magnitudes less than -50 dB (e.g., -60 dB) at all frequencies may be ignored. The following equation details the summation process of the valid near-end crosstalk sources. All NEXT Author: ifx-hnewman values expressed in dB format in a passive transfer network shall have gegative dB magnitude. Date: 5/6/2008 1:07:48 PM -07'00' REJECT (T10 voted for periods over commas for all standards) TotalNEXT(f) = $10 \times log \sum 10^{\langle NEXT(f) \rangle}$ periods need to be replaced by commas in entire table Author: hpq-bolawsky Subject: Note Date: 8/29/2008 2:47:15 PM -07'00' ACCEPT - DONE (7/15 incorporate 08-187r1)

28 January 2008

Author: hpq-bolawsky
Subject: Note
Date: 5/26/2008 4:59:30 PM -07'00'
Date: 5/26/2008 4:59:30 PM -07'00'
CEPT - DONE (Alvin: Accept: Add note e and flag it along with a b c on "Characteristic".
e See Figure 124 for descriptions of L,N,H,S,fmin, and fmax

Author: mxim-mbari

Subject: Note Date: 8/29/2008 2:49:09 PM -07'00'

Scd21 is not plotted in figure 126

ACCEPT - DONE (corrected with incorporation of 08-187r1)

The Scc22 and Scd22 specifications are not achievable with all common types of interconnect. Data supporting revised

specification will be posted in 08-187r0 SAS-2 S-Parameters of Cable Assemblies and Backplanes.

Comments from page 162 continued on next page

Table 51 defines the S-parameter limits of cable assemblies and backplanes.

Table 51 — S-parameters of cable assemblies and backplanes

Characteristic ^{a b c}	Reference	L (dBmV)	N (dBmV)	H (dB)	S (dBmV/ decade)	f _{min} (MHz)	f _{max} (GHZ)
S _{CC22}	Figure 125 (see 5.3.6.5.2)	-6.0	-5.0	_&_	13.3	100	6.0
S _{DD22}	Figure 125	-10	-7.9	0	13.3	100	6.0
S _{CD22}	Figure 126 (see 5.2.6.5.2)	-26	-12.7	-10	13.3	100	6.0
S _{CD21}	Figure 126	-24	-24	-24	0	100	6.0
Maximum near-end crosstalk (NEXT) for each receive		-26	-26	-26	0	100	6.0

All measurements are made through mated connector pairs.

b The range for this frequency domain measurement is 10 kiHz to 6 000 MHz.

^c Specifications apply to any combination of cables and backplanes that are used to form a TxRx connection.

d Determine all valid aggressor/victim near-end crosstalk transfer modes. Over the complete frequency range of this measurement, determine the sum of the crosstalk transfer ratios, measured in the frequency domain, of all crosstalk transfer modes. To remove unwanted bias due to test fixture noise, crosstalk sources with magnitudes less than -50 dB (e.g., -60 dB) at all frequencies may be ignored. The following equation details the summation process of the valid near-end crosstalk sources. All New Yellow transfer network shall have negative dB magnitude.

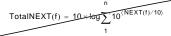


Table needs a better link to figure 124 for interpreting fmin/fmax. Referenced Figure 125/126 don't include those parameters.

Author: mxim-mbari
Subject: Note
Date: 5/26/2008 4:59:37 PM -07'00'
Date: 5/26/2008 4:59:37 PM -07'00'
ACCEPT - DONE (Alvin: Accept: Add note e and flag it along with a b c on "Characteristic".
e See Figure 124 for descriptions of L,N,H,S,fmin, and fmax
)

Needs to reference figure 124 for description of L,N,H,S,fmin, and fmax

Author: ifx-hnewman
Date: 5/24/2008 8:15:54 AM -07'00'

10

s/b 100

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

Move this << All NEXT values expressed in dB format in a passive transfer network shall have negative dB magnitude. >> to after the equation and add a period to the end.

Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Add where:

where:

f frequency

h number of the near-end crosstalk source

28 January 2008 T10/1760-D Revision 14

5.3 Transmitter and receiver device electrical characteristics

5.3.1 Compliance points

A TxRx connection is the complete simplex signal path between the transmitter circuit (see 3.1.282) and receiver circuit (see 3.1.181).

A TxRx connection segment is that portion of a TxRx connection delimited by separable connectors or changes in conductive material.

This standard defines the electrical requirements of the signal at the compliance points IT, IR, CT, and CR in a TxRx connection. Each compliant phy shall be compatible with these electrical requirements to allow interoperability within a SAS environment.

Signal behavior at separable connectors requires compliance with signal characteristics defined by this standard only if the connectors are identified as compliance points by the supplier of the parts that contain the candidate compliance point.

Signal characteristics for compliance points are measured at physical positions called probe points in a test load (see 5.3.2). Measurements at the probe points in a test load approximate measurements at the compliance point in the actual TxRx connection. Some components in the test load may be de-embedded as

Table 52 defines the compliance points.

Table 52 — Compilance points

Compliance point	Туре	Description		
IT	intra-enclosure (i.e., internal)	The signal from a transmitter device (see 3.1.284), as measured at probe points in a test load attached with an internal connector.		
(IT _S)	intra-enclosure (i.e., internal)	The location of a transmitter device where S-parameters are measured and where the TxRx connection begins. This location is at the transmitter device side of the internal connector with a test load or a TxRx connection attached with an internal connector.		
IR	intra-enclosure (i.e., internal)	The signal going to a receiver device (see 3.1.182), as measured at probe points in a test load attached with an internal connector.		
СТ	inter-enclosure (i.e., cabinet)	The signal from a transmitter device, as measured at probe points in a test load attached with an external connector.		
CT _S ^a	inter-enclosure (i.e., cabinet)	The location of a transmitter device where S-parameters are measured and where the TxRx connection begins. This location is at the transmitter device side of the external connector with a test load or a TxRx connection attached with an external connector.		
CR	inter-enclosure (i.e., cabinet)	The signal going to a receiver device, as measured at probe points in a test load attached with an external connector.		

Because the 6 Gbps transmitter device S-parameter specifications do not include the mated connector, transmitter device S-parameter measurement points are at the IT_S and CT_S compliance points. 6 Gbps receiver device S-parameter measurement points are at the IR and CR compliance points.

The TxRx connection includes the characteristics of the mated connectors at both the transmitter device and receiver device ends. One end of a TxRx connection is a ITs or CTs compliance point, and the other end of the TxRx connection is the corresponding IR or CR compliance point.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 163

Author: RElliott Subject: Note Date: 10/17/2008 5:12:38 PM -07'00' ACCEPT - DONE

Move 5.3.1 Compliance points earlier into a 5.x section, ahead of 5.2 Passive interconnect. The concept of compliance points is not a subset of transmitter and receiver device electrical characteristics - it's more general. In particular, the TxRx connection section belongs in 5.2 not 5.3, but TxRx connection needs to be defined before that.

Author: intc-mseidel

Subject: Highlight
Date: 5/24/2008 8:20:04 AM -07'00'

TREJECT (they're for all SAS-2 phys at any rate. Other comment resolutions will fill out the specifications for 1.5 and 3 Gbps SAS-2 operation (SNW-3 based))

The ITs and CTs compliance points only appear with reference to the Tx test load. It should therefore be indicated that these points are only for Gen3 phys.

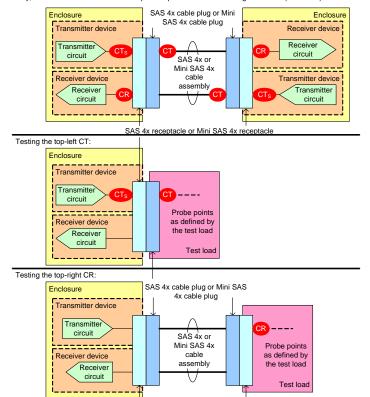
Author: Isi-apenokie

Subject: Highlight
Date: 5/24/2008 8:21:39 AM -07'00'

REJECT (nothing wrong with "because")

This << Because the 6 Gbps transmitter device S-parameter specifications do not include the mated connector, transmitter device >> should be << The 6 Gbps transmitter device S-parameter specifications do not include the mated connector, therefore the transmitter device >>

163


Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

REJECT (this is not restating anything, this is defining where the compliance points exist)

This << ends. One end of a TxRx connection is a ITS or CTS compliance point, and the other end of the TxRx connection is the corresponding IR or CR compliance point. >> should be << ends (i.e., one end of a TxRx connection is a ITS or CTS compliance point, and the other end of the TxRx connection is the corresponding IR or CR compliance point). >>

T10/1760-D Revision 14 28 January 2008

Figure 98 shows the locations of the CT and CR compliance points using a SAS 4x or Mini SAS 4x cable assembly, and shows how two of the compliance points are tested using test loads (see 5.3.2).

SAS 4x receptacle or Mini SAS 4x receptacle

Figure 98 — SAS 4x and Mini SAS 4x cable assembly CT and CR compliance points

This page contains no comments

28 January 2008 T10/1760-D Revision 14

Figure 99 shows the locations of the IT and IR compliance points using a backplane with a SAS Drive backplane receptacle (see 5.2.3.2.1.3) that is not using SATA, and shows how the compliance points are tested using test loads (see 5.3.2).

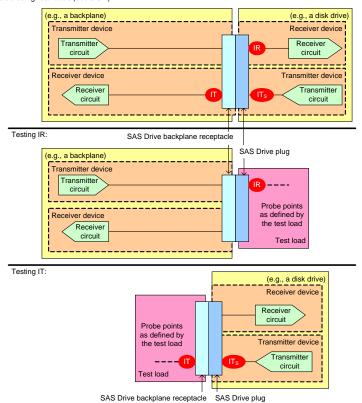


Figure 99 — Backplane with SAS Drive connector IT and IR compliance points

This page contains no comments

T10/1760-D Revision 14 28 January 2008

If the backplane supports SATA, there are no IT or IR compliance points. SATA defines the signal characteristics that the SATA phy delivers and that the SAS backplane is required to deliver to the SATA device, as shown in figure 100.

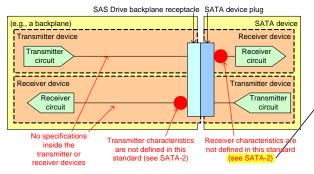


Figure 100 — Backplane with SAS Drive connector compliance points with SATA phy attached

Page: 166

Author: ifx-hnewman
Date: 8/31/2008 5:15:12 PM -07'00'

TACCEPT - DONE (From the SATA device perspective, it is true that all the characteristics are on the left side (through the mated connector). The yellow box on the left represents a SATA host, though, and its compliance points are on the right side (through the mated connector).

Added red dots on both sides of both Tx and Rx (4 total). This matches the SATA Usage Model figures that say "Gen1i Compliance Points (4 Plcs)" (assuming that Plcs means "places").

Merged the text underneath into one sentence, pointing to all 4, that says "SATA host and SATA device characteristics are not defined in this standard". This is vague enough that we don't have to worry about which ones are which.)

Move red dot to the left of the connector. This better represents the receive compliance point being referenced in SATA-2.

Also in Figure 103

28 January 2008 T10/1760-D Revision 14

Figure 101 shows the locations of the IT and IR compliance points using a SAS 4i or Mini SAS 4i cable assembly, and shows how two of the compliance points are tested using test loads (see 5.3.2).

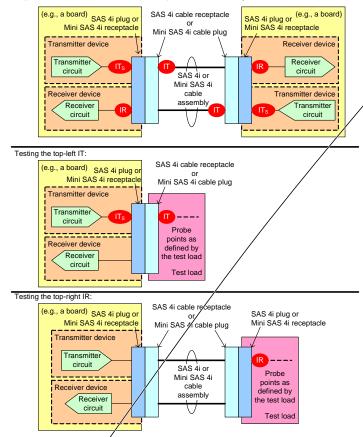


Figure 101 — SAS /i and Mini SAS 4i cable assembly IT and IR compliance points

Figure 102 shows the locations of the IT and IR compliance points using a SAS 4i or Mini SAS 4i cable assembly combined with a backplane with a SAS Drive backplane receptacle (see 5.2.3.2.1.3), where the

Page: 167

Author: REliiott
Subject: Highlight
Date: 8/29/2008 7:59:29 AM -07'00'
ACCEPT - DONE

combined with
s/b
attached to

to match comment resolution on page 169

T10/1760-D Revision 14 28 January 2008

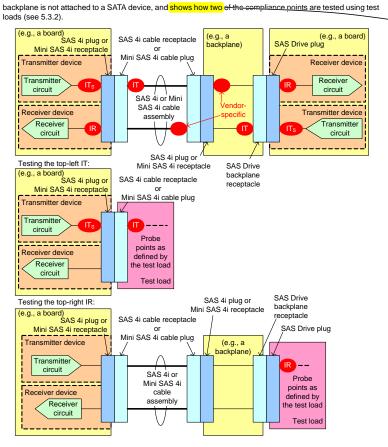


Figure 102 — SAS 4i and Mini SAS 4i cable assembly and backplane IT and IR compliance points

Page: 168

Author: wdc-mevans Subject: Highlight Date: 5/26/2008 5:01:48 PM -07'00' TREJECT (Alvin: Reject) shows how two

s/b how sets of two

T10/1760-D Revision 14 28 January 2008

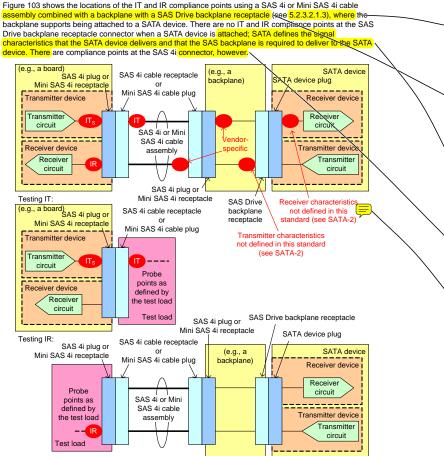
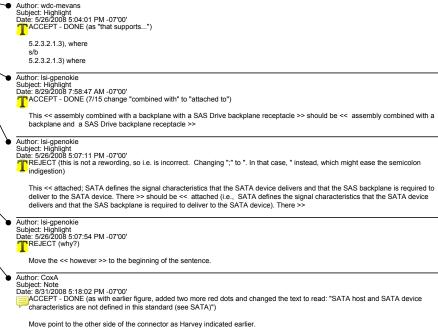



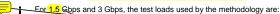

Figure 103 — SAS 4i or Mini SASI 4i cable assembly and backplane IT and IR compliance points with SATA device attached

169

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 169

Page: 170


```
Author: wdc-mevans
Subject: Highlight
Date: 5/6/2/008 1:07:48 PM -07'00'
ACCEPT - DONE (", and")
It
s/b
The figure
```


5.3.2 Test loads

5.3.2.1 Test loads overview

This standard uses a test load methodology to specify transmitter device signal output characteristics (see 5.3.6.2 and 5.3.6.3) and delivered signal characteristics (see 5.3.7.3). This methodology specifies the signal as measured at specified probe points in specified test loads.

- a) zero-length test load (see 5.3.2.2): used for testing transmitter device compliance points and receiver device compliance points;
- transmitter compliance transfer function (TCTF) test load (see 5.3.2.3); used for testing transmitter device compliance points; and
- c) low-loss TCTF test load (see 5.3.2.4): used for testing transmitter device compliance points when SATA devices using Gen2i levels (see SATA-2) are supported and the SAS receiver device does not support the signal levels received through a full TCTF test load (see 5.3.2.3).

For 6 Gbps, the test loads used by the methodology and

- a) zero-length test load (see 5.3.2.2): used for testing transmitter device compliance points and receiver device compliance points; and
- b) reference transmitter test load (see 5.3.2.5): used with a reference receiver device (see 5.3.7.4.3) by simulation methods to define the delivered signal.

or 6 Stps SATA, see SATA-2 regarding Gen3 transmitter device and receiver device requirements

Physical positions denoted as probe points identify the position in the test load where the signal properties are measured, but do not imply that physical probing is used for the measurement. Physical probing may be disruptive to the signal and should not be used unless verified to be non-disruptive.

5.3.2.2 Zero-length test load

Figure 105 shows the zero-length test load as used for testing a transmitted device compliance point.

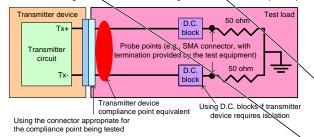


Figure 105 — Zero-length test load for transmitter device compliance point

Page: 171

Author: RElliott Subject: Note Date: 10/17/2008 5:13:27 PM -07'00'

Move 5.3.2 Test loads earlier into a 5.x section. They are not really subsets of transmitter device and receiver device electrical characteristics.

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
TREJECT (the probe points are inside the test loads)

This << specified probe points in specified test loads >> should be << specified probe points with specified test loads >>

Author: RElliott
Subject: Note
Date: 9/24/2008 6:34:43 AM -07'00'
ACCEPT - DONE

Throughout chapter 5, add "untrained 1.5 Gbps and 3 Gbps" where rules only apply to the legacy rates negotiated in Final-SNW, and "trained 1.5 Gbps, 3 Gbps, and 6 Gbps" where rules apply to the new rates negotiated in Train-SNW. This mostly affects section and table titles, but also affects some text.

Add to the glossary:

trained: A physical link rate negotiated with Train-SNW. See 6.7.4.2. untrained: A physical link rate negotiated with Final-SNW. See 6.7.4.2.

SAS-3 might dump the specific rates and just use the words "untrained" and "trained", as the trained list will continue to grow. For SAS-2, 3 rates are still manageable (and reinforce that 1.5 Gbps and 3 Gbps can be negotiated two different ways, subject to two different sets of specifications).

Author: fix-hnewman
Date: 5/6/2008 1:07:48 PM -07'00'
TREJECT (T10 voted for periods rather than commas)

1.5
s/b 1,5
"Global"

Author: fix-hnewman
Date: 9/15/2008 5:26:07 PM -07'00'
TREJECT (Alvin: Accept addition of c but keep text here also as it is used to test the channel. Rob: split into A)B)C))

and receiver device compliance points

c) zero-length test load (see 5.3.2.2): used with a reference receiver device (see 5.3.7.4.3) by simulation methods to determine the delivered signal.

Author: ifx-hnewman
Date: 9/15/2008 5:26:19 PM -07'00'
TTACCEPT - DONE (per other comment)
and

Author: stx-alvin-cox

Comments from page 171 continued on next page

28 January 2008 T10/1760-D Revision 14

5.3.2 Test loads

5.3.2.1 Test loads overview

This standard uses a test load methodology to specify transmitter device signal output characteristics (see 5.3.6.2 and 5.3.6.3) and delivered signal characteristics (see 5.3.7.3). This methodology specifies the signal as measured at specified probe points in specified test loads.

- For 1.5 Gbps and 3 Gbps, the test loads used by the methodology are: a) zero-length test load (see 5.3.2.2): used for testing transmitter device compliance points and receiver
 - device compliance points; b) transmitter compliance transfer function (TCTF) test load (see 5.3.2.3): used for testing transmitter device compliance points; and
 - c) low-loss TCTF test load (see 5.3.2.4): used for testing transmitter device compliance points when SATA devices using Gen2i levels (see SATA-2) are supported and the SAS receiver device does not see that the SAS receiver does not see that the SAS received support the signal levels received through a full TCTF test load (see 5.3.2.3).

For 6 Gbps, the test loads used by the methodology are:

- a) zero-length test load (see 5.3.2.2): used for testing transmitter device compliance points and receiver device compliance points; and
- reference transmitter test load (see 5.3.2.5). Used with a reference receiver device (see 5.3.7.4.3) by simulation methods to determine the delivered signal.

For 6 Gbps SATA, see SATA-2 regarding Gen3 transmitter device and receiver device requirements.

Physical positions denoted as probe points identify the position in the test load where the signal properties are measured, but do not imply that physical probing is used for the measurement. Physical probing may be disruptive to the signal and should not be used unless verified to be non-disruptive.

5.3.2.2 Zero-length test load

Figure 105 shows the zero-length test load as used for testing a transmitter device compliance point.

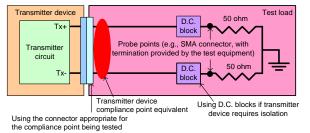


Figure 105 — Zero-length test load for transmitter device compliance point

ACCEPT - DONE (7/15 add a reference to SATA 3.0) There needs to be a place holder here rather than referencing SATA-2 since there is no SATA 6Gbps specification available yet and we don't know what it will be called. Author: mxim-mbari Subject: Note Date: 7/17/2008 2:24:49 PM -07'00' ACCEPT - DONE (7/15 add a reference to SATA 3.0) I have looked at SATA Revision 2.6 specification. Could not find any Gen3 infofrmation.

Author: ifx-hnewman Date: 7/17/2008 2:25:07 PM -07'00' CCEPT - DONE (7/15 add a reference to SATA 3.0) new reference needed for 6Gbps SATA.

Subject: Note Date: 7/17/2008 2:24:41 PM -07'00'

Author: Isi-bday Subject: Highlight Date: 7/17/2008 2:24:59 PM -07'00'
CPACCEPT - DONE (7/15 add a reference to SATA 3.0)

For 6 Gbps SATA, see SATA-2 regarding Gen3 transmitter device and receiver device requirements.

However, SATA-2 (referred as the 2.6 spec at beginning of this standard) does not define Gen3 requirements.

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' REJECT (no, they must be measured there.) are measured, but may be measured but

T10/1760-D Revision 14

28 January 2008

Figure 106 shows the zero-length test load as used for testing a receiver device compliance point.

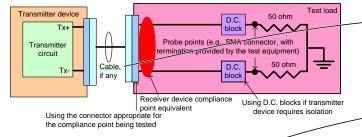


Figure 106 — Zero-length test load for receiver device compliance point

Figure 105 and figure 106 show ideal designs. Actual designs include:

- a) insertion loss between the compliance and probe points, and
- b) return loss due one or more impedance mismatches between the compliance point and 50 ohm termination points.

Not shown are non-ideal effects of the test equipment raw measurements (e.g., additional insertion loss and return loss). For de-embedding methods to remove non-ideal effects see Annex B.

Usage of fixturing and test equipment shall comply with the requirements defined in this subclause. The requirements in this subclause include the combined effects of the fixturing and test equipment.

The zero-length test load, including all fixturing and instrumentation required for the measurement, sha comply with the following equations:

$$\begin{split} &|S_{DD21}(f)| \geq -20 \times log_{10}(e) \times ((1.0 \times 10^{-6} \times f^{0.5}) + (2.8 \times 10^{-11} \times f) + (5.3 \times 10^{-21} \times f^2)) - 0.2 \text{ dB} \\ &|S_{DD11}(f)| \leq -15 \text{ dB} \\ &\text{where:} \\ &|S_{DD21}(f)| \qquad \text{magnitude of } S_{DD21}(f) \\ &|S_{DD11}(f)| \qquad \text{magnitude of } S_{DD11}(f) \\ &f \qquad \text{signal frequency in Hz} \end{split}$$

For 50 MHz < f ≤ 6.0 GHz:

Page: 172

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE Cable s/b

TxRx connection

(from Alvin, per WG meeting)

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

Actual designs

Implementations may

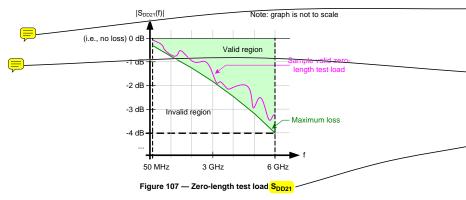
(from Alvin, per WG)

Author: ibm-jay-diepenbrock Subject: Highlight Date: 5/26/2008 5:12:25 PM -07'00'

REJECT (Alvin: Reject. This section does not specify cables. Rob: this is discussing the zero-length test load, and this paragraph is communicating that test fixtures are not ideal. There are new equations in SAS-2 limiting for Sdd21 of the whole test load just

Include limits on insertion loss for the cables as a function of frequency. Maybe not this section, but somewhere.

Author: RElliott Subject: Note
Date: 10/17/2008 2:34:00 PM -07'00'


ACCEPT - DONE

The zero-length test load is defined by a set of S-parameters (see D.9). Only the magnitude of S_{DD21}(f) and the magnitude of S_{DD11} (f) are specified by this standard.

to be like the other test load sections.

28 January 2008 T10/1760-D Revision 14

Figure 107 shows the allowable $|S_{DD21}(f)|$ of a zero-length test load and the $|S_{DD21}(f)|$ of a sample zero-length test load

NOTE 21 - The zero-length test load performance specifications defined in this subclause were not required by previous versions of this standard.

5.3.2.3 TCTF test load

Figure 108 shows the TCTF test load. This test load is used for 1.5 Gbps and 3 Gbps characterization.

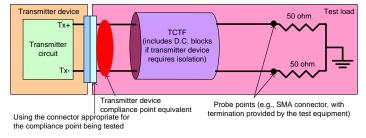


Figure 108 — TCTF test load

- The TCTF test load shall meet the requirements in 5.2.6. The nominal impedance shall be the target impedance.
- The TCTF is defined by a set of S-parameters (see B.9). Only the magnitude of S_{DD21}(f) is specified by this standard

For testing a 3 Gbps transmitter device at IT, the TCTF test load shall comply with the following equations:

173

For 50 MHz < f
$$\leq$$
 3.0 GHz:
$$|S_{DD21}(f)| \leq -20 \times log_{10}(e) \times ((6.5 \times 10^{-6} \times f^{0.5}) + (2.0 \times 10^{-10} \times f) + (3.3 \times 10^{-20} \times f^2)) \text{ dB}$$
 and for 3.0 GHz < f \leq 5.0 GHz:
$$|S_{DD21}(f)| \leq -10.9 \text{ dB}$$

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 173
Author: hpg-bolawsky

Subject: Note
Date: 9/2/2008 4:47:06 PM -07'00'
REJECT (double-checked Excel graph of the formula - it bows out as shown.)

The shape appears to be incorrect. My data forms a straight line.

Author, RElliott
Subject: Note
Date: 9/1/2008 4:32:05 PM -07'00'
ACCEPT - DONE

Move the note to the bottom of the figure

(from Ralph Weber, per ISO editing of SAS-1.1)

Author, RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

SDD21

global
add (f) in figure titles to avoid ending line with subscript, which causes problems in the table of figures

```
and, specifying a minimum ISI loss: |S_{DD21}(f=300 \text{ MHz})| - |S_{DD21}(f=1 500 \text{ MHz})| > 3.9 \text{ dB} where: |S_{DD21}(f)| \qquad \text{magnitude of } S_{DD21}(f) f \qquad \text{signal frequency in Hz}
```

Figure 109 shows the allowable $|S_{DD21}(f)|$ and minimum ISI loss of a TCTF test load and the $|S_{DD21}(f)|$ of a sample TCTF test load at IT at 3 Gbps.

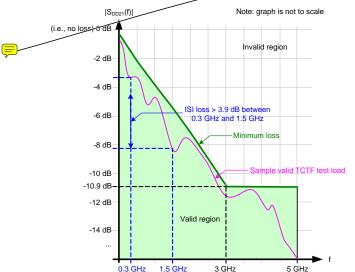


Figure 109 — TCTF test load S_{DD21} and ISI loss requirements at IT at 3 Gbps

For testing a 3 Gbps transmitter device at CT, the TCTF test load shall comply with the following equations:

```
For 50 MHz < f ≤ 3.0 GHz: |S_{DD21}(f)| \le .20 \times |og_{10}(e) \times ((1.7 \times 10^{.5} \times f^{0.5}) + (1.0 \times 10^{-10} \times f)) \text{ dB} and for 3.0 GHz < f ≤ 5.0 GHz: |S_{DD21}(f)| \le -10.7 \text{ dB} and, specifying a minimum ISI loss: |S_{DD21}(f)| = 300 \text{ MHz}| - |S_{DD21}(f = 1500 \text{ MHz})| > 3.9 \text{ dB} where: |S_{DD21}(f)| \qquad \text{magnitude of } S_{DD21}(f) f signal frequency in Hz
```

Page: 174

Author: RElliott Subject: Note Date: 9/1/2008 4:32:17 PM -07'00'

Move the note to the bottom of the figure

(from Ralph Weber, per ISO editing of SAS-1.1)

28 January 2008 T10/1760-D Revision 14

Figure 110 shows the allowable $|S_{DD21}(f)|$ and minimum ISI loss of a TCTF test load and the $|S_{DD21}(f)|$ of a sample TCTF test load at CT at 3 Gbps.

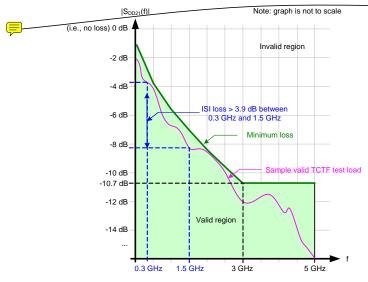


Figure 110 — TCTF test load $\mathbf{S}_{\mathrm{DD21}}$ and ISI loss requirements at CT at 3 Gbps

For testing a 1.5 Gbps transmitter device at IT, the TCTF test load shall comply with the following equations:

For 50 MHz < f
$$\leq$$
 1.5 GHz:
$$|S_{DD21}(f)| \leq \cdot 20 \times log_{10}(e) \times ((6.5 \times 10^{-6} \times f^{0.5}) + (2.0 \times 10^{-10} \times f) + (3.3 \times 10^{-20} \times f^2)) \, dB$$
 and for 1.5 GHz < f \leq 5.0 GHz:
$$|S_{DD21}(f)| \leq \cdot 5.4 \, dB$$
 and, specifying a minimum ISI loss:
$$|S_{DD21}(f = 150 \, \text{MHz})| \cdot |S_{DD21}(f = 750 \, \text{MHz})| > 2.0 \, dB$$
 where:
$$|S_{DD21}(f)| \qquad \text{magnitude of } S_{DD21}(f)$$
 f signal frequency in Hz

Page: 175

Author: RElliott
Subject: Note
Date: 9/1/2008 4:32:24 PM -07'00'

Move the note to the bottom of the figure

(from Ralph Weber, per ISO editing of SAS-1.1)

T10/1760-D Revision 14 28 January 2008

Figure 111 shows the allowable $|S_{DD21}(f)|$ and minimum ISI loss of a TCTF test load and the $|S_{DD21}(f)|$ of a sample TCTF test load at IT at 1.5 Gbps.

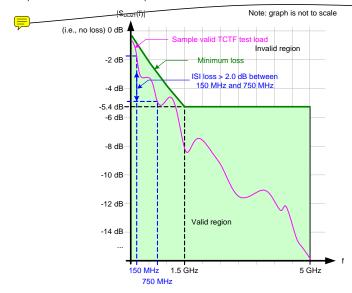


Figure 111 — TCTF test load S_{DD21} and ISI loss requirements at IT at 1.5 Gbps

For testing a 1.5 Gbps transmitter device at CT, the TCTF test load shall comply with the following equations:

```
For 50 MHz < f \leq 1.5 GHz: |S_{DD21}(f)| \leq -20 \times log_{10}(e) \times ((1.7 \times 10^{-5} \times f^{0.5}) + (1.0 \times 10^{-10} \times f)) \; dB and for 1.5 GHz < f \leq 5.0 GHz: |S_{DD21}(f)| \leq -7.0 \; dB and, specifying a minimum ISI loss: |S_{DD21}(f = 150 \; MHz)| - |S_{DD21}(f = 750 \; MHz)| > 2.0 \; dB where: |S_{DD21}(f)| \qquad \text{magnitude of } S_{DD21}(f)
```

|S_{DD21}(t)| magnitude of S_{DD21}(t) f signal frequency in Hz

Page: 176

Author: RElliott Subject: Note Date: 9/1/2008 4:32:31 PM -07'00'

Move the note to the bottom of the figure

(from Ralph Weber, per ISO editing of SAS-1.1)

28 January 2008 T10/1760-D Revision 14

Figure 112 shows the allowable $|S_{DD21}(f)|$ and minimum ISI loss of a TCTF test load and the $|S_{DD21}(f)|$ of a sample TCTF test load at CT at 1.5 Gbps.

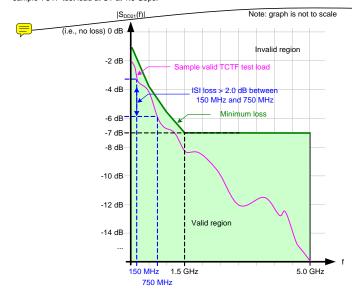


Figure 112 — TCTF test load $\mathbf{S}_{\mathrm{DD21}}$ and ISI loss requirements at CT at 1.5 Gbps

5.3.2.4 Low-loss TCTF test load

Figure 113 shows the low-loss TCTF test load. This test load is used for 1.5 Gbps and 3 Gbps characterization.

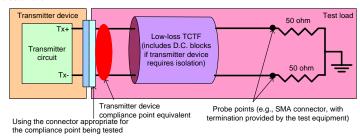


Figure 113 — Low-loss TCTF test load

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 177

Author: RElliott
Subject: Note
Date: 9/1/2008 4:32:38 PM -07'00'

Move the note to the bottom of the figure

(from Ralph Weber, per ISO editing of SAS-1.1)

T10/1760-D Revision 14

28 January 2008

The low-loss TCTF test load shall meet the requirements defined in 5.2.6. The nominal impedance shall be the target impedance.

The low-loss TCTF is defined by a set of S-parameters (see B.9). Only the magnitude of S_{DD21}(f) is specified by this standard.

The low-loss TCTF test load shall comply with the following equations:

```
For 50 MHz < f \leq 3.0 GHz: |S_{DD21}(f)| \leq -20 \times log_{10}(e) \times ((2.2 \times 10^{-6} \times f^{0.5}) + (6.9 \times 10^{-11} \times f) + (1.1 \times 10^{-20} \times f^2)) dS for 3.0 GHz < f \leq 5.0 GHz: |S_{DD21}(f)| \leq -3.7 dB and, specifying a minimum ISI loss: |S_{DD21}(f = 300 \text{ MHz})| - |S_{DD21}(f = 1500 \text{ MHz})| > 1.3 \text{ dB} where: |S_{DD21}(f)| \qquad \text{magnitude of } S_{DD21}(f) f signal frequency in Hz
```

Figure 114 shows the allowable $|S_{DO21}(f)|$ and minimum ISI loss of a low-loss TCTF test load and the $|S_{DD21}(f)|$ of a sample low-loss TCTF test load.

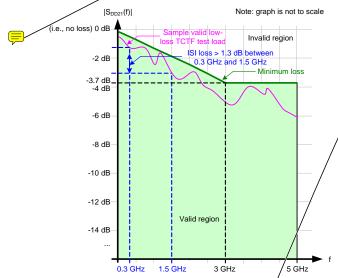


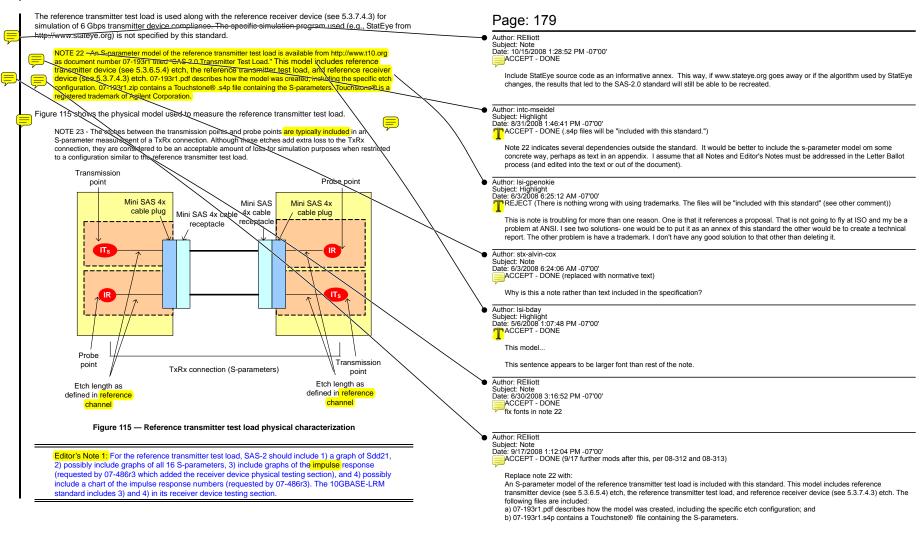
Figure 114 — Low-loss TCTF test load S_{DD21} and ISI loss requirements

5.3.2.5 Reference transmitter test load

The reference transmitter test load is a 10 m Mini SAS 4x cable assembly

Page: 178

Author: Relliott Subject: Note Date: 9/1/2008 4:32:46 PM -07'00'


Move the note to the bottom of the figure

(from Ralph Weber, per ISO editing of SAS-1.1)

Author: Isi-gpenokie Subject: Highlight Subject: Highlight Subject: Highlight Subject: Highlight Subject Subje

This << The reference transmitter test load is a 10 m Mini SAS 4x cable assembly. >> should be << The reference transmitter test load for 6 Gbps is a 10 m Mini SAS 4x cable assembly. >>

178

The reference transmitter test load is used along with the reference receiver device (see 5.3.7.4.3) for simulation of 6 Gbps transmitter device compliance. The specific simulation program used (e.g., StatEye from http://www.stateye.org) is not specified by this standard.

NOTE 22 - An S-parameter model of the reference transmitter test load is available சன் எழ்/www.t10.org as document number 07-193r1 titled "SAS 2.0 Transmitter Test Load" "Trins model includes reference transmitter device (see 5.3.6.5.4) etch, the reference receiver device (see 5.3.7.4.3) etch. 07-193r1 நிர்க்களிற்க how the model was created, including the specific etch configuration. 07-193r1.zip contains a Touchstone® .s4p file containing the S-parameters. Touchstone® is a registered trademarker affect for the containing the second trademarker and the containing trademarker and the co

Figure 415 shows the physical model used to measure the reference transmitter test load.

NOTE 23 - The etches between the transmission points and probe points are typically included in an TXRx connection. Although these etches add extra loss to the TXRx connection, they are considered to be an acceptable amount of loss for simulation purposes when restricted to a configuration similar to the reference transmitter test load.

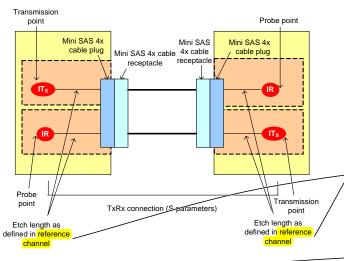
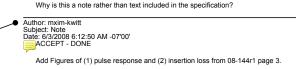



Figure 115 — Reference transmitter test load physical characterization

Editor's Note 1: For the reference transmitter test load, SAS-2 should include 1) a graph of Sdd21, 2) possibly include graphs of all 16 S-parameters, 3) include graphs of the impulse response (requested by 07-486r3 which added the receiver device physical testing section), and 4) possibly include a chart of the impulse response numbers (requested by 07-486r3). The 10GBASE-LRM standard includes 3) and 4) in its receiver device testing section.

NOTE: Touchstone® is a registered trademark of Agilent Corporation.

ACCEPT - DONE (changing "are typically included" to "may be included" to make this normatively interesting)

Author: RElliott
 Subject: Highlight
 Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
 are typically included
 s/b
 may be included

(from Alvin)
Author: RElliott

Author: stx-alvin-cox Subject: Note Date: 6/6/2008 11:28:28 AM -07'00'

Subject: Highlight
Date: 9/3/2008 3:34:18 PM -07'00'
TACCEPT - DONE
reference channel
s/b
reference transmitter test load

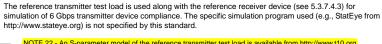
(from George Penokie, LSI)

Author: RElliott
Subject: Highlight
Date: 9/3/2008 3:34:11 PM -07'00'
TACCEPT - DONE
reference channel
s/b
reference transmitter test load
(from George Penokie, LSI)

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE (Alvin: Add insertion loss graph)

Address Editor's Note 1

Author: Isi-jenkins
Subject: Highlight
Date: 6/32008 6:11:30 AM -07'00'
ACCEPT - DONE (a pulse response graph will be included)


The reference in 07-486r3 was to a "pulse response", not an "impulse response". The two are similar, but not the same. Pulse

Comments from page 179 continued on next page

28 January 2008 T10/1760-D Revision 14

NOTE 22 - An S-parameter model of the reference transmitter test load is available from http://www.t10.org/ as document number 07-193r1 titled "SAS 2.0 Transmitter Test Load." This model includes reference transmitter device (see 5.3.6.5.4) etch., the reference transmitter test load, and reference receiver device (see 5.3.7.4.3) etch. 07-193r1.pdf describes how the model was created, including the specific etch configuration. 07-193r1.zip contains a Touchstone® .s4p file containing the S-parameters. Touchstone® is a registered trademark of Agilent Corporation.

Figure 115 shows the physical model used to measure the reference transmitter test load.

NOTE 23 - The etches between the transmission points and probe points are typically included in an S-parameter measurement of a TxRx connection. Although these etches add extra loss to the TxRx connection, they are considered to be an acceptable amount of loss for simulation purposes when restricted to a configuration similar to the reference transmitter test load.

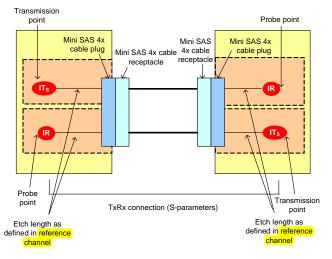


Figure 115 — Reference transmitter test load physical characterization

Editor's Note 1: For the reference transmitter test load, SAS-2 should include 1) a graph of Sdd21, 2) possibly include graphs of all 16 S-parameters, 3) include graphs of the impulse response (requested by 07-486r3 which added the receiver device physical testing section), and 4) possibly include a chart of the impulse response numbers (requested by 07-486r3). The 10GBASE-LRM standard includes 3) and 4) in its receiver device testing section.

179

Working Draft Serial Attached SCSI - 2 (SAS-2)

response can be mathematically derived from impulse response, but we need to be clear about which is which.

5.3.3 General electrical characteristics

5.3.3.1 General electrical characteristics overview

Table 53 defines the general electrical characteristics.

Table 53 — General electrical characteristics

Characteristic	Units	1.5 Gbps (i.e., G1)	3 Gbps (i.e., G2)	6 Gbps (i.e., G3)
Physical link rate (nominal)	MBps	150	300	600
Unit interval (UI)(nominal)	ps	666. 6	333.3	166. 6
Baud rate (f _{baud})(nominal)	Gigasymbols/s	1.5	3	6
Differential impedance of TxRx connection (nominal)	ohm		100	
Maximum A.C. coupling capacitor ^a	nF	12		
Maximum noise during OOB idle time b	mV(P-P)		120	

^a The coupling capacitor value for A.C. coupled transmit and receive pairs. A.C. coupling requirements for transmitter devices are described in 5.3.6.1. A.C. coupling requirements for receiver devices are described in 5.3.7.1. The equivalent series resistance at 3 GHz should be less than 1 ohm.

5.3.3.2 Transmitter device general electrical characteristics

Table 54 defines the transmitter device general electrical characteristics.

Table 54 — Transmitter device general electrical characteristics

Characteristic	Units	1.5 Gbps	3 Gbps	6 Gbps
Physical link rate long-term stability at IT and CT	ppm		± 100	
Physical link rate SSC modulation at IT and CT	ppm	See table	76 and table	77 in 5.3.8.2
Maximum transmitter device transients a	V		± 1.2	
^a See 5.3.4 for transient test circuits and condition	S.			

Table 55 defines the transmitter device termination characteristics.

Table 55 — Transmitter device termination characteristics

Characteristic	Units	1.5 Gbps 3 Gbps	6 Gbps
Differential impedance a	ohm	60 nin/115 max	See 5.3.6.5.1
Maximum differential impedance imbalance a b	ohm	5	See 5.3.6.5.2 ^c
Common-mode impedance b	o∤m	15 min/40 max	See 5.3.6.5.1

^a All transmitter device termination measurements are made through mated connector pairs.

Page: 180

Author: RElliott Subject: Note Date: 9/19/2008 5:19:38 PM -07'00' ACCEPT - DONE

> Through 5.3, add "at 1.5 Gbps and 3 Gbps" for sections and tables that only apply at legacy rates, and "at 6 Gbps" for sections and tables that only apply at 6 Gbps.

Changes are not individually commented

Author: Isi-gpenokie
Subject: Highlight
Date: 6/9/2008 9:33:48 AM -07'00'
Date: 6/9/2008 9:33:48 AM -07'00'
PACCEPT - DONE (Alvin: Accept. The revision looks better by avoiding the period after the section number preceding the "A.C.")

This << A.C. coupling requirements for transmitter devices are described in 5.3.6.1. A.C. coupling requirements for receiver devices are described in 5.3.7.1. >> should be << See 5.3.6.1 for the A.C. coupling requirements for transmitter devices. See 5.3.7.1 for the A.C. coupling requirements for receiver devices. >>

Author: RElliott Subject: Note Date: 10/24/2008 10:09:04 AM -07'00'
ACCEPT - DONE

Move 5.3.3.2 into 5.3.6

Author: RElliott

Subject: Note Date: 9/19/2008 4:59:17 PM -07'00' ACCEPT - DONE

Spell out minimum and maximum in table 55

Author: hpg-relliott

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

ACCEPT - DONE

cd

s/b CD

Author: hpq-bolawsky

Subject: Note
Date: 6/6/2006 11:31:10 AM -07'00'

REJECT (Alvin: note c is only used in a 6 Gbps cell, so only applies to 6 Gbps)

Clarify note "c" for application to "6 Gbps" only

b With a measurement bandwidth of 1.5 x f_{baud} (e.g., 9 GHz for 6 Gbps), no signal level during the idle time shall exceed the specified maximum differential amplitude

b The difference in measured impedance to SIGNAL GROUND on the plus and minus terminals on the interconnect, transmitter device, or receiver device, with a differential test signal applied to those terminals.

Measurement replaced by S_{crip} specifications (i.e., differential to common mode conversion).

5.3.3.3 TxRx connection characteristics

5.3.3.3.1 TxRx connection characteristics overview

Each TxRx connection shall support a bit error ratio (BER) that is less than 10⁻¹² (i.e., fewer than one bit error per 10¹² bits). The parameters specified in this standard support meeting this requirement under all conditions including the minimum input and output amplitude levels.

A TxRx connection may be constructed from multiple TxRx connection segments (e.g., backplane, cable, cable, backplane). In such cases, the individual TxRx connection segment should have loss character less than the total allowed loss characteristic for the TxRx connection. It is the responsibility of the implementer to ensure that the TxRx connection is constructed from individual TxRx connection segments such that the over TXRX connection requirements see seet. Loss characteristics for individual TXRX connection segments are beyond the scope of this standard.

Each TxRx connection segment shall comply with the impedance requirements detailed in 5.2.6 for the conductive material from which they are formed. A passive squalize network, if present, shall be considered part of the TxRx connection.

TxRx connections shall be applied only to homogenous ground applications (e.g., Detween device); within an enclosure or rack, or between enclosures interconnected by a common ground return or ground plane)

5.3.3.3.2 TxRx connection characteristics for 1.5 Gbps and 3 Gbps

For 1.5 Gbps and 3 Gbps, each TxRx connection shall be designed such that its loss characteristics are less than:

- a) the loss of the TCTF test load plus ISI at 3 Gbps (see figure 112 in 5.3.2.3) over the frequency range of 50 MHz to 3 000 MHz; or
- b) if the system supports SATA devices using Gen2i levels (see SATA-2) but the receiver device does not support SATA Gen2i levels through the TCTF test load, the loss of the low-loss TCTF test load plus ISI (see figure 114 in 5.3.2.4) over the frequency range of 50 MHz to 3,000 MHz.

Each TxRx connection shall meet the delivered signal specifications in table 68 (see 53.7.3).

For external cable assemblies, these electrical requirements are consistent with using good quality passive cable assemblies constructed with shielded twinaxial cable with 24 gauge solid wire up to 6 in long, provided that no other TxRx connection segments are included in the TxRx connection.

5.3.3.3 TxRx connection characteristics for 6 Gbps

For 6 Gbps, the TxRx connection shall support a bit error ratio (BER) that is less than 10⁻¹⁵ (i.e., fewer than one bit error per 10¹⁵ bits) based on simulation results using S-parameter measurements of the TxRx connection, the reference transmitter device (see 5.3.6.5.4), and the reference receiver device (see 5.3.7.4.3)

NOTE 24 - Because simulations-typically do not include all aspects of noise that may degrade the received signal quality, the goal of a BER that is less than 10⁻¹⁵ is expected to yield an actual BER that is less than

Page: 181

Author: Isi-gpenokie

Subject: Highlight Date: 5/26/2008 5:14:07 PM -07'00'

REJECT (Alvin: Reject. The 10-15 references that follow apply to simulations that support an actual 10-12 BER when other factors not included in the simulations are considered.)

This << error ratio (BER) that is less than 10-12 (i.e., fewer >> contradicts the following statement in section 5.3.3.3.3 that states << error ratio (BER) that is less than 10-15 (i.e., fewer than one bit error per 1015 bits) >>. The solution is to move the 10-12 wording into section 5.3.3.3.2 which applies to 1.5 and 3 Gbps.

Author: RElliott Subject: Cross-Out Date: 10/24/2008 7:54:18 AM -07'00' ACCEPT - DONE

In such cases, the individual TxRx connection segment should have loss characteristics less than the total allowed loss characteristic for the TxRx connection

That was true for the way SAS-1.1 specified the interconnect, but is overly simplistic for SAS-2. The next sentence is the one that

Author: pmcs-gfortin Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' TRACCEPT - DONE

Author: intc-mseidel

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

TREJECT ("over" should be "overall" instead)

Second paragraph, third sentence: "that the over TxRx connection requirements" s/b "that over the TxRx connection all requirements"

Author: Isi-gpenokie

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

TRACCEPT - DONE

🖶 This << such that the over TxRx connection requirements are >> should be << such that the overall TxRx connection requirements are >> I think.

Author: Isi-gpenokie

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

REJECT (SAS-2 does not define support for non-passive interconnects, and active equalizers are outside the scope. Notice the title of 5.2. Remember this comment for SAS-2.1, though.)

This << A passive equalizer network, if present, shall >> should be << A equalizer network, if present, shall >> as the current wording implies that an active equalizer would not be considered part of the TxRx connection

Author: hpq-relliott

Subject: Highlight Date: 6/9/2008 9:32:22 AM -07'00'

TPACCEPT - DONE (Alvin: Accept, but only specify the 3Gbps requirement as was done in SATA.

The 1.5 Gbps TCTF test load graphs are solely for testing the transmitter device; the interconnect is only required to be designed to be better than the 3 Gbps TCTF test load, regardless of the rate.

Comments from page 181 continued on next page

28 January 2008 T10/1760-D Revision 14

5.3.3.3 TxRx connection characteristics

5.3.3.1 TxRx connection characteristics overview

Each TxRx connection shall support a bit error ratio (BER) that is less than 10⁻¹² (i.e., fewer than one bit error per 10¹² bits). The parameters specified in this standard support meeting this requirement under all conditions including the minimum input and output amplitude levels.

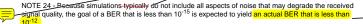
A TxRx connection may be constructed from multiple TxRx connection segments (e.g., backplane, cable, cable, backplane). In such cases, the individual TxRx connection segment should have less characteristics less than the total allowed less characteristic for the TxRx connection. It is the responsibility of the implementer to ensure that the TxRx connection is constructed from individual TxRx connection segments such that the over TxRx connection requirements are met. Loss characteristics for individual TxRx connection segments are beyond the scope of this standard.

Each TxRx connection segment shall comply with the impedance requirements detailed in 5.2.6 for the conductive material from which they are formed. A passive equalizer network, if present, shall be considered part of the TxRx connection.

TxRx connections shall be applied only to homogenous ground applications (e.g., between devices within an enclosure or rack, or between enclosures interconnected by a common ground return or ground plane).

5.3.3.3.2 TxRx connection characteristics for 1.5 Gbps and 3 Gbps

For 1.5 Gbps and 3 Gbps, each TxRx connection shall be designed such that its loss characteristics are less than:


- a) the loss of the TCTF test load plus ISI at 3 Gbps (see figure 112 in 5.3.2.3) over the frequency range of 50 MHz to 3 000 MHz; or
- b) if the system supports SATA devices using Gen2i levels (see SATA-2) but the receiver device does not support SATA Gen2i levels through the TCTF test load, the loss of the low-loss TCTF test load plus ISI (see figure 114 in 5.3.2.4) over the frequency range of 50 MHz to 3 000 MHz.

Each TxRx connection shall meet the delivered signal specifications in table 68 (see § 3.7.3).

For external cable assemblies, these electrical requirements are consistent with using good quality passive cable assemblies constructed with shielded twinaxial cable with 24 gauge solid wire up to 6 m long, provided that no other TxRx connection segments are included in the TxRx connection.

5.3.3.3 TxRx connection characteristics for 6 Gbps

For 6 Gbps, the TxRx connection shall support a bit error ratio (BER) that is less than 10.15 (i.e., fewer than one bit error per 10.15 bits) based on simulation results using S parameter measurements of the TxRx connection, the reference transmitter device (see 5.3.5.4.4), and the reference receiver device (see 5.3.7.4.3).

Split into two paragraphs, one for CT and one for IT: For 1.5 Gbps and 3 Gbps, each external TxRx connection shall be designed such that its loss characteristics are less than the loss of the TCTF test load plus ISI at CT at 3 Gbps (see figure 109 in 5.3.2.3) over the frequency range of 50 MHz to 3 000 MHz. For 1.5 Gbps and 3 Gbps, each internal TxRx connection shall be designed such that its loss characteristics are less than: a) the loss of the TCTF test load plus ISI at IT at 3 Gbps (see figure 108 in 5.3.2.3) over the frequency range of 50 MHz to 3 000 b) if the system supports SATA devices using Gen2i levels (see SATA) but the receiver device does not support SATA Gen2i levels through the TCTF test load, the loss of the low-loss TCTF test load plus ISI (see figure 113 in 5.3.2.4) over the frequency range of 50 MHz to 3 000 MHz 3 Gbps (see figure 112 Figure 112 is a 1.5 Gbps table. Item a) should probably refer to both tables for a given compliance point.: - for CT, the interconnect must be better than figure 112 (using revision 14 figure numbers) at 1.5 Gbps and figure 110 at 3 Gbps. - for IT, the interconnect must be better than figure 111 at 1.5 Gbps and figure 109 at 3 Gbps. (from Justin Wang, Uniconn) Author: RElliott Subject: Highlight Date: 9/3/2008 3:27:36 PM -07'00' ACCEPT - DONE 24 gauge s/b 24 AWG (from George Penokie, LSI) Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE (per Alvin) typically Author: stx-alvin-cox Subject: Note Date: 6/6/2008 12:55:34 PM -07'00' ACCEPT - DONE (Alvin: Accept. Change "Because" to "Since" and change the note to regular text as a continuation of the above paragraph.) Why is this a note rather than text included in the specification? Author: Isi-gpenokie Subject: Highlight Date: 6/6/2008 12:55:00 PM -07'00' REJECT (Alvin: Reject. Should not be actual less than 10-15 based on text description.) This << an actual BER that is less than 0-12. >> is a really bad thing to state. It should be << an actual BER that is less that 10-15

Comments from page 181 continued on next page

The transmitter output doesn't even have numbers like this after switching to the SASWDP methodology, so it is even more

Author: hpq-relliott Subject: Note

Date: 10/17/2008 3:22:13 PM -07'00'
ACCEPT - DONE (

important to include them separately.

28 January 2008 T10/1760-D Revision 14

5.3.3.3 TxRx connection characteristics

5.3.3.1 TxRx connection characteristics overview

Each TxRx connection shall support a bit error ratio (BER) that is less than 10⁻¹² (i.e., fewer than one bit error per 10¹² bits). The parameters specified in this standard support meeting this requirement under all conditions including the minimum input and output amplitude levels.

A TxRx connection may be constructed from multiple TxRx connection segments (e.g., backplane, cable, cable, backplane). In such cases, the individual TxRx connection segment should have loss characteristics less than the total allowed loss characteristic for the TxRx connection. It is the responsibility of the implementer to ensure that the TxRx connection is constructed from individual TxRx connection segments such that the over TxRx connection requirements are met. Loss characteristics for individual TxRx connection segments are beyond the scope of this standard.

Each TxRx connection segment shall comply with the impedance requirements detailed in 5.2.6 for the conductive material from which they are formed. A passive equalizer network, if present, shall be considered part of the TxRx connection.

TxRx connections shall be applied only to homogenous ground applications (e.g., between devices within an enclosure or rack, or between enclosures interconnected by a common ground return or ground plane).

5.3.3.3.2 TxRx connection characteristics for 1.5 Gbps and 3 Gbps

For 1.5 Gbps and 3 Gbps, each TxRx connection shall be designed such that its loss characteristics are less than:

- a) the loss of the TCTF test load plus ISI at 3 Gbps (see figure 112 in 5.3.2.3) over the frequency range of 50 MHz to 3 000 MHz; or
- b) if the system supports SATA devices using Gen2i levels (see SATA-2) but the receiver device does not support SATA Gen2i levels through the TCTF test load, the loss of the low-loss TCTF test load plus ISI (see figure 114 in 5.3.2.4) over the frequency range of 50 MHz to 3 000 MHz.

Each TxRx connection shall meet the delivered signal specifications in table 68 (see 5.3.7.3).

For external cable assemblies, these electrical requirements are consistent with using good quality passive cable assemblies constructed with shielded twinaxial cable with 24 gauge solid wire up to 6 m long, provided that no other TxRx connection.

5.3.3.3 TxRx connection characteristics for 6 Gbps

For 6 Gbps, the TxRx connection shall support a bit error ratio (BER) that is less than 10⁻¹⁵ (i.e., fewer than one bit error per 10¹⁵ bits) based on simulation results using 5-parameter measurements of the TxRx connection, the reference transmitter device (see 5.3.7.4.3).

NOTE 24 - Because simulations-typically do not include all aspects of noise that may degrade the received signal quality, the goal of a BER that is less than 10⁻¹⁵ is expected to yield an actual BER that is less than

Based on 08-227r0 (results from StatEye v5.080111), the 6 Gbps numbers that pass over all channels contributed to T10 for SAS-2 development are:

Amplitude > 84 mV

Although 3 Gbps and 1.5 Gbps should also be defined (more amplitude, less jitter) to make sure the interconnect has no strange behaviors at those rates, StatEye often crashes at those rates (the eye is too big). For SAS-2.0, we'll just leave those unspecified.

Channel models used:
05-4010 Mini SAS 0.5 m
05-4020 Mini SAS 1.5 m
05-4020 Mini SAS 1 m
05-4040 Mini SAS 3 m
05-4040 Mini SAS 6 m
07-1030 Mini SAS 6 m
07-1030 Mini SAS 10 m (aka SAS-2 transmitter test load)
05-38472 HP01-108, HP27-28
05-3890 HP09-11
05-39900 HP12-14
06-0170 HP24-26

The 10 m cable, HP24, and HP25 are the most challenging.

9/4 want to put the numbers in a separate section, rather than combine them, so they can differ in the future if appropriate

Alvin: Accept. Add sentence:

The TxRx connection simulation results shall comply with the 6 Gbps simulation results stated in Table 62 for transmitter devices.)

Need to state the goals for the statistical eye calculated by the reference receiver when performing channel testing:

minimum amplitude 100 mV maximum TJ 0.60 UI

Author: RElliott

Date: 10/17/2008 8:05:49 PM -07'00'

ACCEPT - DONE (5/5 yes on step size and max frequency (the only ones discussed). Also included passivity/causality. Ignoring min frequency and reciprocity.

Added:

"The S-parameter measurements shall:

a) have a maximum step size of 10 MHz;

b) have a maximum frequency of at least 20 GHz;

c) be passive (i.e., the output power is less than or equal to the input power); and

d) be causal (i.e., the output depends only on past inputs).

")

There are several parameters that can cause corrupt simulations with S-parameter files: minimum frequency (especially 0 Hz), frequency step size, max frequency, reciprocity, passivity, and causality.

See Anthony Sanders' DesignCon 2008 paper "Issues of Frequency Content of

S-Parameter Data for High-Speed Channel Evaluation." This recommends a maximum of 4.5x the baud rate (e.g., 4.5x6 = 27 GHz). Since 20 GHz VNAs are currently state of the art, though, we can only reasonably demand 20 GHz for physically measured S-parameters. The Cadence "Guidelines for Robust S-Parameter Model Development Application Note" suggests 2/rise_time (e.g., 2/41.67 ps = 48 GHz), which is impractical.

The T11 web site has a MATLAB script to check passivity. (it is possible to correct passivity as well) Causality is often discussed, but I haven't found a publicly available script to check it or correct it.

Author: RElliott

T10/1760-D Revision 14 28 January 2008

5.3.3.3 TxRx connection characteristics

5.3.3.3.1 TxRx connection characteristics overview

Each TxRx connection shall support a bit error ratio (BER) that is less than 10⁻¹² (i.e., fewer than one bit error per 10¹² bits). The parameters specified in this standard support meeting this requirement under all conditions including the minimum input and output amplitude levels.

A TxRx connection may be constructed from multiple TxRx connection segments (e.g., backplane, cable, cable, backplane). In such cases, the individual TxRx connection segment should have loss characteristics less than the total allowed loss characteristic for the TxRx connection. It is the responsibility of the implementer to ensure that the TxRx connection is constructed from individual TxRx connection segments such that the over TxRx connection requirements are met. Loss characteristics for individual TxRx connection segments are beyond the scope of this standard.

Each TxRx connection segment shall comply with the impedance requirements detailed in 5.2.6 for the conductive material from which they are formed. A passive equalizer network, if present, shall be considered part of the TxRx connection.

TxRx connections shall be applied only to homogenous ground applications (e.g., between devices within an enclosure or rack, or between enclosures interconnected by a common ground return or ground plane).

5.3.3.3.2 TxRx connection characteristics for 1.5 Gbps and 3 Gbps

For 1.5 Gbps and 3 Gbps, each TxRx connection shall be designed such that its loss characteristics are less than:

- a) the loss of the TCTF test load plus ISI at 3 Gbps (see figure 112 in 5.3.2.3) over the frequency range of 50 MHz to 3 000 MHz; or
- b) if the system supports SATA devices using Gen2i levels (see SATA-2) but the receiver device does not support SATA Gen2i levels through the TCTF test load, the loss of the low-loss TCTF test load plus ISI (see figure 114 in 5.3.2.4) over the frequency range of 50 MHz to 3 000 MHz.

Each TxRx connection shall meet the delivered signal specifications in table 68 (see 5.3.7.3).

For external cable assemblies, these electrical requirements are consistent with using good quality passive cable assemblies constructed with shielded twinaxial cable with 24 gauge solid wire up to 6 m long, provided that no other TxRx connection segments are included in the TxRx connection.

5.3.3.3 TxRx connection characteristics for 6 Gbps

For 6 Gbps, the TxRx connection shall support a bit error ratio (BER) that is less than 10⁻¹⁵ (i.e., fewer than one bit error per 10¹⁵ bits) based on simulation results using S-parameter measurements of the TxRx connection, the reference transmitter device (see 5.3.6.5.4), and the reference receiver device (see 5.3.7.4.3).

NOTE 24 - Because simulations-typically do not include all aspects of noise that may degrade the received signal quality, the goal of a BER that is less than 10⁻¹⁵ is expected to yield an actual BER that is less than

Working Draft Serial Attached SCSI - 2 (SAS-2)

181

Date: 9/15/2008 5:18:44 PM -07'00'

ACCEPT - DONE (Per Alvin, added "The simulation shall not include sources of crosstalk." The 85 mV amplitude target was obtained from 10 m cable/HP24/HP25 without crosstalk sources. When crosstalk is present in real systems (up to the limits specified in 5.2), the eye will be worse - phys must budget for that. When StatEye supports crosstalk sources, a new set of numbers might be included in a future version of the standard (e.g. drop 85 mV to 60 mV.))

need to clarify if the simulation target includes crosstalk or not

T10/1760-D Revision 14 28 January 2008

Figure 116 shows an example circuit for simulation. The specific simulation program used (e.g., StatEye from http://www.stateye.org) is not specified by this standard.

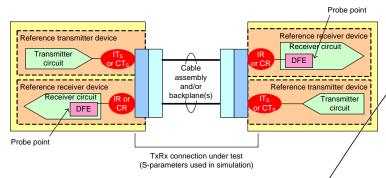


Figure 116 — Example 6 Gbps TxRx connection compliance testing

For external cable assemblies, these electrical requirements are consistent with using go/d quality passive Mini SAS 4x cable assemblies constructed with shielded twinaxial cable with 24 gauge solid wire up to 46 m long, provided that no other TxRx connection segments are included in the TxRx connection.

A TxRx connection supporting 6 Gbps may not support 1.5 Gbps and 3 Gbps and may not support SATA. SAS 6 Gbps transceiver devices incorporate enhanced features to allow them to operate over TxRx connections with higher loss than TxRx connections compliant previous versions of this standard, TxRx connections defined in this standard for 1.5 Gbps and 3 Gbps (see 5.3.3.3.2), and TxRx connections supporting SATA.

5.3.3.4 Receiver device general electrical characteristics

Table 56 defines the receiver device general electrical characteristics.

Table 56 — Receiver device general electrical characteristics

Characteristic	Units	1.5 Gbps	3 Gbps	6 Gbps
Physical link rate long-term tolerance at IR if SATA is not supported	ppp		± 100	
Physical link rate long-term tolerance at IR if SATA is supported	ppm		± 350	
Physical link rate SSC modulation tolerance at IR	ppm	See	table 78 in 5.3	3.8.3
Maximum receiver device transients ^a	V		± 1.2	
Minimum Receiver A.C. common-mode voltage tolerance V _{CM} ^b	mV(P-P)		150	
Receiver A.C. common-mode frequency tolerance range F_{CM}^{b}	MHz		2 to 200	
9 4				

See 5.3.4 for transient test circuits and conditions.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 182

Author: RElliott Subject: Highlight Date: 9/3/2008 3:27:43 PM -07'00' TACCEPT - DONE

24 gauge s/b 24 AWG

(from George Penokie, LSI)

Author: Isi-gpenokie

Subject: Highlight
Date: 7/17/2008 3:04:26 PM -07'00'

ACCEPT - DONE (7/15 change to a)b)c) list.

It is not a complete sentence; it is the 2nd and 3rd part of the sentence in which it is located. An a)b)c) list could be a possible improvement, but no change is currently planned)

I don't understand what this is stating as it does not read as a complete sentence << TxRx connections defined in this standard for 1.5 Gbps and 3 Gbps (see 5.3.3.3.2), and TxRx connections supporting SATA. >> It needs to be fixed.

Author: RElliott Subject: Note Date: 10/24/2008 10:09:17 AM -07'00' ACCEPT - DONE

Move 5.3.3.4 into 5.3.7

Author: RElliott Subject: Highlight Date: 9/19/2008 5:00:42 PM -07'00' TACCEPT - DONE

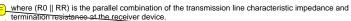
> Receiver s/b lowercase

Receiver devices shall tolerate sinusoidal common-mode noise components within the peak-to-peak amplitude (V_{CM}) and the frequency range (F_{CM}).

Table 57 defines the receiver device termination characteristics.

Table 57 — Receiver device termination characteristics

Characteristic	Units	1.5 Gbps	3 Gbps	6 Gbps	
Differential impedance a, b, c	ohm	100 ± 15		See 5.3.7.4.1	
Maximum differential impedance imbalance a, b, c, d	ohm	5		See 5.3.7.4.2 e	
Maximum receiver termination time constant a, b, c	Po	150	100	N/A	
Common-mode impedance 2, is	ohm	20 min/40 max		See 5.3.7.4.1	


- All receiver device termination measurements are made through mated connector pairs.
 b The receiver device termination impedance specification applies to all receiver devices in a TxRx connection and covers all time points between the connector nearest the receiver device, the receiver device, and the transmission line terminator. This measurement shall be made from that connector.
- At the time point corresponding to the connection of the receiver device to the transmission line, the input capacitance of the receiver device and its connection to the transmission line may cause the measured impedance to fall below the minimum impedances specified in this table. With impedance measured using amplitude in units of ρ (i.e., the reflection coefficient, a dimensionless unit) and duration in units of time, the area of the impedance dip caused by this capacitance is the receiver termination time constant. The receiver termination time constant shall not be greater than the values shown in this table.

An approximate value for the receiver termination time constant is given by the product of the amplitude of the dip in units of p and the width of the dip in units of time, as measured at the half amplitude point. The amplitude is defined as the difference in the reflection coefficient between the reflection coefficient at the nominal impedance and the reflection coefficient at the minimum impedance point.

The value of the receiver device excess input capacitance is given by the following equation:

C = receiver termination time constant

(R0 || RR)

- The difference in measured impedance to SiGNAL GROUND on the plus and minus terminals on the interconnect, transmitter device, or receiver device, with a differential test signal applied to those
- e Measurement replaced by S_{cd22} specifications (i.e., differential to common mode conversion).

5.3.4 Transmitter and receiver device transients

Transients may occur at transmitter devices or receiver devices as a result of changes in supply power conditions or mode transitions

A mode transition is an event that may result in a measurable transient due to the response of the transmitter device or receiver device. The following conditions constitute a mode transition:

- a) enabling or disabling driver circuitry;
- b) enabling or disabling receiver common-mode circuitry;
- c) hot plug event;
- d) adjusting driver amplitude;
- e) enabling or disabling de-emphasis; and
- f) adjusting terminator impedance.

Transmitter device transients are measured at nodes V_P and V_N with respect to GROUND on the test circuit shown in figure 117 during all power state and mode transitions. Receiver device transients are measured at nodes V_P and V_N with respect to GROUND on the test circuit shown in figure 118 during all power state and

Page: 183

Author: RElliott
Subject: Highlight
Date: 9/19/2008 5:01:51 PM -07'00'
TACCEPT - DONE
Spell out minimum and maximum

Author: pmcs-rhernandez Subject: Note

Date: 5/24/2008 9:10:20 AM -07'00'

REJECT (Alvin: This is accomplished by the reference to different sections to determine the 6 Gbps values. It made logical sense to include those reference locations here, understanding that the methodology is different.)

In table 57 (page 183), notes a, b, c & d should only apply to 1.5Gbps and 3Gbps

Author: Isi-gpenokie
 Subject: Highlight
 Date: 5/24/2008 9:08:50 AM -07'00'
 REJECT (Alvin: The context states what connector.)

From what connector ?? This << made from that connector >> should be << made from the connector nearest the receiver device >> I think.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Convert the receiver termination time constant paragraph into an equation format with a where: list. That matches the format of the receiver device excess input capacitance equation that follows.

Author: Isi-gpenokie
Subject: Highlight
Date: 5/24/2008 9:05:47 AM -07'00'
PREJECT (but converted whole paragraph into an equation. That ends up moving this into an i.e. inside the where list)

This << The amplitude is defined as >> should be << Where the amplitude is defined as >>

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

Change R0 and RR to use subscripts

Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

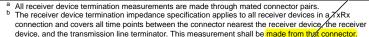
use equation formatting for the where: material

Author: Relliott
Subject: Underline
Date: 9/22/2008 3:17:41 PM -07'00'

TACCEPT - DONE

Scd22
s/b

Scd11


Comments from page 183 continued on next page

T10/1760-D Revision 14 28 January 2008

Table 57 defines the receiver device termination characteristics.

Table 57 — Receiver device termination characteristics

Units	1.5 Gbps	3 Gbps	6 Gbps	
ohm	100 ± 15		See 5.3.7.4.1	
ohm		5	See 5.3.7.4.2 e	
ps	150	100	N/A	
ohm	20 min/	40 max	See 5.3.7.4.7	
	ohm ohm ps	ohm 100 ohm 5 ps 150	ohm 100 ± 15 ohm 5 ps 150 100	

^c At the time point corresponding to the connection of the receiver device to the transmission line, the input capacitance of the receiver device and its connection to the transmission line may cause the measured impedance to fall below the minimum impedances specified in this table. With impedance measured using amplitude in units of ρ (i.e., the reflection coefficient, a dimensionless unit) and duration in units of time, the area of the impedance dip caused by this caracitance is the receiver termination time constant. The receiver termination time constant shall not be greater than the values

An approximate value for the receiver termination time constant is given by the product of the amplitude of the dip in units of ρ and the width of the dip in units of time, as measured at the half amplitude point. The amplitude is defined as the difference in the reflection coefficient between the reflection coefficient at the nominal impedance and the reflection coefficient at the minimum impedance point.

The value of the receiver device excess input capacitance is given by the following equation:

(R0 || RR)

where (R0 || RR) is the parallel combination of the transmission line characteristic impedance and termination resistance at the receiver device.

- The difference in measured impedance to SIGNAL GROUND on the plus and minus terminals on the interconnect, transmitter device, or eceiver device, with a differential test signal applied to those
- Measurement replaced by S_{m2} specifications (i.e., differential to common mode conversion).

5.3.4 Transmitter and receiver device transients

Transients may occur at transmitter devices or receiver devices as a result of changes in supply power conditions or mode transitions.

A mode transition is an event that may result in a measurable transient due to the response of the transmitter device or receiver device. The following conditions constitute a mode transition:

- a) enabling or disabling driver circuitry;
- b) enabling or disabling receiver common-mode circuitry;
- c) hot plug event;
- d) adjusting driver amplitude;
- e) enabling or disabling de-emphasis; and
- f) adjusting terminator impedance.

Transmitter device transients are measured at nodes V_P and V_N with respect to GROUND on the test circuit shown in figure 117 during all power state and mode transitions. Receiver device transients are measured at nodes V_P and V_N with respect to GROUND on the test circuit shown in figure 118 during all power state and

Working Draft Serial Attached SCSI - 2 (SAS-2)

for the receiver device.

Author: hpq-relliott Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE CD

T10/1760-D Revision 14 28 January 2008

mode transitions. Test conditions shall include power supply power on and power off conditions, voltage sequencing, and mode transitions.

Figure 117 shows the test circuit attached to IT or CT to test transmitter device transients.

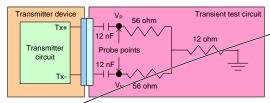


Figure 117 — Transmitter device transient test circuit

Figure 118 shows the test circuit attached to IR or CR to test receiver device transients.

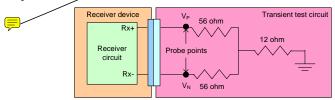


Figure 118 — Receiver device transient test circuit

5.3.5 Eye masks and the jitter transfer function (JTF)

5.3.5.1 Eye masks overview

The eye masks shown in this subclause shall be interpreted as graphical representations of the voltage and time limits of the signal. The eye mask boundaries define the eye contour of:

- a) the 10⁻¹² jitter population for 1.5 Gbps and 3 Gbps measured eyes; and
- b) the 10⁻¹⁵ jitter population for 6 Gbps simulated eyes.

For 1.5 Gbps and 3 Gbps, equivalent time sampling oscilloscope technology is not practical for measuring compliance to the eye masks. See MJSQ for methods that are suitable for verifying compliance to these eye masks.

For 6 Gbps, simulations are used to approximate the eye diagram after application of receiver equalization instead of direct measurements of the signal at the IR and CR compliance points.

CJTPAT shall be used for all jitter testing unless otherwise specified. Annex A defines the required patt/sm/n the physical link and provides information regarding special considerations for running disparity (see 6.2) and scrambling (see 7.6).

5.3.5.2 Jitter transfer function (JTF)

With the possible presence of SSC, the application of a single pole high-pass frequency-yeighting function that progressively attenuates jitter at 20 dB/decade below a frequency of (f_{baud} / 1 667) as specified in previous versions of this standard does not separate the SSC component from the actual jitter and thus may overstate the transmitter device jitter. To differentiate between allowable timing variation due to SSC and jitter, the frequency-weighting jitter transfer function (JTF) function shall be applied to the signal at the compliance point when determining the eye mask.

Page: 184

Author: RElliott
Subject: Note
Date: 10/17/2008 6:24:02 PM -07'00'
ACCEPT - DONE

Flip figure 118 horizontally so the receiver device is on the right

Author: RElliott Subject: Cross-Out Date: 11/6/2008 12:54:33 AM

Delete:

For 6 Gbps, simulations are used to approximate the eye diagram after application of receiver equalization, instead of direct measurements of the signal at the IR and CR compliance points.

per 08-433r0

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'

This << Annex A defines the required pattern on the physical link and provides information regarding >> should be << See annex A for the required pattern on the physical link and for information regarding >>

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

(see 6.2)

(See 6.2)

point to new RD section

Author: RElliott
Subject: Highlight
Date: 11/6/2008 1:26:23 AM

(fbaud / 1 667)

per 11/4 WG, add as a rejected comment (global): 1667 should really be 1666.6 repeating

FC-MJSQ annex C says this came from 2500 * 2/3, which really yields 1666.6 repeating.

Not worth changing at this late date, though.

Author: Isi-gpenokie
Subject: Highlight
Date: 5/24/2008 9:11:35 AM -07'00'

This << the actual jitter and thus may overstate the transmitter device jitter. To >> should be << the actual jitter and as a result, the transmitter device jitter may be overstated. To >>

Comments from page 184 continued on next page

T10/1760-D Revision 14 28 January 2008

mode transitions. Test conditions shall include power supply power on and power off conditions, voltage sequencing, and mode transitions.

Figure 117 shows the test circuit attached to IT or CT to test transmitter device transients.

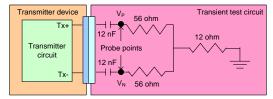


Figure 117 — Transmitter device transient test circuit

Figure 118 shows the test circuit attached to IR or CR to test receiver device transients.

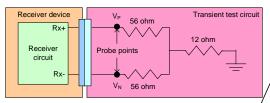


Figure 118 — Receiver device transient test circuit

5.3.5 Eye masks and the jitter transfer function (JTF)

5.3.5.1 Eye masks overview

The eye masks shown in this subclause shall be interpreted as graphical representations of the voltage and time limits of the signal. The eye mask boundaries define the eye contour of:

- a) the 10⁻¹² jitter population for 1.5 Gbps and 3 Gbps measured eyes; and
- b) the 10⁻¹⁵ jitter population for 6 Gbps simulated eyes.

For 1.5 Gbps and 3 Gbps, equivalent time sampling oscilloscope technology is not practical for measuring compliance to the eye masks. See MJSQ for methods that are suitable for verifying compliance to these eye masks.

For 6 Gbps, simulations are used to approximate the eye diagram after application of receiver equalization, instead of direct measurements of the signal at the IR and CR compliancy points.

CJTPAT shall be used for all jitter testing unless otherwise specified. An/lex A defines the required pattern on the physical link and provides information regarding special considerations for running disparity (see 6.2) and scrambling (see 7.6).

5.3.5.2 Jitter transfer function (JTF)

184

With the possible presence of SSC, the application of a single polé high-pass frequency-weighting function that progressively attenuates jitter at 20 dB/decade below a frequency of (f_{baud} / 1 667) as specified in previous versions of this standard does not separate the SSC component from the actual jitter and thus may overstate the transmitter device jitter. To differentiate between allowable timing variation due to SSC and jitter, the frequency-weighting jitter transfer function (JTF) function shall be applied to the signal at the compliance point when determining the eye mask.

Working Draft Serial Attached SCSI - 2 (SAS-2)

since the acronym was introduced in the section title

28 January 2008 T10/1760-D Revision 14

The jitter measurement device shall comply with the JTF. The reference clock characteristics are controlled by the resulting JTF characteristics obtained by taking the time difference between the PLL output (i.e., the reference clock) and the data stream sourced to the PLL. The PLL's closed loop transfer function's -3 dB corner frequency and other adjustable parameters (e.g., peaking) are determined by the value required to meet the requirements of the JTF.

The JTF shall have the following characteristics for a repeating 0011b or 1100b pattern (e.g., D24.3)(see table 235 in 10.2.9.2):

- a) the -3 dB corner frequency of the JTF shall be 2.6 ± 0.5 MHz;
- b) the magnitude peaking of the JTF shall be 3.5 dB maximum; and
- c) the attenuation at 30 kHz ± 1 % shall be 72 dB to 75 dB.

The JTF -3 dB corner frequency and the magnitude peaking requirements shall be measured with sinusoidal PJ applied, with a peak-to-peak amplitude of 0.3 UI \pm 10 %. The relative attenuation at 30 kHz shall be measured with sinusoidal phase (i.e., time) modulation applied, with a peak-to-peak amplitude of 20.8 ns \pm 10 %.

A proportional decrease of the JTF -3 dB corner frequency stable be essented for a decrease in pattern transition density compared to a 0.5 transition density. If a JMD shifts the JTF -3 dB corner frequency in amanner that does not match this characteristic, or does not shift at all, measurements of jitter with patterns with transition densities different than 0.5 may lead to discrepancies in reported jitter levels. In the case of reported jitter discrepancies between JMDs, the JMD with the shift of the -3 dB corner frequency that is closest to the proportional characteristic of the reference channel shall be considered correct. This characteristic may be measured with the conditions defined above for measuring the -3 dB corner frequency, but substituting other patterns with different transition densities.

5.3.5.3 Transmitter device eye mask

Figure 119 describes the eye mask used for testing the following:

- a) the signal output of the transmitter device at IT, CT, IR, and CR fer 1.5 Gbps and 3 Gbps;
- b) the signal output of the transmitter device at IT and CT for 6 Gbps; and
- c) the simulated signal output of the reference receiver device at IR and CR for 6 Gbps.

This eye mask applies to jitter after the application of the JTF (see 5.3.5.2).

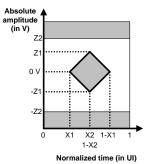


Figure 119 — Transmitter device eye mask

Verifying compliance with the limits represented by the transmitter device eye mask should be done with reverse channel traffic present in order that the effects of crosstalk are taken into account.

Subject: Highlight Date: 5/24/2008 9:12:41 AM -07'00' REJECT (Alvin: Reject due to limitations on test equipment capability.) The 3-dB corner frequency of the JTF originally came from Fbaud/500 for 3Gbps, which is 6 MHz (lowpass). The corresponding highpass corner frequency was found to be approximately 2.5 MHz, depending upon the particular characteristics of the tracking PLL filter. Doubling the baud rate should correspondingly increase the JTF corner frequency. Author: RElliott Subject: Highlight Date: 10/17/2008 10:27:56 AM -07'00' TACCEPT - DONE sinusoidal PJ s/b SJ Author: stx-alvin-cox Subject: Note Date: 5/24/2008 9:13:24 AM -07'00' ACCEPT - DONE First occurrence. jitter measurement device (JMD) Author: RElliott Subject: Highlight Date: 9/3/2008 3:33:01 PM -07'00' reference channel reference transmitter test load (se 5.3.2.5) (from George Penokie, LSI) Author: RElliott Subject: Cross-Out Date: 11/6/2008 12:54:16 AM Delete: IR, and CR per 08-433 Author: RElliott Subject: Highlight Date: 10/24/2008 10:35:57 AM -07'00' TACCEPT - DONE for 1.5 Gbps and 3 Gbps add and OOB Author: RElliott Subject: Cross-Out Date: 10/24/2008 10:35:38 AM -07'00'

Page: 185

Author: intc-mseidel

Comments from page 185 continued on next page

28 January 2008 T10/1760-D Revision 14

The jitter measurement device shall comply with the JTF. The reference clock characteristics are controlled by the resulting JTF characteristics obtained by taking the time difference between the PLL output (i.e., the reference clock) and the data stream sourced to the PLL. The PLL's closed loop transfer function's -3 dB corner frequency and other adjustable parameters (e.g., peaking) are determined by the value required to meet the requirements of the JTF.

The JTF shall have the following characteristics for a repeating 0011b or 1100b pattern (e.g., D24.3)(see table 235 in 10.2.9.2):

- a) the -3 dB corner frequency of the JTF shall be 2.6 ± 0.5 MHz;
- b) the magnitude peaking of the JTF shall be 3.5 dB maximum; and
- c) the attenuation at 30 kHz ± 1 % shall be 72 dB to 75 dB.

The JTF -3 dB corner frequency and the magnitude peaking requirements shall be measured with sinusoidal PJ applied, with a peak-to-peak amplitude of 0.3 UI ± 10 %. The relative attenuation at 30 kHz shall be measured with sinusoidal phase (i.e., time) modulation applied, with a peak-to-peak amplitude of 20.8 ns ± 10 %.

A proportional decrease of the JTF -3 dB corner frequency significant be observed for a decrease in pattern transition density compared to a 0.5 transition density. If a JMD shifts the JTF -3 dB corner frequency in a manner that does not match this characteristic, or does not shift at all, measurements of jitter with patterns with transition densities different than 0.5 may lead to discrepancies in reported jitter levels. In the case of reported jitter discrepancies between JMDs, the JMD with the shift of the -3 dB corner frequency that is closest to the proportional characteristic of the reference channel shall be considered correct. This characteristic may be measured with the conditions defined above for measuring the -3 dB corner frequency, but substituting other patterns with different transition densities.

5.3.5.3 Transmitter device eye mask

Figure 119 describes the eye mask used for testing the following:

- a) the signal output of the transmitter device at IT, CT, IR, and CR for 1.5 Gbps and 3 Gbps;
- b) the signal output of the transmitter device at IT and CT for 6 Gbps; and
- c) the simulated signal output of the reference receiver device at IR and CR for 6 Gbps.

This eye mask applies to jitter after the application of the JTF (see 5.3.5.2).

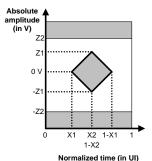


Figure 119 — Transmitter device eye mask

Verifying compliance with the limits represented by the transmitter device eye mask should be done with reverse channel traffic present in order that the effects of crosstalk are taken into account.

Working Draft Serial Attached SCSI - 2 (SAS-2)

185

ACCEPT - DONE

Delete

"b) the signal output of the transmitter device at IT and CT for 6 Gbps; and

c) the simulated signal output of the reference receiver device at IR and CR for 6 Gbps."

The WDP methodology doesn't rely on an eye mask.

Author: pmcs-gfortin Subject: Highlight Date: 5/24/2008 9:13:49 AM -07'00'

This requirement is not strictly sufficient to get a realistic eye mask for devices with multiple channels, such as expanders. It is proposed include the impact of crosstalk from adjacent forward and reverse channels:

"Verifying compliance with the limits represented by the transmitter device eye mask should be done with reverse channel traffic present on the channel-under-letst and with forward and reverse traffic present on all other channels, in order that the effects of crosstalk are taken into account."

T10/1760-D Revision 14 28 January 2008

5.3.5.4 Receiver device eye mask

Figure 120 describes the eye mask used for testing the following:

- a) the signal delivered to the receiver device at IR and CR for 1.5 Gbps and 3 Gbps; and
- b) the simulated signal delivered to the reference receiver device at IR and CR for 6 Gbps.

This eye mask applies to jitter after the application of the JTF (see 5.3.5.2). This requirement accounts for the low frequency tracking properties and response time of the CDRs in receiver devices.

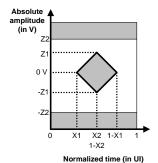


Figure 120 — Receiver device eye mask

Verifying compliance with the limits represented by the receiver device eye mask should be done with reverse

5.3.5.5 Receiver device jitter tolerance eye mask

Figure 121 describes the eye mask used to test the jitter tolerance of the receiver device at IR and CR for 1.5 Gbps and 3 Gbps. For 6 Gbps, jitter tolerance is included in the received signal specifications for receiver device physical testing (see 5.3.7.4.4).

The eye mask shall be constructed as follows:

a) X2 and Z2 shall be the values for the delivered signal listed in table 68 (see 5.3.7.3);

channel traffic present in order that the effects of crosstalk are taken into account.

b) X1_{OP} shall be half the value of TJ for maximum delivered jitter listed in table 73 (see 5.3.7.5); and

Page: 186

Author: pmcs-gfortin Subject: Highlight Date: 5/24/2008 9:13:56 AM -07'00'

This requirement is not strictly sufficient to get a realistic eye mask for devices with multiple channels, such as expanders. It is proposed include the impact of crosstalk from adjacent forward and reverse channels:

"Verifying compliance with the limits represented by the receiver device eye mask should be done with reverse channel traffic present on the channel-under-lest and with forward and reverse traffic present on all other channels, in order that the effects of crosstalk are taken into account."

c) X1_{TOL} shall be half the value of TJ for receiver device jitter tolerance listed in table 74 (see 5.3.7.6), for applied sinusoidal jitter frequencies above (ibaud / i oo7).

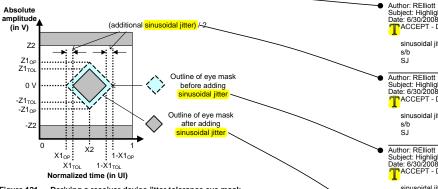


Figure 121 — Deriving a receiver device jitter tolerance eye mask

The leading and trailing edge slopes of the receiver device eye mask in figure 120 (see 5.3.5.4) shall be preserved. As a result, the amplitude value of Z1 is less than that given for the delivered signal in table 68 (see 5.3.7.3), and Z1_{TOL} and Z1_{OP} shall be defined from those slopes by the following equation:

$$Z1_{TOL} = Z1_{OP} \times \frac{X2 - \left(\frac{ASJ}{2}\right) - X1_{OP}}{X2 - X1_{OP}}$$

where:

 $Z1_{TOL}$ is the value for Z1 to be used for the receiver device jitter tolerance eye mask

Z1_{OP} is the Z1 value for the delivered signal in table 68 is the X1 value for the delivered signal in table 68 X1_{OP}

X2 is the X2 value for the delivered signal in table 88

is the additional sinusoidal jitter defined in figure 122 ASJ

The X1 points in the receiver device jitter tolerance eye mask (see figure 121) are greater than the X1 points in the receiver device eye mask (see figure 120) due to the addition of sinusoidal jitter. -

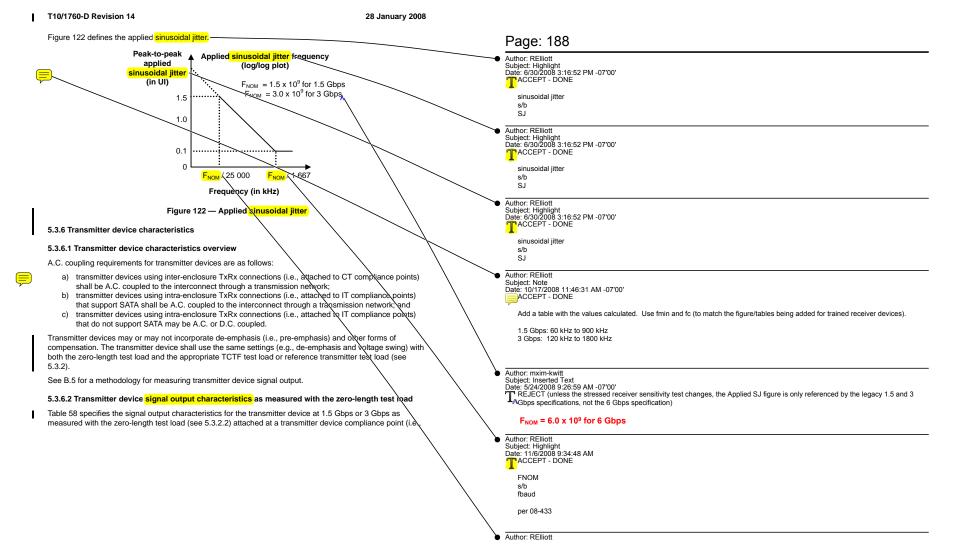
Page: 187

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' sinusoidal jitter s/b SJ Author: RElliott Author: REIIIOtt Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' sinusoidal jitter s/b SJ Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

sinusoidal jitter s/b SJ

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

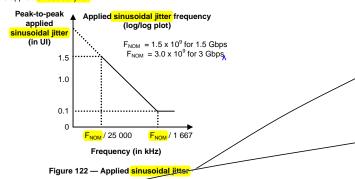

sinusoidal jitter s/b SJ

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

sinusoidal jitter s/b SJ

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

> sinusoidal jitter s/b SJ


Comments from page 188 continued on next page

T10/1760-D Revision 14

28 January 2008

Figure 122 defines the applied sinusoidal jitter.

5.3.6 Transmitter device characteristics

5.3.6.1 Transmitter device characteristics overview

A.C. coupling requirements for transmitter devices are as follows:

- a) transmitter devices using inter-enclosure TxRx connections (i.e., attached to CT compliance points) shall be A.C. coupled to the interconnect through a transmission network;
- b) transmitter devices using intra-enclosure TxRx connections (i.e., attached to IT compliance points) that support SATA shall be A.C. coupled to the interconnect through a transmission network, and
- c) transmitter devices using intra-enclosure TxRx connections (i.e., attached to IT compliance points) that do not support SATA may be A.C. or D.C. coupled.

Transmitter devices may or may not incorporate de-emphasis (i.e., pre-emphasis) and other forms of compensation. The transmitter device shall use the same settings (e.g., de-emphasis and voltage swing) with both the zero-length test load and the appropriate TCTF test load or reference transmitter test load (see 5.3.2)

See B.5 for a methodology for measuring transmitter device signal output.

5.3.6.2 Transmitter device signal output characteristics as measured with the zero-length test load

Table 58 specifies the signal output characteristics for the transmitter device at 1.5 Gbps or 3 Gbps as measured with the zero-length test load (see 5.3.2.2) attached at a transmitter device compliance point (i.e.,

Subject: Highlight
Date: 11/6/2008 9:34:43 AM
TACCEPT - DONE

FNOM
s/b
fbaud

per 08-433

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

sinusoidal jitter
s/b
SJ

Author: RElliott
Subject: Note
Date: 10/17/2008 6:06:23 PM -07'00'
ACCEPT - DONE

Move A.C. coupling requirements into a subsection of its own. Adjust cross references to these requirements.

Author: RElliott
Subject: Highlight
Date: 9/19/2008 4:37:58 PM -07'00'
TACCEPT - DONE

atter:
signal output characteristics

"at 1.5 Gbps and 3 Gbps"

IT or CT). All specifications are based on differential measurements. See 5.3.6.5 for 6 Gbps transmitter device signal output characteristics.

Table 58 — Transmitter device signal output characteristics as measured with the zero-length test load at transmitter device compliance points IT and CT

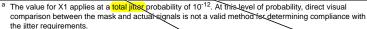
Signal characteristic ^a	Units	1.5 Gbps	3 Gbps
Maximum intra-pair skew ^b	ps	20	15
Maximum transmitter device off voltage ^c	mV(P-P)	ţ	50
Maximum rise/fall time d	ps	273	137
Minimum rise/fall time d	ns	_	67
Maximum transmitter output imbalance e	%		10

- ^a All tests in this table shall be performed with zero-length test load (see 5.3.2.2).
- The intra-pair skew measurement shall be made at the sudpoint of the transition with a repeating 01b or 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link. The same stable trigger, coherent to the data stream, shall be used for both the Tx+ and Tx signals. Intra-pair skew is defined as the time difference between the means of the midpoint crossing times of the Tx+ signal and the Tx- signal.
- The transmitter device off voltage is the maximum A.C. voltage measured at compliance points IT and CT when the transmitter is unpowered or transmitting D.C. idle (e.g., during idle time of an OOB signal).

 Rise/fall times are measured from 20 % to 80 % of the transition with a repeating 01b or 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link.
- The maximum difference between the V+ and V- A.C. RMS transmitter device amplitudes measured with CJTPAT (see A.2) into the zero-length test load shown in figure 105 (see 5.3.2.2), as a percentage of the V+ and V- A.C. RMS amplitudes.

5.3.6.3 Transmitter device signal output characteristics as measured with each test load

Table 59 specifies the signal output characteristics for the transmitter device at 1.5 Gbps or 3 Gbps as measured with each test load (i.e., the zero-length test load (see 5.3.2.2) and either the TCTF test load (see 5.3.2.3) or the low-loss TCTF test load (see 5.3.2.4)) attached at a transmitter device-compliance point (i.e., IT or CT). All specifications are based on differential measurements. See 5.3.6.5 for 6 Gbps transmitter device signal output characteristics.


Page: 189

signal output characteristics add "at 1.5 Gbps and 3 Gbps"

Author: RElliott Subject: Highlight Date: 9/19/2008 4:38:16 PM -07'00' ACCEPT - DONE after: signal output characteristics "at 1.5 Gbps and 3 Gbps" Author: RElliott
Subject: Cross-Out
Date: 9/19/2008 4:46:06 PM -07'00'
TACCEPT - DONE
transmitter device compliance points Author: RElliott Subject: Highlight
Date: 11/6/2008 1:17:09 AM
PACCEPT - DONE
After Maximum add (i.e., slowest) Author: RElliott Subject: Highlight
Date: 11/6/2008 1:17:21 AM
TACCEPT - DONE
after Minimum add (i.e., fastest) Author: RElliott Subject: Highlight Date: 11/6/2008 9:02:48 AM TREJECT (11/5 WG voted 11-2 to keep the 01 pattern, which has no Tx deemphasis effects) repeating 01b or 10b pattern repeating 0011 or 1100 pattern requested by 08-433r0 Author: RElliott Subject: Highlight
Date: 9/19/2008 4:38:28 PM -07'00'
ACCEPT - DONE after:

			\sim		
Olympia hamantariada	Units	п	,		т
Signal characteristic	1.5 Gbps		3 Gbps	1.5 Gbps	3 GDps
Maximum jitter (see figure 119 in 5.3.5.3) a	N/A		See table 7	3 in 5.3.7.5	
Maximum peak to peak veltage (i.e., 2 × Z2 in figure 119) if SATA is not supported	mV(P-P)	1 600			
Maximum peak to peak voltage (i.e., 2 × \(\frac{2}{2}\) in figure 119) if SATA is supported	mV(P-P)	see SATA-2 ^d		N/A	
Minimum eye opening (i.e., 2 × Z1 in figure 119), if SATA is not supported	mV(P-P)	325	275	27	75
Minimum eye opening (i.e., 2 × Z1 in figure 119), if SATA is supported	mV(P-P)	see SATA-2 d		N/A	
Half of maximum jitter (i.e., X1 in figure 119) b	UI	0.275			
Center of bit time (i.e., X2 in figure 119)	UI	0.50			
Maximum intra-pair skew c	ps	80	75	80	75
Maximum voltage (non-operational)	mV(P-P)		20	000	

The value for X1 shall be half the value of TJ for maximum delivered jitter listed in table 73. The test or analysis shall include the effects of a single pole high-pass frequency-weighting function that

progressively attenuates jitter at 20 dB/decade below a frequency of (fpaud / 1 667). The intra-pair skew measurement shall be made at the midpoint of the transition with a repeating 01b of 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link. The same stable trigger, coherent to the data stream, shall be used for both the Tx+ and Tx-signals. Intra-pair skew is defined as the time difference between the means of the midpoint crossing times of the Tx+ signal and the Tx- signal at the probe points.

Amplitude measurement methodologies of SATA and this standard differ. Under conditions of maximum rise/fall time and jitter, eye diagram methodologies used in this standard may indicate less sisnal amplitude than the technique specified by SATA-2. Implementors of designs supporting SATA are required to ensure interoperability and should perform additional system characterization with an eye diagram methodology using SATA devices.

5.3.6.4 Transmitter device maximum jitter

Table 60 defines the maximum jitter the transmitter device shall deliver at 1.5 Gbps or 3 Gbps as measured with each test load (i.e., the zero-length test load (see 5.3.2.2) and either the TCTF test load (see 5.3.2.3) or the low-loss TCTF test load (see 5.3.2.4)) at a transmitter device compliance point (i.e., IT or CT). SSC induced high-frequency jitter is included in DJ and consequently in TJ at the transmitter output. SSC

Page: 190

Author: RElliott Subject: Highlight Date: 9/19/2008 4:38:48 PM -07'00' TACCEPT - DONE signal output characteristics add "at 1.5 Gbps and 3 Gbps"

Author: RElliott Subject: Cross-Out Date: 9/19/2008 4:45:55 PM -07'00' ACCEPT - DONE

transmitter device compliance points

Subject: Cross-Out Date: 9/16/2008 9:20:00 AM -07'00'

Maximum jitter (see figure 119 in 5.3.5.3) a N/A See table 73 in 5.3.7.5

That points to a table defining jitter delivered at IR/CR, which means the interconnect is unpredictable; this table should only specify the transmitter relying on transmitter test loads

Author: ibm-jay-diepenbrock Subject: Highlight Date: 5/24/2008 9:17:29 AM -07'00'

REJECT (Alvin: Reject. This table does not address cards and cables. Rob: This is a SAS-1.1 compatibility table, not SAS-2, so we don't want to change much. For SAS-2, although the jitter budget for the interconnect is not specific, you simulate the sparameters with StatEye and determine if it complies or not.)

Separate budgets need allocated for cards and cables.

Author: RElliott Subject: Highlight
Date: 9/16/2008 9:22:15 AM -07'00'
TACCEPT - DONE

maximum jitter

s/b

TJ

to use consistent terminology

Author: ibm-jay-diepenbrock

Subject: Highlight
Date: 5/24/2008 92:0:00 AM -07'00'
"TREJECT (Alvin: Reject. This table specifies the transmitter device. Rob: SAS-2 removes the intra-pair cable skew spec for SAS-2 compliant channels, because it is misleading and incomplete - see 06-499 for details. Simulation of the s-parameters and evaluation of the statistical eye quality and Scd are the replacements.)

I don't see an allocation of in-pair skew for the cable separate from the rest of the system. How does a cable supplier know if his cable meets the spec. or not since he has no knowledge of the amount of skew on cards, etc.? Please allocate separate portions of the skew and jitter budget to the cards and the cables and insertion loss.

Comments from page 190 continued on next page

		IT		С	т //
Signal characteristic	Units	1.5 Gbps	3 Gbps	1.5 Glaps	3 Gbps
Maximum jitter (see figure 119 in 5.3.5.3) a	N/A		See table 7	3 in 5.3.7.5	
Maximum peak to peak voltage (i.e., 2 × Z2 in figure 119) if SATA is not supported	mV(P-P)		16	600	
Maximum peak to peak voltage (i.e., 2 × Z2 in figure 119) if SATA is supported	m√(P-P)	see SA	TA-2 ^d	N/	A
Minimum eye opening (i.e., 2 × Z1 in figure 119), if SATA is not supported	mV(P-P)	325	275	27	' 5
Minimum eye opening (i.e., Z × Z1 in figure 119), if SATA is supported	mV(P-P)	see SA	TA-2 ⁻¹	N/	Ä
Half of maximum jitter (i.e., X1 in figure 119) b	Ul		0.2	75	
Center of bit time (i.e., X2 in figure 119)	UI		0.5	50	
Maximum intra-pair skew c	DS	80	75	âŭ	75
Maximum voltage (non-operational)	m√(P-P)		2 0	000	

The value for X1 applies at a total jitter probability of 10⁻¹². At this level of probability, direct visual comparison between the mask and actual signals is not a valid method for determining compliance with the litter requirements.

The value for X1 shall be half the value of TJ for maximum delivered jitter listed in table 73. The test or analysis shall include the effects of a single pole high-pass frequency-weighting function that progressively attenuates jitter at 20 dB/decade below a frequency of (f_{baud} / 1 667).

The intra-pair skew measurement shall be made at the midpoint of the transition with a repeating 01b or 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link. The same stable trigger, coherent to the data stream, shall be used for both the Tx+ and Tx- signals. Intra-pair skew is defined as the time difference between the means of the midpoint crossing times of the Tx+ signal and the Tx- signal at the probe points

Amplitude measurement methodologies of SATA and this standard differ. Under conditions of maximum rise/fall time and jitter, eye diagram methodologies used in this standard may indicate less signal amplitude than the technique specified by SATA-2. Implementors of designs supporting SATA are required to ensure interoperability and should perform additional system characterization with an eye diagram methodology using SATA devices.

5.3.6.4 Transmitter device maximum jitter

Table 60 defines the maximum litter the transmitter device shall deliver at 1.5 Gbps or 3 Gbps as measured with each test load (i.e., the zero-length test load (see 5.3.2.2) and either the TCTF test load (see 5.3.2.3) or the low-loss TCTF test load (see 5.3.2.4)) at a transmitter device compliance point (i.e., IT or CT). SSC induced high frequency jitter is included in DJ and consequently in TJ at the transmitter output. SSC

Cable suppliers are having difficulty meeting the specs - even using the entire budget. They don't want to sign up to meet the spec'ed limits.

Author: RElliott Subject: Note Date: 9/16/2008 2:25:44 PM -07'00' ACCEPT - DONE

Move "maximum voltage (non-operational)" to the top of the table, so all the mV rows are together.

Author: RElliott Subject: Highlight Date: 9/16/2008 9:30:01 AM -07'00' ACCEPT - DONE total jitter s/b TJ

Author: RElliott Subject: Note ACCEPT - DONE

Move footnote a from the deleted "Maximum jitter" row to the "Half of maximum jitter" row, since it applies to X1.

Author: RElliott Subject: Note Date: 9/16/2008 9:24:44 AM -07'00' ACCEPT - DONE

> Change "shall be half of TJ" to "is also half of TJ", since this is a statement of fact, not a requirement. The requirement is the number in the table.

Author: pmcs-afortin

Subject: High 1975 August 1975 August 1976 August 1976

The value for X1 shall be half the value of TJ for maximum delivered jitter listed in table 73. The test or analysis shall include the effects of the JTE (see 5.3.5.2)

In section 5.3.7.5 (p. 206), the first paragraph states:

"Table 73 defines the maximum jitter the system shall deliver to the receiver device at the receiver device compliance point (i.e., IR or CR) for 1.5 Gbps and 3 Gbps. SSC-induced high-frequency jitter is included in DJ and consequently TJ at the transmitter device

This implies that the value of X1 in table 59 must be measured with SSC-enabled. If true, then a single pole high-pass filter may not be sufficient to reject litter and note b should instead refer to the JTF.

The reference to the single pole high-pass filter is also inconsistent with sections 5.3.5.3 and 5.3.5.4 that mandate usage of the JTF for jitter filtering.

Proposed rewording:

"The value for X1 shall be half the value of TJ for maximum delivered jitter listed in table 73. The test or analysis shall include the effects of the JTF.

Author: RElliott Subject: Note Date: 9/18/2008 12:45:58 PM -07'00' ACCEPT - DONE

T10/1760-D Revision 14 28 January 2008

Table 59 — Transmitter device signal output characteristics as measured with each test load at transmitter device compliance points IT and CT

Olympia de anno de sindi	11-11-	IT IT		С	т
Signal characteristic	Units	1.5 Gbps	3 Gbps	1.5 Gbps	3 Gbps
Maximum jitter (see figure 119 in 5.3.5.3) a	N/A		See table 7	3 in 5.3.7.5	
Maximum peak to peak voltage (i.e., 2 × Z2 in figure 119) if SATA is not supported	mV(P-P)	1 600			
Maximum peak to peak voltage (i.e., $2 \times Z2$ in figure 119) if SATA is supported	mV(P-P)	see SATA-2 ^d		N/A	
Minimum eye opening (i.e., 2 × Z1 in figure 119), if SATA is not supported	mV(P-P)	325	325 275		7 5
Minimum eye opening (i.e., 2 × Z1 in figure 119), if SATA is supported	mV(P-P)	see SATA-2 ^d		N/A	
Half of maximum jitter (i.e., X1 in figure 119) b	UI	0.275			
Center of bit time (i.e., X2 in figure 119)	UI	0.50			
Maximum intra-pair skew ^c	ps	80	75	80	75
Maximum voltage (non-operational)	mV(P-P)		20	000	

^a The value for X1 applies at a total jitter probability of 10⁻¹². At this level of probability, direct visual comparison between the mask and actual signals is not a valid method for determining compliance with the jitter requirements.

The value for X1 shall be half the value of TJ for maximum delivered jitter listed in table 73. The test or analysis shall include the effects of a single pole high-pass frequency-weighting function that progressively attenuates jitter at 20 dB/decade below a frequency of (f_{baud} / 1 667).

The intra-pair skew measurement shall be made at the midpoint of the transition with a repeating 01b or 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link. The same stable trigger, coherent to the data stream, shall be used for both the Tx+ and Tx- signals. Intra pair skew is defined as the time difference between the means of the midpoint crossing times of the/fx+ signal and the Tx- signal at the probe points.

d Amplitude measurement methodologies of SATA and this standard differ. Under conditions of maximum rise/fall time and jitter, eye diagram methodologies used in this standard may indicate less signal amplitude than the technique specified by SATA-2. Implementors of designs supporting SATA are required to ensure interoperability and should perform additional system characterization with an eye diagram methodology using SATA devices.

190

5.3.6.4 Transmitter device maximum jitter

Table 60 defines the maximum jitter the transmitter device shall deliver at 1.5/Gbps or 3 Gbps as measured with each test load (i.e., the zero-length test load (see 5.3.2.2) and either the TCTF test load (see 5.3.2.3) of the low-loss TCTF test load (see 5.3.2.4)) at a transmitter device compliance point (i.e., IT or CT). SSC induced high-frequency jitter is included in DJ and consequently in 4J at the transmitter output. SSC

Working Draft Serial Attached SCSI - 2 (SAS-2)

Delete section 5.3.6.4 Transmitter device maximum jitter, including table 60, specifying DJ and TJ.

Move the DJ number into table 59.

The TJ number is effectively already in table 59 (although it is specified as "half of").

Move the footnotes into table 59.

Author: RElliott Subject: Cross-Out Date: 9/22/2008 3:09:08 PM -07'00'

TACCEPT - DONE

TO Delete "SSC-induced high-frequency litter is included in DJ and consequently in TJ at the transmitter output. SSC shall be enabled if supported by the transmitter device."

since this section is only for legacy 1.5 Gbps SAS and 3 Gbps SAS, where SSC is not allowed.

Author: wdc-mevans Subject: Highlight
Date: 5/24/2008 9:24:07 AM -07'00'
REJECT

> and consequently in and, as a result, in

shall be enabled if supported by the transmitter device. See 5.3.6.5 for 6 Gbps transmitter device signal output characteristics.

Table 60 — Transmitter device maximum jitter as measured with each test load at transmitter-device compliance points IT and CT

Signal characteristic a, b	Units	1.5 Gbps	3 Gbps
Deterministic jitter (DJ) d	UI	0.35	
Total jitter (TJ) c, d, e	UI	0.	.55

^a All DJ and TJ values are level 1 (see MJSQ).

The values for jitter in this table are measured at the average signal amplitude point.

^c TJ is specified at a CDF level of 10⁻¹².

^d The DJ and TJ values in this table apply to jitter measured as described in 5.3.5.3. Values for DJ and TJ shall be calculated from the CDF for the jitter population using the calculation of level 1 jitter compliance burden in which is MTS.

compliance levels method in MJSQ.

e If TJ received at any point is less than the maximum allowed, then the jitter distribution of the signal is allowed to be asymmetric. The TJ plus the magnitude of the asymmetry shall not exceed the allowed maximum TJ. The numerical difference between the average of the peaks with a BER that is less than 10⁻¹² and the average of the individual events is the measure of the asymmetry. Jitter peak-to-peak measured < (maximum TJ - [Asymmetry]).

Page: 191

Author: RElliott Subject: Cross-Out Date: 9/19/2008 4:45:44 PM -07'00'

transmitter device compliance points

5.3.6.5 Transmitter device signal output characteristics for 6 Gbps

5.3.6.5.1 Transmitter device signal output characteristics for 6 Gbps overview

Table 61 specifies the signal output characteristics for the transmitter device as measured with the zero-length test load (see 5.3.2.2), unless otherwise specified, attached at a transmitter device compliance point (i.e., IT or CT). All specifications are based on differential measurements.

Table 61 — Transmitter device signal output characteristics for 6 Gbps at IT and CT

Signal characteristic	Units	Minimum	Nominal	Maximum
Peak to peak voltage if SATA is not supported a	mV(P-P)	800		1 200
Transmitter device off voltage b	mV(P-P)			50
Maximum voltage (non-operational)	mV(P-P)	F	2,000	
Minimum rise/fall time c	UI	0.25 (41.6 ps)		
Reference differential impedance d	-shm		100	
Reference common mode impedance d	ohm		25	
Common mode voltage limit (rms) ^e	mV			30
Random jitter (RJ)	UI			0.15 (25 ps)
Half of maximum jitter (i.e., X1 in figure 119)	UI			0.30 (50 ps)
Minimum eye opening (i.e., 2 x Z1 ir figure 119) ^g	mV(P-P)	100		
a 0				

- ^a See 5.3.6.5.5 for measurement method.
- The transmitter device off voltage is the maximum A.C. voltage measured at compliance points IT and CT when the transmitter is unpowered or transmitting D.C. idle (e.g., during idle time of an OOB signal).
 Rise/fall times are measured from 20 % to 80 % of the transition with a repeating 01b or 10b pattern
- (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link.
- d For transmitter device S-parameters characteristics, see 5.3.6.5.2.
- This is a broadband limit. For additional limits on spectral content, see figure 123 and table 62.

 RJ is 14 times the RJ 1 sigma value, based on a BER of 10⁻¹². This test shall be performed with a repeating 01b or 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link. If the transmitter device supports SSC, this measurement shall be performed with both SSC enabled and SSC disabled. For simulations based on a BER of 10⁻¹⁵, the RJ specified is 17 times the RJ 1 sigma
- This value is obtained by simulation. It represents the resulting signal output within the reference receiver device (see 5.3.7.4.3) after equalization, when the transmitter device output signal of CJT is transmitted through the reference transmitter test load (see 5.3.2.5).

Author: RElliott Subject: Cross-Out Date: 10/16/2008 11:32:07 AM -07'00'

Delete:

if SATA is not supported

This table is only for trained rates, which by definition exclude SATA.

Author: RElliott Subject: Highlight Date: 94/2008 8:28:38 AM -07'00' TACCEPT - DONE 800 s.b 850

per 08-202r1

Author: stx-alvin-cox

Subject: Note
Date: 9/4/2008 8:34:05 AM -07'00'
ACCEPT - DONE (per 08-202r1)

Shouldn't the maximum voltage (non-operational) be a minimum rather than nominal? For 1.5 and 3.0, it is not included in a min/nom/max line. Maybe this should be called non-operational withstanding voltage and be in the minimum column.

Author: stx-alvin-cox Subject: Note Date: 9/4/2008 8:34:43 AM -07'00' ACCEPT - DONE (per 08-202)

Drop minimum from rise/fall time since the minimum is what is specified in the table.

Author: RElliott Subject: Highlight Date: 11/6/2008 12:59:33 AM

TACCEPT - DONE (but on 11/5, face-to-face WG chose to drop item 3, and add to footnote on TJ: "TJ is equivalent to BUJ + RJ. ISI is minimized by the test pattern.")

0.15 (25 ps)

s/b three requirements (per 10/16 SAS physical WG call)

- 1. shall 0.15 near-end RJ measurement with SSC off, D24.3 pattern.
- 2. shall 0.25 near-end TJ measurement with SSC on (if supported) and SSC off using D24.3 pattern
- 3. should 0.25 near-end TJ DDJ measurement with SSC on (if supported) and SSC off using CJTPAT. Easy for test equipment to separate out DDJ.

Author: pmcs-gfortin Subject: Highlight Date: 9/15/2008 5:09:13 PM -07'00'

Also apply note h

Comments from page 192 continued on next page

5.3.6.5 Transmitter device signal output characteristics for 6 Gbps

5.3.6.5.1 Transmitter device signal output characteristics for 6 Gbps overview

Table 61 specifies the signal output characteristics for the transmitter device as measured with the zero-length test load (see 5.3.2.2), unless otherwise specified, attached at a transmitter device compliance point (i.e., or CT). All specifications are based on differential measurements.

Table 61 — Transmitter device signal output characteristics for 6 Gbps at IT and ET

Signal characteristic	Units	Minimum	Nominal	Maximum
Peak to peak voltage if SATA is not supported a	mV(P-P)	800		1/200
Transmitter device off voltage b	mV(P-P)			50
Maximum voltage (non-operational)	mV(P-P)	F	2000	
Minimum rise/fall time ^c	UI	0.25 (41.6 ps)		
Reference differential impedance d	ohm		100	
Reference common mode impedance d	ohm		25	
Common mode voltage limit (rms) ^e	mV			30
Random jitter (RJ) f	UI			0.15 (25 ps)
Half of maximum jitter (i.e., X1 in figure 7119)	UI			0.30 (50 ps)
Minimum eye opening (i.e., 2 x Z1 ir figure 119) ^g	mV(P-P)	100		

- See 5.3.6.5.5 for measurement method.
- b The transmitter device off voltage is the maximum A.C. voltage measured at compliance points IT and CT when the transmitter is unpowered or transmitting D.C. idle (e.g., during idle time of an OOB signal). c Rise/fall times are measured from 20 % to 80 % of the transition with a repeating 01b or 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link.
- For transmitter device S-parameters characteristics, see 5.3.6.5.2.
- This is a broadband limit. For additional limits on spectral content, see figure 123 and table 62. RJ is 14 times the RJ 1 sigma value, based on a BER of 10⁻¹². This test shall be performed with a repeating 01b or 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link. If the transmitter device supports SSC, this measurement shall be performed with both SSC enabled and SSC disabled. For simulations based on a BER of 10⁻¹⁵, the RJ specified is 17 times the RJ 1 sigma
- This value is obtained by simulation. It represents the resulting signal output within the reference Teceiver device (see 5.3.7.4.3) after equalization, when the transmitter device output signal of CJTPAT is transmitted through the reference transmitter test load (see 5.3.2.5).

Also apply note h

Author: mxim-mbari Date: 9/15/2008 5:12:01 PM -07'00'

REJECT (Alvin: "unless otherwise specified" statement above the table already provides the necessary escape clause.)

Text at the beginning of the section mention measured values. Note g mention simulation. Should this be measured?

Author: Isi-jenkins Subject: Highlight Date: 9/4/2008 8:35:13 AM -07'00' ACCEPT - DONE (per 08-202r1)

Change to 84 mV.

ref 08-146r1.

Author: mxim-mbari Subject: Note

9/15/2008 5:33:51 PM -07'00'

REJECT (Alvin: Belongs here as characterization of the transmitter output.)

Is this item better in Table 65 ?

Author: pmcs-gfortin

Subject: Highlight Date: 9/15/2008 5:10:49 PM -07'00'

REJECT (Alvin: More equipment is set up to measure RJ with a clock-like pattern. Measurement can be done easier and on more different test equipment than with a non-clock pattern.)

With the bandwidth of the JTF scaling as a function of transition density, a D10.2 pattern will result in a stronger rejection of low frequency jitter than would a pattern with low transition density, such as D30.3. As such, an RJ measurement performed with a D10.2 pattern may not be representative of the worst case residual RJ seen by a reference receiver having a CDR function matching the JTF.

It is proposed to change the reference pattern to D30.3 to keep the jitter budget consistent with the worst case pattern for the JTF, since a receiver that implements a CDR that matches the JTF along with a 3-taps DFE should be a valid receiver.

"RJ is 14 times the RJ 1 sigma value, based on a BER of 10-12. This test shall be performed with a repeating D30.3 pattern (see table 235 in 10.2.9.2) on the physical link. If the

transmitter device supports SSC, this measurement shall be performed with both SSC enabled and SSC disabled. For simulations based on a BER of 10-15, the RJ specified is 17 times the RJ 1 sigma value."

Author: pmcs-gfortin Subject: Highlight Date: 10/15/2008 5:40:40 PM -07'00'

ACCEPT - DONE (SASWDP methodology put in place by 08-330r4)

No standard method is specified to record the transmitter signal and perform the required simulation. Implementation by different vendors may yield inconsistencies in what constitutes a compliant transmitter and may result in inter-operability issues.

Author: RElliott

Subject: Note Date: 10/17/2008 4:30:03 PM -07'00'

ACCEPT - DONE (moved the footnote, which was expanding quite a bit, into its own section)

Transmitter device physical testing should be its own section, expanding upon note g

T10/1760-D Revision 14 28 January 2008

5.3.6.5 Transmitter device signal output characteristics for 6 Gbps

5.3.6.5.1 Transmitter device signal output characteristics for 6 Gbps overview

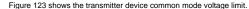
Table 61 specifies the signal output characteristics for the transmitter device as measured with the zero-length test load (see 5.3.2.2), unless otherwise specified, attached at a transmitter device compliance point (i.e., IT or CT). All specifications are based on differential measurements.

Table 61 — Transmitter device signal output characteristics for 6 Gbps at IT and CT

Signal characteristic	Units	Minimum	Nominal	Maximum
Peak to peak voltage if SATA is not supported a	mV(P-P)	800		1 200
Transmitter device off voltage b	mV(P-P)			50
Maximum voltage (non-operational)	mV(P-P)	-	2 000	/
Minimum rise/fall time ^c	UI	0.25 (41.6 ps)		/
Reference differential impedance d	ohm		100	
Reference common mode impedance d	ohm		25	
Common mode voltage limit (rms) ^e	mV			30/
Random jitter (RJ) f	UI			0.15 (25 ps)
Half of maximum jitter (i.e., X1 in figure 119)	UI			0.70 (50 ps)
Minimum eye opening (i.e., 2 x Z1 i figure 119)	mV(P-P)	100		

- See 5.3.6.5.5 for measurement method.
- b The transmitter device off voltage is the maximum A.C. voltage measured at compliance points IT and CT when the transmitter is unpowered or transmitting D.C. idle (e.g., during idle time/of an OOB signal). c Rise/fall times are measured from 20 % to 80 % of the transition with a repeating 0/b or 10b pattern
- (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link. $^{\rm d}$ For transmitter device S-parameters characteristics, see 5.3.6.5.2.
- This is a broadband limit. For additional limits on spectral content, see figure 124 and table 62.

 RJ is 14 times the RJ 1 sigma value, based on a BER of 10⁻¹². This test shall be performed with a
- repeating 01b or 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link. If the transmitter device supports SSC, this measurement shall be performed with both SSC enabled and SSC disabled. For simulations based on a BER of 10⁻¹⁵, the RJ specified is/17 times the RJ 1 sigma value.
- This value is obtained by simulation. It represents the resulting signal out within the reference receiver device (see 5.3.7.4.3) after equalization, when the transmitter device output signal of CJTPAT is transmitted through the reference transmitter test load (see 5.3.2.5).



It is proposed to add note h: "The test or analysis shall include the effects of the JTF."

Author: pmcs-gfortin
Subject: Highlight
Date: 9/15/2008 5:09:55 PM -07'00'
ACCEPT - DONE (added "See 5.4.5.2 for JMD requirements.")

28 January 2008

T10/1760-D Revision 14

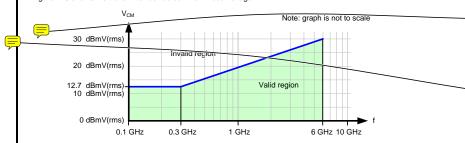


Figure 123 — Transmitter device common mode voltage limit

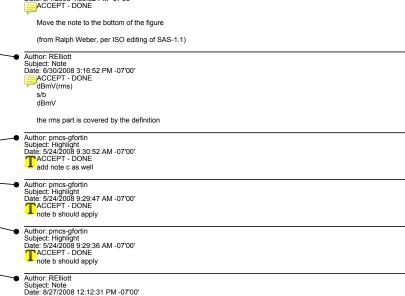
Table 62 defines the transmitter device common mode voltage limit characteristics.

Table 62 — Transmitter device common mode voltage limit characteristics

	Characteristic	Reference	(dBmV) ~	(dBmV) <mark>b</mark> _	(dBmV/decade) -	(141112)	(011/)	
			(ubiliv)	(IDIIIV)	(ubiliv/decade)	(1411 12)	(GHZ)	
l	Spectral limit of common mode voltage	Figure 123	12.7	26.0	13.3	100	6.0	
	See figure 124 for ch For dBmV, the referer across 25 ohms (i.e., +44 dBmV. +26 dBm' Maximum value at th The transmitter devic through the range of of the range shall be	nce level of 0 of the reference of is therefore of the Nyquist frequence the common modules.	BmV is 1 m impedance 18 dBm. uency (i.e., 3 de voltage s GHz with the	for common m GHz) (see fighall be measure transmitter d	ure 123). Inde voltage) which is jure 123). Inde with a 1 MHz reservice output of CJTP.	s 20 x log ₁	0(158) =	

5.3.6.5.2 Transmitter device S-parameters

S-parameters limits shall be calculated per the following formula. Variables are illustrated in figure 124 and specified in table 63.


Measured value < max [L, min [H, N + $\underline{13.3} \log_{10}(f/3 \text{ GHz})$]]

where:

S	is the slope in dB/decade
Н	is the maximum value (i.e., the high frequency asymptote)
N	is the value at the Nyquist frequency (i.e., 3 GHz)
L	is the minimum value (i.e., the low frequency asymptote)
f	is the frequency of the signal in Hz
max [A, B]	is the maximum of A and B
min [A, B]	is the minimum of A and B

Page: 193

Subject: Note Date: 9/1/2008 4:33:32 PM -07'00'

The transmitter common-mode voltage limit is specified in two places, once in Table 61 as a broadband limit, and again in Figure 123 as a per-frequency-band limit. Table 61 limits the overall amount to 30 mVrms which translates to 84.9 mVpp if the AC signal is a pure sinusoid. Figure 123 imposes a limit in the band 100 MHz to 300 MHz (1 MHz measurement band) to 12.7 dBmV which translates to 4.3 mVrms and 12.2 mVpp if it is a pure sinusoid.

Furthermore, if the transmitter had energy at each band that followed the limits in Figure 123 it would far exceed the limit in Table 61. A collection of discrete frequencies at the limit in Figure 123 would violate the overall limit, such as (for example) spikes at 100 MHz, 200 MHz, and so on up to 1400 MHz at the Fig 123 limit would violate the overall limit. As another example, spikes at 100 MHz, 300 MHz, 500 MHz, and so on up to 1900 MHz would violate the limit, as would a set of spikes at 750 MHz, 1500 MHz, 250 MHz and 3000 MHz. Note that these spikes would violate the "energy" aspect of the limit, where they are combined as a sum-of-squares and then translated effectively into a sinusoid. The actual combination of the spikes would depend on the relative phases; the smallest I could find for the 750/1500/2250/3000 MHz case was approximately 40 mV, so that combination of frequencies could not all simultaneously be at the Fig 123 levels.

Since these sinusoidal levels are quite small, I propose that we remove Figure 123 and its limits entirely and retain only the limit in Table 61. This absolute wide-band time-domain specification will be enough to limit transmitted CM energy and still allow the silicon and system designers enough leeway to specify their power supply noise and filtering limits depending upon the particular frequencies in their systems. This leeway should not jeopardize practical systems.

Mark Seidel

Comments from page 193 continued on next page

REJECT (7/15 discussion in WG wasn't convinced of a need to change this at this date.)

Figure 123 shows the transmitter device common mode voltage limit.

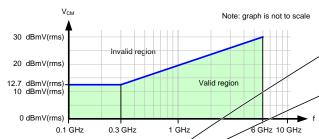


Figure 123 — Transmitter device common mode voltage limit

Table 62 defines the transmitter device common mode voltage limit characteristics.

Table 62 — Transmitter device common mode voltage limit characteristics

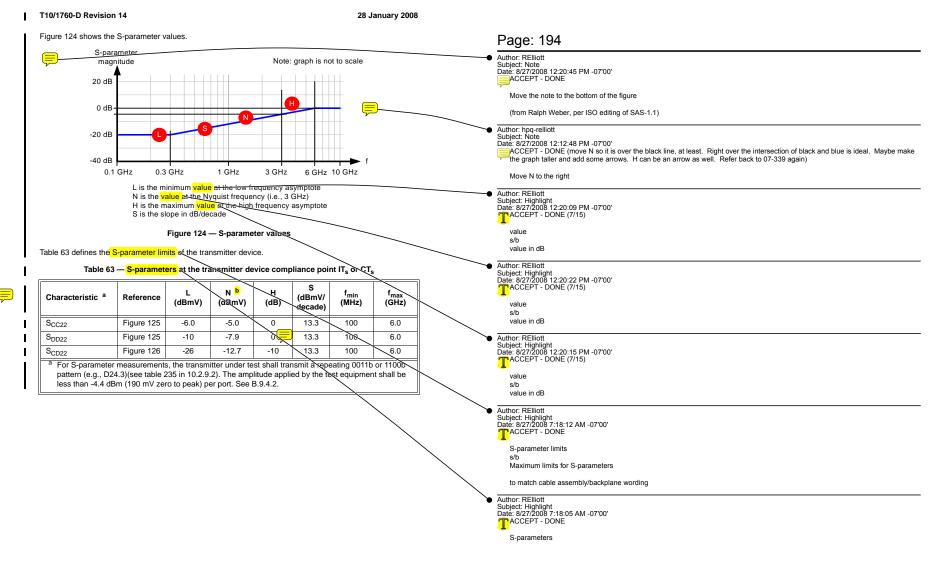
Characteristic ^a	Reference	L (dBmV)	N (dBmV) b	S (dBmV/decade)	f _{riin} (MHz)	f _{max} (GHz)	
Spectral limit of common mode voltage	Figure 123	12.7	26.0	13.3	100	6.0	

- across 25 ohms (i.e., the reference impedance for common mode voltage) which is 20 × log₁₀(158) =
- 44 dBmV. +26 dBmV is therefore -18 dBm.
 Maximum value at the Nyquist frequency (i.e., 3 GHz) (see figure 423).
- The transmitter device common mode voltage shall be measured with a 1 MHz resolution bandwidth through the range of 100 MHz to 6 GHz with the transmitter device output of CJTPAT. The end points of the range shall be at the center of the measurement bandwidth.

5.3.6.5.2 Transmitter device S-parameters

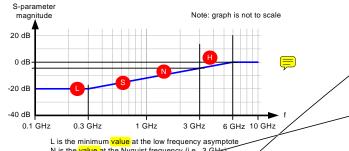
S-parameters limits shall be calculated per the following formula. Variables are illustrated in figure 124 and specified in table 63.

Measured value < max [L, min [H, N + $\underline{13.3}$ $\underline{\log_{10}}$ (f $\frac{1}{3}$ GHz)]]


where:

S	is the slope in dB/decade
Н	is the maximum value (i.e., the high frequency asymptote)
N	is the value at the Nyquist frequency (i.e., 3 GHz)
L	is the minimum value (i.e., the low frequency asymptote)
f	is the frequency of the signal in Hz
max [A, B]	is the maximum of A and B
min [A, B]	is the minimum of A and B

Author: ifx-hnewman
Date: 5/24/2008 9:31:34 AM -07'00'


ACCEPT - DONE (added references to c and d) Add footnote 'c' and 'd' to table. Author: hpq-bolawsky Subject: Note
Date: 5/24/2008 9:31:13 AM -07'00'
ACCEPT - DONE (added missing references) Notes c and d are not used. Author: RElliott Subject: Highlight Date: 9/19/2008 5:20:18 PM -07'00' TACCEPT - DONE Transmitter device S-parameters Transmitter device S-parameter limits Author: RElliott Subject: Highlight
Date: 9/23/2008 12:44:46 PM -07'00'
ACCEPT - DONE shall be calculated s/b are calculated There is no requirement being defined here. Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE 13.3 log10 add the char-xmultiply symbol before "log" Author: RElliott Autnor: REIII0tt Subject: Cross-Out Date: 8/27/2008 11:52:02 AM -07'00' Delete "S is the slope in dB/decade"

since it is not used in the formula

Comments from page 194 continued on next page

Figure 124 shows the S-parameter values.

N is the value at the Nyquist frequency (i.e., 3 (의보고) H is the maximum value at the high frequency asymptote

S is the slope in dB/decade

Figure 124 — S-parameter values

Table 63 defines the S-parameter limits of the transmitter device.

₹able 63 — <mark>S-parameters</mark> at the transmitter devi*y*e compliance point IT_s or CT_s

Characteristic ^a	Reference	L (dBmV)	N b (dBmV)	H (dB)	S (dBmV/ decade)	f _{rain} (MHz)	f _{max} (GHz)
S _{CC22}	Figure 125	-6.0	-5.0	0	12.3	100	6.0
S _{DD22}	Figure 125	-10	-7.9	0	13.3	100	6.0
S _{CD22}	Figure 126	-26	-12.7	-10	13.3	100	6.0

^a For S-parameter measurements, the transmitter under test shall transmit a repeating 0011b or 1100b pattern (e.g., D24.3)(see table 235 in 10.2.9.2). The amplitude applied by the test equipment shall be less than -4.4 dBm (190 mV zero to peak) per port. See B.9.4.2.

Maximum limits for S-parameters

to match cable assembly/backplane wording

Author: hpq-bolawsky
Subject: Highlight
Date: 5/24/2008 9:36:57 AM -07'00'
ACCEPT - DONE (deleted reference to non-existent b. 07-399r9 did not include such a reference)

is wrong or missing

Author: hpq-bolawsky Subject: Note Date: 5/6/2008 1:07:48 PM -07'00'

All three dBmV references are inappropriate. Should be dB.

Author: mxim-mbari

Subject: Note
Date: 5/24/2008 9:33:45 AM -07'00'

REJECT (Alvin: Reject. Correct as stated.)

From the plot I read this to be -2.5dB

Figure 125 shows the transmitter device $\rm S_{CC22}$ and $\rm S_{DD22}$ limits.

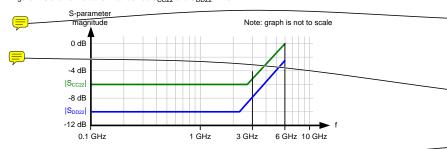


Figure 125 — Transmitter device S_{CC22} and S_{DD22} limits

Figure 126 shows the transmitter device Scnool limits.

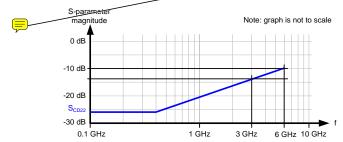
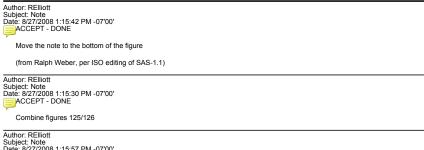


Figure 126 — Transmitter device S_{CD22} limits

5.3.6.5.3 Recommended transmitter device settings for interoperability


Table 64 defines recommended values for transmitter devices to provide interoperability with a broad range of implementations utilizing compliant TxRx connections and compliant receiver devices. The values are based on the evaluation of simulations with a variety of characterized physical hardware. Use of the recommended values does not guarantee that an implementation is capable of achieving a specific BER.

Specific implementations may obtain increased margin by deviating from the recommended values. However, such implementations are beyond the scope of this standard.

Table 64 — Recommended transmitter device settings at IT and CT

Characteristic	Units	Minimum	Nominal	Maximun
Differential voltage swing (mode) VMA a	mV	600	707	none
Transmitter equalization ^a	dB	2	3	4
^a See 5.3.6.5.5 for measurement method.				

Page: 195

Subject: Note
Date: 8/27/2008 1:15:57 PM -07'00'
REJECT (figure 126 merged into 125 instead)

Move the note to the bottom of the figure

(from Ralph Weber, per ISO editing of SAS-1.1)

Author: stx-alvin-cox Subject: Note Date: 5/24/2008 9:37:22 AM -07'00'

"none" is incorrect. A value was intentionally not supplied. This entry in the table should be left blank.

5.3.6.5.4 Reference transmitter device characteristics

The reference transmitter device is a set of parameters defining the electrical performance characteristics of a transmitter device to be used in simulation to determine compilance of an TxRx connection.

NOTE 25 An S parameter model of the reference transmitter device and reference receiver device is available from http://www.t10.org as document number U/-zo710 titled "SG SAS Reference TX & RX

Termination Networks." This model includes reference transmitter device (see 5.3.b.5.4) parameters reference receiver device (see 5.3.7.4.3) parameters. 07-267r0.pdf describes how the models were created, 07-267r0.zip contains Touchstone® .s4p files containing the S-parameters. Touchstone® is a registered trademark of Agilent Corporation.

Editor's Note 2: SAS-2 should incorporate the figures/equations from 07-267r0 explaining how the models were create

Table 65 defines the reference transmitter device characteristics.

Table 65 — Reference transmitter device characteristics at IT and CT

Characteristic	Units	Value
Peak to peak voltage (V _{P-P}) ^a	χ(P-P)	*************************************
Transmitter equalization ^a	dB	2
(Maximum) rise/fall time ^c	UI	0:41 (68. 3 bs)
RJ	UI	0.15 (25 ps)
N	<mark>UI</mark>	0.15 (25 ps)
20 50055		

- b This is a higher value than the minimum required transmitter voltage defined in table 61 (see 5.3.6.5.1).
- c Rise/fall times are measured from 20 % to 80 % of the transition with a repeating 01b or 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2).

5.3.6.5.5 Transmitter equalization measurement

Transmitter equalization measurement shall be based on a mode (i.e., the most frequent value of a set of data) measurement for VMA and a peak-to-peak measurement for V_{P-P} with a repeating D30.3 pattern (see table 235 in 10 2 9 2)

The voltage measurements shall be made with the transmitter device terminated through the interoperability point into a zero length test load (see 5.3.2.2).

The V_{P-P} and VMA values shall be measured using an equivalent time sampling scope with a histogram function with the following or an equivalent procedure:

- 1) calibrate the sampling scope for measurement of a 3 GHz signal; and
- 2) determine the VMA mode value and V_{P-P} peak-to-peak value as illustrated in figure 127. A sample size of 1 000 minimum, 2 000 maximum histogram hits for VMA shall be used to determine the values. The histogram is a combination of two histograms, an upper histogram for TX+ and a lower histogram for TX-. The histograms on the left represent the test pattern signal displayed on the right.

Page: 196

Author: stx-alvin-cox Subject: Note Date: 6/3/2008 6:29:00 AM -07'00'

ACCEPT - DONE (replaced with normative text)

Why is this a note rather than text included in the specification?

 Author: intc-mseidel Subject: Highlight

Date: 6/6/2008 11:42:05 AM -07'00'
TPREJECT (we cannot incorporate a 1 MiB .s4p text file into the standard; it has to be delivered alongside)

Note 25 points to documents outside the standard; this standard should be made more stand-alone by incorporating needed

Author: Isi-gpenokie

Subject: Highlight Date: 6/3/2008 6:30:03 AM -07'00'

REJECT (There is nothing wrong with referencing a trademark. Replacing with normative text that "includes [the models] with this standard" - see other comment)

This is note is troubling for more than one reason. One is that it references a proposal. That is not going to fly at ISO and my be a problem at ANSI. I see two solutions- one would be to put it as an annex of this standard the other would be to create a technical report. The other problem is have a trademark. I don't have any good solution to that other than deleting it.

Author: RElliott Subject: Note

Date: 6/30/2008 3:16:52 PM -07'00'

Replace note 25 with:

An S-parameter model of the reference transmitter device is included with this standard. The following files are included: a) 07-267r0.pdf describes how the reference transmitter device and reference receiver device models were created; and b) 07-267r0.s4p contains a Touchstone® file containing the S-parameters for each model.

Touchstone® is a registered trademark of Agilent Corporation.

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

REJECT (reference 07-267r0.pdf instead of incorporating the equations into the standard itself)

Editor's Note 2:

Author: stx-alvin-cox

Subject: Note Date: 9/4/2008 8:39:28 AM -07'00'

ACCEPT - DONE (850, per 08-202r1)

This value should be closer to the minimum allowed transmitter output voltage.

Author: Isi-jenkins Subject: Note

Date: 9/4/2008 8:39:50 AM -07'00' ACCEPT - DONE (per 08-202r1)

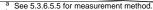
Change to 850 & delete note b.

ref: 08-144r1, 08-146r1

Author: mxim-kwitt

5.3.6.5.4 Reference transmitter device characteristics

The reference transmitter device is a set of parameters defining the electrical performance characteristics of a transmitter device to be used in simulation to determine compliance of an TxRx connection.


NOTE 25 - An S-parameter model of the reference transmitter device and reference receiver device is available from http://www.t10.org as document number 07-267r0 titled *6C SAS Reference TX & RX Termination Networks.* This model includes reference transmitter device (see 5.3.6.5.4) parameters and reference receiver device (see 5.3.7.4.3) parameters. 07-267r0.pdf describes how the models were created. 07-267r0.zip contains Touchstone® .s4p files containing the S-parameters. Touchstone® is a registered trademark of Apilent Corporation.

Editor's Note 2: SAS-2 should incorporate the figures/equations from 07-267-6 explaining how the models were created.

Table 65 defines the reference transmitter device characteristics.

Table 65 — Reference transmitter device characteristics at IT and CT

Characteristic	Units	Value
Peak to peak voltage (V _{2-P}) a	mV(P-P)	2000 9
Transmitter equalization a	dB	2
Maximum rise/fall time c	UI	0.41 (68.3 ps)
RJ	UI	0.15 (25 ps)
DJ	(UI)	0.15 (25 ps)

- b This is a higher value than the minimum required transmitter voltage defined in table 64 (see 5.3.6.5.1).
- c Rise/fall times are measured from 20 % to 80 % of the transition with a repeating 01b or 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2).

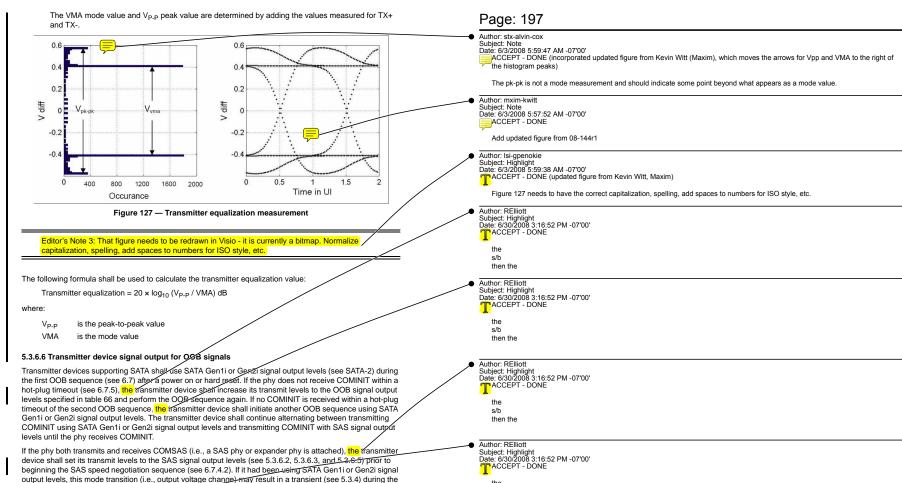
5.3.6.5.5 Transmitter equalization measurement

Transmitter equalization measurement shall be based on a mode (i.e., the most frequent value of a set of data) measurement for VMA and a peak-to-peak measurement for V_{P-P} with a repeating D30.3 pattern (see table 235 in 10.2.9.2).

The voltage measurements shall be made with the transmitter device terminated through the interoperability point into a zero length test load (see 5.3.2.2).

The V_{P-P} and VMA values shall be measured using an equivalent time sampling scope with a histogram function with the following or an equivalent procedure:

- 1) calibrate the sampling scope for measurement of a 3 GHz signal; and
- 2) determine the VMA mode value and V_{P,P} peak-to-peak value as illustrated in Tigure 127. A sample size of 1 000 minimum, 2 000 maximum histogram hits for VMA shall be used to determine the values. The histogram is a combination of two histograms, an upper histogram for TX- The histograms on the left represent the test pattern signal displayed on the right.


```
Subject: Replacement Text Date: 9/4/2008 8:40:34 AM -07'00'
 Author: RElliott
Subject: Highlight
Date: 11/6/2008 1:17:55 AM

ACCEPT - DONE
after
    Maximum
    add
    (i.e., slowest)
 Author: Isi-jenkins
 Subject: Highlight
Date: 9/4/2008 8:41:46 AM -07'00'
  TACCEPT - DONE (per 08-202r1)
    Change DJ to BUJ with value of 0.10 (16.7 ps)
     ref: 08-144r1, 08-146r1
 Author: hpg-relliott
 Subject: Note
 Date: 10/15/2008 5:50:56 PM -07'00'
    ACCEPT - DONE (StatEye default values agree with sas2r14e values - RJ=0.15 (/14 in the code), BUJ=0.10)
    StatEye default RJ/DJ is a bit different than this.
Subject: Replacement Text
Date: 9/4/2008 8:42:08 AM -07'00'

ACCEPT - DONE (per 08-202r1)
    0.1 (16.6 ps)
 Author: mxim-kwitt
 Subject: Replacement Text
 Date: 9/4/2008 11:46:46 AM -07'00'
 ACCEPT - DONE (per 08-202r1)
 Author: mxim-kwitt
 Subject: Cross-Out
Date: 9/4/2008 8:40:34 AM -07'00'
 ACCEPT - DONE
    Delete note b
 Author: RElliott
 Subject: Highlight
 Date: 7/17/2008 2:59:52 PM -07'00'
  TACCEPT - DONE
    illustrated
     s/b
```

shown

T10/1760-D Revision 14 28 January 2008

Transmitter devices that do not support SATA shall transmit OOB signals using SAS signal output levels. Comments from page 197 continued on next page

the

s/h then the

levels and restart the OOB sequence.

idle time between COMSAS and the SAS speed regotiation sequence.

If the transmitter device is using \$\frac{2}{2}\$\$ signal output levels and the phy does not receive COMSAS (i.e., a SATA phy is attached), the transmitter device shall set its transmit levels to the SATA Gen1i or Gen2i signal output

Table 66 defines the transmitter device OOB signal output characteristics.

Table 66 — Transmitter device OCB signal output characteristics

Characteristic	Units	IT	СТ	
Maximum peak to peak voltage (i.e., 2 x Z2 in figure 119) ^a	mV(P-P)	1 600		
OOB offset delta ^b	mV	± 25		
OOB common mode delta ^c	mV	± 50		
Minimum OOB burst amplitude ^d , if SATA is not supported	mV(P-P)	240		
Minimum OOB burst amplitude ^d , if SATA is supported	mV(P-P)	240 ^{e, f}	N/A	

- The recommended maximum peak to peak voltage is 1 200 mV(P-P).
- b The maximum difference in the average differential voltage (D.C. offset) component between the buttimes and the idle times of an OOB signal.
- ^c The maximum difference in the average of the common-mode voltage between the burst times and the idle times of an OOB signal.
- With a measurement bandwidth of 4.5 GHz, each signal level during the QQB burst shall exceed the specified minimum differential amplitude before transitioning to the opposite bit value or before termination of the OOB burst.
- Amplitude measurement methodologies of SATA and this standard differ. Under conditions of maximum rise/fall time and jitter, eye diagram methodologies used in this standard may indicate less signal amplitude than the technique specified by SATA-2. Implementers of designs supporting SATA are required to ensure interoperability and should perform additional system characterization with an eye diagram methodology using SATA devices.
- The OOB burst contains either 2.5 Gbps D24.3 characters, 1.5 Gbps ALIGN (0) primitives of 3 Gbps ALIGN (0) primitives (see 2.6 and SATA-2).

5.3.7 Receiver device characteristics

5.3.7.1 Receiver device characteristics overview

coupling requirements for receiver devices are as follows:

a) all receiver devices (i.e., attached to IR or CR compliance points) shall be A.C. exupled to the
interconnect through a receive network.

The receive network shall terminate the TxRx connection by 195 ohm equivalent impedance

The receiver device shall operate within the required BER (see 5.3.3.3.1) when a signal with valid voltage and timing characteristics is delivered to the receiver device compliants point from a nominal 100 ohm source. The received signal shall be considered valid if it meets the voltage and timing limits specified in table 68 (see 5.3.7.3) for 1.5 Gbps and 3 Gbpe and Table 69 (see 5.3.7.3) for 6 Gbps.

Additionally, for 1.5 Gbps and 3 Gbps the receiver device shall operate within the required BER when the signal has additional sinusoidal jitter present as specified in table 74 (see 5.3.7.6) with the common-mode signal V_{CM} as specified in table 56 (see 5.3.3). Jitter tolerance for receiver device compliance points is illustrated in figure 121 (see 5.3.5.5). Figure 121 assumes that any external interference occurs prior to the point at which the test is applied. When testing the jitter tolerance capability of a receiver device, the additional 0.1 UI of sinusoidal jitter may be reduced by an amount proportional to the actual externally induced interference between the application point of the test and the input to the receiver device. The additional jitter reduces the eye opening in both voltage and time. For 6 Gbps, the additional jitter and common mode voltage is included in the receiver device physical test procedure (see 5.3.7.4.4).

See B.8 for a methodology for measuring receiver device signal tolerance.

Page: 198

28 January 2008

Author: RElliott Subject: Note Date: 9/4/2008 11:37:12 AM -07'00' ACCEPT - DONE (added " as measured with each test load at IT and CT" to footnote d) Lost the concept from SAS-1.1 of meeting these with both the zero-length and the TCTF test loads attached. Transmitter must not transmit only 240 mV; it needs to deliver 240 mV after a TCTF test load. Author: RElliott Subject: Note Date: 10/17/2008 6:06:11 PM -07'00' ACCEPT - DONE Move A.C. coupling requirements into a subsection of its own. Adjust cross references to these requirements. Author: stx-alvin-cox Subject: Cross-Out Date: 10/17/2008 6:07:10 PM -07'00' REJECT (moot - sentence deleted) Author: RElliott Subject: Cross-Out
Date: 10/17/2008 6:06:57 PM -07'00' Delete The receive network shall terminate the TxRx connection by a 100 ohm equivalent impedance. This is covered by table 58 in more detail (+/- range is included) Author: stx-alvin-cox Subject: Inserted Text Date: 10/17/2008 6:07:16 PM -07'00' REJECT (moot - sentence deleted) Author: wdc-mevans Subject: Highlight Date: 5/24/2008 9:38:36 AM -07'00' REJECT (Rob: nothing wrong with adverbs. Alvin: Reject. From SAS 1.1) Additionally In addition Author: RElliott Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE sinusoidal jitter s/b SJ

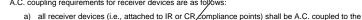
Comments from page 198 continued on next page

Author: Isi-gpenokie Subject: Highlight Date: 5/24/2008 9:40:02 AM -07'00' T10/1760-D Revision 14 28 January 2008

Table 66 defines the transmitter device OOB signal output characteristics.

Table 66 — Transmitter device OOB signal output characteristics

Characteristic	Units	IT	СТ	
Maximum peak to peak voltage (i.e., 2 x Z2 in figure 119) a	mV(P-P)	1 600		
OOB offset delta ^b	mV	± 25		
OOB common mode delta ^c	mV	± 50		
Minimum OOB burst amplitude ^d , if SATA is not supported	mV(P-P)	240		
Minimum OOB burst amplitude d, if SATA is supported	mV(P-P)	240 e, f	N/A	


- The recommended maximum peak to peak voltage is 1 200 mV(P-P).
- b The maximum difference in the average differential voltage (D.C. offset) component between the yourst times and the idle times of an OOB signal.
- ^c The maximum difference in the average of the common-mode voltage between the burst times and the idle times of an OOB signal.
- d With a measurement bandwidth of 4.5 GHz, each signal level during the OOB burst shall exceed the specified minimum differential amplitude before transitioning to the opposite bit value or before termination of the OOB burst.
- Amplitude measurement methodologies of SATA and this standard differ. Under conditions of maximum rise/fall time and jitter, eye diagram methodologies used in this standard may indicate less signal amplitude than the technique specified by SATA-2. Implementers of resigns supporting SATA are required to ensure interoperability and should perform additional system characterization with an eye diagram methodology using SATA devices.
- The OOB burst contains either 1.5 Gbps D24.3 characters, 1.5 Gbps ALIGN (0) primitives, or 3 Gbps ALIGN (0) primitives (see 6.6 and SATA-2).

5.3.7 Receiver device characteristics

198

5.3.7.1 Receiver device characteristics overview

A.C. coupling requirements for receiver devices are as follows:

interconnect through a receive network.

The receive network shall terminate the TxRx cor/nection by, a 100 ohm equivalent impedance.

The receiver device shall operate within the required BER (see 5.3.3.3.1) when a signal with valid voltage and timing characteristics is delivered to the receiver device compliance point from a nominal 100 ohm source. The received signal shall be considered valid if it meets the voltage and timing limits specified in table 68 (see 5.3.7.3) for 1.5 Gbps and 3 Gbps and table 69 (see 5.3.7.3) for 6 Gbps.

Additionally, for 1.5 Gbps and 3 Gbps the receiver device shall operate within the required BER when the signal has additional sinusoidal jitter present as specified in table 74 (see 5.3.7.6) with the common-mode signal V_{CM} as specified in table 56 (see 5.3.3). Jitter tolerance for receiver device compliance points is illustrated in figure 121 (see 5/3.5.5). Figure 121 assumes that any external interference occurs prior to the point at which the test is applied. When testing the jitter tolerance capability of a receiver device, the additional 0.1 UI of sinusoidal jitter may be reduced by an amount proportional to the actual externally induced interference between the application point of the test and the input to the receiver device. The additional jitter reduces the eye opening in both voltage and time. For 6 Gbps, the additional jitter and common mode voltage is included in the receiver device physical test procedure (see 5.3.7.4.4).

See B.8 for a methodology for measuring receiver device signal tolerance.

Working Draft Serial Attached SCSI - 2 (SAS-2)

This << points is illustrated in figure >> should be << points is defined in figure >>

```
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    sinusoidal jitter
    s/b
   SJ
```

5.3.7.2 OOB delivered signal characteristics

Table 67 defines the amplitude requirements of the OOB signal delivered by the system with the zero leng t load (see 5.3.2.2) at the receiver device compliance point (i.e., IR or CR).

Table 67 — OOB delivered signal characteristics

Characteristic	Units	IR	CR
Minimum OOB burst amplitude a, if SATA is not supported	mV(P-P)	240	
Minimum OOB burst amplitude ^a , if SATA is supported	mV(P-P)	225 ^{b, c}	N/A

- ^a With a measurement bandwidth of 4.5 GHz, each signal level during the OOB burst shall exceed the specified minimum differential amplitude before transitioning to the opposite bit value or before termination of the OOB burst.
- Amplitude measurement methodologies of SATA and this standard differ. Under conditions of maximum rise/fall time and jitter, eye diagram methodologies used in this standard may indicate less signal amplitude than the technique specified by SATA-2. Implementers of designs supporting SATA are required to ensure interoperability and should perform additional system characterization with an eye diagram methodology using SATA devices.
- The OOB burst contains either 1.5 Gbps D24.3 characters, 1.5 Gbps ALIGN (0) primitives, or 3 Gbps ALIGN (0) primitives (see 6.6 and SATA-2).

5.3.7.3 Delivered signal (receiver device signal tolerance) characteristics

Table 68 specifies the requirements of the signal delivered by the system with the zero-iength test load (see 5.3.2.2) at the receiver device compliance point (i.e., IR or CR) for 1.5 Gbps and 3 Gbps. These imp required signal tolerance characteristics of the receiver device. For 6 Gbps, see 5.3.7.4.

Table 68 — Delivered signal characteristics as measured with the zero length test load at receiver device compliance points IR and CR (part 1 of 2)

		IR		CR	
Signal characteristic	Units	1.5 Gbps	3 Gbps	1.5 Gbps	3 Gbps
Maximum peak to peak voltage (i.e., $2 \times Z2$ in figure 120) if a SATA phy is not attached	mV(P-P)	1 600		1 600	
Maximum peak to peak voltage (i.e., 2 × Z2 in figure 120) if a SATA phy is attached	mV(P-P)	see SATA-2 a		n-2 ^a N/A	
Minimum eye opening (i.e., $2 \times Z1$ in figure 120), if a SATA phy is not attached	mV(P-P)	325 275		275	
Minimum eye opening (i.e., 2 × Z1 in figure 120), if a SATA phy using Gen1i or Gen1x levels is attached and the interconnect is characterized with the TCTF test load (see 5.3.2.3)	mV(P-P)	225 ^a	N/A N/A		/A
Minimum eye opening (i.e., 2 × Z1 in figure 120), if a SATA phy using Gen2i levels is attached and the interconnect is characterized with the TCTF test load (see 5.3.2.3)	mV(P-P)	N/A	175	/2	/A

Page: 199

Author: RElliott Subject: Highlight Date: 9/19/2008 5:13:58 PM -07'00' ACCEPT - DONE delivered by the system delivered by a transmitter device and a TxRx connection Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' at add space Author: RElliott Date: 10/24/2008 10:11:15 AM -07'00' ACCEPT - DONE Add: These also serve as the required signal tolerance characteristics of the receiver device to match other sections covering "delivered signals" Author: RElliott Subject: Cross-Out Date: 10/24/2008 10:09:55 AM -07'00' ACCEPT - DONE (receiver device signal tolerance) This concept is covered by the text. Makes the title too long. Author: Isi-gpenokie Subject: Highlight Date: 8/29/2008 7:56:43 AM -07'00' PACCEPT - DONE (7/15 "These also serve as..."

original reply: Alvin: Reject. From SAS 1.1 Rob: In SAS-1.1, that was vague - that's why we're doing a better job in SAS-2 and 6 Gbps. These are SAS-1.1 compatibility numbers.)

What is the term << imply >> doing in this standard? It has no valid definition and can only add to confusion. Either << These are the required signal tolerance characteristics of the receiver device. >> Or not. Or perhaps you mean << The required signal tolerance characteristics of the receiver device may be derived from the delivered signal characteristic defined in table 68. >> But that is only marginally better. There should be a table with the receiver device characteristics, not this unclear vague definition..

Subject: Cross-Out Date: 9/19/2008 4:43:05 PM -07'00' ACCEPT - DONE

Author: RElliott

receiver device compliance points

Subject: Highlight Date: 10/24/2008 10:47:06 AM -07'00'

28 January 2008 T10/1760-D Revision 14

5.3.7.2 OOB delivered signal characteristics

Table 67 defines the amplitude requirements of the OOB signal delivered by the system with the zero-length load (see 5.3.2.2)at the receiver device compliance point (i.e., IR or CR).

Table 67 — OOB delivered signal characteristics

Characteristic	Units	IR	CR
Minimum OOB burst amplitude ^a , if SATA is not supported	mV(P-P)	240) ^c
Minimum OOB burst amplitude a, if SATA is supported	mV(P-P)	225 ^{b, c}	N/A

- ^a With a measurement bandwidth of 4.5 GHz, each signal level during the OOB burst shall exceed the specified minimum differential amplitude before transitioning to the opposite bit value or before termination of the OOB burst.
- b Amplitude measurement methodologies of SATA and this standard differ. Under conditions of maximum rise/fall time and jitter, eye diagram methodologies used in this standard may indicate less signal amplitude than the technique specified by SATA-2. Implementers of designs supporting SATA are required to ensure interoperability and should perform additional system characterization with an eye diagram methodology using SATA devices.
- ^c The OOB burst contains either 1.5 Gbps D24.3 characters, 1.5 Gbps ALIGN (0) primitives, or 3 Gbps ALIGN (0) primitives (see 6.6 and SATA-2).

5.3.7.3 Delivered signal (receiver device signal tolerance) characteristics

Table 68 specifies the requirements of the signal delivered by the system with the zero-length test load (see 5.3.2.2) at the receiver device compliance point (i.e., IR or CR) for 1.5 Gbps and 3 Gbps. These imply the required signal tolerance characteristics of the receiver device. For 6 Gbps, see 5.3.7.4.

Table 68 — Delivered signal characteristics as measured with the zero length test load at receiver device compliance points IR and CR (part 1 of 2)

		/ IR		CR	
Signal characteristic	Units	1.5 Gbps	3 Gbps	1.5 Gbps	3 Gbps
Maximum peak to peak voltage (i.e., $2 \times Z2$ in figure 120) if a SATA phy is not attached	mV(F-P)	1 600		1 600	
Maximum peak to peak voltage (i.e., $2 \times Z2$ in figure 120) if a SATA phy is attached	r/1V(P-P)	see SATA-2 a		N/A	
Minimum eye opening (i.e., $2 \times Z1$ in figure 120), if a SATA phy/is not attached	mV(P-P)	325	275	27	75
Minimum eye opening (i.e., $2 \times Z1$ in figure 120), if a SATA /hy using Gen1i or Gen1x levels is attached and the interconnect is characterized with the TCTF test load (see 5.3.2.3)	mV(P-P)	225 ^a	N/A	N/A N/A	
Minimum eye opening (i.e., 2 × Z1 in figure 120), if a ATA phy using Gen2i levels is attached and the interconnect is characterized with the TCTF test load (see 5.3.2.3)	mV(P-P)	N/A	175 ^a	N	/A

TACCEPT - DONE

interconnect

TxRx connection

Author: RElliott Subject: Highlight Date: 10/24/2008 10:47:10 AM -07'00'

interconnect s/b TxRx connection

Table 68 — Delivered signal characteristics as measured with the zero length test load at receiver device compliance points IR and CR (part 2 of 2)

		IR		CR	
Signal characteristic	Units	1.5 Gbps	3 Gbps	1.5 Gbps	3 Gbps
Minimum eye opening (i.e., 2 × Z1 in figure 120), if a SATA phy using Gen2x levels is attached and the interconnect is characterized with the TCTF test load (see 5.3.2.3)	mV(P-P)	N/A	275 ^a	N/A	
Minimum eye opening (i.e., 2 × Z1 in figure 120), if a SATA phy is attached and the interconnect is sharacterized with the low-loss TCTF test load (see 5.3.2.4)	mV(P-P)	275 ^a		N/A	
Jitter tolerance (see figure 121 in 5.3.5.5) b c	N/A	See table 74 in 5.3.7.6			7.6
Half of maximum jitter (i.e. X1 in figure 120) d	UI	0.275			
Center of bit time (i.e., X2 in figure 120)	UI	0.50			
Maximum intra-pair skew ^e	ps	80 75		80	75
Maximum voltage (non-operational)	mV(P-P)	2 000			

- a Amplitude measurement methodologies of SATA and this standard differ. Under conditions of maximum rise/fall time and jitter eve diagram methodologies used in this standard may indicate less signal amplitude than the technique specified by SATA-2. Implementers of designs supporting SATA are required to ensure interoperability and should perform additional system characterization with an eye diagram methodology using SATA devices.
- b The value for X1 applies at a total jitter probability of 10⁻¹². At this Level of probability direct visual comparison between the mask and actual signals is not a valid method for determining compliance with the jitter requirements.
- c SSC shall be enabled if supported by the receiver device. SSC shall not be enabled if the sceiver device does not support SSC. The SSC type should be the same as that applied to the receiver device during normal operation. Multiple tests may be required depending on if the receiver device supports being attached to SATA or supports SSC. Jitter set up shall be performed prior to application of SSC.
- The value for X1 shall be half the value given for TJ in table 73. When SSC satisabled, the test or analysis shall include the effects of a single pole high-pass frequency-weighting function that progressively attenuates jitter at 20 dB/decade below a frequency of (f_{baud} / 1 667).
- The intra-pair skew measurement shall be made at the midpoint of the transition with a sepeating 01b or 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link. The salve stable trigger, coherent to the data stream, shall be used for both the Rx+ and Rx- signals. Intra-pair skew is defined as the time difference between the means of the midpoint crossing times of the Rx+ signal and the Rx- signal at the probe points.

5.3.7.4 Receiver device and delivered signal (receiver device signal tolerance) characteristics for 6 Gbps

5.3.7.4.1 Receiver device characteristics

Table 69 specifies the requirements of the signal delivered by the system with the zero-length test load (see 5.3.2.2), unless otherwise specified, attached at the receiver device compliance point (i.e., IR or CR) for 6

Page: 200

Author: RElliott
Subject: Cross-Out
Date: 9/19/2008 4:42:50 PM -07'00'

receiver device compliance points

Author: RElliott Subject: Highlight Date: 10/24/2008 10:47:15 AM -07'00'

interconnect s/b TxRx connection

Author: RElliott Subject: Highlight Date: 10/24/2008 10:47:21 AM -07'00'

interconnect s/b TxRx connection

Author: RElliott
Subject: Highlight
Date: 9/16/2008 2:30:02 PM -07'00'
CACCEPT - DONE

maximum jitter s/b TJ

Author: RElliott Subject: Note Date: 9/16/2008 2:30:39 PM -07'00'

Move "maximum voltage (non-operational)" to the top of the table so all the mV rows are together

Author: RElliott Subject: Highlight Date: 11/6/2008 1:22:39 AM ACCEPT - DONE

SSC shall be enabled if supported by the receiver device. SSC shall not be enabled if the receiver device does not support SSC. The SSC type should be the same as that applied to the receiver device during normal operation. Multiple tests may be required depending on if the receiver device supports being attached to SATA or supports SSC.

SSC shall be enabled if the receiver device supports being attached to SATA.

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

<< set up >> should be << setup >>

Comments from page 200 continued on next page

T10/1760-D Revision 14 28 January 2008

Table 68 — Delivered signal characteristics as measured with the zero length test load at receiver device compliance points IR and CR (part 2 of 2)

		IR		CR	
Signal characteristic	Units	1.5 Gbps	3 Gbps	1.5 Gbps	3 Gb#s
Minimum eye opening (i.e., $2 \times Z1$ in figure 120), if a SATA phy using Gen2x levels is attached and the interconnect is characterized with the TCTF test load (see 5.3.2.3)	mV(P-P)	N/A 275 ^a		N/A	
Minimum eye opening (i.e., $2 \times Z1$ in figure 120), if a SATA phy is attached and the interconnect is characterized with the low-loss TCTF test load (see 5.3.2.4)	mV(P-P)	215 a		N/A	
Jitter tolerance (see figure 121 in 5.3.5.5) b c	N/A	See table 74 in 5.3.7.6			7.6
Half of maximum jitter (i.e., X1 in figure 120) d	UI	0.275			
Center of bit time (i.e., X2 in figure 120)	UI	0.50			
Maximum intra-pair skew ^e	ps	80	75	80	75
Maximum voltage (non-operational)	mV(P-P)	2 000			

- a Amplitude measurement methodologies of ATA and this standard differ. Under conditions of maximum rise/fall time and jitter, eye diagram methodologies used in this standard may indicate less signal amplitude than the technique specified by SATA-2. Implementers of designs supporting SATA are required to ensure interoperability and should perform additional system characterization with an eye diagram methodology using SATA devices.
- The value for X1 applies at a total jitter probability of 10⁻¹². At this level of probability direct visual comparison between the mask and actual signals is not a valid method for determining compliance with the jitter requirements.
- SSC shall be enabled if supported by the receiver device. SSC shall not be enabled if the receiver device does not support SSC. The SSC type should be the same as that applied to the receiver device during normal operation. Multiple tests may be required depending on if the receiver device supprints being attached to SATA or supports SSC. Jitter set up shall be performed prior to application of SSC.
- The value for X1 shall be half the value given for TJ in table 73. When SSE is disabled, the test or pralysis shall include the effects of a single pole high-pass frequency-weighting function that
- progressively attenuates jitter at 20 dB/decade below a frequency of (f_{baud} / 1 667). The intra-pair skew measurement shall be made at the midpoint of the transition with a repeating 01b or 10b pattern (e.g., D10.2 or D21.5)(see table 235 in 10.2.9.2) on the physical link. The same stable trigger, coherent to the data stream, shall be used for both the Rx+ and Rx- signals. In/ra-pair skew is defined as the time difference between the means of the midpoint crossing times of the Rx+ signal and the Rx- signal at the probe points

5.3.7.4 Receiver device and delivered signal (receiver device signal tolerance) characteristics for 6 Gbps

5.3.7.4.1 Receiver device characteristics

200

Table 69 specifies the requirements of the signal delivered by the system with the zero-length test load (see 5.3.2.2), unless otherwise specified, attached at the receiver device compliance point (i.e., IR or CR) for 6

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott

Subject: Note Date: 11/6/2008 9:11:03 AM

REJECT (the definition of the eye masks already says that the JTF is included, so saying that in the table would be redundant)

Note d in Table 67 should specify using the JTF when

SSC is supported

requested by 08-433

Author: Isi-gpenokie

Subject: Highlight Date: 5/24/2008 9:45:28 AM -07'00'

REJECT (Alvin: Reject. From SAS 1.1 Rob: Starting a sentence with "Where" is grammatically incorrect. It's not better to combine this into the previous sentence due to length - it reads well as is)

This << signals. Intra-pair skew is defined as the time difference between the me >> should be << signals. Where intra-pair skew is the time difference between the me >>

Author: RElliott

Subject: Cross-Out

Date: 10/24/2008 10:10:13 AM -07'00'

ACCEPT - DONE

(receiver device signal tolerance)

This concept is covered by the text. Makes the title too long.

Author: RElliott

Subject: Note Date: 10/17/2008 6:25:49 PM -07'00'

ACCEPT - DONE

Add:

A receiver device shall provide equivalent performance to the reference receiver device (see 5.7.5.6.3) and shall operate within the required BER when attached to:

- a) any transmitter device compliant with this standard (see 5.7.4); and
- b) any TxRx connection compliant with this standard (see 5.6).

The stressed receiver jitter tolerance test only tests one specific combination (low amplitude, high jitter). A real receiver needs to work with infinite other input signals. The fundamental requirement is that it be better than the reference receiver (an ideal mathematical 3-tap DFE) and work properly with any valid transmitter+channel.

28 January 2008

T10/1760-D Revision 14

Gbps. These imply the required signal telerance characteristics of the receiver device. All specifications are based on differential measurements.

Table 69 — Receiver device delivered signal characteristics at IR and CR

Characteristic	Units	Minimum	Nominal	Maximum
Peak to peak voltage for 6 Gbps ^a	mV(P-P)			1 200
Maximum peak-to-peak voltage (i.e., 2 x 72 in figure 120) for OOB, 1.5 Gbps, and 3 Gbps	mv(P-P)			1 600
Non-operational input voltage transient	mV(P-P)			2 000
Reference differential impedance b	ohm		100	
Reference common mode impedance b	ohm		25	
a See 5 3 6 5 5 for measurement method				

5.3.7.4.2 Receiver device S-parameters

S-parameter limits shall be calculated per the fellowing formula. Variables are illustrated in figure 124 (see 5.3.6.5.2) and specified in table 70.

Measured value < max [L, min [H, N + 13.3 $\times \log_{10}(f / 3 \text{ GHz})$]]

where:

is the slope in dB/decade

is the maximum value (i.e., the high frequency asymptote)

is the minimum value (i.e., the low frequency asymptote)

Table 70 defines the S-parameters of the receiver device.

Characteristic	Reference	L (dBmV)	N (dBmV)	H (dB)	(dBmV/ decade)	f _{min} (MHz)	f _{max} (GHz)
S _{CC22}	Figure 128	-6.0	-5.0	0 (13.3	100	6.0
S _{DD22}	Figure 128	-10	-7.9	0 7	13.3	100	6.0
S _{CD22}	Figure 13	-26	-12.7	-10	13.3	100	6.0

Page: 201

Author: RElliott Subject: Highlight Date: 8/29/2008 7:57:21 AM -07'00' ACCEPT - DONE (7/15 apply same change as previous section) imply Author: stx-alvin-cox

Date: 5/24/2008 9:47:12 AM -07'00'
ACCEPT - DONE (deleted "transient" but avoided introducing the parenthetical expression that would draw complaints)

Change from "Non-operational input voltage transient" to "Input voltage (non-operational)"

Author: RElliott Subject: Highlight Date: 9/19/2008 5:20:38 PM -07'00'

Receiver device S-parameters Receiver device S-parameter limits

Author: RElliott Subject: Highlight Date: 9/23/2008 12:45:03 PM -07'00' ACCEPT - DONE

> shall be calculated are calculated

There is no requirement being defined here.

Author: RElliott Subject: Cross-Out
Date: 8/27/2008 11:43:55 AM -07'00'

> Delete "S is the slope in dB/decade"

since it is not used in the equation

Author: RElliott Subject: Note
Date: 8/27/2008 11:51:44 AM -07'00'
ACCEPT - DONE

f is the frequency of the signal in Hz

since it is used in the equation (same wording as in Transmitter device S-parameters section)

Author: RElliott Subject: Highlight Date: 8/27/2008 7:18:40 AM -07'00' TACCEPT - DONE

Comments from page 201 continued on next page

b For receiver device S-parameter characteristics, see 5.3.7.4.2.

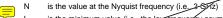
Gbps. These imply the required signal tolerance characteristics of the receiver device. All specifications are based on differential measurements.

Table 69 — Receiver device delivered signal characteristics at IR and CR

Characteristic	Units	Minimum	Nominal	Maximum
Peak to peak voltage for 6 Gbps ^a	mV(P-P)			1 200
Maximum peak-to-peak voltage (i.e., 2 x Z2 in figure 120) for OOB, 1.5 Gbps, and 3 Gbps	mV(P-P)			1 600
Non-operational input voltage transient	mV(P-P)			2 000
Reference differential impedance b	ohm		100	
Reference common mode impedance b	ohm		25	

^a See 5.3.6.5.5 for measurement method.

5.3.7.4.2 Receiver device S-parameters


S-parameter limits shall be calculated per the following formula. Variables are illustrated in Figure 124 (see 5.3.6.5.2) and specified in table 70.

Measured value < max [L, min [H, N + 13.3 $\times \log_{10}(f / 3 \text{ GHz})$]]

where:

is the slope in dB/decade

is the maximum value (i.e., the high frequency asymptote)

is the minimum value (i.e., the low frequency asymptote)

Table 70 defines the S-parameters of the receiver device.

Table 78 - S-parameters at the receiver device compliance point IRs or CRs

Characteristic	Reference	(dB;;;¥)	(dBmV)	H (dB)	S (dBmV/ decade)	f _{min} (MHz)	f _{max} (GHz)
S _{CC22}	Figure 128	-6.0	-5.0	0 (13.3	100	6.0
S _{DD22} ———	Figure 128	-10	-7.9	0 7	13.3	100	6.0
S _{CD22}	Figure 13	-26	-12.7	-10	13.3	100	6.0

S-parameters Maximum limits for S-parameters to match cable assembly/backplane wording

ACCEPT - DONE (should be "IR or CR") Can not locate these compliance points, IRs or CRs, in any figures. Author: RElliott

Subject: Highlight
Date: 8/27/2008 7:18:52 AM -07'00'

S-parameters

Author: mxim-mbari Subject: Note Date: 5/24/2008 9:47:46 AM -07'00'

Maximum limits for S-parameters

to match cable assembly/backplane wording

Author: mxim-mbari Subject: Note

Date: 5/24/2008 9:48:07 AM -07'00'
ACCEPT - DONE
This table do not match the Figures. The Table should be for Scc11, Sdd11, and Scd11.

Author: hpq-bolawsky Subject: Note Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE

All three dBmV references are inappropriate. Should be dB.

Author: pmcs-gfortin Subject: Highlight Date: 5/24/2008 9:48:19 AM -07'00' TACCEPT - DONE 11

Author: mxim-mbari Subject: Note Date: 5/24/2008 9:49:15 AM -07'00' REJECT (Alvin: Reject. Correct value.)

Wrong value [H = 0 dB for Sdd22 row]

Author: pmcs-gfortin Subject: Highlight Date: 5/24/2008 9:48:24 AM -07'00' TACCEPT - DONE

Author: mxim-mbari Subject: Note Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE

Should be Figure 129

Comments from page 201 continued on next page

b For receiver device S-parameter characteristics, see 5.3.7.4.2.

28 January 2008

T10/1760-D Revision 14

Gbps. These imply the required signal tolerance characteristics of the receiver device. All specifications are based on differential measurements.

Table 69 — Receiver device delivered signal characteristics at IR and CR

Characteristic	Units	Minimum	Nominal	Maximum
Peak to peak voltage for 6 Gbps ^a	mV(P-P)			1 200
Maximum peak-to-peak voltage (i.e., 2 x 72 in figure 120) for OOB, 1.5 Gbps, and 3 Gbps	mV(P-P)			1600
Non-operational input voltage transient	mV(P-P)		/	2 000
Reference differential impedance ^b	ohm		180	/
Reference common mode impedance b	ohm	_	25	
a See 5.3.6.5.5 for measurement method.				

^b For receiver device S-parameter characteristics, see 5.3.7.4.2.

5.3.7.4.2 Receiver device S-parameters

S-parameter limits shall be calculated per the following formula. Variables are illustrated in figure 124 (see 5.3.6.5.2) and specified in table 70.

Measured value < max [L, min [H, N + 13.3 $\times \log_{10}(f / 3 \text{ GHz})$]]

where:

S is the slope in dB/decade

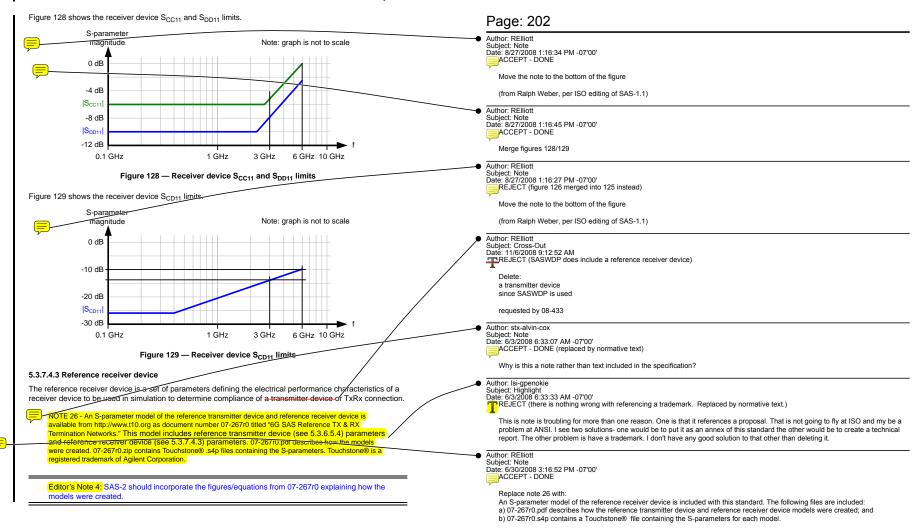
H is the maximum value (i.e., the high requency asymptots)

L is the minimum value (i.e., the low frequency asymptote)

Table 70 defines the S-parameters of the receiver device.

Table 70 — S-parz meters at the receiver device compliance point IRs or CRs

_		
v		


Characteristic	Reference	L (dBmV)	N (dBmV)	H (dB)	S (dBmV/ decade)	f _{min} (MHz)	f _{max} (GHz)
S _{CC22}	Figure 128	-6/.0	-5.0	0 (=	13.3	100	6.0
S _{DD22}	Figure 128	-10	-7.9	0 7	13.3	100	6.0
S _{CD22}	Figure 13	-26	-12.7	-10	13.3	100	6.0

Author: pmcs-gfortin Subject: Highlight Date: 5/24/2008 9:48:30 AM -07'00'

Author: pmcs-gfortin Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

Should be 129

T10/1760-D Revision 14 28 January 2008

Comments from page 202 continued on next page

T10/1760-D Revision 14 28 January 2008

Figure 128 shows the receiver device $\rm S_{CC11}$ and $\rm S_{DD11}$ limits.

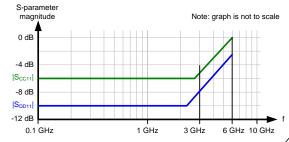


Figure 128 — Receiver device $\rm S_{CC11}$ and $\rm S_{DD11}$ limits

Figure 129 shows the receiver device S_{CD11} limits.

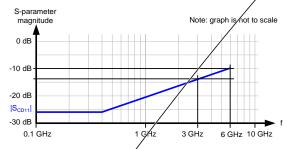


Figure 129 — Refeiver device S_{CD11} limits

5.3.7.4.3 Reference receiver device

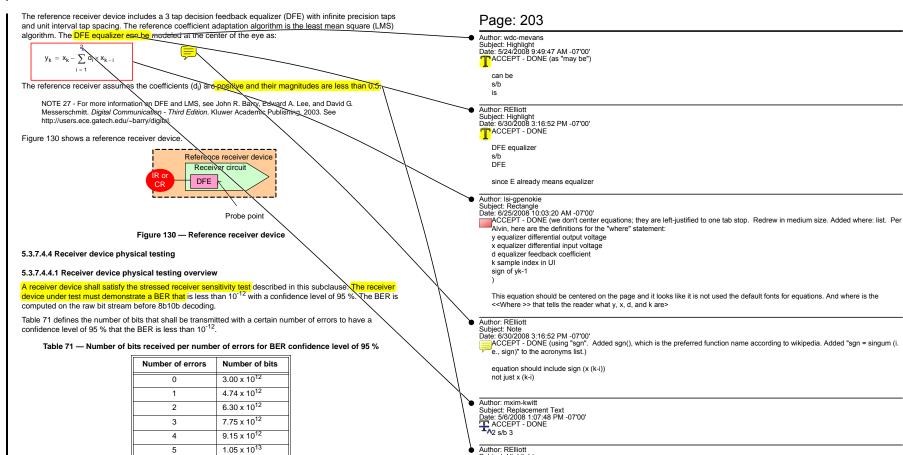
The reference receiver device is a set of parameters defining the electrical performance characteristics of a receiver device to be used in simulation to determine compliance of a transmitter device or TxRx connection.

(E

NOTE 26 - An S-parameter model // the reference transmitter device and reference receiver device is available from http://www.t10.org/as document number 07-267f0 titled "6G SAS Reference TX & RX Termination Networks." This prodel includes reference transmitter device (see 5.3.6.5.4) parameters and reference receiver de/rice (see 5.3.7.4.3) parameters. 07-267f0.pdf describes how the models were created. 07-267f0.zly/contains Touchstone® .s4p files containing the S-parameters. Touchstone® is a registered trademark of //gillent Corporation.

Editor's Note 4; SAS-2 should incorporate the figures/equations from 07-267r0 explaining how the models were created.

Touchstone® is a registered trademark of Agilent Corporation.


Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TREJECT (reference 07-267r0.pdf instead of incorporating the equations into the standard)

Editor's Note 4:

28 January 2008 T10/1760-D Revision 14

The stressed receiver sensitivity test shall be applied at the receiver device compliance point (IR or CR) as a means to perform physical validation of predicted performance of the receiver device. Any implementation of

the stressed signal generation hardware is permitted for the stressed receiver signal as long as it provides the

Comments from page 203 continued on next page

magnitudes are less than 0.5 times the peak of the equivalent pulse response

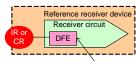
Date: 10/17/2008 12:11:20 PM -07'00'

positive and their magnitudes are less than 0.5

ISI-stressed signal with jitter and noise as defined in this subclause.

28 January 2008 T10/1760-D Revision 14

The reference receiver device includes a 3 tap decision feedback equalizer (DFE) with infinite precision taps and unit interval tap spacing. The reference coefficient adaptation algorithm is the least mean square (LMS) algorithm. The DFE equalizer can be modeled at the center of the eye as:



The reference receiver assumes the coefficients (d_i) are positive and their magnitudes are less than 0.5.

NOTE 27 - For more information on DFE and LMS, see John R. Barry, Edward A. Lee, and David G. Messerschmitt. *Digital Communication - Third Edition*. Kluwer Academic Publishing, 2003. See http://users.ece.gatech.edu/-barry/digital.

Figure 130 shows a reference receiver device.

Probe point

Figure 130 — Reference receiver device

5.3.7.4.4 Receiver device physical testing

5.3.7.4.4.1 Receiver device physical testing overview

A receiver device shall satisty me stressed receiver sensitivity test described in this subclause. The receiver device under test must demonstrate a BER that is less than 10⁻¹² with a confidence level of 95 %. The BER is computed on the raw bit stream before 8b10b decoding.

Table 71 defines the number of bits that shall be transmitted with a certain number of errors to have a confidence level of 95 % that the BER is less than 10⁻¹².

Table 71 — Number of bits received per number of errors for BER confidence level of 95 %

Number of errors	Number of bits
0	3.00 x 10 ¹²
1	4.74 x 10 ¹²
2	6.30 x 10 ¹²
3	7.75 x 10 ¹²
4	9.15 x 10 ¹²
/5	1.05 x 10 ¹³

The stressed receiver sensitivity test shall be applied at the receiver device compliance point (IR or CR) as a means to perform physical validation of predicted performance of the receiver device. Any implementation of the stressed signal generation hardware is permitted for the stressed receiver signal as long as it provides the ISI-stressed signal with jitter and noise as defined in this subclause.

Working Draft Serial Attached SCSI - 2 (SAS-2)

per 08-404r2. Get rid of "positive" and explain what 0.5 means.

Author: Isi-gpenokie
Subject: Highlight
Date: 5/24/2008 10:00:11 AM -07'00'
PACCEPT - DONE ("shall have")

This << The receiver device under test must demonstrate a BER that >> shall be << The receiver device under test shall meet a BER that >>

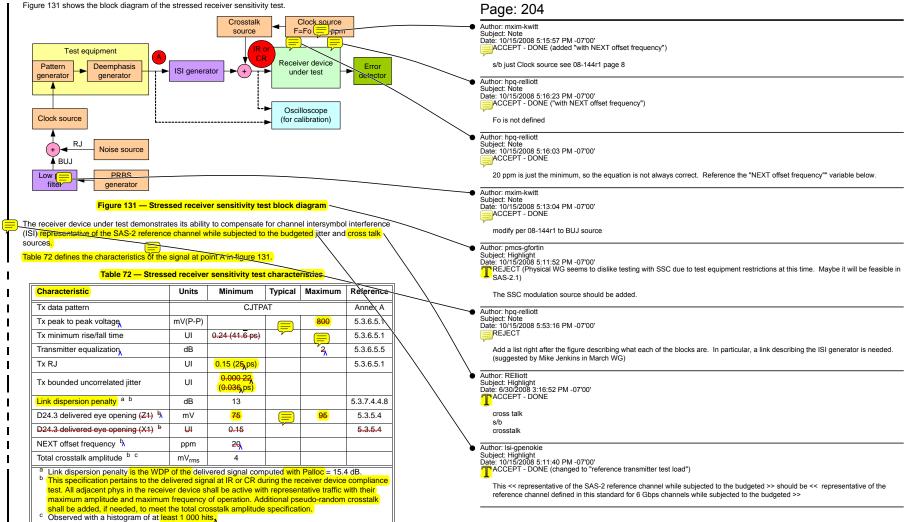
Author: Isi-gpenokie
Subject: Highlight
Date: 5/24/2008 9:59:40 AM -07'00'

This << A receiver device shall satisfy the stressed receiver sensitivity test >> should be << A receiver device shall pass the stressed receiver sensitivity test >>

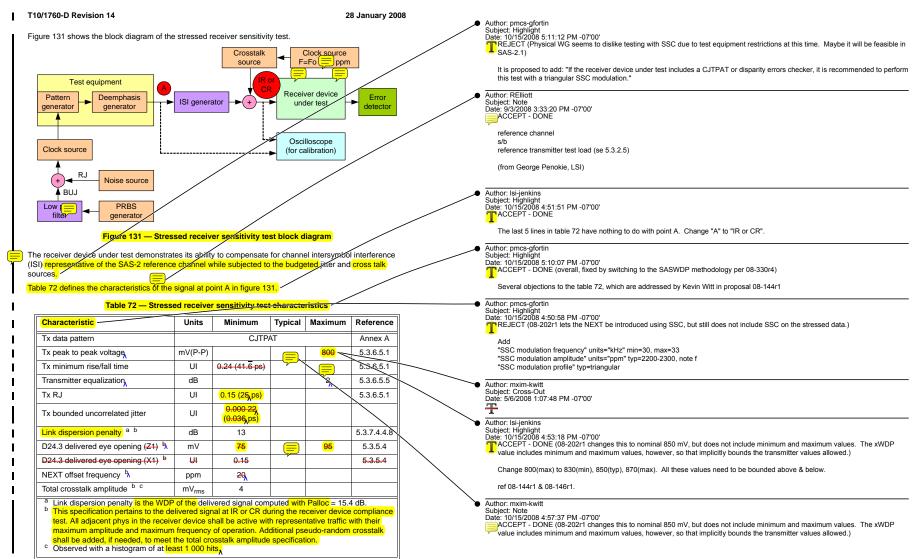
Author: wdc-mevans
Subject: Highlight
Date: 5/24/2008 10:00:24 AM -07'00'
TACCEPT - DONE
must
s/b
shall

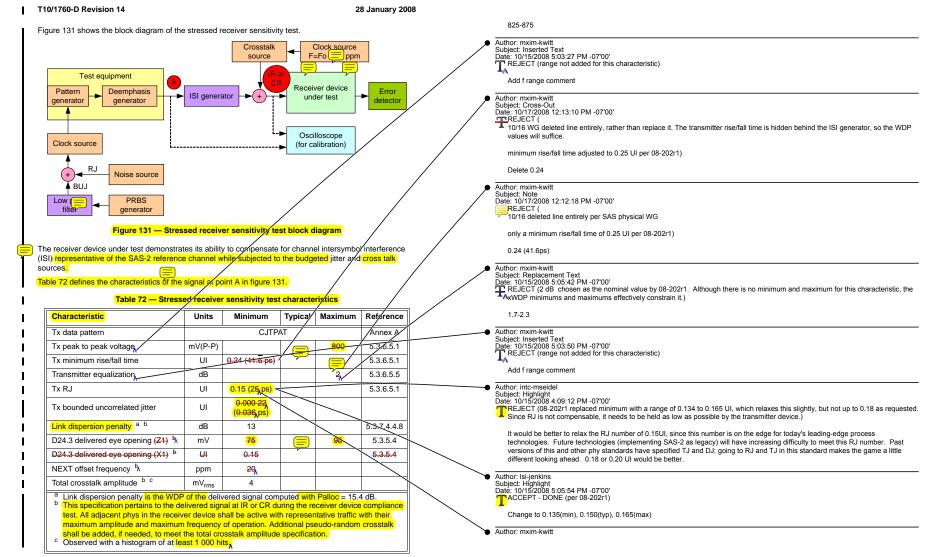
Author: Isi-gpenokie
Subject: Highlight
Date: 5/26/2008 5:19:10 PM -07'00'
PTACCEPT - DONE (also added "receiver device" before the parenthesis where missing)

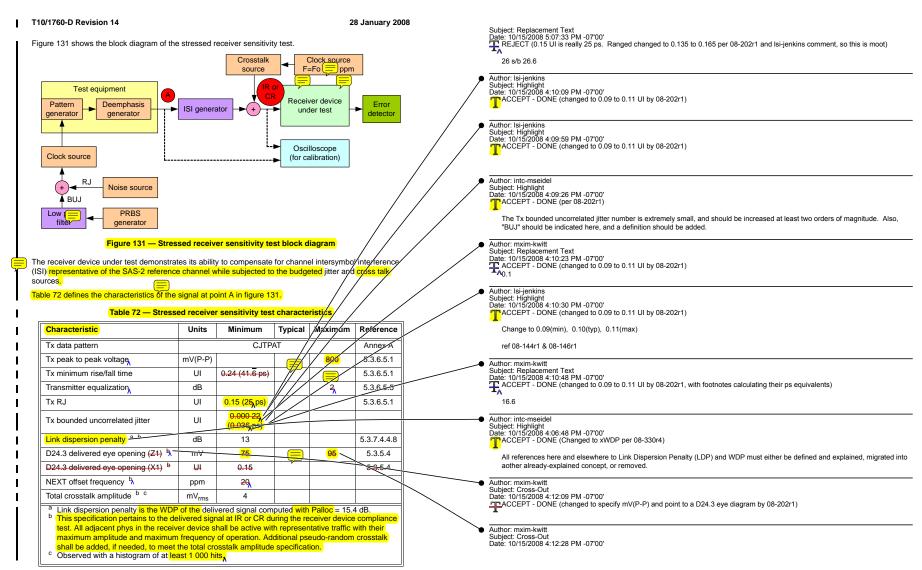
Global
All the << (IR or CR) >> in this section need to changed to << (i.e., IR or CR) >>.

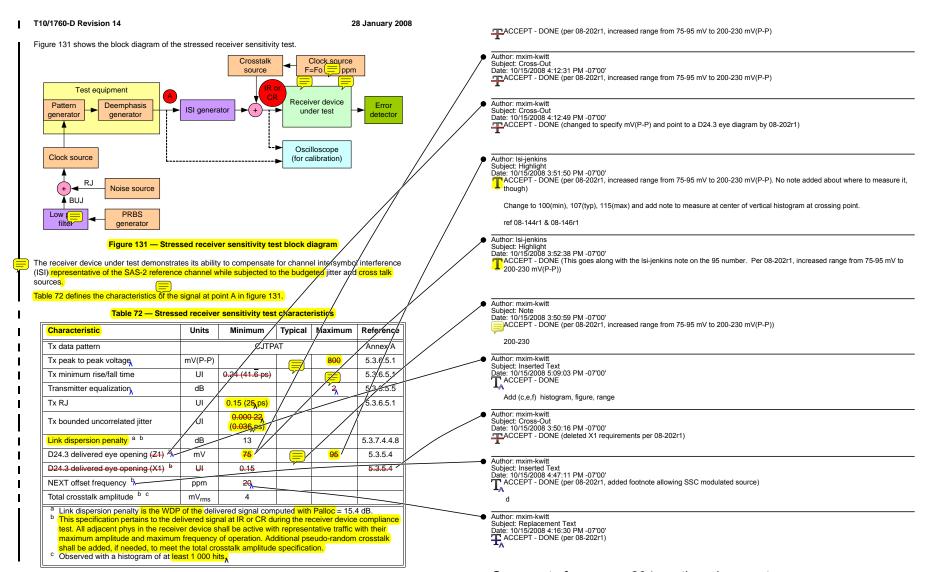

Author: RElliott
Subject: Highlight
Date: 9/4/2008 8:23:42 AM -07'00'

203

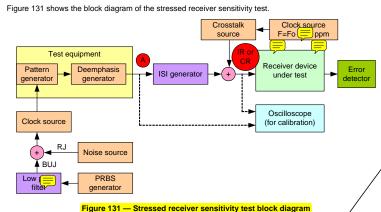

(global) stressed receiver sensitivity s/b stressed receiver device sensitivity


to not disagree with B.2.3, which says "receiver sensitivity" is not used in this standard





Comments from page 204 continued on next page



Comments from page 204 continued on next page

The receiver device under test demonstrates its ability to compensate for channel intersymbol in efference, (ISI) representative of the SAS-2 reference channel while subjected to the budgeted litter and sources.

Table 72 defines the characteristics of the signal at point A in figure 131.

Table 72 — Stressed receiver sensitivity test characteristics

Characteristic	Units	Minimum	Typical	Maximum/	Reference
Tx data pattern		CJTP	AT /		Annex A
Tx peak to peak voltage	mV(P-P)			8/30	5.3.6.5.1
Tx minimum rise/fall time	UI	0.24 (41.6 ps)			5.3.6.5.1
Transmitter equalization	dB		/	² / _N	5/3.6.5.5
Tx RJ	UI	0.15 (25 _A ps)			\$.3.6. <u>5</u> .1
Tx bounded uncorrelated jitter	UI	0.000-22 (0.036, r/s)			
Link dispersion penalty a b	dB	1/3			5.3.7.4 4.8
D24.3 delivered eye opening (Z1) b	mV	75		%	8.3.5.4
D24.3 delivered eye opening (X1) b	UI.	0.15	ĺ	/ /	5.3.5.4
NEXT offset frequency b	ppm	20 /			
Total crosstalk amplitude b c	mV _{rms} /	/4			

Link dispersion penalty is the WDP of the delivered signal computed with Palloc = 15.4 dB.

204

2500

Author: Isi-gpenokie

Subject: Highlight Date: 10/15/2008 5:01:42 PM -07'00'

TACCEPT - DONE (replaced by xWDP, which is output by the SASWDP program)

This term << Palloc >> is used no were else in the standard what the heck is it? Define it or delete it.

Author: Isi-gpenokie

Subject: Highlight Date: 10/15/2008 4:59:59 PM -07'00'

ACCEPT - DONE (08-330r4 adds WDP everywhere)

This term << WDP >> is used no were else in the standard what the heck is it? Define it or delete it.

Author: Isi-gpenokie
Subject: Highlight
Date: 10/15/2008 4:59:32 PM -07'00'
PTACCEPT - DONE (Changed to "The D24.3 delivered eye opening pertains...")

This << This specification pertains to the delivered signal >> should be << This standard pertains to the delivered signal >>

Author: pmcs-gfortin Subject: Highlight Date: 10/15/2008 4:58:45 PM -07'00'

*T*ACCEPT - DONE (Since "receiver device" means only one receiver phy, worded as: "All transmitter devices and receiver devices adjacent to the receiver device under test")

It is proposed to clarify note 'b' to highlight that activity must be present on both receive and transmit phys:

"This specification pertains to the delivered signal at IR or CR during the receiver device compliance test. All adjacent receive and transmit phys in the receiver device shall be active with representative traffic with their maximum amplitude and maximum frequency of operation. Additional pseudo-random crosstalk shall be added, if needed, to meet the total crosstalk amplitude specification."

Author: Isi-gpenokie

Subject: Highlight Date: 10/15/2008 4:58:42 PM -07'00'

ACCEPT - DONE (08-202r1 changed "hits" to "samples")

<< least 1 000 hits. >> of what? Snowballs, baseballs, rocks?

Author: mxim-kwitt

Subject: Inserted Text
Date: 10/15/2008 5:03:04 PM -07'00'
The ACCEPT - DONE (per 08-202rt, added "The NEXT source may use SSC modulation rather than have a fixed offset frequency." ACCEPT - DUNE (per 08-2021), added The NEAT Source may use 600 modulater. Selection and a reference to a Figure for D24.3 and "The range shall not be used to define corner test conditions required for compliance.")

d An SSC modulated source can be used instead of fixed offset frequency crosstalk.

e Based on the centroid of the vertical histogram at 1 and 0 crossing

see Figure xxx

f Test setup is to be within this range and it is not required to show compliance across the range.

b This specification pertains to the delivered signal at IR or CP/during the receiver device compliance test. All adjacent phys in the receiver device shall be active with representative traffic with their maximum amplitude and maximum frequency of operation. Additional pseudo-random crosstalk shall be added, if needed, to meet the total crosstalk, implitude specification.

Observed with a histogram of at least 1 000 hits,

5.3.7.4.4.2 Test signal characteristics and calibration

5.3.7.4.4.3 Transmit waveform calibration

Test equipment shall be used to establish he transmit launch signal at point A in figure 131 to meet the characteristics defined in table 72.

5.3.7.4.4.4 ISI generator calibration

The hardware ISI generator shall deliver a stressed signal to the receiver device under test that is representative of and at least as stressful as the reference transmitter test load (see 5.3.2.5). The measure of

- a) the computed link dispersion penalty (LDP); and
- b) |S_{DD21}| at (f_{baud} / 2).

With the transmitter jitter and crosstalk sources disabled, the delivered waveform shall be captured at the compliance point (IR or CR) and processed to determine the LDP. Waveform averaging shall be used to minimize the impact of measurement noise and jitter on the LDP calculations.

|S_{DD21}| delivered by the hardware ISI generator sinall be measured by observing the delivered eye opening at the compliance point (IR or CR) per the specification in table 72

NOTE 28 - The reference transmitter test load (see 5.3.2.5) may be use iSt generator. It has a nomina |S_{DD21}| requirement of -15 dB at (f_{baud} / 2).

5.3.7.4.4.5 ISI generator pulse response

The captured waveform shall be processed as described in section 5.3.7.4.4.6 to determine the LDP. Any SI generator suitable for this test shall have a LDP greater than that budgeted and an |SDD21 of the reference transmitter test load.

5.3.7.4.4.6 Crosstalk calibration

A coupling mechanism is used to inject representative crosstalk to the receiver device under test at the compliance point (IR or CR). The center frequency of the crosstalk source shall be frequency offset from the pattern generator to sweep all potential relative phase alignments between the crosstalk source and the signal from the ISI generator. With the transmit signal disabled, a histogram of the signal delivered to the receiver under test shall be generated. The crosstalk amplitude shall be at greater than the total crosstalk amplitude specified in table 72.

5.3.7.4.4.7 Jitter tolerance

A receiver device shall satisfy the jitter tolerance test described in this subclause. The jitter tolerance test leverages the receiver device physical test hardware. The receiver device under test shall demonstrate a BER that is less than 10⁻¹² with a 95 % confidence level when subjected to the sinusoidal jitter defined in 5.3.7.6,

Page: 205

Author: Isi-gpenokie Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00' CACCEPT - DONE << he >> should be <<the>>>

Author: pmcs-gfortin

Subject: Highlight
Date: 10/15/2008 5:35:43 PM -07'00'

REJECT (Physical WG doesn't want to include SSC in the test at this time)

For inclusion of SSC in the test procedure, we should add:

"If the receiver device is tested with an SSC modulated signal, the residual SSC jitter shall be accounted for when calibrating the transmit signal BUJ. The transmit BUJ shall be measured through the JTF using a D30.3 pattern, with +/- 2300 ppm triangular SSC modulating the pattern generator clock source."

Author: Isi-gpenokie Subject: Highlight Date: 10/15/2008 5:25:27 PM -07'00' ACCEPT - DONE

> This << representative of and at least as stressful as the reference >> should be << representative of, and at least as stressful as, the reference >>

Author: Isi-gpenokie Subject: Cross-Out Date: 7/15/2008 5:01:33 PM -07'00' REJECT (noise and jitter are not part of calculations. Noise and jitter have impact on calculations.)

This << impact of >> should be deleted as it adds nothing.

Author: Isi-gpenokie Subject: Highlight Date: 10/15/2008 5:24:47 PM -07'00' TACCEPT - DONE

This << point (IR or CR) per the specification in table 72. >> should be << point (IR or CR) as defined in table 72. >>

Author: mxim-kwit Subject: Inserted Text Date: 10/16/2008 8:52:36 AM -07'00' REJECT (the new picture of D24.3 suffices)

The delivered eye opening is the difference of the "1" level centroid at the crossing, determined with a vertical histogram, minus the "0" level centroid at the crossing, also determined with a vertical histogram.

Author: mxim-kwitt Subject: Note

Date: 10/15/2008 5:34:26 PM -07'00'

ACCEPT - DONE (that figure is now included along with the definition of the reference transmitter test load.)

Insert figure of D24.3 response from 08-144r1 page 4.

Author: Isi-gpenokie

Subject: Highlight Date: 10/15/2008 5:29:07 PM -07'00'

ACCEPT - DONE (changed to a)b) list which clarifies)

This << than that budgeted and an |SDD21| comparable >> should be << than that budgeted with an |SDD21| comparable >>

T10/1760-D Revision 14

5.3.7.4.4.2 Test signal characteristics and calibration

5.3.7.4.4.3 Transmit waveform calibration

Test equipment shall be used to establish he transmit launch signal at point A in figure 131 to meet the characteristics defined in table 72.

5.3.7.4.4.4 ISI generator calibration

The hardware ISI generator shall deliver a stressed signal to the receiver device under test that is representative of and at least as stressful as the reference transmitter test load (see 5.3.2.5). The measure of stress is:

- a) the computed link dispersion penalty (LDP); and
- b) |S_{DD21}| at (f_{baud} / 2).

With the transmitter jitter and crosstalk sources disabled, the delivered waveform shall be captured at the compliance point (IR or CR) and processed to determine the LDP. Waveform averaging shall be used to minimize the impact of measurement noise and jitter on the LDP calculations.

|SDD21| delivered by the hardware ISI generator shall be measured by observing the delivered eye opening at the compliance point (IR or CR) per the specification in table 72,

NOTE 28 - The reference transmitter test load (see 5.3.2.5) may be used as an ISI generator. It has a nominal |S_{DD21}| requirement of -15 dB at (f_{baud} / 2).

5.3.7.4.4.5 ISI generator pulse response

The captured waveform shall be processed as described in section 5.3.7.4.4.6 to determine the LDP. An ISI generator suitable for this test shall have a LDP greater than that budgeted and at |SDD21| comparable to that of the reference transmitter test load.

5.3.7.4.4.6 Crosstalk calibration

A coupling mechanism is used to inject representative crosstalk to the receiver device under test at the compliance point (IR or CR). The center frequency of the crosstalk source shall be frequency offset from the pattern generator to sweep all potential relative phase alignments by tween the crosstalk source and the signa from the ISI generator. With the transmit signal disabled, a historyam of the signal delivered to the receiver under test shall be generated. The crosstalk amplitude shall be at greater than the total crosstalk amplitude specified in table 72.

5.3.7.4.4.7 Jitter tolerance

A receiver device shall satisfy the jitter tolerance test described in this subclause. The jitter to erance test leverages the receiver device physical test hardware. The receiver device under test shall de monstrate a BER that is less than 10⁻¹² with a 95 % confidence level when subjected to the sinusoidal litter defined in 5.3.7.

Author: Isi-gpenokie Subject: Cross-Out Date: 10/15/2008 5:29:36 PM -07'00' ACCEPT - DONE

> This << The jitter tolerance test leverages the receiver device physical test hardware. >> provides no useful information and should he deleted

Author: Isi-gpenokie

Subject: Highlight Date: 10/15/2008 5:30:12 PM -07'00'

TREJECT (that could be added to every "shall" in the standard.)

This << device shall satisfy the jitter tolerance test >> should be << device shall, at a minimum, meet the jitter tolerance test >>

Author: pmcs-gfortin

Subject: Highlight Date: 10/17/2008 4:27:59 PM -07'00'

REJECT (obsolete due to JTF changes)

Section 5.3.7.6 only specifies the sinusoidal jitter limit for 1.5Gb/s and 3Gb/s. It should be extended for 6Gb/s if the intent is to include a 0.1UI SJ margin for 6G SAS-2 litter tolerance test.

Author: RElliott

Subject: Underline <u>Date</u>: 6/30/2008 3:16:52 PM -07'00'

Daté: 6/30/2008 3:16: TACCEPT - DONE

sinusoidal jitter

SJ

Author: Isi-jenkins

Subject: Highlight Date: 10/17/2008 4:28:46 PM -07'00'

TRACCEPT - DONE (untrained and trained sections separated and cleary defined in 14f)

section 5.3.7.6 discusses only 1.5 & 3Gb/s testing. The only reference to 6G is a reference back to this section.

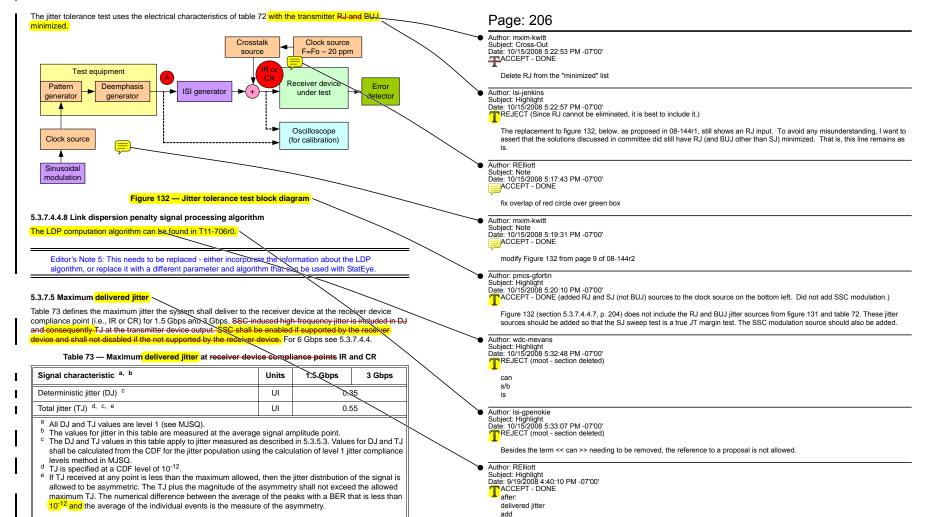
08-144r1, slide 9, recommends a reasonable solution for this.

Author: mxim-kwitt

Subject: Replacement Text
Date: 10/17/2008 4:29:28 PM -07'00'

REJECT (other changes clearly define how SJ is applied for trained jitter tolerance testing)

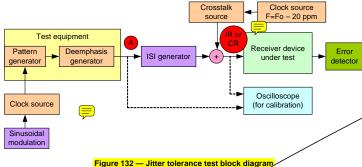
in Figure 122 as illustrated in Figure xxx, with the addition of fixed SJ of 0.022UI at 20MHz.


Author: RElliott

Subject: Note

Date: 10/17/2008 12:14:23 PM -07'00'
—ACCEPT - DONE

Per the 10/16 SAS physical WG call, merge stressed receiver test and jitter tolerance test for trained receiver devices. BUJ becomes SJ


Details provided by pmcs-gfortin.

Jitter peak-to-peak measured < (maximum TJ - |Asymmetry|)

28 January 2008

The jitter tolerance test uses the electrical characteristics of table 72 with the transmitter RJ-and BUJ minimized.

5.3.7.4.4.8 Link dispersion penalty signal processing algorithm

The LDP computation algorithm can be found in T11-706r0.

Editor's Note 5: This needs to be replaced - either incorporate the information about the LDP algorithm, or replace it with a different parameter and algorithm that can be used with StatEye.

5.3.7.5 Maximum delivered jitte

Table 73 defines the maximum jitter the system shall deliver to the receiver device at the receiver device compliance point (i.e., \(\mathbb{K} \) or CR) for 1.5 Gbps and 3 Gbps. SSC-induced high-frequency-jitter-is-included in and consequently \(\mathbb{Y} \) of at the transmitter-device output. \(\mathbb{SSC} \) shall be enabled if supported by the receiver-device. For 6 Gbps see 5.3.7.4.4.

Table 73 — Maximum delivered jitter at receiver device compliance points IK and CR

Signal characteristic a, b	Units	nits 1.5 Gbps 3		
Deterministic jitter (DJ) ^c	UI	0.35		
Total jitter (TJ) d, c, e	UI	0.55		

- a All DJ and TJ values are level 1 (see MJSQ).
- ^b The values for jitter in this table are measured at the average signal amplitude point.
- The DJ and TJ values in this table apply to jitter measured as described in 5.3.5.3. Values for DJ and TJ shall be calculated from the CDF for the jitter population using the calculation of level 1 jitter compliance levels method in MJSQ.
- d TJ is specified at a CDF level of 10⁻¹².
- EITJ received at any point is less than the maximum allowed, then the jitter distribution of the signal is allowed to be asymmetric. The Targius the magnitude of the asymmetry shall not exceed the allowed maximum TJ. The numerical difference between the average of the peaks with a BER that is less than 10.12 and the average of the individual events is the measure of the asymmetry.

Jitter peak-to-peak measured < (maximum TJ - |Asymmetry|)

"at 1.5 Gbps and 3 Gbps" Author: RElliott Subject: Cross-Out Date: 9/22/2008 3:08:20 PM -07'00' Delete "SSC-induced high-frequency jitter is included in DJ and consequently TJ at the transmitter device output. SSC shall be enabled if supported by the receiver device and shall not disabled if the not supported by the receiver device.' since this section is only for legacy 1.5 Gbps SAS and 3 Gbps SAS, where SSC is not allowed. Author: wdc-mevans Subject: Highlight Date: 6/3/2008 1:12:55 PM -07'00' TREJECT (nothing wrong with "consequently") and consequently in and, as a result, in Author: Isi-gpenokie Subject: Highlight Date: 9/22/2008 3:07:12 PM -07'00' TREJECT (Moot. Was going to be "SSC shall be enabled if SSC is supported by the receiver device and shall be disabled if SSC is not supported by the receiver device." but sentence deleted, since this section only applies to legacy 1.5 and 3 Gbps, where SSC is not possible. It is possible on SATA links, but that is outside the scope of this standard.) This << SSC shall be enabled if supported by the receiver device and shall not disabled if the not supported by the receiver device. >> has so many things wrong with it I don't know were to start For example: Does it apply to 1.5, 3, and 6 or just 1.5 and 3? What does << shall not disabled if the not supported by the receiver device >> this mean? Aside from a missing <<be>>>. It appears to be saying that you shall not disable SSC if SSC is not supported. How can you not disable something that is not there to be disabled? Author: RElliott Subject: Cross-Out Date: 9/19/2008 4:42:26 PM -07'00' ACCEPT - DONE receiver device compliance points Author: RElliott Subject: Highlight
Date: 9/19/2008 4:40:23 PM -07'00'
ACCEPT - DONE after: delivered jitter add "at 1.5 Gbps and 3 Gbps" Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

REJECT (only 2 things are anded)

10-12 and

10-12, and

s/b

5.3.7.6 Receiver device jitter tolerance

Table 74 defines the amount of jitter the receiver device shall tolerate at the receiver device compliance point (i.e., IR or CR) for 1.5 Gbps and 3 Gbps. Receiver device jitter testing shall be performed with the maximum (i.e., slowest) rise/fall times, minimum signal amplitude, and maximum total jitter, sad should be performed with normal activity in the receiver device (e.g., with other transmitter circuits and receiver device on the same board as the receiver device performing normal activity) with SSC enabled if supported by the receiver device.

30 or 6 Gbps see 5.3.7.4.4.

Table 74 — Receiver device jitter tolerance at receiver device compliance points IR and CR

	Units	1.5 Gbps	3 Gbps
$\overline{}$	UI	0.10 ^c	0.10 d
	UI	0.35 ^f	0.35
	M	().65
		UI	UI 0.10 ° UI 0.35 f

- ^a All DJ and TJ values are level 1 (see MJSQ).
- b The jitter values given are normative for a combination of applied SJ, OS, and TJ that receiver devices shall be able to tolerate without exceeding the required BER (see 5.3.3-3.1). Receiver devices shall tolerate applied SJ of progressively greater amplitude at lower frequencies, according to figure 122 (see 5.3.5.5), with the same DJ and RJ levels as were used in the high frequency sweep.
- Applied sinusoidal swept frequency: 900 kHz to the minimum of 5 MHz and (3.75 2 (generation MHz) (e.g., 5 MHz for 1.5 Gbps and 7.5 MHz for 3 Gbps).
- d Applied sinusoidal swept frequency: 1 800 kHz to the minimum of 5 MHz and (3.75 x MHz/ye.g., 5 MHz for 1.5 Gbps and 7.5 MHz for 3 Gbps).
- No value's given for RJ. For compliance with this standard, the actual RJ amplitude shall be the value that brings TJ to the stated value at a probability of 10⁻¹². The additional 0.1 UI of applied SJ is added to ensure the receiver device has sufficient operating margin in the presence of external interference.
- The measurement bandwidth shall be 900 kHz to 750 MHz.
- g The measurement bandwidth shall be 1 800 kHz to 1 500 MHz.
- h The DJ and TJ values in this table apply to jitter measured as described in 5.3.5.4. Values for DJ and TJ shall be calculated from the CDF or the jitter population using the calculation of level 1 jitter compliance levels method in MJSQ.

5.3.8 Spread spectrum clocking (SSC)

5.3.8.1 SSC overview

Spread spectrum clocking (SSC) is the technique of modulating the operating requency of a transmitted signal to reduce the measured peak amplitude of radiated emissions.

Phys transmit with SSC as defined in 5.3.8.2 and receive with SSC as defined in 5.3.8.3

NOTE 29 - Phys compliant with previous versions of this standard do not transmit with SSC. Phys compliant with previous versions of this standard that do not support being attached to SATA devices were not required to receive with SSC.

Page: 207 Author: RElliott Subject: Highlight Date: 9/19/2008 4:41:43 PM -07'00' TACCEPT - DONE jitter tolerance add "at 1.5 Gbps and 3 Gbps" Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE total jitter s/b TJ Author: wdc-mevans Subject: Highlight Date: 5/24/2008 10:03:41 AM -07'00' ACCEPT - DONE if supported if SSC is supported Author: RElliott Subject: Note Date: 11/6/2008 1:24:39 AM ACCEPT - DONE Jitter setup shall be performed prior to application of SSC. per 11/4 WG Subject: Cross-Out Date: 9/19/2008 4:42:12 PM -07'00' receiver device compliance points Author: RElliott Subject: Highlight Date: 9/19/2008 4:41:15 PM -07'00' ACCEPT - DONE after: jitter tolerance "at 1.5 Gbps and 3 Gbps" Author: Isi-anenokie Date: 9/15/2008 5:32:33 PM -07'00' TACCEPT - DONE (promoted the e.g. into mainline text since only 2 speeds use this methodology)

In this << (generation - 1) >> it is not clear what the exponent is supposed to be.

Author: RElliott

28 January 2008 T10/1760-D Revision 14

5.3.7.6 Receiver device jitter tolerance

Table 74 defines the amount of jitter the receiver device shall tolerate at the receiver device compliance point (i.e., IR or CR) for 1.5 Gbps and 3 Gbps. Receiver device jitter testing shall be performed with the maximum (i.e., slowest) rise/fall times, minimum signal amplitude, and maximum total jitter, and should be performed with normal activity in the receiver device (e.g., with other transmitter circuits and receiver circuits on the same board as the receiver device performing normal activity) with SSC enabled if supported by the receiver device. or 6 Gbps see 5.3.7.4.4.

Table 74 — Receiver device iitter tolerance at receiver device compliance points IR and CR

Signal characteristic	Units	1.5 Gbps	3 Gbps
Applied sinusoidal jitter (SJ) b	UI	0.10 ^c	0.10 d
Deterministic jitter (DJ) a, h	UI	0.35 ^f	0.35 ^g
Total jitter (TJ) a, e, h	UI	(0.65

^a All DJ and TJ values are level 1 (see MJSQ).

The jitter values given are normative for a combination of applied SJ, DJ, and TJ that receiver devices shall be able to tolerate without exceeding the required BER (see 5.3.3.3.1). Receiver devices shall tolerate applied SJ of progressively greater amplitude at lower frequencies, according to figure 122 (see 5.3.5.5), with the same DJ and RJ levels as were used in the high frequency

Applied sinusoidal swept frequency: 900 kHz to the minimum of 5 MHz and (3.75 x 2 (ge MHz) (e.g., 5 MHz for 1.5 Gbps and 7.5 MHz for 3 Gbps).

Applied sinusoidal swept frequency: 1 800 kHz to the minimum of 5 MHz and (3.75 x 20) MHz) (e.g., 5 MHz for 1.5 Gbps and 7.5 MHz for 3 Gbps).

- No value is given for RJ. For compliance with this standard, the actual RJ amplitude shall be the value that brings TJ to the stated value at a probability of 10⁻¹². The additional 0.1 UI of applied SJ is added to ensure the receiver device has sufficient operating margin in the presence of external interference
- The measurement bandwidth shall be 900 kHz to 750 MHz.
- The measurement bandwidth shall be 1 800 kHz to 1 500 MHz.
- The DJ and TJ values in this table apply to jitter measured as described in 5.3.5.4. Values for DJ and TJ shall be calculated from the CDF for the jitter population using the calculation of level 1 jitter compliance levels method in MJSQ.

5.3.8 Spread spectrum clocking (SSC)

5.3.8.1 SSC overview

Spread spectrum clocking (SSC) is the technique of modulating the operating frequency of a transmitted signal to reduce the measured peak amplitude of radiated emissions.

Phys transmit with SSC as defined in 5.3.8.2 and receive with SSC as defined in 5.3.8.3.

NOTE 29 - Phys compliant with previous versions of this standard do not transmit with SSC. Phys compliant with previous versions of this standard that do not support being attached to SATA devices were not required to receive with SSC.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Subject: Note Date: 10/17/2008 7:42:40 PM -07'00' REJECT (per 10/17 discussion with pmcs-gfortin, it should be as is)

Note c (900 kHz minimums) is supposed to be for IR at both rates, note d (1800 kHz minimums) is supposed to be for CR at both

per discussion with Alvin - return this to like SAS-1.1

Author: Isi-gpenokie

207

Subject: Highlight
Date: 9/15/2008 5:32:38 PM -07'00'

ACCEPT - DONE (promoted the e.g. into mainline text since only 2 speeds use this methodology)

In this << (generation - 1) >> it is not clear what the exponent is supposed to be.

Table 75 defines the SSC modulation types.

Table 75 — SSC modulation types

SSC modulation type	Maximum SSC frequency deviation (SSC tol) a
Center-spreading	+2 300 / 2 300 ppm
None	+0 / -0 ppm
Down-spreading	+0 / -2 300 ppm
SATA down-spreading b	+0 / -5 000 ppm
SATA down-spreading b	+0 / -5 000 ppm

^a This is in addition to the physical link rate long-term stability and tolerance defined in table 54 and table 56 (see 5.3.3).

A phy may be transmitting with a different SSC modulation type than it is receiving (e.g., a phy is transmitting with center-spreading while it is receiving with down-spreading).

If the SSC modulation type is not none, the phy shall transmit within the specified maximum SSC frequency deviation with an SSC modulation frequency that is a minimum of 30 kHz and a maximum of 33 kHz.

The SSC modulation profile (e.g., triangular er-exponential) wendor-specific, but is intended to provide the maximum amount of electromagnetic interference (EMI) reduction rescenter-spreading, the average amount of up-spreading (i.e., > 0 ppm) in the SSC modulation profile shall be the same as the average amount of down-spreading (i.e., < 0 ppm). The amount of asymmetry in the SSC modulation profile shall be less than 288 ppm.

NOTE 30 - 288 ppm is the rate of deletable primitives that are left over after accounting or the physical link rate long-term stability. It is calculated as the deletable primitive rate defined in previous versions of this standard of 1/2 048 (i.e., 488 ppm) minus the width between the extremes of the physical link rate long term stability of +100/-100 ppm (i.e., 200 ppm).

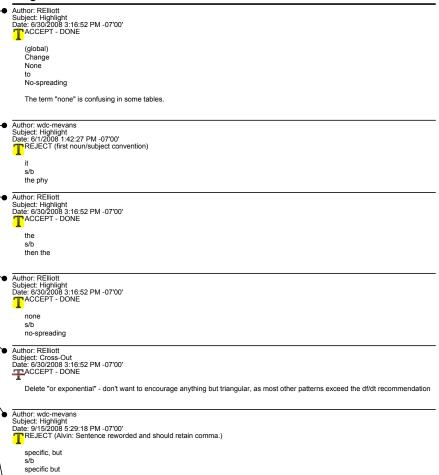
SSC-induced jitter is included in the deterministic jitter (DJ) and consequently in total jitter (TJ) at the transmitter output. SSC-induced jitter shall be measured using a D30.3 pattern (see table 235 in 10.2.9.2) after the application of the JTF (see 5.3.5.2).

The slope of the frequency deviation shall not exceed 1 200 ppm/ μ s when computed over any $0.3 \pm 0.01~\mu$ s interval of the SSC modulation profile. The slope is computed from the difference equation:

slope = $(f(t) - f(t - 0.3 \mu s)) / 0.3 \mu s$

where

f(t) is the SSC frequency deviation expressed in ppm.


NOTE 31 - A triangular SSC modulation profile has a slope of approximately 310 ppm/µs and meets the slope requirement. Other SSC modulation profiles (e.g., exponential) may not meet the slope requirement.

A modulation profile that has a slope of 1 200 ppm/µs over 0.3 µs creates a residual jitter of approximately 25 ps (i.e., 0.15 UI at 6 Gbps) after filtering by the JTF. This consumes the total DJ budget of the transmitter device, which does not allow the transmitter device to contribute any other type of DJ.

Activation or deactivation of SSC on a link that is not D.C. idle shall be done without violating the slope requirement.

Page: 208

Author: Isi-gpenokie Subject: Highlight

Comments from page 208 continued on next page

b This is only used as a receiver parameter.

Table 75 defines the SSC modulation types.

Table 75 — SSC modulation types

SSC modulation type	Maximum SSC frequency deviation (SSC _{tol}) ^a
Center-spreading	+2 300 / -2 300 ppm
None	+0 / -0 ppm
Down-spreading	+0 / -2 300 ppm
SATA down-spreading b	+0 / -5 000 ppm
3	

This is in addition to the physical link rate long-term stability and tolerance defined in table 54 and table 56 (see 5.3.3).

A phy may be transmitting with a different SSC modulation type than it is receiving (e.g., a phy is transmitting with center-spreading while it is receiving with down-spreading).

If the SSC modulation type is not none, the phy shall transmit within the specified maximum SSC frequency deviation with an SSC modulation frequency that is a minimum of 30 kHz and a maximum of 33 kHz.

The SSC modulation profile (e.g., triangular er-expenential) is vendor-specific, but is intended to prov maximum amount of electromagnetic interference (EMI) reduction. For center-spreading, the average maximum amount of electromagnetic interference (EMI) reduction. of up-spreading (i.e., > 0 ppm) in the SSC modulation profile shall be the same as the average and out to down-spreading (i.e., < 0 ppm). The amount of asymmetry in the SSC modulation profile stall by less than 288 ppm.

NOTE 30 - 288 ppm is the rate of deletable primitives that are left over after accounting for the physical link rate long-term stability. It is calculated as the deletable primitive rate defined in previous versions of this standard of 1/2 048 (i.e., 488 ppm) minus the width between the extremes of the physical ink rate long-term stability of +100/-100 ppm (i.e., 200 ppm).

SSC-induced jitter is included in the deterministic jitter (DJ) and consequently in total jitter (TJ) at the transmitter output. SSC-induced jitter shall be measured using a D30.3 pattern (see table 235 in 10.2.9.2) after the application of the JTF (see 5.3.5.2).

The slope of the frequency deviation shall not exceed 1 200 ppm/µs when computed over any 0.3 ± 0.01 µs interval of the SSC modulation profile. The slope is computed from the difference equation:

slope = $(f(t) - f(t - 0.3 \mu s)) / 0.3 \mu s$

where

f(t) is the SSC frequency deviation expressed in ppm.

NOTE 31 - A triangular SSC modulation profile has a slope of approximately 310 ppm/µs and meets the slope requirement. Other SSC modulation profiles (e.g., exponential) may not meet the slope requirement.

A modulation profile that has a slope of 1 200 ppm/µs over 0.3 µs creates a residual jitter of approximately 25 ps (i.e., 0.15 UI at 6 Gbps) after filtering by the JTF. This consumes the total DJ budget of the transmitter device, which does not allow the transmitter device to contribute any other type of DJ.

Activation or deactivation of SSC on a link that is not D.C. idle shall be done without violating the slope requirement

Date: 6/3/2008 1:13:47 PM -07'00' ACCEPT - DONE

This << vendor-specific, but is intended to provide the >> should be << vendor-specific, but should provide the >>

Author: pmcs-gfortin

Subject: Highlight
Date: 5/24/2008 106:11 AM -07'00'

"PREJECT (instead, changed to only use DJ and TJ acronyms, and removed the "the"s. This matches wording in other sections)

"in the total iitter"

Author: wdc-mevans Subject: Highlight Date: 5/24/2008 10:04:24 AM -07'00' REJECT

and consequently in

and, as a result, in

Author: pmcs-afortin

Subject: Highlight

Date: 9/22/2008 3:03:48 PM -07'00' TACCEPT - DONE (Alvin says to just delete the reference to DJ and state that it is included in TJ)

May need to change to "bounded un-correlated iitter (BUJ)" to stay in line with the proposed change to the tx jitter specs that was discussed at the March face-to-face meeting.

Author: pmcs-gfortin

Subject: Highlight Date: 6/28/2008 10:27:04 AM -07'00'

ACCEPT - DONE (Alvin: Accept. Replace text with:

"The slope of the frequency deviation should not exceed +- 850 ppm/us when computed over any 0.27 +- 0.01 us interval of the SSC modulation profile, after filtering of the transmitter jitter output by a single pole low-pass filter with a cutoff frequency of 3.7MHz +- 0.2MHz. Alternatively, the transmitter jitter may be filtered by the closed-loop transfer function of a measurement equipment's PLL that is compliant to the JTF.

The slope is computed from the difference equation:

slope = (f(t) - f(t - 0.27 us)) / 0.27 uswhere

f(t) is the SSC frequency deviation expressed in ppm.

NOTE 31 - A +- 2300 ppm triangular SSC modulation profile has a slope of approximately 310 ppm/us and meets the informative slope specification. Other SSC modulation profiles (e.g., exponential) may not meet the slope requirement. A modulation profile that has a slope of +- 850 ppm/us over 0.27 us creates a residual jitter of approximately 16.7 ps (i.e., 0.10 UI at 6 Gbps) after filtering by the JTF. This consumes the total BUJ budget of the transmitter device, which does not allow the transmitter device to contribute any other type of BUJ.

Activation or deactivation of SSC on a link that is not D.C. idle shall be done without violating the total jitter (TJ) at the transmitter output after application of the JTF."

As explained in detail in presentation T10/08-121r1, the measurement of the slope of the SSC profile is not an accurate representation of the jitter after the JTF in the presence of high frequency noise. It thus cannot be used as a specification for the transmitter output jitter.

Also, as detailed in 08-121r1, a slope calculation window of 0.27us gives a better fit with the nominal JTF response.

It is proposed to change the SSC slope specification to make it informative rather than normative: "The slope of the frequency deviation should not exceed +- 850 ppm/us when computed over any 0.27 +- 0.01 us interval of the SSC modulation profile, after filtering of the transmitter jitter output by a single pole low-pass filter with a cutoff frequency of 3.7MHz +- 0.2MHz. Alternatively, the transmitter jitter may be filtered by the closed-loop transfer function of a measurement equipment's PLL that is compliant to the JTF.

^b This is only used as a receiver parameter.

T10/1760-D Revision 14 28 January 2008

Table 75 defines the SSC modulation types.

Table 75 — SSC modulation types

SSC modulation type	Maximum SSC frequency deviation (SSC _{tol}) ^a
Center-spreading	+2 300 / -2 300 ppm
None	+0 / -0 ppm
Down-spreading	+0 / -2 300 ppm
SATA down-spreading b	+0 / -5 000 ppm
a This is in addition to the r	hysical link rate long-term stability and tolerance defined in

This is in addition to the physical link rate long-term stability and tolerance defined table 54 and table 56 (see 5.3.3).

A phy may be transmitting with a different SSC modulation type than it is receiving (e.g., a phy is transmitting with center-spreading while it is receiving with down-spreading).

If the SSC modulation type is not none, the phy shall transmit within the specified maximum SSC frequency deviation with an SSC modulation frequency that is a minimum of 30 kHz and a maximum of 33 kHz.

The SSC modulation profile (e.g., triangular or exponential) is vendor-specific, but is intended to provide the maximum amount of electromagnetic interference (EMI) reduction. For center-spreading, the average amount of up-spreading (i.e., > 0 ppm) in the SSC modulation profile shall be the same as the average amount of down-spreading (i.e., < 0 ppm). The amount of asymmetry in the SSC modulation profile shall be less than 288 ppm.

NOTE 30 - 288 ppm is the rate of deletable primitives that are left over after accounting for the physical link rate long-term stability. It is calculated as the deletable primitive rate defined in previous versions of this standard of 1/2 048 (i.e., 488 ppm) minus the width between the extremes of the physical link rate long-term stability of +100/-100 ppm (i.e., 200 ppm).

SSC-induced jitter is included in the deterministic jitter (DJ) and consequently in total jitter (TJ) at the transmitter output. SSC-induced jitter shall be measured using a D30.3 pattern (see table 235 in 10.2.9.2) after the application of the JTF (see 5.3.5.2).

The slope of the frequency deviation shall not exceed 1 200 ppm/µs when computed over any 0.3 ± 0.01 µs interval of the SSC modulation profile. The slope is computed from the difference equation:

slope = $(f(t) - f(t - 0.3 \mu s)) / 0.3 \mu s$

where

208

f(t) is the SSC frequency deviation expressed in ppm.

NOTE 31 - A triangular SSC modulation profile has a slope of approximately 310 ppm/µs and meets the slope requirement. Other SSC modulation profiles (e.g., exponential) may not meet the slope requirement.

A modulation profile that has a slope of 1 200 ppm/µs over 0.3 µs creates a residual jitter of approximately 25 ps (i.e., 0.15 UI at 6 Gbps) after filtering by the JTF. This consumes the total DJ budget of the transmitter device, which does not allow the transmitter device to contribute any other type of DJ.

Activation or deactivation of SSC on a link that is not D.C. idle shall be done without violating the slope requirement.

Working Draft Serial Attached SCSI - 2 (SAS-2)

The slope is computed from the difference equation: slope = (f(t) - f(t - 0.27 us)) / 0.27 uswhere

f(t) is the SSC frequency deviation expressed in ppm.

NOTE 31 - A +- 2300 ppm triangular SSC modulation profile has a slope of approximately 310 ppm/us and meets the informative slope specification. Other SSC modulation profiles (e.g., exponential) may not meet the slope requirement. A modulation profile that has a slope of +- 850 ppm/us over 0.27 us creates a residual jitter of approximately 16.7 ps (i.e., 0.10 UI at 6 Gbps) after filtering by the JTF. This consumes the total BUJ budget of the transmitter device, which does not allow the transmitter device to contribute any other type of BUJ.

Activation or deactivation of SSC on a link that is not D.C. idle shall be done without violating the total jitter (TJ) at the transmitter output after application of the JTF."

b This is only used as a receiver parameter.

5.3.8.2 Transmitter SSC modulation

A SAS phy transmits with the SSC modulation types defined in table 76.

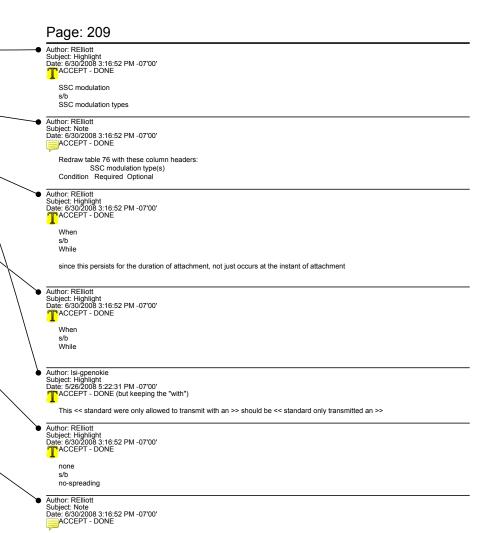
Table 76 — SAS phy transmitter SSC modulation

SSC modulation type a	Requirement	Condition
None	Mandatory	When attached to a piny that does not support SSC
None or down-spreading	Optional	When attached to a phy that supports SSC
a SAS place compliant with provious vorsions of this standard were only dayed to transmit with an		

a SAS phys compliant with previous versions of this standard were only allowed to transmit with an SSC modulation type of none.

An expander phy transmits with the SSC modulation types defined in table 7

Table 77 — Expander phy transmitter SSC modulation types


	SSC modulation type ^a	Requirement	Condition	
/	None	Mandatory	When attached to a SAS phy or expander phy that does not support SSC	
	None or center-spreading	Optional	When attached to a SAS phy or expander phy that supports	
	None or down-spreading	Optional	When attached to a SATA phy	
	a Expander phys complians with previous versions of this standard were only allowed to transmit with an			

^a Expander phys compliant with previous versions of this standard were only allowed to transmit with all SSC modulation type of none.

A SAS device or expander device should provide independent control of SSC on each transmitter device. However, it may implement a common SSC transmit clock in which multiple transmitter devices do not have independent controls to enable and disable SSC. In such implementations, SSC may be disabled on a transmitter device that is already transmitting with SSC enabled if another transmitter device sharing the same common SSC transmit clock is required to perform SNW-1, SNW-2, SNW-3, or Final-SNW (see 6.7.4.2.3.2) or SAS speed negotiation (see 6.7.4.2.4).

If any transmitter device sharing a common SSC transmit clock enters a non-SSC transmission state (e.g., SNW-1, SNW-2, Final-SNW, or Train-SNW with SSC disabled), any transmitter device sharing that common SSC transmit clock may disable SSC. These transmitter devices are compliant with the SSC requirements even if the transmitter device has negotiated SSC enabled but its transmit clock has SSC disabled, provided that the transmitted signal does not exceed the maximum SSC frequency deviation limits specified in table 75.

The disabling and enabling of SSC may occur at any time except as noted in 6.7.4.2.3.2 or 6.7.4.2.4 (see 5.3.8.1).

Comments from page 209 continued on next page

28 January 2008

T10/1760-D Revision 14

5.3.8.2 Transmitter SSC modulation

SSC modulation type of none

A SAS phy transmits with the SSC modulation types defined in table 76.

Table 76 — SAS phy transmitter SSC modulation

	-	•
SSC modulation type ^a	Requirement	Condition
None	Mandatory	When attached to a phy that does not support SSC
None or down-spreading	Optional	When attached to a phy that supports SSC
a SAS plys compliant with previous versions of this standard were only allowed to transport with an		

An expander phy transmits with the SSC modulation types defined in table 77

Table 77 — Expander phy transmitter SSC modulation types

SSC modulation type ^a	Requirement	Condition
None	Mandatory	When attached to a SAS pity or expander phy that does not support SSC
None or center-spreading	Optional	When attached to a SAS phy or expander phy that supports SSC
None or down-spreading	Optional	When attached to a SATA phy
a Expander phys compliant with previous versions of this standard were only allowed to transmit with an SSC modulation type of none.		

A SAS device or expander device should provide independent control of SSC on each transmitter device.

However, it say implement a common SSC transmit clock in which multiple transmitter devices do not have independent controls to enable and disable SSC. In such implementations, SSC may be disabled on a transmitter device that is already transmitting with SSC enabled if another transmitter device sharing the same common SSC transmit clock is required to perform SNW-1, SNW-2, SNW-3, or Final-SNW (see 6.7.4.2.3:2) or SAS speed negotiation (see 6.7.4.2.4).

If any transmitter device sharing a common SSC transmit clock-enters a non-SSC transmission state (e.g., SNW-1, SNW-2, Final-SNW, or Train-SNW with SSC disabled), any constituter device sharing that common SSC transmit clock may disable SSC. These transmitter devices are consplaint with the SSC requirements even if the transmitter device has negotiated SSC enabled but its transmit clock has SSC disabled, provided that the transmitted signal does not exceed the maximum SSC frequency deviately limits specified in table 75.

The disabling and enabling of SSC may occur at any time except as noted in 6.7.4.2.3.2 or 6.7.4.2.4 (see 5.3.8.1).

Redraw table 77 with these column headers: SSC modulation type(s) Condition Required Optional

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

a SAS device or expander device

REJECT

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

Author: RElliott

When s/b While since this persists for the duration of attachment, not just occurs at the instant of attachment Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE When s/b While Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE When s/b While Author: Isi-gpenokie Subject: Highlight Date: 5/26/2008 5:22:57 PM -07'00' ACCEPT - DONE (but kept the "with") This << standard were only allowed to transmit with an >> should be << standard only transmitted an >> Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE none no-spreading Author: wdc-mevans

Comments from page 209 continued on next page

28 January 2008 T10/1760-D Revision 14

5.3.8.2 Transmitter SSC modulation

SSC modulation type of none.

A SAS phy transmits with the SSC modulation types defined in table 76.

Table 76 — SAS phy transmitter SSC modulation

	SSC modulation type ^a	Requirement	Condition
	None	Mandatory	When attached to a phy that does not support SSC
	None or down-spreading	Optional	When attached to a phy that supports SSC
	a SAS phys compliant wit	h nravious varsio	one of this standard were only allowed to transmit with an

An expander phy transmits with the SSC modulation types defined in table 77.

Table 77 — Expander phy transmitter SSC modulation types

SSC modulation type ^a	Requirement	Condition
None	Mandatory	When attached to a SAS phy or expander phy that does not support SSC
None or center-spreading	Optional	When attached to a SAS phy or expander phy that supports SSC
None or down-spreading Optional When attached to a SATA phy		
^a Expander phys compliant with previous versions of this standard were only allowed to transmit with an SSC modulation type of none.		

A SAS device or expander device should provide independent control of SSC on each transmitter device. However, it may implement a common SSC transmit clock in which multiple transmitter devices do not have independent controls to enable and disable SSC. In such implementations, SSC may be disabled on a transmitter device that is already transmitting with SSC enabled if another transmitter device sharing the same common SSC transmit clock is required to perform SNW-1, SNW-2, SNW-3, or Final-SNW (see 6.7.4.2.3.2) or SAS speed negotiation (see 6.7.4.2.4).

If any transmitter device sharing a common SSC transmit clock enters a non-SSC transmission state (e.g., SNW-1, SNW-2, Final-SNW, or Train-SNW with SSC disabled), any transmitter device sharing that common SSC transmit clock may disable SSC. These transmitter devices are compliant with the SSC requirements even if the transmitter device has negotiated SSC enabled but its transmit clock has SSC disabled, provided that the transmitted signal does not exceed the maximum SSC frequency deviation limits specified in table 75.

The disabling and enabling of SSC may occur at any time except as noted in 6.7.4.2.3.2 or 6.7.4.2.4 (see 5.3.8.1).

Working Draft Serial Attached SCSI - 2 (SAS-2)

209

This << However, it may implement a common >> should be << However, a SAS device or expander device may implement a common >>

5.3.8.3 Receiver SSC modulation tolerance

SAS phys and expander phys support (i.e., tolerate) receiving with SSC modulation types defined in table 78.

Table 78 — Receiver SSC modulation tolerance

SSC modulation type a b	Requirement	Phys that tolerate
None	Mandatory	All phys —
Center-spreading	Optional ^c	All phys
Down-spreading	Optional ^c	All phys
SATA down-spreading	Mandatory	Phys that support being attached to SATA phys

- This is in addition to the physical link rate long-term tolerance defined in table 56 (see 5.3.3). ^b Phys compliant with previous versions of this standard that do not support being attached to SATA
- devices were only required to tolerate an SSC modulation type of none. Rhys compliant with previous versions of this standard that support being attached to SATA devices were only required to tolerate SSC modulation types of none and SATA down-spreading.
- c If either the SSC modulation type of center-spreading or down-spreading is supported both shall be

5.3.8.4 Expander device center-spreading tolerance buffer

Expander devices supporting the SSC modulation type of center-spreading shall support a center-spreading tolerance buffer for each connection with the buffer size defined in table 79 to hold any dwords it receives during the up-spreading portion(s) of the SSC modulation period that it is brable to forward because the ECR and/or the transmitting expander phy is slower than the receiving expander phy and because the dword stream does not include enough deletable primitives. The expander device unloads the center-spreading tolerance buffer during the down-spreading portion(s) of the SSC modulation period when the receiving expander phy is slower than the ECR and the transmitting expander phy.

Table 79 — Expander device center-spreading tolerance buffer

Physical link rate	Minimum buffer size
6 Gbps	14 dwords
3 Gbps	8 dwords
1.5 Gbps	4 dwords

NOTE 32 - The minimum buffer size is based on the number of dwords that may transmitted during half of the longest allowed SSC modulation period (i.e., half of the period indicated by 30 kHz) at the maximum physical link rate (i.e., +2 400 ppm) minus the number that may be transmitted at the minimum physical link rate (i.e., -2 400 ppm). This accounts for forwarding dwords in a connection that originated from a phy compliant with previous versions of this standard (i.e., a phy with an SSC modulation type of none and inserting deletable primitives at a rate supporting only the long-term frequency stability).

Page: 210

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE modulation tolerance

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE (
ACCEPT - DONE

modulation types tolerance

Redraw table 76 with these column headers: SSC modulation type(s) Condition Required Optional

Changed "Phys that tolerate" header to "Type of phys".

Split the SATA down-spreading row into two, one for Phys that support and one for Phys that do not support. Those are the only

"All phys" is confusing, people think this overrides the mandatory/optional column

This is just trying to distinguish phys that support SATA vs phys that do not.

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

> none s/h no-spreading

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

> none s/b

no-spreading

Author: intc-mseidel Subject: Highlight

Date: 5/6/2008 1:07:48 PM -07'00'

REJECT (this is a receiver table, not a transmitter table. Receivers must be ready to tolerate both center- and down-spreading if they advertise support for SSC in SNW-3.)

In Note (c), there is no reason to require a transmitter to support both types of SSC modulation if it supports any type, since it could be designed for a particular application. Change Note (c): "both shall be supported" s/b "both should be supported".

Author: Isi-gpenokie Subject: Highlight

5.3.8.3 Receiver SSC modulation tolerance

SAS phys and expander phys support (i.e., tolerate) receiving with SSC modulation types defined in table 78.

Table 78 — Receiver SSC modulation tolerance

SSC modulation type a b	Requirement	Phys that tolerate
None	Mandatory	All phys
Center-spreading	Optional ^c	All phys
Down-spreading	Optional ^c	All phys
SATA down-spreading	Mandatory	Phys that support being attached to SATA phys

- ^a This is in addition to the physical link rate long-term tolerance defined in table 56 (see 5.3.3).
- ^b Phys compliant with previous versions of this standard that do not support being attached to SATA devices were only required to tolerate an SSC modulation type of none. Phys compliant with preylous versions of this standard that support being attached to SATA devices were only required to tole/ate SSC modulation types of none and SATA down-spreading.
- c If either the SSC modulation type of center-spreading or down-spreading is supported, boty shall be

5.3.8.4 Expander device center-spreading tolerance buffer

Expander devices supporting the SSC modulation type of center-spreading shall support a center spreading tolerance buffer for each connection with the buffer size defined in table 79 to hold any dwords it receives during the up-spreading portion(s) of the SSC modulation period that it is unable to forward because the ECR and/or the transmitting expander phy is slower than the receiving expander phy and because the dward stream does not include enough deletable primitives. The expander device unloads the center-spreading tolerance buffer during the down-spreading portion(s) of the SSC modulation period when the receiving expander phy is slower than the ECR and the transmitting expander phy.

Table 79 — Expander device center-spreading tolerance buffer

Physical link rate	Minimum buffer size
6 Gbps	14 dwords
3 Gbps	8 dwords
1.5 Gbps	4 dwords

NOTE 32 - The minimum buffer size is based on the number of dwords that may transmitted during half of the longest allowed SSC modulation period (i.e., half of the period indicated by 30 kHz) at the maximum physical link rate (i.e., +2 400 ppm) minus the number that may be transmitted at the minimum physical link rate (i.e., -2 400 ppm). This accounts for forwarding dwords in a connection that originated from a party compliant with previous versions of this standard (i.e., a phy with an SSC modulation type of none and inserting deletable primitives at a rate supporting only the long-term frequency stability).

Date: 5/26/2008 5:23:37 PM -07'00' REJECT (Alvin: Reject. Support is a better description for the receiver than implement.)

this << spreading is supported, both shall be supported. >> should be << spreading is implemented, both shall be implemented. >>

Author: wdc-mevans

Subject: Highlight
Date: 6/1/2008 1:53:17 PM -07'00'

"ACCEPT - DONE (as "The expander device uses this buffer to hold any dwords that it receives..." to avoid introducing an "it" nroblem)

table 79 to hold

table 79. This buffer holds

Author: Isi-gpenokie

Subject: Highlight Date: 6/1/2008 1:53:45 PM -07'00'

REJECT (that doesn't make sense when the full sentence is read. wdc-mevans change accepted instead)

This << size defined in table 79 to hold any dwords >> should be << size defined in table 79 that is large enough to hold any dwords >>

Author: Isi-bday

Subject: Highlight Date: 6/6/2008 10:37:04 AM -07'00'

TREJECT (To be safe, adhere to these numbers. Saving a dword or two because of an analog technicality (that might be overlooked) would be risky. If the analog requirement changes again, it might get worse - but will always be bounded by these numbers)

Minimum buffer size

With the addition of the SSC slope requirement of 1200 ppm/us, is the calculation accurate, or can these values be reduced?

Author: RElliott

Subject: Highlight
Date: 11/5/2008 9:31:28 PM
PACCEPT - DONE

may s/b

may be

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

none

s/b no-spreading 28 January 2008 T10/1760-D Revision 14

Figure 133 shows an example of center-spreading tolerance buffer usage.

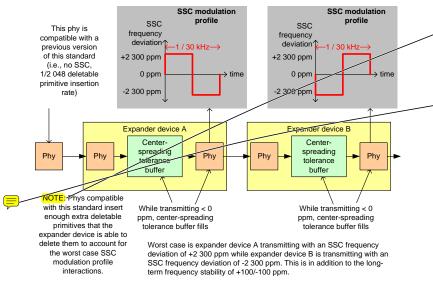


Figure 133 — Center-spreading tolerance buffer

5.3.9 Non-tracking clock architecture

Transceivers shall be designed with a non-tracking clock architecture (i.e., the receive clock derived from the bit stream received by the receiver device shall not be used as the transmit clock by the transmitter device).

Receiver devices that support SATA shall tolerate clock tracking by the SATA device. Receiver devices that do not support SATA are not required to tolerate clock tracking by the SATA device.

5.4 READY LED signal electrical characteristics

A SAS target device uses the READY LED signal to activate an externally visible LED that indicates the state of readiness and activity of the SAS target device.

All SAS target devices using the SAS Drive plug connector (see 5.2.3.2.1.1) shall support the READY LED signal.

The READY LED signal is designed to pull down the cathode of an LED using an open collector or open drain transmitter circuit. The LED and the current limiting circuitry shall be external to the SAS target device.

Page: 211 Author: RElliott Subject: Highlight Date: 9/27/2008 1:18:52 PM -07'00' TREECT (deleted word NOTE instead) NOTE s/b Note Author: RElliott Subject: Note Date: 8/27/2008 1:19:04 PM -07'00' ERECT (Deleted word NOTE instead)

Move the note to the bottom of the figure

(from Ralph Weber, per ISO editing of SAS-1.1)

Table 80 describes the output characteristics of the READY LED signal.

Table 80 — Output characteristics of the READY LED signal

State	Test condition	Requirement
Negated (LED off)	$0 \text{ V} \le \text{V}_{OH} \le 3.6 \text{ V}$	-100 μA < I _{OH} < 100 μA
Asserted (LED on)	I _{OL} = 15 mA	$0 \leq V_{OL} \leq 0.225 \text{ V}$

The READY LED signal behavior is defined in 10.4.1.

NOTE 33 - SATA devices use the pin used by the READY LED signal (i.e., P11) for activity indication and staggered spin-up disable (see SATA-2). The output characteristics differ from those in table 80.

6 Phy layer

6.1 Phy layer overview

The phy layer defines 8b10b coding and OOB signals. Phy layer state machines interface between the link layer and the physical layer to perform the phy reset sequence and keep track of dword synchronization.

6.2 8b10b coding

6.2.1 8b10b coding overview

All information transferred in SAS is encoded into 10-bit characters using ab10b encoding. Information includes data bytes (e.g., representing data in a frame) and control bytes (e.g., used for frame delimiters).

Runaimo disparity (RD) shall be maintained separately on each physical link in each direction. During a connection (see 4.1.12), expander devices shall convert incoming 10 bit characters to 8-bit bytes and generate the 10-bit character with correct disparity for the output physical link. Phys within a device may or may not begin operation with the same disparity after the reset sequence

6.2.2 8b10b coding introduction

Information to be transmitted across a physical link shall be encoded eight bits at a tine into a 10-bit character and then transmitted serially sit-by-bit across the physical link. Information received over the physical link shall be collected ten bits at a time, and those characters that are used for data, called daix characters, shall be decoded into the correct 8-bit data bytes. The 10-bit characters support all 256 8-bit combinations. Some of the remaining 10-bit characters, referred to as control characters, are used for functions that are to be distinguishable from the contents of a frame. The rest of the 10-bit characters are invalid characters

8b10b coding ensures that sufficient transitions are present in the serial bit stream to make clock recovery possible at the receiver. Such encoding also greatly increases the likelihood of detecting any single or multiple bit errors that may occur during transmission and reception of information. In addition, some of the control characters of the transmission code contain a distinct and easily recognizable bit pattern called a comma pattern which assists a receiver in achieving character and dword alignment on the incoming bit stream.

6.2.3 8b10b coding notation conventions

This subclause uses letter notation for describing information bits and control variables. Such notation differs from the bit notation specified by the remainder of this standard. The following lext describes the translation process between these notations and provides a translation example. It also describes the conventions used to name valid characters. This text is provided for the purposes of terminology clarification only.

An unencoded information byte is composed of eight information bits A, B, C, D, E, F, G, H and the contro ariable Z. This information is encoded into the bits a, b, c, d, e, i, f, g, h, j of a 10-bit character

An information bit contains either a binary zero or a binary one. A control variable has either the value or the value K. When the control variable associated with an unencoded information byte contains the value D, that byte is referred to as a data byte. When the control variable associated with an unencoded information byte contains the value K, that byte is referred to as a control byte.

The information bit labeled A corresponds to bit 0 in the numbering scheme of this standard, B corresponds to bit 1, and so on, as shown in table 81. Bit H is the most significant bit of the byte and bit A is the least significant bit of the byte.

Table 81 — Bit designations

Bit notation:	7	6	5	4	3	2	1	0	Control variable
Unencoded bit notation:	Н	G	F	Е	D	C	В	Α	Z

Page: 213

Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

REJECT (there has been confusion in the past about whether the incoming and outgoing disparity are related, or whether it is related across wide links. These words help.)

separately on s/b for

Author: RElliott Subject: Note

Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

Move this RD paragraph into the new RD section

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

Merge 6.2.1 and 6.2.2 together, after moving the RD paragraph elsewhere.

The section becomes:

All information transferred in SAS is encoded into 10-bit characters using 8b10b encoding. 10-bit characters are transmitted serially bit-by-bit across the physical link.

Out of all 1024 possible 10-bit characters:

- a) some of the characters are data characters, representing the 256 possible 8-bit data bytes;
- b) some of the characters are control characters, used for primitives (e.g., frame delimiters) and other control purposes; and
- c) the rest of the characters are invalid characters.

8b10b coding ensures that sufficient transitions are present in the serial bit stream to make clock recovery possible at the receiver. 8b10b coding also increases the likelihood of detecting any single or multiple bit errors that occur during transmission and reception. In addition, some of the control characters of the transmission code contain a distinct bit pattern, called a comma pattern, which assists a receiver in achieving character and dword alignment on the incoming bit stream

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

Delete "after the reset sequence"

> It doesn't really mean after the link reset sequence, or after the hard reset sequence, or after the OOB sequence. It applies to the burst portion of OOB signals, speed negotiation, and after speed negotiation. Just deleting it seems to work best.

Author: wdc-mevans Subject: Cross-Out Date: 5/6/2008 1:07:48 PM -07'00'

REJECT (with wide links available, important to stress that it's serial) serially

[Delete the redundant word.]

Author: Isi-gpenokie Subject: Cross-Out Date: 5/6/2008 1:07:48 PM -07'00'

ACCEPT - DONE
This << greatly >> adds nothing to the standard and should be deleted

Comments from page 213 continued on next page

Author: wdc-mevans

6 Phy layer

6.1 Phy layer overview

The phy layer defines 8b10b coding and OOB signals. Phy layer state machines interface between the link layer and the physical layer to perform the phy reset sequence and keep track of dword synchronization.

6.2 8b10b coding

6.2.1 8b10b coding overview

All information transferred in SAS is encoded into 10-bit characters using 8b10b encoding. Information includes data bytes (e.g., representing data in a frame) and control bytes (e.g., used for frame delimiters)

Running disparity (RD) shall be maintained separately on each physical link in each direction. During a connection (see 4.1.12), expander devices shall convert incoming 10-bit characters to 8-bit bytes and generate the 10-bit character with correct disparity for the output physical link. Phys within a device play or may not begin operation with the same disparity after the reset sequence.

6.2.2 8b10b coding introduction

Information to be transmitted across a physical link shall be encoded eight bits at a time into a 10-bit character and then transmitted serially bit-by-bit across the physical link. Information received over the physical link shall be collected ten bits at a time, and those characters that are used for data, called day characters, shall be decoded into the correct 8-bit data bytes. The 10-bit characters support all 256 8-bit conbinations. Some of the remaining 10-bit characters, referred to as control characters, are used for functions that are to be distinguishable from the contents of a frame. The rest of the 10-bit characters are invalid characters.

8b10b coding ensures that sufficient transitions are present in the serial bit stream to make clock recovery possible at the receiver. Such encoding also greatly increases the likelihood of detecting any single or multiple bit errors that may occur during transmission and reception of information. In addition, some of the control characters of the transmission code contain a distinct and easily recegnizable bit patter; called a commal pattern which assists a receiver in achieving character and dword alignment on the incoming bit stream.

6.2.3 8b10b coding notation conventions

This subclause uses letter notation for describing information bits and control variables. Such notation differs from the bit notation specified by the remainder of this standard. The following text describes the translation process between these notations and provides a translation example. It also describes the conventions used to name valid chargeters. This text is provided for the purposes of terminology clarification only.

An unexcoded information byte is composed of eight information bits A, B, C, D, E, F, G, H and the control ariable Z. This information is encoded into the bits a, b, c, d, e, i, f, g, h, j c a 10-bit character.

An information bit contains either a binary zero or a binary one. A control variable has either the value D or the value K. When the control variable associated with an unencoded information byte contains the value D, that byte is referred to as a data byte. When the control variable associated with an unencoded information byte contains the value K, that byte is referred to as a control byte.

The information bit labeled A corresponds to bit 0 in the numbering scheme of this standard, B corresponds to bit 1, and so on, as shown in table 81. Bit H is the most significant bit of the byte and bit A is the least significant bit of the byte.

Table 81 — Bit designations

Bit notation:	7	6	5	4	3	2	1	0	Control variable
Unencoded bit notation:	Н	G	F	Е	D	C	В	Α	Z

Subject: Cross-Out
Date: 5/6/2008 1:07:48 PM -07'00' and easily recognizable [Delete the redundant words.] Author: wdc-mevans Subject: Highlight Date: 5/17/2008 2:30:33 PM -07'00' TRACCEPT - DONE pattern called a comma pattern which pattern, called a comma pattern, which Author: wdc-meyans Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE This subclause Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE (too awkward to introduce with a comma. Changed to "with bits labeled" instead.) bits A, B, C, D, E, F, G, H and bits, A, B, C, D, E, F, G, and H, and Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE Make this into an a)b) list: An unencoded information byte is composed of: a) eight information bits labeled A, B, C, D, E, F, G, and H; and b) a control variable labeled Z. This information is encoded into a 10-bit character containing bits labeled a, b, c, d, e, i, f, g, h, and j. Author: RElliott Subject: Underline 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE This information is encoded into the bits a, b, c, d, e, i, f, g, h, j of a 10-bit character. Move this to 6.3.2. There is no other discussion of the 10-bit character nomenclature in this clause. Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE h, j s/h h, and j

28 January 2008 T10/1760-D Revision 14

6 Phy layer

6.1 Phy layer overview

The phy layer defines 8b10b coding and OOB signals. Phy layer state machines interface between the link layer and the physical layer to perform the phy reset sequence and keep track of dword synchronization.

6.2 8b10b coding

6.2.1 8b10b coding overview

All information transferred in SAS is encoded into 10-bit characters using 8b10b encoding. Information includes data bytes (e.g., representing data in a frame) and control bytes (e.g., used for frame delimiters).

Running disparity (RD) shall be maintained separately on each physical link in each direction. During a connection (see 4.1.12), expander devices shall convert incoming 10-bit characters to 8-bit bytes and generate the 10-bit character with correct disparity for the output physical link. Phys within a device may or may not begin operation with the same disparity after-the-reset-sequence.

6.2.2 8b10b coding introduction

Information to be transmitted across a physical link shall be encoded eight bits at a time into a 10-bit charactery and then transmitted serially bit-by-bit across the physical link. Information received over the physical link shall be collected ten bits at a time, and those characters that are used for data, called data characters, shall be decoded into the correct 8-bit data bytes. The 10-bit characters support all 256 8-bit combinations. Some of the remaining 10-bit characters, referred to as control characters, are used for functions that are to be distinguishable from the contents of a frame. The rest of the 10-bit characters are invalid characters.

8b10b coding ensures that sufficient transitions are present in the serial bit stream to make clock recovery possible at the receiver. Such encoding also greatly increases the likelihood of detecting any single or y'ultiple bit errors that may occur during transmission and reception of information. In addition, some of the control characters of the transmission code contain a distinct and-easily-recegnizable bit pattern called a contain a pattern which assists a receiver in achieving character and dword alignment on the incoming bit str/am.

6.2.3 8b10b coding notation conventions

This subclause uses letter notation for describing information bits and control variables. Such no ation differs from the bit notation specified by the remainder of this standard. The following text describes the translation process between these notations and provides a translation example. It also describes the conventions used to name valid characters. This text is provided for the purposes of terminology clarification only.

An unencoded information byte is composed of eight information bits A, B, C, D, E, F, G, H a/d the control ariable Z. This information is encoded into the bits a, b, c, d, e, i, f, g, h, j of a 10-bit charac/er.

An information bit contains either a binary zero or a binary one. A control variable has either the value D or the value K. When the control variable associated with an unencoded information byte contains the value D, that byte is referred to as a data byte. When the control variable associated with an unencoded information byte contains the value K, that byte is referred to as a control byte.

The information bit labeled A corresponds to bit 0 in the numbering scheme of this standard, B corresponds to bit 1, and so on, as shown in table 81. Bit H is the most significant bit of the byte and bit A is the least significant bit of the byte.

Table 81 — Bit designations

Bit notation:	7	6	5	4	3	2	1	0	Control variable
Unencoded bit notation:	Н	G	F	E	D	С	В	Α	Z

213

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
TREJECT
byte and
s/b
byte, and

Each valid character has been given a name using the following convention:

Zxx.y

where:

- z is the control variable of the unencoded information byte. The value of Z is used to indicate whether the character is a data character (Z ∞D) or a control character (Z ∞L).
- xx is the decimal value of the binary number composed of the bits E, D, C, B, and A of the unencoded information byte in that order.
- y is the decimal value of the binary number composed of the bits H, G, and F of the unencoded information byte in that order.

Table 82 shows the conversion from byte notation to the character naming convention.

Table 82 — Conversion from byte notation to character name example

Byte notation		BC	h									
Bit notation	7	6	5	4		3	2	1	0		Control	
Dit Hotation	1	0	1	1		1	1	0	0		K	
Unencoded bit notation	Н	G	F		Ε	D	С	В	Α		Z	
Offericoded bit flotation	1	0	1		1	1	1	0	0		K	
Unencoded bit notation	Z		Е	D	С	В	Α		Н	G	F	
reordered to conform with Zxx.y naming convention			1	1	1	0	0		1	0	1	
Character name	K			:	28					5		

Most Kxx.y combinations do not result in valid characters within the 8b10b coding scheme. Only those combinations that result in control characters as specified by table 84 are considered valid.

6.3 Character encoding and decoding

6.3.1 Introduction

This subclause describes how to select valid characters (i.e., 8b10b encoding) and check the validity of received characters (i.e., 10b8b decoding). It also specifies the ordering rules to be followed when transmitting the bits within a character.

6.3.2 Transmission order

Within the definition of the 8b10b code, the bit positions of the characters are labeled a, b, c, d, e, i, f, g, h, and j. Bit a shall be transmitted first, followed by bits b, c, d, e, i, f, g, h, and j, in that order.

NOTE 34 - Bit i is transmitted between bit e and bit f, rather than in the order that would be indicated by the letters of the alphabet.

Characters within primitives shall be transmitted sequentially beginning with the control character used to distinguish the primitive (e.g., K28.3 or K28.5) and proceeding character by character from left to right within the definition of the primitive until all characters of the primitive are transmitted.

The contents of a frame shall be transmitted sequentially beginning with the primitive used to denote the start of frame (e.g., SOAF, SOF, or SATA_SOF) and proceeding character-by-character from left to right within the definition of the frame until the primitive used to denote the end of frame (e.g., EOAF, EOF, or SATA_EOF) is transmitted.

Page: 214 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE has been given a name s/b is named Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:12:00 PM -07'00' ACCEPT - DONE (Z s/b (i.e., Z Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:12:08 PM -07'00' ACCEPT - DONE (Z s/b (i.e., Z Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE table 84 are table 84 (see 6.3.3) Author: RElliott Autior: Relilott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' as specified by s/b defined in Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' ACCEPT - DONE (as ", and") s/b This subclause Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

Comments from page 214 continued on next page

TACCEPT - DONE

6.3.2 Transmission order

Each valid character has been given a name using the following convention:

Zxx.y

where:

- z is the control variable of the unencoded information byte. The value of Z is used to indicate whether the character is a data character (Z = D) or a control character (Z = K).
- xx is the decimal value of the binary number composed of the bits E, D, C, B, and A of the unencoded information byte in that order.
- y is the decimal value of the binary number composed of the bits H, G, and F of the unencoded information byte in that order.

Table 82 shows the conversion from byte notation to the character naming convention.

Table 82 — Conversion from byte notation to character name example

Byte notation		BC	h								
Bit notation	7	6	5	4		3	2	1	0		Control
	1	0	1	1		1	1	0	0		K
Unencoded bit notation	Н	G	F		Ε	D	С	В	Α		Z
Onchooded by notation	1	0	1		1	1	1	0	0		K
Unencoded bit notation	Z		Ε	D	С	В	Α		Н	G	F
reordered to conform with Zxx.y naming convention	K		1	1	1	0	0		1	0	1
Character name	K			:	28					5	

Most Kxx.y combinations do not result in valid characters within the 8b10b coding scheme. Only those combinations that result in control characters as specified by table 84 are considered valid.

6.3 Character encoding and decoding

6.3.1 Introduction

This subclause describes how to select valid characters (i.e., 8b10b encoding) and check the validity of received characters (i.e., 10b8b decoding). It also specifies the ordering rules to be followed when transmitting the bits within a character.

6.3.2 Transmission order

Within the definition of the 8b10b code, the bit positions of the characters are labeled a, b, c, d, e, i, f, g, h, and j. Bit a shall be transmitted first, followed by bits b, c, d, e, i, f, g, h, and j, in that order.

NOTE 34 - Bit i is transmitted between bit e and bit f, rather than in the order that would be indicated by the letters of the alphabet.

Characters within primitives shall be transmitted sequentially beginning with the control character used to distinguish the primitive (e.g., K28.3 or K28.5) and proceeding character by character from left to right within the definition of the primitive until all characters of the primitive are transmitted.

The contents of a frame shall be transmitted sequentially beginning with the primitive used to denote the start of frame (e.g., SOAF, SOF, or SATA_SOF) and proceeding character-by-character from left to right within the definition of the frame until the primitive used to denote the end of frame (e.g., EOAF, EOF, or SATA_EOF) is transmitted.

Working Draft Serial Attached SCSI - 2 (SAS-2)

214

Split this into 3 sections
6.3.2 Bit transmission order
6.3 x Character transmission order

6.3.y Frame transmission order

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

Within the definition of the 8b10b code, the bit positions of the characters are labeled a, b, c, d, e, i, f, g, h, and j.

s/b

An information byte is encoded into a 10-bit character containing bits labeled a, b, c, d, e, i, f, g, h, and j.

to merge with sentence moved from 6.2.3

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

TACCEPT - DONE
This << the order that would be indicated by the >> should be << the order indicated by the >>

6.3.3 Data and control characters

Table 83 and table 84 define the data characters (i.e., Dxx.y characters) and control characters (i.e., Kxx.; characters), respectively, and shall be used for both generating characters (i.e., encoding) and checking the validity of received characters (i.e., decoding). Each data character and control character entry has two columns that represent two (not necessarily different) characters, sorresponding to the current value of the running disparity (current RD - or current RD +). RD is a binary parameter with a negative (-) or positive (+) value.

After power on, the transmitter may initialize the curren RD to either positive or negative. Upon transmission of any character, the transmitter shall calculate a new value for its RD based on the contents of the transmitted character

After power on, the receiver shall assume either the positive or negative value for its initial RD. Upon reception of any character, the receiver shall determine whether the character is valid or invalid and shall calculate a new value for its RD based on the contents of the received character.

The following rules for RD shall be used to calculate the new RD value for characters that have been transmitted (i.e., the transmitter's RD) and that have been received (i.e., the receiver's RD).

RD for a character shall be calculated on the basis of sub-blocks, where the first sixbits (i.e., bits a, b, c, d, e, and i) form one sub-block (i.e., the six-bit sub-block) and the second four bits (i.e., bits (g, h, and j) form the other sub-block (i.e., the four-bit sub-block):

- a) RD at the beginning of the six-bit sub-block is the RD at the end of the preceding character;
- b) RD at the beginning of the four-bit sub-block; the RD at the end of the preceding six-bit sub-block;
- c) RD at the end of the character is the RD at the end of the four-bit sub-block.

RD for the sub-blocks shall be calculated as follows:

- a) If the sub-block contains more ones than zeros, then RD at the end of a sub-block is positive;
- b) If the sub-block contains more zeros than ones, then RD at the end of a sub-block is negative; or
- c) If the sub-block contains equal numbers of zeros and ones, then:
 - A) if it is a six-bit sub-block containing 000111b, then RD at the end of the sub-block is positive;
 - B) if it is a six-bit sub-block containing 111000b, then RD at the end of the sub-block is negative;
 - C) if it is a four-bit sub-block containing 0011b, then RD at the end of the sub-block is positive;
 - D) if it is a four-bit sub-block containing 1100b, then RD at the end of the sub-block is negative; or
 - E) otherwise, RD at the end of the sub-block is the same as at the beginning of the sub-block

All sub-blocks with equal numbers of zeros and ones have seutral disparity (i.e., the ending disparity is the same as the beginning disparity). In order to limit the run length of zeros or ones across adjacent sub-blocks the 8b10b code rules specify that sub-blocks encoded as 000111b or 6011b are generated only when the RD at the beginning of the sub-block is positive, ensuring that RD at the end of these sub-blocks is also positive. Likewise, sub-blocks containing 111000b or 1100b are generated only when the RD at the beginning of the sub-block is negative, ensuring that RD at the end of these sub-blocks is also negative

Page: 215

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

Split up 6.3.3 into 3 sections:

6.3.x Running disparity

6.3.v Data characters

6.3.z Control characters

Introduce the latter two with sentences like:

Table 83 defines the data characters (i.e., Dxx.y characters), and shall be used for both generating characters (i.e., encoding) and checking the validity of received characters (i.e., decoding).

Delete the first sentence of 6.3.3 in favor of those.

Reorder/reword as shown in sas2r14b.

Author: Isi-gpenokie

Subject: Highlight Date: 6/5/2008 3:13:45 PM -07'00'

ACCEPT - DONE (significant rewrite gets rid of this. 5/5 yes fix this)

This << represent two (not necessarily different) characters, >> should be << represent two, not necessarily different, characters,

Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

TREJECT (this is not just about transmission)

columns that represent two (not necessarily different) characters, corresponding to the current value of the running disparity (current RD - or current RD +). RD is a binary parameter with a negative (-) or positive (+) value.

columns that define the character to be transmitted based on the current running disparity (i.e., current RD - or current RD +).

Author: Isi-gpenokie

Subject: Highlight Date: 6/5/2008 3:14:30 PM -07'00'

PACCEPT - DONE (significant rewrite gets rid of this. New RD section created, sentences moved around, etc. 5/5 move the RD definition ahead of its usage. Introduce the RD acronym at its first usage. Then clearly identifier "current RD -" and "current RD +" as table headers. Fix the parenthetical "(not necessarily different)" too.)

This << disparity (current RD - or current RD +) >> should be << disparity (i.e., current RD - or current RD +) >>

Author: Isi-gpenokie Subject: Highlight

Date: 6/5/2008 1:43:12 PM -07'00'

CPACCEPT - DONE (added "RD has the following properties:")

The sentence leading into the a,b,c list has no connecting words that indicate what the relationship between the sentence and the a.b.c list is. This needs to be fixed.

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

Comments from page 215 continued on next page

28 January 2008 T10/1760-D Revision 14

6.3.3 Data and control characters

Table 83 and table 84 define the data characters (i.e., Dxx.y characters) and control characters (i.e., Kxx.y characters), respectively, and shall be used for both generating characters (i.e., encoding) and checking the validity of received characters (i.e., decoding). Each data character and control character entry has two columns that represent two (not necessarily different) characters, corresponding to the current value of the running disparity (current RD - or current RD +). RD is a binary parameter with a negative (-) or positive (+) value.

After power on, the transmitter may initialize the current RD to either positive or negative. Upon transmission of any character, the transmitter shall calculate a new value for its RD based on the contents of the transmitted character.

After power on, the receiver shall assume either the positive or negative value for its initial RD. Upon reception of any character, the receiver shall determine whether the character is valid or invalid and shall calculate a new value for its RD based on the contents of the received character.

The following rules for RD shall be used to calculate the new RD value for characters that have been transmitted (i.e., the transmitter's RD) and that have been received (i.e., the receiver's RD).

RD for a character shall be calculated on the basis of sub-blocks, where the first six bits (i.e., bits a, b, c, d, e, and i) form one sub-block (i.e., the six-bit sub-block) and the second four bits (i.e., bits f, g, h, and j) form the other sub-block (i.e., the four-bit sub-block):

- a) RD at the beginning of the six-bit sub-block is the RD at the end of the preceding character;
- b) RD at the beginning of the four-bit sub-block is the RD at the end of the preceding six-bit sub-block;
- c) RD at the end of the character is the RD at the end of the four-bit sub-block.

RD for the sub-blocks shall be calculated as follows:

- a) If the sub-block-contains more ones than zeros, then RD at the end of a sub-block is positive;
- b) If the sub-block contains more zeros than ones, then RD at the end of a sub-block is negative; or
- c) If the sub-block contains equal numbers of zeros and ones, then:
 - A) if it is a six-bit sub-block containing 000111b, then RD at the end of the sub-block is positive;
 - B) if it is a six-bit sub-block containing 111000b, then RD at the end of the sub-block is negative;
 - C) if it is a six-bit sub-block containing 111000b, then RD at the end of the sub-block is positive;
 - D) if it is a four-bit sub-block containing 1100b, then RD at the end of the sub-block is negative; or
 - E) otherwise, RD at the end of the sub-block is the same as at the beginning of the sub-block.

All sub-blocks with equal numbers of zeros and ones have neutral disparity (i.e., the ending disparity is the same as the beginning disparity). In order to limit the run length of zeros or ones across adjacent sub-blocks, the 8b10b code rules specify that sub-blocks encoded as 000111b or 0011b are generated only when the RD at the beginning of the sub-block is positive, ensuring that RD at the end of these sub-blocks is also positive. Likewise, sub-blocks containing 111000b or 1100b are generated only when the RD at the beginning of the sub-block is negative, ensuring that RD at the end of these sub-blocks is also negative.

```
(part of global change to lowercase a)b)c) list entries)

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'

If
s/b
if

(part of global change to lowercase a)b)c) list entries)

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

If
s/b
if

(part of global change to lowercase a)b)c) list entries)
```

s/b

Table 83 defines the data characters.

Table 83 — Data characters (part 1 of 5)

	Data	byte		haracter presentation)
Name	Binary representation (HGF EDCBA)	Hexadecimal representation	Current RD - abcdei fghj	Current RD + abcdei fghj
D00.0	000 00000	00h	100111 0100	011000 1011
D01.0	000 00001	01h	011101 0100	100010 1011
D02.0	000 00010	02h	101101 0100	010010 1011
D03.0	000 00011	03h	110001 1011	110001 0100
D04.0	000 00100	04h	110101 0100	001010 1011
D05.0	000 00101	05h	101001 1011	101001 0100
D06.0	000 00110	06h	011001 1011	011001 0100
D07.0	000 00111	07h	111000 1011	000111 0100
D08.0	000 01000	08h	111001 0100	000110 1011
D09.0	000 01001	09h	100101 1011	100101 0100
D10.0	000 01010	0Ah	010101 1011	010101 0100
D11.0	000 01011	0Bh	110100 1011	110100 0100
D12.0	000 01100	0Ch	001101 1011	001101 0100
D13.0	000 01101	0Dh	101100 1011	101100 0100
D14.0	000 01110	0Eh	011100 1011	011100 0100
D15.0	000 01111	0Fh	010111 0100	101000 1011
D16.0	000 10000	10h	011011 0100	100100 1011
D17.0	000 10001	11h	100011 1011	100011 0100
D18.0	000 10010	12h	010011 1011	010011 0100
D19.0	000 10011	13h	110010 1011	110010 0100
D20.0	000 10100	14h	001011 1011	001011 0100
D21.0	000 10101	15h	101010 1011	101010 0100
D22.0	000 10110	16h	011010 1011	011010 0100
D23.0	000 10111	17h	111010 0100	000101 1011
D24.0	000 11000	18h	110011 0100	001100 1011
D25.0 D26.0	000 11001	19h 1Ah	100110 1011	100110 0100 010110 0100
D26.0 D27.0	000 11010 000 11011	1Bh	010110 1011 110110 0100	001001 1011
D27.0	000 11011	1Ch	001110 1011	001001 1011
D28.0	000 11100	1Dh	101110 0100	010001 1011
D29.0	000 11101	1Eh	011110 0100	100001 1011
D31.0	000 11110	1Fh	101011 0100	010100 1011
D00.1	001 00000	20h	100111 1001	011000 1011
D00.1	001 00000	21h	011101 1001	100010 1001
D01.1	001 00001	22h	101101 1001	010010 1001
D03.1	001 00011	23h	110001 1001	110001 1001
D04.1	001 00100	24h	110101 1001	001010 1001
D05.1	001 00100	25h	101001 1001	101001 1001
D06.1	001 00101	26h	011001 1001	011001 1001
D07.1	001 00111	27h	111000 1001	000111 1001
D08.1	001 01000	28h	111001 1001	000110 1001
D09.1	001 01001	29h	100101 1001	100101 1001
D10.1	001 01010	2Ah	010101 1001	010101 1001
D11.1	001 01011	2Bh	110100 1001	110100 1001
D12.1	001 01100	2Ch	001101 1001	001101 1001
D13.1	001 01101	2Dh	101100 1001	101100 1001
D14.1	001 01110	2Eh	011100 1001	011100 1001
D15.1	001 01111	2Fh	010111 1001	101000 1001
D16.1	001 10000	30h	011011 1001	100100 1001
D17.1	001 10001	31h	100011 1001	100011 1001
D18.1	001 10010	32h	010011 1001	010011 1001
D19.1	001 10011	33h	110010 1001	110010 1001

Table 83 — Data characters (part 2 of 5)

	Data	byte		haracter presentation)
Name	Binary representation (HGF EDCBA)	Hexadecimal representation	Current RD - abcdei fghj	Current RD + abcdei fghj
D20.1	001 10100	34h	001011 1001	001011 1001
D21.1	001 10101	35h	101010 1001	101010 1001
D22.1	001 10110	36h	011010 1001	011010 1001
D23.1	001 10111	37h	111010 1001	000101 1001
D24.1	001 11000	38h	110011 1001	001100 1001
D25.1	001 11001	39h	100110 1001	100110 1001
D26.1	001 11010	3Ah	010110 1001	010110 1001
D27.1	001 11011	3Bh	110110 1001	001001 1001
D28.1	001 11100	3Ch	001110 1001	001110 1001
D29.1	001 11101	3Dh	101110 1001	010001 1001
D30.1	001 11110	3Eh	011110 1001	100001 1001
D31.1	001 11111	3Fh	101011 1001	010100 1001
D00.2	010 00000	40h	100111 0101	011000 0101
D01.2	010 00001	41h	011101 0101	100010 0101
D02.2	010 00010	42h	101101 0101	010010 0101
D03.2	010 00011	43h	110001 0101	110001 0101
D04.2	010 00100	44h	110101 0101	001010 0101
D05.2	010 00101	45h	101001 0101	101001 0101
D06.2	010 00110	46h	011001 0101	011001 0101
D07.2	010 00111	47h	111000 0101	000111 0101
D08.2	010 01000	48h	111001 0101	000110 0101
D09.2	010 01001	49h	100101 0101	100101 0101
D10.2	010 01010	4Ah	010101 0101	010101 0101
D11.2	010 01011	4Bh	110100 0101	110100 0101
D12.2	010 01100	4Ch	001101 0101	001101 0101
D13.2	010 01101	4Dh	101100 0101	101100 0101
D14.2	010 01110	4Eh	011100 0101	011100 0101
D15.2	010 01111	4Fh	010111 0101	101000 0101
D16.2 D17.2	010 10000 010 10001	50h 51h	011011 0101 100011 0101	100100 0101 100011 0101
D17.2	010 10001	51h	010011 0101	010011 0101
D19.2	010 10010	53h	110010 0101	110010 0101
D19.2	010 10011	53fi 54h	001011 0101	001011 0101
D20.2	010 10100	55h	101010 0101	101010 0101
D21.2	010 10101	56h	011010 0101	011010 0101
D23.2	010 10110	57h	111010 0101	000101 0101
D23.2	010 10111	58h	110011 0101	001100 0101
D25.2	010 11000	59h	100110101	100110 0101
D26.2	010 11010	5Ah	010110 0101	010110 0101
D20.2	010 11010	5Bh	110110 0101	001001 0101
D28.2	010 11100	5Ch	001110 0101	001110 0101
D29.2	010 11101	5Dh	101110 0101	010001 0101
D30.2	010 11110	5Eh	011110 0101	100001 0101
D31.2	010 11111	5Fh	101011 0101	010100 0101
D00.3	011 00000	60h	100111 0011	011000 1100
D01.3	011 00001	61h	011101 0011	100010 1100
D02.3	011 00010	62h	101101 0011	010010 1100
D03.3	011 00011	63h	110001 1100	110001 0011
D04.3	011 00100	64h	110101 0011	001010 1100
D05.3	011 00101	65h	101001 1100	101001 0011
D06.3	011 00110	66h	011001 1100	011001 0011
D07.3	011 00111	67h	111000 1100	000111 0011
D08.3	011 01000	68h	111001 0011	000110 1100
D09.3	011 01001	69h	100101 1100	100101 0011

Table 83 — Data characters (part 3 of 5)

	Data	byte		haracter presentation)
Name	Binary representation (HGF EDCBA)	Hexadecimal representation	Current RD - abcdei fghj	Current RD + abcdei fghj
D10.3	011 01010	6Ah	010101 1100	010101 0011
D11.3	011 01011	6Bh	110100 1100	110100 0011
D12.3	011 01100	6Ch	001101 1100	001101 0011
D13.3	011 01101	6Dh	101100 1100	101100 0011
D14.3	011 01110	6Eh	011100 1100	011100 0011
D15.3	011 01111	6Fh	010111 0011	101000 1100
D16.3	011 10000	70h	011011 0011	100100 1100
D17.3	011 10001	71h	100011 1100	100011 0011
D18.3	011 10010	72h	010011 1100	010011 0011
D19.3	011 10011	73h	110010 1100	110010 0011
D20.3	011 10100	74h	001011 1100	001011 0011
D21.3	011 10101	75h	101010 1100	101010 0011
D22.3	011 10110	76h	011010 1100	011010 0011
D23.3	011 10111	77h	111010 0011	000101 1100
D24.3	011 11000	78h	110011 0011	001100 1100
D25.3	011 11001	79h	100110 1100	100110 0011
D26.3	011 11010	7Ah	010110 1100	010110 0011
D27.3	011 11011	7Bh	110110 0011	001001 1100
D28.3	011 11100	7Ch	001110 1100	001110 0011
D29.3	011 11101	7Dh	101110 0011	010001 1100
D30.3	011 11110	7Eh 7Fh	011110 0011	100001 1100
D31.3 D00.4	011 11111 100 00000	7Fn 80h	101011 0011 100111 0010	010100 1100 011000 1101
D00.4	100 00000	81h	011101 0010	100010 1101
D01.4	100 00001	82h	101101 0010	010010 1101
D02.4	100 00010	83h	110001 1101	110001 0010
D04.4	100 00011	84h	110101 0010	001010 1101
D05.4	100 00100	85h	101001 1101	101001 0010
D06.4	100 00110	86h	011001 1101	011001 0010
D07.4	100 00111	87h	111000 1101	000111 0010
D08.4	100 01000	88h	111001 0010	000110 1101
D09.4	100 01001	89h	100101 1101	100101 0010
D10.4	100 01010	8Ah	010101 1101	010101 0010
D11.4	100 01011	8Bh	110100 1101	110100 0010
D12.4	100 01100	8Ch	001101 1101	001101 0010
D13.4	100 01101	8Dh	101100 1101	101100 0010
D14.4	100 01110	8Eh	011100 1101	011100 0010
D15.4	100 01111	8Fh	010111 0010	101000 1101
D16.4	100 10000	90h	011011 0010	100100 1101
D17.4	100 10001	91h	100011 1101	100011 0010
D18.4	100 10010	92h	010011 1101	010011 0010
D19.4	100 10011	93h	110010 1101	110010 0010
D20.4	100 10100	94h	001011 1101	001011 0010
D21.4	100 10101	95h 96h	101010 1101	101010 0010
D22.4 D23.4	100 10110 100 10111	96n 97h	011010 1101 111010 0010	011010 0010 000101 1101
D23.4 D24.4	100 10111	97h 98h	110010 0010	000101 1101
D24.4 D25.4	100 11000	99h	10011 0010	100110 0010
D25.4 D26.4	100 11001	9Ah	010110 1101	010110 0010
D27.4	100 11010	9Bh	110110 0010	001001 1101
D28.4	100 11100	9Ch	001110 1101	001110 0010
D29.4	100 11101	9Dh	101110 0010	010001 1101
D30.4	100 11110	9Eh	011110 0010	100001 1101
D31.4	100 11111	9Fh	101011 0010	010100 1101

Table 83 — Data characters (part 4 of 5)

	Data	byte		haracter
		-,	(binary rep	resentation)
Name	Binary	Hexadecimal	Current RD -	Current RD +
	representation	representation	abcdei fghj	abcdei fghj
	(HGF EDCBA)	representation	abcueriging	abcueriging
D00.5	101 00000	A0h	100111 1010	011000 1010
D01.5	101 00001	A1h	011101 1010	100010 1010
D02.5	101 00010	A2h	101101 1010	010010 1010
D03.5	101 00011	A3h	110001 1010	110001 1010
D04.5 D05.5	101 00100 101 00101	A4h A5h	110101 1010 101001 1010	001010 1010 101001 1010
D05.5	101 00101	A5fi A6h	011001 1010	011001 1010
D07.5	101 00110	A7h	111000 1010	000111 1010
D08.5	101 01000	A8h	111000 1010	000111 1010
D09.5	101 01001	A9h	100101 1010	100101 1010
D10.5	101 01010	AAh	010101 1010	010101 1010
D11.5	101 01011	ABh	110100 1010	110100 1010
D12.5	101 01100	ACh	001101 1010	001101 1010
D13.5	101 01101	ADh	101100 1010	101100 1010
D14.5	101 01110	AEh	011100 1010	011100 1010
D15.5	101 01111	AFh	010111 1010	101000 1010
D16.5 D17.5	101 10000 101 10001	B0h B1h	011011 1010 100011 1010	100100 1010 100011 1010
D17.5	101 10001	B2h	010011 1010	010011 1010
D10.5	101 10010	B3h	110010 1010	110010 1010
D20.5	101 10100	B4h	001011 1010	001011 1010
D21.5	101 10101	B5h	101010 1010	101010 1010
D22.5	101 10110	B6h	011010 1010	011010 1010
D23.5	101 10111	B7h	111010 1010	000101 1010
D24.5	101 11000	B8h	110011 1010	001100 1010
D25.5	101 11001	B9h	100110 1010	100110 1010
D26.5	101 11010	BAh	010110 1010	010110 1010
D27.5	101 11011	BBh	110110 1010	001001 1010
D28.5 D29.5	101 11100 101 11101	BCh BDh	001110 1010	001110 1010
D29.5 D30.5	101 11101	BDn BEh	101110 1010 011110 1010	010001 1010 100001 1010
D30.5	101 11110	BFh	101011 1010	010100 1010
D00.6	110 00000	C0h	100111 0110	011000 0110
D01.6	110 00000	C1h	011101 0110	100010 0110
D02.6	110 00010	C2h	101101 0110	010010 0110
D03.6	110 00011	C3h	110001 0110	110001 0110
D04.6	110 00100	C4h	110101 0110	001010 0110
D05.6	110 00101	C5h	101001 0110	101001 0110
D06.6	110 00110	C6h	011001 0110	011001 0110
D07.6	110 00111	C7h	111000 0110	000111 0110
D08.6	110 01000	C8h	111001 0110	000110 0110
D09.6	110 01001	C9h CAh	100101 0110	100101 0110
D10.6 D11.6	110 01010 110 01011	CAh	010101 0110 110100 0110	010101 0110 110100 0110
D11.6	110 01011	CCh	001101 0110	001101 0110
D12.6	110 01100	CDh	101100 0110	101100 0110
D14.6	110 01110	CEh	011100 0110	011100 0110
D15.6	110 01111	CFh	010111 0110	101000 0110
D16.6	110 10000	D0h	011011 0110	100100 0110
D17.6	110 10001	D1h	100011 0110	100011 0110
D18.6	110 10010	D2h	010011 0110	010011 0110
D19.6	110 10011	D3h	110010 0110	110010 0110
D20.6	110 10100	D4h	001011 0110	001011 0110
D21.6	110 10101	D5h	101010 0110	101010 0110

Table 83 — Data characters (part 5 of 5)

	Data	byte		haracter presentation)
Name	Binary representation (HGF EDCBA)	Hexadecimal representation	Current RD - abcdei fghj	Current RD abcdei fghj
D22.6	110 10110	D6h	011010 0110	011010 0110
D23.6	110 10111	D7h	111010 0110	000101 0110
D24.6	110 11000	D8h	110011 0110	001100 0110
D25.6	110 11001	D9h	100110 0110	100110 0110
D26.6	110 11010	DAh	010110 0110	010110 0110
D27.6	110 11011	DBh	110110 0110	001001 0110
D28.6	110 11100	DCh	001110 0110	001110 0110
D29.6	110 11101	DDh	101110 0110	010001 0110
D30.6	110 11110	DEh	011110 0110	100001 0110
D31.6	110 11111	DFh	101011 0110	010100 0110
D00.7	111 00000	E0h	100111 0001	011000 1110
D01.7	111 00001	E1h	011101 0001	100010 1110
D02.7	111 00010	E2h	101101 0001	010010 1110
D03.7	111 00011	E3h	110001 1110	110001 0001
D04.7	111 00100	E4h	110101 0001	001010 1110
D05.7	111 00101	E5h	101001 1110	101001 0001
D06.7	111 00110	E6h	011001 1110	011001 0001
D07.7	111 00111	E7h	111000 1110	000111 0001
D08.7	111 01000	E8h	111001 0001	000110 1110
D09.7	111 01001	E9h	100101 1110	100101 0001
D10.7	111 01010	EAh	010101 1110	010101 0001
D11.7	111 01011	EBh	110100 1110	110100 1000
D12.7	111 01100	ECh	001101 1110	001101 0001
D13.7	111 01101	EDh	101100 1110	101100 1000
D14.7	111 01110	EEh	011100 1110	011100 1000
D15.7	111 01111	EFh	010111 0001	101000 1110
D16.7	111 10000	F0h	011011 0001	100100 1110
D17.7	111 10000	F1h	100011 0111	100011 0001
D18.7	111 10010	F2h	010011 0111	010011 0001
D19.7	111 10011	F3h	110010 1110	110010 0001
D20.7	111 10100	F4h	001011 0111	001011 0001
D21.7	111 10101	F5h	101010 1110	101010 0001
D21.7	111 10101	F6h	011010 1110	011010 0001
D23.7	111 10110	F7h	111010 0001	000101 1110
D24.7	111 11000	F8h	110011 0001	001100 1110
D25.7	111 11000	F9h	10011 0001	100110 0001
D26.7	111 11010	FAh	010110 1110	010110 0001
D27.7	111 11010	FBh	110110 0001	001001 1110
D27.7	111 11100	FCh	001110 1110	001110 0001
D29.7	111 11100	FDh	101110 0001	010001 1110
D30.7	111 11110	FEh	011110 0001	100001 1110
D31.7	111 11111	FFh	101011 0001	010100 1110

28 January 2008 T10/1760-D Revision 14

Table 84 defines the control characters. Comma patterns, which are two bits of one polarity followed by five bits of the opposite polarity (i.e., 0011111b or 1100000b), are underlined.

Table 84 — Control characters

	Contro	ol byte	Control character (binary representation)				
Name	Binary representation (HGF EDCBA)	Hexadecimal representation	Current RD - abcdei fghj	Current RD + abcdei fghj			
K28.0	000 11100	1Ch	001111 0100	110000 1011			
K28.1	001 11100	3Ch	<u>001111 1</u> 001	<u>110000 0</u> 110			
K28.2	010 11100	5Ch	001111 0101	110000 1010			
K28.3	011 11100	7Ch	001111 0011	110000 1100			
K28.4	100 11100	9Ch	001111 2010	110000 1101			
K28.5	101 11100	BCh	<u>001111 1</u> 010	<u>110000 0</u> 101			
K28.6	110 11100	DCh	001111 0110	110000 1001			
K28.7	111 11100	FCh	<u>001111 1</u> 000	<u>110000 0</u> 111			
K23.7	111 10111	F7K	111010 1000	000101 0111			
K27.7	111 11011	FBh	110119/1000	001001 0111			
K29.7	111 11101	FDh	181110 1000	010001 0111			
K30.7	111 11110	FEh	011110 1000	100001 0111			

NOTE 35 - K28.1, K28.5, and K28.7 are the only characters which contain comma patterns. Comma patterns do not appear in any data characters and do not appear across any adjacent data characters. The K28.7 control character introduces a comma pattern when followed by any of the following characters: K28.y, D3.y, D11.y, D12.y, D19.y, D20.y, or D28.y, where y is a value in the range 0 to 7, inclusive. None of the other control characters introduce a comma pattern when adjacent to any other character. Therefore, K28.7 is not used, ensuring that comma patterns do not appear in any sequence of characters except the first 7 bits of

The only control characters used in this standard are K28.3, K28.5, and K28.6, as defined in table 85.

Table 85 — Control character usage

First character of a dword	Usage in SAS physical links	Usage in SATA physical links
K28.3	Primitives used only inside STP connections	All primitives except ALIGN
K28.5	ALIGN and most primitives defined in this standard	ALIGN
K28.6	Not used	SATA_ERROR

See 7.2 for details on primitives, which use those control characters.

6.3.4 Encoding characters in the transmitter

To transmit a data byte, the transmitter shall select the appropriate character from table 83 based on the current value of the transmitter's RD. To transmit a control byte, the transmitter shall select the appropriate character from table 84 based on the current value of the transmitter's RD. After the transmitting the character,

221

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 221

Author: Isi-gpenokie

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

ACCEPT - DONE (converted into two table footnotes)

This note << NOTE 35 - K28.1, K28.5 >> seems like it should be a footnote in the above table. I say make it that way.

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

introduces a comma pattern

introduces an additional comma pattern starting with bits i and f

It already has a comma pattern in bits abcdeif, as shown in the table. What this sentence is explaining is another comma is created out of bits ifghj of this character and ab of the next character, which would make identifying dword boundaries impossible.

the transmitter shall calculate a new value for its RD based on that character. This new value shall be used as the transmitter's current RD for the next character transmitted. This process is called 8b10b encoding.

6.3.5 Decoding characters in the receiver

After receiving a character, the receiver shall search the character column in table 83 and table 84 corresponding to its current RD to determine the data byte or control byte to which the character corresponds. This process is called 10b8b decoding. If the received character is not found in the proper column, then the character shall be considered invalid and the dword containing the character shall be considered an invalid dword.

Regardless of the received character's validity, the received character shall be used to calculate a new value of RD in the receiver. This new value shall be used as the receiver's current RD for the next received character.

Detection of a code violation does not necessarily indicate that the character in which the code violation was detected is in error. Code violations may result from a prior error that altered the RD of the bit stream but did not result in a detectable error at the character in which the error occurred. The example shown in table 86 exhibits this behavior. These errors may span dword boundaries. Expanders forwarding such a dword forward it as an ERROR (see 7.2.6.7).

	RD	First character	RD	Second character	RD	Third character	RD
Transmitted character stream	-	D21.1	-	D10.2	-	D23.5	+
Transmitted bit stream	-	101010 1001	-	010101 0101	-	111010 1010	+
Bit stream after error	-	101010 1011 (error in second to last bit)	+	010101 0101	+	111010 1010	+
Decoded character stream	-	D21.0 (rather than D21.1) (not detected as an error)	+	D10.2 (no error)	+	Code violation (although D23.5 was properly received)	+

Table 86 — Delayed code violation example

6.4 Dwords, primitives, data dwords, and invalid dwords

All characters transferred in SAS are grouped into four-character sequences called dwords.

A primitive is a dword whose first character is K28.3 or K28.5 and whose remaining three characters are data characters with correct disparity.

Primitives are defined with both negative and positive starting RD (see 6.3.3). SAS defines primitives starting with K28.5 (see 7.2.6 and 7.2.7). SATA defines primitives starting with K28.3 and K28.5, which are used in SAS during STP connections (see 7.2.8).

A data dword is a dword that contains four data characters with correct disparity.

A dword containing an invalid character shall be considered an invalid dword.

6.5 Bit order

Dwords transmitted in an STP connection shall be transmitted in the bit order specified by SATA.

T10/1760-D Revision 14

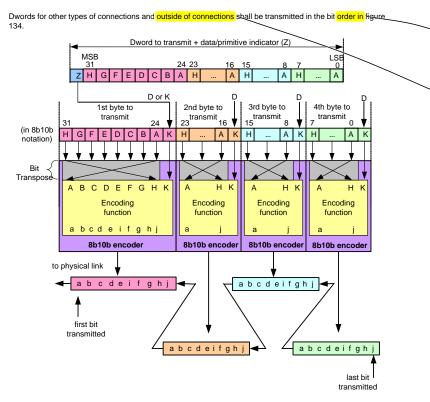


Figure 134 — SAS bit transmission logic

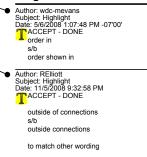


Figure 135 shows the SAS bit reception order.

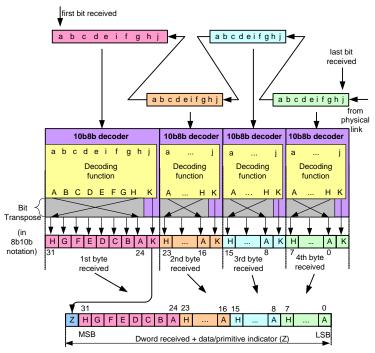


Figure 135 — SAS bit reception logic

6.6 Out of band (OOB) signals

6.6.1 OOB signals overview

Out of band (OOB) signals are low-speed signal patterns that do not appear in normal data streams. OOB signals consist of defined amounts of idle time followed by defined amounts of burst time. During the idle time, the physical link carries D.C. idle (see 3.1.46). During the burst time, the physical link carries signal transitions. The signals are differentiated by the length of idle time between the burst times.

SATA defines two OOB signals: COMINIT/COMRESET and COMWAKE. COMINIT and COMRESET are used in this standard interchangeably. Phys compliant with this standard identify themselves with an additional SAS-specific OOB signal called COMSAS.

Table 87 defines the timing specifications for OOB signals.

Table 87 — OOB signal timing specifications

Parameter	Minimum	Nominal	Maximum	Comments
OOB Interval (OOBI) ^a	665.067 ps \	666. 6 ps	668.267 ps ~	The time basis for burst times and idle times used to create OOB signals. Based on 1.5 Gbps clock tolerance with center speeding SSC (see table 53 in 5.3.3 and table 75 in 5.3.8.1).
COMSAS detect timeout	13.65 μs			The minimum time a receiver device shall allow to detect COMSAS after transmitting SQMSAS. Derived from: OOB1 512×40

OOBI is different than UI(OOB) defined in SATA(e.g., SAS has tighter clock tolerance). This is a fixed value equal to the UI for 1.5 Gbps with center-spreading SSC, regardless of the actual transfer rate being used to create the burst time.

NOTE 36 - Previous versions of this standard defined OOBI based on the nominal UI for 1.5 Gbps with physical link rate long term stability tolerance (see table 53 in 5.3.3) but not with SSC modulation (see table 75 in 5.3.8.1). Interconnects compliant with previous versions of this standard way have assumed phys had that characteristic. To interoperate with interconnects compliant with previous versions of this standard, phys should create OOB burst times and idle times based on the UI for 1.5 Gbps without SSC modulation-(e-g-, if SSC is disabled, reflecting physical link rate long term-stability but not SSC modulation.

6.6.2 Transmitting OOB signals

Table 88 describes the OOB signal transmitter requirements for the burst time, idle time, negation times, and signal times that are used to form each OOB signal.

Table 88 — OOB signal transmitter device requirements

Signal	Burst time	Idle time	Negation time	Signal time ^e
COMWAKE	160 OOBI a	160 OOBI a	280 OOBI ^b	2 200 OOBI ^g
COMINIT/COMRESET	160 OOBI a	480 OOBI ^c	800 OOBI d	4 640 OOBI i
COMSAS	160 OOBI a	1 440 OOBI ^f	2 400 OOBI h	12 000 OOBI ^j

- a 160 OOBI is nominally 106.6 ns (see table 87).
- b 280 OOBI is nominally 186.6 ns.
- c 480 OOBI is nominally 320 ns.
- d 800 OOBI is nominally 533.3 ns.
- ^e A signal time is six burst times plus six idle times plus one negation time.
- f 1 440 OOBI is nominally 960 ns.
- g 2 200 OOBI (e.g., COMWAKE) is nominally 1 466.6 ns.
- h 2 400 OOBI is nominally 1 600 ns.
- 4 640 OOBI (e.g., COMINIT/COMRESET) is nominally 3 093.3 ns.
- 12 000 OOBI (e.g., COMSAS) is nominally 8 000 ns.

To transmit an OOB signal, the transmitter device shall repeat these steps six times:

- 1) transmit D.C. idle for an idle time; and
- transmit an OOB burst with either starting disparity consisting of D24.3 characters or ALIGN (0) primitives for a burst time. The OOB burst should consist of D24.3 characters.

Page: 225

```
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

"Based on 1.5 Gbps clock tolerance with center-spreading SSC (see table 53 in 5.3.3 and table 75 in 5.3.8.1)."

s/b
merged with footnote A as:
"Based on:
a) 1.5 Gbps UI (see table 53 in 5.3.3);
b) physical link rate long-term stability (see table 54 in 5.3.4); and
c) center-spreading SSC (see table 75 in 5.3.8.1)."

Author: Relliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
```

Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

668.267 ps
s/b
668.26 repeating 6

since the math with fractions is actually:
(2000 / 3) * (1.0024)

Also, add a footnote explaining the math: 668.26 ps equals 666.6 x 1.0024.

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

665.067 ps
s/b
665.06 repeating 6

since the math with fractions is actually:
(2000 / 3)* (1 - 0.0024)

Also, add a footnote explaining the math: 665.06 ps equals 666.6 x (1 - .0024)

Author: hpq-relliott
Subject: Highlight
Date: 6/25/2008 8:30:22 AM -07'00'
Date: 6/25/2008 8:30:22 AM -07'00'
ACCEPT - DONE (Changed to 13.686 usec, and added "Maximum" to the "Derived from" equation. Per Alvin)

13.65 us is based on nominal OOBI. It should based based on the maximum OOBI to allow the transmitter to be as slow as possible (largest OOBI) and still have a change to transmit 512 x 40 bits, which yields 13.68610816

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

Comments from page 225 continued on next page

Table 87 defines the timing specifications for OOB signals.

Table 87 — OOB signal timing specifications

Parameter	Minimum	Nominal	Maximum	Comments
OOB Interval (OOBI) ^a	665.067 ps	666. 6 ps	668.267 ps	The time basis for burst times and idle times used to create OOB signals. Based on 1.5 Gbps clock tolerance with center-spreading SSC (see table 53 in 5.3.3 and table 75 in 5.3.8.1).
COMSAS detect timeout	13.65 μs			The minimum time a receiver device shall allow to detect COMSAS after transmitting COMSAS. Derived from: OOBI × 512 × 40

OOBI is different than UI(OOB) defined in SATA (e.g., SAS has tighter clock tolerance). This is a fixed value equal to the UI for 1.5 Gbps with center-spreading SSC, regardless of the actual transfer rate being used to create the burst time.

TE 36 - Previous versions of this standard defined OOBI based on the nominal UI for 1.5 Gbps with physical link rate long term stability tolerance (see table 53 in 5.3.3) but not with SSC modulation (see table 75 in 5.3.8.1). Interconnects compliant with previous versions of this standard may have assumed phys had that characteristic. To interoperate with interconnects compliant with previous versions of this standard, phys should create OOB burst times and idle times based on the UI for 1.5 Gbps without SSC modulation-(e.g., if SSC is disabled, reflecting physical link rate long term stability but not SSC modulation)

6.6.2 Transmitting OOB signals

Table 88 describes the OOB signal transmitter equirements for the burst time, idle time, negation times, and signal times that are used to form each OOB signal.

Table 88 — OOB signal transmitter device requirements

Signal	Burst time	Idle time	Negation time	Signal time ^e
COMWAKE	160 OOBI a	160 OOBI ^a	280 OOBI b	2 200 OOBI ^g
COMINIT/COMRESET	160 OOBI a	480 OOBI ^c	800 OOBI	4 640 OOBI ⁱ
COMSAS	160 OOBI a	1 440 OOBI ^f	2 400 OOBI h	12,000 OOBI j

- a 160 OOBI is nominally 106.6 ns (see table 87).
- b 280 OOBI is nominally 186.6 ns.
- c 480 OOBI is nominally 320 ns.
- d 800 OOBI is nominally 533.3 ns.
- ^e A signal time is six burst times plus six idle times plus one negation time.
- f 1 440 OOBI is nominally 960 ns.
- g 2 200 OOBI (e.g., COMWAKE) is nominally 1 466.6 ns.
- h 2 400 OOBI is nominally 1 600 ns.
- 4 640 OOBI (e.g., COMINIT/COMRESET) is nominally 3 093.3 ns.
- 12 000 OOBI (e.g., COMSAS) is nominally 8 000 ns.

To transmit an OOB signal, the transmitter device shall repeat these steps six times:

- 1) transmit D.C. idle for an idle time; and
- 2) transmit an OOB burst with either starting disparity consisting of D24.3 characters or ALIGN (0) primitives for a burst time. The OOB burst should consist of D24.3 characters.

Change this: "Derived from OOBL x 512 x 40" to a footnote "x 13.686 us is 512 x 40 x' Maximum OOBI."

Author: Isi-gpenokie

Subject: Sticky Note Date: 6/24/2008 10:47:34 AM -07'00'

REJECT (All phys must be able to receive OOB signals that were transmitted with or without SSC. A phy receiving from SATA has always had to accommodate +350/-5350 ppm based incoming OOB signals. SAS-2 just makes +2400/-2400 ppm possible for all

The shortest OOBI based burst time or idle time is 160 OOBI. The transmitter sends: 160 x 665.06 (+2400 ppm) = 106.4106 ns 160 x 666.6 (+0 ppm) = 106.6 ns

160 x 666.6 x 1.001 (-100 ppm) = 106.6783 ns

160 x 666.6 x 1.0024 (-2400 ppm) = 106.93 ns

160 x 666.6 x 1.00535 (-5350 ppm) = 107.2383 ns

These all fall well within the window for idle detect of 101.3 ns to 112 ns. There is only a problem if the interconnect degrades the burst/idles from transmitter to receiver so much that 106.67 ns works (e.g. is greater than 101.3 ns) and 106.93 ns fails (e.g. is less than 101.3 ns) - not very likely.

When SSC was added, the physical WG refused a "shall" rule that phys not supporting SSC transmit with tighter tolerance than those that support SSC. However, a "should" rule made it into NOTE 36 and is being upgraded to normative text per another Isigpenokie comment. There's no reason to have a sloppier transmitter just to transmit OOB signals.

There appears to be conflicting requirements on OOB signals containing SSC. The table appears to require SSC but SSC is optional and not all devices are required to support it. That is correctly stated in the note. The wording in the table has to change to allow SSC to be ontional

Perhaps moving the note into the table as a footnote and deleting the sentence << Based on 1.5 Gbps clock tolerance with centerspreading SSC (see table 53 in 5.3.3 and table 75

in 5.3.8.1). >> and replacing it with a reference to that footnote would solve the problem.

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

(e.g., SAS has tighter clock tolerance)

(e.g., SAS has tighter physical link rate long-term stability and different SSC frequency deviation)

Author: RElliott Subject: Cross-Out
Date: 6/30/2008 3:16:52 PM -07'00'

"This is a fixed value equal to the UI for 1.5 Gbps with center-spreading SSC, regardless of the actual transfer rate being used to create the burst time."

There is no longer an option to create the OOB burst out of anything except 1.5 Gbps content, so this note is no longer helpful. Also, reword the "Based on" wording to specifically mention "1.5 Gbps UI".

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

28 January 2008

T10/1760-D Revision 14

Table 87 defines the timing specifications for OOB signals.

Table 87 — OOB signal timing specifications

Parameter	Minimum	Nominal	Maximum	Comments
OOB Interval (OOBI) ^a	665.067 ps	666. 6 ps	668.267 ps	The time basis for burst times and idle times used to create OOB signals. Based on 1.5 Gbps clock tolerance with center-spreading SSC (see table 53 in 5.3.3 and table 75 in 5.3.8.1).
COMSAS detect timeout	13.65 μs			The minimum time a receiver device shall allow to detect COMSAS after transmitting COMSAS. Deviced from: OOBL 512 × 40

^a OOBI is different than UI(OOB) defined in SATA (e.g., SAS has tighter clock tolerance). This is a fixed value equal to the UI for 1.5 Gbes with center screading SSC, regardless of the actual transfer rate being used to create the burst time.

NOTE 36 - Previous versions of this standard defined OOBI based on the nominal UI for 1.5 Gbps with physical link rate long term stability tolerance (see table 53 in 5.3.3) but not with SSC modulation (see table 75 in 5.3.8.1). Interconnects compliant with previous versions of this standard may have assumed phys had that characteristic. To interoperate with interconnects compliant with previous versions of this standard, phys should create OOB burst times and idle times based on the UI for 1.5 Gbps without SOC modulation (e.g., If SSC is disabled, reflecting physical link rate long term statisticy but not SSC modulation).

6.6.2 Transmitting OOB signals

Table 88 describes the OOB signal transmitter requirements for the burst time, idle time, negation times, and signal times that are used to form each OOB signal.

Table 88 — OOB signal transmitter device requirements

Signal	Burst time	Idle time	Negation time	Signal time ^e
COMWAKE	160 OOBI a	160 OOBI a	280 OOBI b	2 200 OOBI ^g
COMINIT/COMRESET	160 OOBI a	480 OOBI ^c	800 OOBI d	4 640 OOBI ⁱ
COMSAS	160 OOBI a	1 440 OOBI ^f	2 400 OOBI h	12 000 OOBI ^j

- a 160 OOBI is nominally 106.6 ns (see table 87).
- b 280 OOBI is nominally 186.6 ns.
- c 480 OOBI is nominally 320 ns.
- d 800 OOBI is nominally 533.3 ns.
- ^e A signal time is six burst times plus six idle times plus one negation time.
- f 1 440 OOBI is nominally 960 ns.
- g 2 200 OOBI (e.g., COMWAKE) is nominally 1 466.6 ns.
- h 2 400 OOBI is nominally 1 600 ns.
- 4 640 OOBI (e.g., COMINIT/COMRESET) is nominally 3 093.3 ns.
- 12 000 OOBI (e.g., COMSAS) is nominally 8 000 ns.

To transmit an OOB signal, the transmitter device shall repeat these steps six times:

- 1) transmit D.C. idle for an idle time; and
- 2) transmit an OOB burst with either starting disparity consisting of D24.3 characters or ALIGN (0) primitives for a burst time. The OOB burst should consist of D24.3 characters.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Add a footnote: 666.6 equals 2000 / 3.

Some of the math for derived values isn't quite perfect if the decimal value .6 or even .6666666666 is used. Preserving the fraction yields more accurate results.

Author: Isi-gpenokie

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

ACCEPT - DONE (converted the To interoperate... part into normal text, followed by a NOTE containing the rest. That makes the "because" portion a NOTE, but the "should" portion normal)

This note << NOTE 36 - Previous versions of >> should not be a note. It should be normative text.

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
long term

s/b long-term

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

Delete "(e.g., if SSC is disabled, reflecting physical link rate long term stability but not SSC modulation)"

The "if" doesn't make sense. The statement applies in both cases.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

long term

long-term

NOTE 37 - Transmitter devices compliant with future versions of this standard may not transmit OOB

The transmitter device shall then transmit D.C. de for an OOB signal negation time.

The transmitter device shall use signal output levels during burst time and idle time as described in 5.3.6.6.

The D24.3 characters or ALIGN (0) primitives used in OOB signals shall be transmitted at 1.5 Gbps. The OOB burst is only required to generate an envelope for the detection circuitry, as required for any signaling that may be A.C. coupled. A burst of D24.3 characters at 1.5 Gbps is equivalent to a square wave pattern that has a one (see 6.3.3) for 2 OOBI and a zero (see 6.3.3) for 2 OOBI. A transmitter may use this square wave pattern for the OOB signal. The start of the pattern may be one or zero. The signal rise and fail times:

- a) shall be greater than (i.e., slower) or equal to the minimum (i.e., fastest) rise and fall times allowed by the fastest supported physical link rate of the transmitter device (see table 58 in 5.3.6.2); and
- b) shall be less than (i.e., faster) or equal to the maximum (i.e., slowest) rise and fall times allowed at 1.5 Gbps.

Page: 226

Author: Isi-gpenokie

Subject: Cross-Out Date: 5/6/2008 1:07:48 PM -07'00'

TREJECT (for SAS-2, we agreed to allow both D24.3 (the newcomer) and ALIGN (0) (the old one) equally, not making the newcomer an instant "should". This note is a warning that a future standard like SAS-2.1 or SAS-3 is probably going to prohibit ALIGN(0), so designs should start migrating to D24.3.)

Since when did we gain the ability to predict the future? This note << NOTE 37 - Transmitter devices compliant with future versions of this standard may not transmit OOB bursts consisting of ALIGN [0] primitives. >> should be deleted.

Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

TREJECT (we might come up with something better than D24.3... what we are sure of is ALIGN(0)s are going away.)

not transmit OOB bursts consisting of ALIGN [0] primitives.

be required to transmit OOB bursts consisting of D24.3 characters.

Author: RElliott Author: KEIIIOTT Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

ALIGN [0] primitives

ALIGN (0) primitives

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

(see 6.3.3)

Author: RElliott Author: Relilott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

(see 6.3.3)

28 January 2008

T10/1760-D Revision 14

Figure 136 describes OOB signal transmission by the SP transmitter (see 6.8). The COMWAKE Transmitted, COMINIT Transmitted, and COMSAS Transmitted messages are sent to the SP state machine (see 6.8).

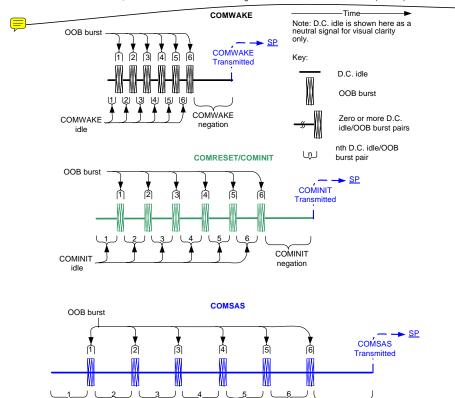


Figure 136 — OOB signal transmission

Page: 227

Author: RElliott
Subject: Note
Date: 9/1/2008 4:34:20 PM -07'00'

Move the note to the bottom of the figure

(from Ralph Weber, per ISO editing of SAS-1.1)

COMSAS idle

COMSAS negation

6.6.3 Receiving OOB signals

Table 89 describes the OOB signal receiver device requirements for detecting burst times, assuming T_{burst} is the length of the detected burst time. The burst time is not used to distinguish between signals.

Table 89 — OOB signal receiver device burst time detection requirements

Signal	may detect	snall detect
COMWAKE	T _{burst} ≤ 100 ns	T _{burst} > 100 ns
COMINIT/COMPESET	T _{burst} ≤ 100 ns	T _{burst} > 100 ns
COMSAS	T _{burst} ≤ 100 ns	T _{burst} > 100 ns

Table 90 describes the OOB signal receiver device requirements for detecting idle times, assuming $\mathbf{I}_{\overline{\text{Idle}}}$ is the length of the detected idle time.

Table 90 — OOB signal receiver device idle time detection requirements

Signal	may detect	shaii detect	shall not detect
COMWAKE	35 ns ≤ T _{idle} < 175 ns	101.3 ns ≤ T _{idle} ≤ 112 ns	T_{idle} < 35 ns or $T_{idle} \ge 175$ ns
COMINIT/ COMRESET	175 Prs ≤ T _{idle} < 525 ns	304 ns ≤ T _{idle} ≤ 336 ns	T_{idle} < 175 ns or $T_{idle} \ge$ 525 ns
COMSAS	525 ns ≤ T _{idle} < 1 575 ns	911.7 ns ≤ T _{idle} ≤ 1 008 ns	T _{idle} < 525 ns or T _{idle} ≥ 1 575 ns

Table 91 describes the OOB signal receiver device requirements for detecting negation times, assuming T_{idle} is the length of the detected idle time.

Table 91 — OOB signal receiver device negation time detection requirements

Signal	shall detect
COMWAKE	T _{idle} > 175 ns
COM/NIT/COMRESET	T _{idle} > 525 ns
COMSAS	T _{idle} > 1 575 ns

A receiver device shall detect an OOB signal after receiving four consecutive idle time/burst time pairs (see figure 137) while the SP_DWS state machine (see 6.9) has not actieved dword synchronization (see 6.8.4.9 and 6.8.5.8), and may but should not detect an OOB signal after receiving four consecutive idle time/burst time pairs while the SP_DWS state machine has achieved dword synchronization. It is not an error to receive more than four idle time/burst time pairs. A receiver device shall not detect the same OOB signal again until it has detected the corresponding negation time (e.g., a COMINIT negation time for a COMINIT) or has detected a different OOB signal (e.g., if a receiver device previously detected COMINIT, then receiver sets of COMWAKE idle times followed by burst times, the receiver device detects COMWAKE. The receiver device may then detect COMINIT again).

A SAS receiver device shall detect OOB bursts formed from any of the following:

- a) D24.3 characters at 1.5 Gbps;
- b) ALIGN (0) primitives at 1.5 Gbps; or
- c) ALIGN (0) primitives at 3 Gbps.

NOTE 38 - ALIGN (0) primitives at 3 Gbps provide interoperability with transmitter devices compliant with previous versions of this standard and SATA.

Page: 228

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Add table footnote explaining relationship of these receiver device times to the earlier transmitter device times: Each burst time is transmitted as 160 OOBI, which is nominally 106.6 ns (see table 88 in 6.6.2).

Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Add table footnotes explaining the relationship of these receive times to the transmit times described earlier:

- a) COMWAKE idle time is transmitted as 160 OOBI, which is nominally 106.6 ns (see table 88 in 6.6.2).
- b) COMINIT/COMRESET idle time is transmitted as 480 OOBI, which is nominally 320 ns.
- c) COMSAS idle time is transmitted as 1 440 OOBI, which is nominally 960 ns.

Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Add table footnotes explaining the relationship of these receive times to the transmit times described earlier:

- a) COMWAKE negation time is transmitted as 280 OOBI, which is nominally 186.6 ns (see table 88 in 6.6.2).
- b) COMINIT/COMRESET negation time is transmitted as 800 OOBI is nominally 533.3 ns.
- c) COMSAS negation time, which is transmitted as 2 400 OOBI, which is nominally 1 600 ns.

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 4:16:23 PM -07'00'

This << and may but should not detect an OOB signal >> should at least be changed to << and may, but should not, detect an OOB signal >> but I would rather see if restated as << and should not detect an OOB signal >>

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

if a receiver device previously detected COMINIT, then receives four sets of COMWAKE idle times followed by burst times, the receiver device detects COMWAKE

if a receiver device that previously detected COMINIT receives four sets of COMWAKE idle times followed by burst times, then it detects COMWAKE

28 January 2008 T10/1760-D Revision 14

A SAS receiver device shall not qualify the OOB burst based on the characters received.

Figure 137 describes SAS OOB signal detection by the SP receiver (see 6.8). The COMWAKE Detected, COMWAKE Completed, COMINIT Detected, COMSAS Detected, and COMSAS Completed messages are sent to the SP state machine (see 6.8) to indicate that an OOB signal has been partially or fully detected.

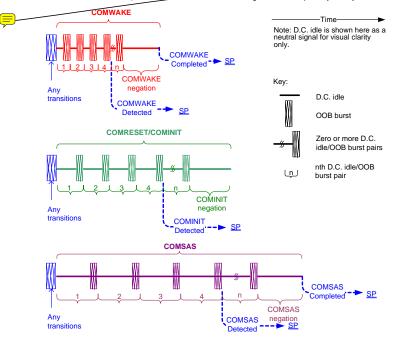


Figure 137 — OOB signal detection

Expander devices shall not forward OOB signals. An expander device shall run the link reset sequence independently on each physical link.

Page: 229

Author: RElliott Subject: Note Date: 9/1/2008 4:18:59 PM -07'00'

Move the note to the bottom of the figure

(from Ralph Weber, per ISO editing of SAS-1.1)

6.6.4 Transmitting the SATA port selection signal

The SATA port selection signal shown in figure 138 causes the attached SATA port selector to select the attached phy (one of the port selector's host phys) as the active phy (see SATA-2).

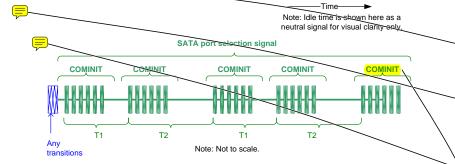


Figure 138 — SATA port selection signal

The SATA port selection signal shall be composed of 5 COMINIT signals, each starting a specified time interval, T1 or T2, as shown in figure 138, after the start of the OOB burst portion of the previous COMINIT signal. The values of T1 and T2 shall be as shown in table 92.

Table 92 — SATA port selection signal transmitter device requirements

Parameter	Time		
T1	3 x 10 ⁶ OOBI ^a		
T2	12 x 10 ⁶ OOBI ^b		
a 3 x 10 ⁶ OOBI is nominally 2 ms (see table 87). b 12 x 10 ⁶ OOBI is nominally 8 ms.			

See 6.8.6 and 10.4.3.28 for information on usage of the SATA port selection signal.

6.7 Phy reset sequences

6.7.1 Phy reset sequences overview

The phy reset sequence consists of:

- 1) an OOB sequence (see 6.7.2.1 and 6.7.4.1);
- 2) a speed negotiation sequence (see 6.7.2.2 and 6.7.4.2); and
- 3) if the physical link is a SAS physical link and multiplexing (see 6.10) is enabled (see table 100 in 6.7.4.2.3.3), a multiplexing sequence (see 6.7.4.3).

The phy reset sequence shall only affect the phy, not the port or device containing the phy or other phys in the same port or device.

A phy shall originate a phy reset sequence after:

- a) power on
- b) hard reset (i.e., receiving a HARD_RESET primitive sequence before an IDENTIFY address frame) (see 4.4.2);

Page: 230 Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 4:16:47 PM -07'00' REJECT This << in figure 138 causes the attached SATA port selector to select the >> should be << in figure 138 results in the attached SATA port selector selecting the >> Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00' TACCEPT - DONE This << attached phy (one of the port select >> should be << attached phy (i.e., one of the port select >> Author: RElliott Subject: Note Date: 9/1/2008 4:14:45 PM -07'00'
ACCEPT - DONE Move the note to the bottom of the figure (from Ralph Weber, per ISO editing of SAS-1.1) Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE Turn off Bold text in figure 138 SATA port selection signal Author: ktek-dmoore Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00' COMINIT The d.c. idle line in the drawing directly below this word is not complete. Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE (see table 87).

(see table 87 in 6.6.1).

28 January 2008 T10/1760-D Revision 14

- c) management application layer request (see 6.8.1);
- d) losing dword synchronization and not attempting to re-acquire dword synchronization (see 6.8.4.9 and 6.8.5.8);
- e) Receive Identify Timeout timer expires (see 7.9.4); and -
- f) for expander phys, after a hot-plug timeout (see 6.7.5)

A SAS phy may originate a phy reset sequence after a hot-plug timeout (see 6.7.5).

After receiving a HARD_RESET primitive sequence before an IDENTIFY address frame, a phy should start the phy reset sequence within 250 ms.

Table 93 defines phy reset sequence timing parameters used by the SP state machine (see 6.8).

Table 93 — Phy reset sequence timing specifications

Parameter	Minimum	Maximum	Comments
Hot-plug timeout	10 ms	500 ms	The time after which an expander phy shall retry an unsuccessful phy reset sequence, and after which a SAS initiator phy should retry an unsuccessful phy reset sequence (see 6.7.5).

6.7.2 SATA phy reset sequence

6.7.2.1 SATA OOB sequence

Figure 139 shows the SATA OOB sequence between a SATA host and SATA device. The SATA OOB sequence is defined by SATA (see SATA-2 for detailed requirements).

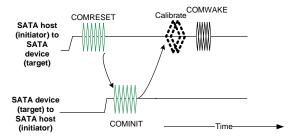


Figure 139 — SATA OOB sequence

Page: 231

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
TACCEPT - DONE
This should be an << or >> as any one of the items in the list will cause a reset sequence.

Author: RElliott Subject: Highlight Date: 11/5/2008 9:35:00 PM TACCEPT - DONE

for expander phys, after a hot-plug timeout a hot-plug timeout in an expander phy

6.7.2.2 SATA speed negotiation sequence

Figure 140 shows the speed negotiation sequence between a SATA host and SATA device. The SATA speed negotiation sequence is defined by SATA; see SATA-2 for detailed requirements.

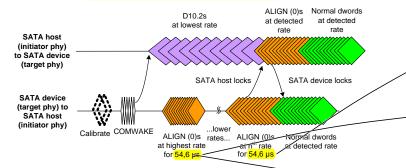


Figure 140 — SATA speed negotiation sequence

Table 94 defines SATA speed negotiation sequence timing parameters used by the SP state machine (see 6.8).

Table 94 — SATA speed negotiation sequence timing specifications

Parameter	Time	Comments	
Await ALIGN timeout	1 310 720 OOBI) ²	The minimum time during SATA speed negotiation that a phy shall allow for an ALIGN (0) to be received after detecting COMWAKE Completed. Derived from: 32 768 × 40 (see SATA-2).	
COMWAKE response time	533 ns	The maximum time during SATA speed negotiation after detecting COMWAKE Completed before which a phy start transmitting D10.2 characters.	
<u>a</u> 1 310 720 OOBI is nominally 873.813 μs (see table 87).			

The transmitter device shall use SATA signal output levels during the SATA speed negotiation sequence as described in 5.3.6.6.

6.7.3 SAS to SATA phy reset sequence

SAS initiator phys and expander phys may support SATA (e.g., support being directly attached to a SATA device or a SATA port selector).

To initiate a phy reset sequence a phy shall:

- 1) transmit a COMINIT; and
- in response to receiving a COMINIT, transmit a COMSAS.

The COMSAS identifies the phy as a SAS phy or expander phy instead of a SATA phy.

If a SATA phy is attached to the physical link, it either:

a) misinterprets the COMSAS to be a COMRESET and responds with a COMINIT; or

Page: 232

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:48 PM -07'00'
TACCEPT - DONE ("by SATA." per KnowledgeTek global comment)

This << defined by SATA; see SATA-2 for detailed requirements. >> should be << defined by SATA (see SATA-2). >>

Author: ktek-dmoore
Subject: Highlight
Date: 6/25/2008 8:32:00 AM -07'00'
TACCEPT - DONE
54.6 us
s/b
54.6 us

Author: ktek-dmoore
Subject: Highlight
Date: 6/25/2008 8:32:22 AM -07'00'
TACCEPT - DONE (FrameMaker global regexp searches don't search in Visio files, and Acrobat search doesn't support regexp, so these are hard to find)

54.6 us

I thought the decimal point was back and the comma was banished.
This ope and the next one over.

Author: Isi-bday Subject: Highlight Date: 6/25/2008 8:31:21 AM -07'00' TACCEPT - DONE s/b 54.6

same elsewhere in diagram

Author: hpq-relliott
Subject: Highlight
Date: 6/24/2008 8:36:38 AM -07'00'
Date: 6/24/2008 8:36:38 AM -07'00'
TACCEPT - DONE (SATA 2.6 uses "873.8 us (32768 nominal Gen1 Dwords)". Although maximum OOBI might make more sense than nominal OOBI, that's not what SATA defines. The intention is probably that the clock just run off the transmitter clock, not a separate pure clock source. So, changed to 873.8 us but kept based on the nominal value. Reversed the table footnote and added

Based on SAS-2 OOBI (+/- 100ppm with +/- 2300 ppm center spreading SSC): Min (+2400 ppm) = 1310720 * 665.067 = 871.71661813 us Nom (+0 ppm) = 1310720 * 666.6 = 873.813 us Max (-2400 ppm) = 1310720 * 666.8 = 875.9104853 us

In SAS-1 (+/- 100 ppm without SSC) that was:
Min (+100 ppm) = 1310720 * 666.6 = 873.725952 us
Nom (+0 ppm) = 1310720 * 666.6 = 873.513333333 us
Max (-100 ppm) = 1310720 * 666.733 = 873.90027776 us

the word "nominal" in the comments and footnote.

In SATA (with +/- 350 ppm with +0/-5000 ppm down-spreading SSC): Min (+350 ppm) = 1310720 * 666.4333 = 873.507454976 us Nom (+0 ppm) = 1310720 * 666.6667 = 873.813 us

Comments from page 232 continued on next page

6.7.2.2 SATA speed negotiation sequence

Figure 140 shows the speed negotiation sequence between a SATA host and SATA device. The SATA speed negotiation sequence is defined by SATA; see SATA-2 for detailed requirements.

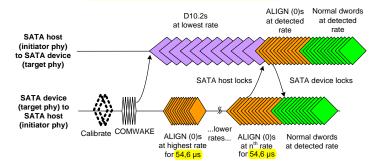


Figure 140 — SATA speed negotiation sequence

Table 94 defines SATA speed negotiation sequence timing parameters used by the SP state machine (see 6.8).

Table 94 — SATA speed negotiation sequence timing specifications/

Parameter	Time	Comments	
Await ALIGN timeout	1 310 720 OOBI ^a	The minimum time during SATA speed negotiation that a phy shall allow for an ALKSN (0) to be received after detecting COMWAKE Completed. Derived from: 32 768 × 40 (see SATA-2).	
COMWAKE response time	533 ns	The maximum time during SATA speed negotiation after detecting OMWAKE completed before which a phy signary transmitting D10.2 characters.	
<u>a</u> 1 310 720 OOBI is nominally 873.813 μs (see table 87).			

The transmitter device shall use SATA signal output levels during the SATA speed negotiation sequence as described in 5.3.6.6.

6.7.3 SAS to SATA phy reset sequence

SAS initiator phys and expander privs may support SATA (e.g., support being directly attached to a SATA device or a SATA port selector).

To initiate a phy reset sequence a phy shall:

- 1) transmit a COMINIT; and
- 2) in response to receiving a COMINIT, transmit a COMSAS.

The COMSAS identifies the phy as a SAS phy or expander phy instead of a SATA phy.

If a SATA phy is attached to the physical link, it either:

a) misinterprets the COMSAS to be a COMRESET and responds with a COMINIT; or

```
So the difference is about 4.675 us.
   1 310 720 OOBI
   should be a time value (in us) since this is a receiver timeout value, not a transmitter value.
   It should be based on the maximum OOBI, allowing the other transmitter the longest legal time to send 32768x40 bits.
Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
   Add "x nominal OOBI" at end of "Derived from: 32768 x 40"
Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
   533 ns is 200 x 40 x nominal OOBI (see SATA).
   as a foor note
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
    Merge this footnote:
   "a 1 310 720 OOBI is nominally 873.813 us (see table 87)."
    "Derived from: 32 768 × 40 (see SATA-2)."
   line
   "a 873.813 us is 32 768 x 40 x nominal OOBI (see table 87 in 6.6.1 and SATA)."
Author: intc-mseidel
```

Max (-5350 ppm) = 1310720 * 670.2333 = 878.488190976 us

Subject: Highlight Date: 6/6/2008 10:46:21 AM -07'00'

REJECT (as long as any training sequences in the calibration sequence don't look like COMSAS, no issue should occur. Enough
Till members are participating in Serial ATA that we should be able to ensure that Serial ATA doesn't get confused by COMSAS
presence at that time.)

Upcoming SATA phys may have the capability to train their receiver circuitry, especially the new eSATA. In order to exploit this capability, SAS-2 should delay sending COMSAS in order to have time to receive a new OOB pattern (to be defined) that indicates it is talking with a trainable SATA phy. The reception of this new OOB pattern would then trigger a speed and capabilities information exchange with the SATA phy similar to what is done for SAS-2 phys. This is a difficult topic to address, because it has to be accomplished in concert with the SATA specification development. But if we do not make this allowance, then we miss the window of opportunity. Delaying the COMSAS signal by some amount of time will not seriously affect the timeliness of completing the SAS speed negotiation, especially considering the 20 ms of each Train-SNW.

Author: intc-mseidel
 Subject: Highlight
 Date: 5/6/2008 1:07:48 PM -07'00'

6.7.2.2 SATA speed negotiation sequence

Figure 140 shows the speed negotiation sequence between a SATA host and SATA device. The SATA speed negotiation sequence is defined by SATA; see SATA-2 for detailed requirements.

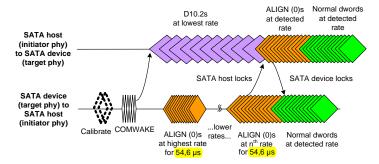


Figure 140 — SATA speed negotiation sequence

Table 94 defines SATA speed negotiation sequence timing parameters used by the SP state machine (see 6.8).

Parameter Time Comments

The minimum time during SATA speed negotiation that a phy shall allow for an ALIGN (0) to be received after detecting COMWAKE Completed.

Derived from: 32 768 × 40 (see SATA-2).

The maximum time during SATA speed negotiation that a phy shall allow for an ALIGN (0) to be received after detecting COMWAKE Completed.

Derived from: 32 768 × 40 (see SATA-2).

The maximum time during SATA speed negotiation after detecting COMWAKE Completed before which a phy speat transmitting D10.2 characters.

Table 94 — SATA speed negotiation sequence timing specifications

The transmitter device shall use SATA signal output levels during the SATA speed negotiation sequence as described in 5.3.6.6.

6.7.3 SAS to SATA phy reset sequence

SAS initiator phys and expander phys may support SATA (e.g., support being directly attached to a SATA device or a SATA port selector).

To initiate a phy reset sequence a phy shall:

1) transmit a COMINIT; and

232

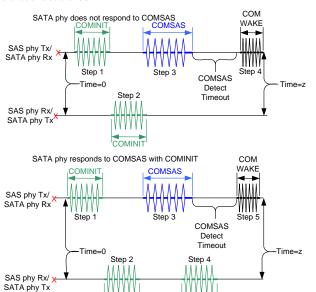
2) in response to receiving a COMINIT, transmit a COMSAS.

The COMSAS identifies the phy as a SAS phy or expander phy instead of a SATA phy.

If a SATA phy is attached to the physical link, it either:

a) misinterprets the COMSAS to be a COMRESET and responds with a COMINIT; or

Working Draft Serial Attached SCSI - 2 (SAS-2)


Third sentence: "SAS phy or expander phy" s/b "SAS initiator phy or expander phy"

28 January 2008 T10/1760-D Revision 14

b) ignores the COMSAS and provides no response within a COMSAS detect timeout.

Either response indicates to the phy that a SATA phy is attached. As a result, the phy shall transmit COMWAKE and enter the SATA speed negotiation sequence (see 6.7.2.2).

Figure 141 shows a reset sequence between a SAS phy or expander phy (i.e., a phy compliant with this standard) and a SATA phy (i.e., a phy in a SATA device, defined by SATA). The two possible cases are presented. The first case is that the SATA phy ignores the COMSAS and provides no response within a COMSAS detect timeout. The second case is that the SATA phy misinterprets the COMSAS to be a COMRESET and responds with a COMINIT. The SP state machine treats these the same, and determines that a SATA phy is attached after a COMSAS detect timeout. The SATA speed negotiation sequence shall be entered after COMWAKE.

Time 0: OOB sequence begins

X : Power on

Time z: Speed negotiation sequence begins

COMINIT

Figure 141 — SAS to SATA OOB sequence

COMINIT

233

6.7.4 SAS to SAS phy reset sequence

6.7.4.1 SAS OOB sequence

To initiate a SAS OOB sequence a phy shall transmit a COMINIT.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 233

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

a reset sequence
s/b

an OOB sequence

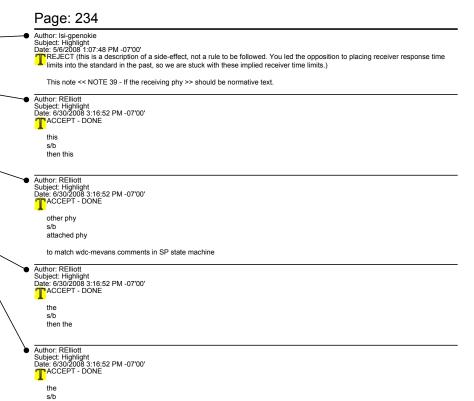
Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:48 PM -07'00'

TACCEPT - DONE (added "(see 6.8.3.9)" for SP7:AwaitCOMSAS, which is the state that runs the COMSAS Detect Timeout timer and ignores any incoming COMINIT)

Add a reference here to the SP state machine section.

then the

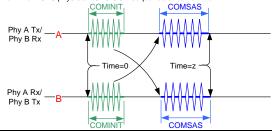
On receipt of a COMINIT a phy shall either:


- a) if the receiving phy has not yet transmitted a COMINIT, transmit a COMINIT followed by a COMSAS;
- b) if the receiving phy has transmitted a COMINIT, transmit a COMSAS.

NOTE 39 - If the receiving phy does not respond to a COMINIT within the minimum hot-plug timeout (see 6.7.5), the sther phy may transmit another COMINIT. If repeated, this results in a livelock.

On receipt of a COMSAS, the receiving phy has not yet transmitted a COMSAS, the phy shall transmit a COMSAS.

After completing the transmission of a COMSAS and the successful receipt of a COMSAS he SAS OOB sequence is complete and the SAS speed negotiation sequence begins.


A phy shall distinguish between COMINIT and COMSAS and continue with a SAS speed negociation sequence (see 6.7.4.2) after completing the SAS OOB sequence.

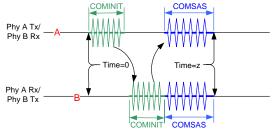
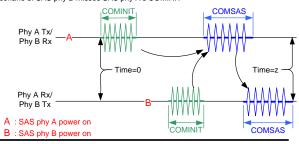

28 January 2008 T10/1760-D Revision 14

Figure 142 shows several different SAS OOB sequences between phy A and phy B, with phy A starting the SAS OOB sequence at the same time as phy B, before phy B, and before phy B powers on.


Scenario 1: Both SAS phys start SAS OOB sequence at same time

Scenario 2: SAS phy A starts SAS OOB sequence

Scenario 3: SAS phy B misses SAS phy A's COMINIT

Time 0: SAS phy reset sequence begins

Time z: SAS speed negotiation sequence begins

Figure 142 — SAS to SAS OOB sequence

6.7.4.2 SAS speed negotiation sequence

6.7.4.2.1 SAS speed negotiation sequence overview

The SAS speed negotiation sequence establishes communications between the two phys of a physical link at the highest possible transmission rate.

The SAS speed negotiation sequence is a new to peer negotiation technique that does not assume initiator and target (i.e., host and device) roles. The rules for speed negotiation are the same for both participating phys.

The SAS speed negotiation sequence consists of a set of speed negotiation windows (SNWs). Each SNW is identified by a name (e.g., Speed Negotiation Window-1 or SNW-1).

SNWs conform to one of three defined types:

- a) speed negotiation without training: SNW-1, SNW-2 and Final-SNW (see 6.7.4.2.3.2);
- b) phy capabilities exchange: SNW-3 (see 6.7.4.2.3.3); and
- c) speed negotiation with training: Train-SNW (see 6.7.4.2.3.4).

Many of the timing parameters used for defining the SNWs are common to multiple SNW types. All of the timing specifications for all SNW types are defined in 6.7.4.2.2.

A SAS speed negotiation sequence may or may not include all three types of SNWs. Phys may implement a subset of SNWs provided that the subset implements a valid speed negotiation sequence. SAS speed negotiation sequences are defined in 6.7.4.2.4.

The transmitter device shall use SAS signal output levels during the SAS speed negotiation sequence as described in 5.3.6.6.

Page: 236

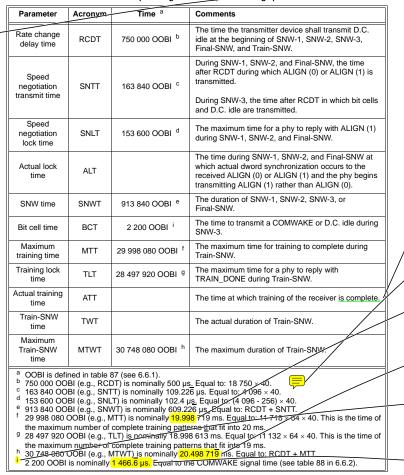
Author: wdc-mevans

Subject: Cross-Out Date: 5/6/2008 1:07:48 PM -07'00'

TREJECT (that's the point of the sentence, to point out to a reader with SATA knowledge that host and device have no meaning.)

(i.e., host and device)

s/h


[Delete these words. Host and device have no meaning for SAS speed negotiation.]

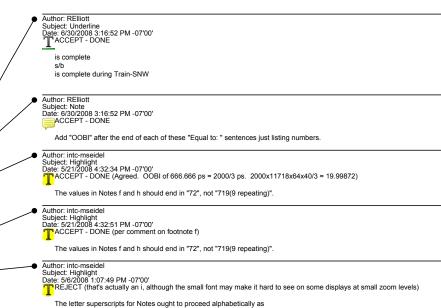
6.7.4.2.2 SAS speed negotiation sequence timing specifications

Table 95 defines the timing specifications for the SAS speed negotiation sequence.

Table 95 — SAS speed negotiation sequence timing specifications

Page: 237

Author: hoq-relliott
Subject: Note
Date: 9/3/2008 3:00:42 PM -07'00'
REJECT (
7/08 discussion concluded it's best not to say anything


Add to footnote a

"A receiver device running a timer based on one of the parameters in this table shall use the maximum OOBI value."

Per discussion with Alvin - leave in OOBI terms, since many of these are also used by the transmitter, but add a footnote explaining that the receiver device shall use the maximum OOBI time when using these values in a timer.

Values used in the state machine (COMSAS Detect timeout, AWAIT ALIGN timeout, Hot-Plug Timeout, RCDT, SNLT, SNTT, TLT, and MTT), should be normatively expressed in time values, not OOBIs.

If this phy has a short OOBI and is receiving from another phy which has a long OOBI, this phy needs to allow enough time for the other phy to transmit the desired number of bits.

one goes down the Table. Note I is out of order

Author: hpq-relliott Subject: Highlight 28 January 2008 T10/1760-D Revision 14

6.7.4.2.2 SAS speed negotiation sequence timing specifications

Table 95 defines the timing specifications for the SAS speed negotiation sequence.

Table 95 — SAS speed negotiation sequence timing specifications

	Table 55 CAO Speed negotiation sequence timing speemedicins				
Parameter	Acronym	Time a	Comments		
Rate change delay time	RCDT	750 000 OOBI ^b	The time the transmitter device shall transmit D.C. idle at the beginning of SNW-1, SNW-2, SNW-3, Final-SNW, and Train-SNW.		
Speed negotiation transmit time	SNTT	163 840 OOBI ^C	During SNW-1, SNW-2, and Final-SNW, the time after RCDT during which ALIGN (0) or ALIGN (1) is transmitted. During SNW-3, the time after RCDT in which bit cells and D.C. idle are transmitted.		
Speed negotiation lock time	SNLT	153 600 OOBI ^d	The maximum time for a phy to reply with ALIGN (1) during SNW-1, SNW-2, and Final-SNW.		
Actual lock time	ALT		The time during SNW-1, SNW-2, and Final-SI/W at which actual dword synchronization occurs to the received ALIGN (0) or ALIGN (1) and the the begins transmitting ALIGN (1) rather than ALIGN (0).		
SNW time	SNWT	913 840 OOBI ^e	The duration of SNW-1, SNW-2, SNW-3, or Final-SNW.		
Bit cell time	вст	2 200 OOBI i	The time to transmit a COMWALE or D.C. idle during SNW-3.		
Maximum training time	MTT	29 998 080 OOBI ^f	The maximum time for training to complete during Train-SNW.		
Training lock time	TLT	28 497 920 OOBI ^g	The maximum time for a phy to reply with TRAIN_DONE during Train-SNW.		
Actual training time	ATT		The time at which training of the receiver is complete.		
Train-SNW time	TWT		The actual digration of Train-SNW.		
Maximum Train-SNW time	MTWT	30 748 080 OOBI ^h	The maximum duration of Train-SNW.		
a OOBI is defined in table 87 (see 6.6.1).					

a OOBI is defined in table 87 (see 6.6.1).
b 750 000 OOBI (e.g., RCDT) is nominally 500 µs. E dual to: 18 750 × 40.
c 133 840 OOBI (e.g., SNLT) is nominally 109.226 µs. Equal to: 4 096 × 40.
d 153 600 OOBI (e.g., SNLT) is nominally 109.24 ½. Equal to: (4 096 × 256) × 40.
e 913 840 OOBI (e.g., SNLT) is nominally 109.926 µs. Equal to: RCDT + SNTT.
f 29 998 080 OOBI (e.g., MTT) is nominally 10998 719 ms. Equal to: 11 718 × 64 × 40. This is the time of the maximum number of complete training patterns that fit into 20 ms.
g 28 497 920 OOBI (e.g., TLT) is nominally 18.998 613 ms. Equal to: 11 132 × 64 × 40. This is the time of the maximum number of complete training patterns that fit into 19 ms.
g 30 748 080 OOBI (e.g., MTWT) is portinally 20.498 719 ms. Equal to: RCDT + MTT.
g 2 200 OOBI is nominally 1466.6 µs. Equal to the COMWAKE signal time (see table 88 in 6.6.2).

237

Working Draft Serial Attached SCSI - 2 (SAS-2)

Date: 6/25/2008 8:33:49 AM -07'00'
ACCEPT - DONE
us (micro) s/b ns (nano)

Author: Isi-bday Subject: Highlight Date: 6/25/2008 8:33:29 AM -07'00' s/b ns Author: intc-mseidel

Subject: Highlight
Date: 5/25/2008 12:40:41 PM -07'00'

The calculation in Note I is incorrect. It should be 1.46(6 repeating) microseconds, not 1466.6(6 repeating).

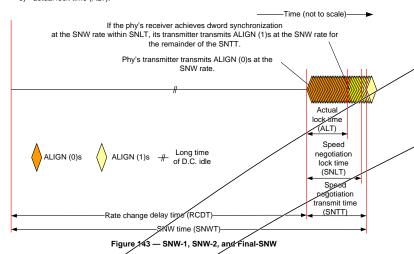
T10/1760-D Revision 14

6.7.4.2.3 Speed negotiation window (SNW) definitions

6.7.4.2.3.1 SNW definitions overview

During each SNW, a phy shall either:

- a) if it supports the SNW, transmit and receive as defined for the SNW; or
- b) if it does not support the SNW, transmit D.C. idle and not receive.


If a phy supports the SNW and receives the expected transmission, then the SNW is valid. If a phy does not receive the expected transmission from the attached phy, then the SNW is invalid.

NOTE 40 - If a phy transmits D.C. idle during a SNW, then the attached phy does not receive the expected transmission and the SNW is invalid.

6.7.4.2.3.2 SNW-1, SNW-2, and Final-SNW

Figure 143 defines SNW-1, SNW-2, and Final-SNW, including:

- a) SNW time (SNWT);
- b) rate change delay time (RCDT);
- c) speed negotiation transmit time (SNTT);
- d) speed negotiation lock time (SNLT); and
- e) actual lock time (ALT).

If the phy supports the SNW, it shall transmit:

- 1) D.C. idle for an RCDT; and
- 2) ALIGNs at the SNW rate for the remainder of the SNWT (i.e., for SNTT).

If the phy does not support the SNW, it snall transmit D.C. idle for the entire SNWT.

Author: intc-mseidel Subject: Highlight Date: 6/25/2008 8:07:09 AM -07'00' ACCEPT - DONE (Alvin: "and ignore the SNW information received") Itemized list element (b) should not dictate that the phy is not to receive, since the state machine transitions are not consistent with a phy possibly being in SP1:Await_COMX while the other phy is transmitting COMWAKEs to indicate its capabilities during SNW-3. See related Intel comments in 6.7.4.2.3. Author: RElliott Subject: Highlight Date: 9/1/2008 4:04:44 PM -07'00' TREJECT (
9/1 no disagreement if the definition is carefully read. Leaving as is. 5/5 change "valid" and "invalid" to "successful" and "unsuccessful" when referring to SNWs. Change in all the figures too.) This usage of "invalid" does not agree with the keyword definition of "invalid". Author: Isi-gpenokie
Subject: Highlight
Subject: Hi This note <<NOTE 40 - If a phy >> should be normative text Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE it s/b then it Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' it s/b

28 January 2008

Page: 238

then it

Table 96 defines the SNW rate used in SNW-1, SNW-2, and Final-SNW.

Table 96 — SNW rates used in SNW-1, SNW-2, and Final-SNW

SNW	SNW rate
SNW-1	1.5 Gbps
SNW-2	3 Gbps
Final-SNW	Based on SNW-1, SNW-2, and SNW-3 validity: a) 1.5 Gbps if SNW-1 is valid and SNW-2 is invalid; and b) 3 Gbps if SNW-2 is valid and SNW-3 is invalid.

If the phy supports the SNW, it shall attempt to synchronize on an incoming series of dwords at that rate for the SNLT after RCDT. The received dwords may be ALIGN (0) or ALIGN (1) primitives. If the phy achieves dword synchronization within the SNLT, it shall charge from transmitting ALIGN (0) primitives to transmitting ALIGN (1) primitives for the remainder of the SNTT (i.e., the remainder of the SNW time). The point at which by the scheeper dword synchronization is called the actual lock time (ALT). If the phy does not achieve dword synchronization within the SNLT, it shall continue transmitting ALIGN (0) primitives for the remainder of the SNW time).

At the end of the SNTT, if a phy is both transmitting and receiving ALIGN (1) primitives, it shall escapide the SNW to be valid. If the phy is not both transmitting and receiving ALIGN (1) primitives, it shall consider the SNW to be invalid.

The phy shall disable SSC (see 5.3.8) during SNW-1, SNW-2, and Final-SNW.

6.7.4.2.3.3 SNW-3

SNW-3 allows the phys to exchange phy capabilities to establish phy parameters used in Train-SNW.

Figure 144 defines SNW-3, including:

- a) SNW time (SNWT);
- b) rate change delay time (RCDT); and
- c) speed negotiation transmit time (SNTT).

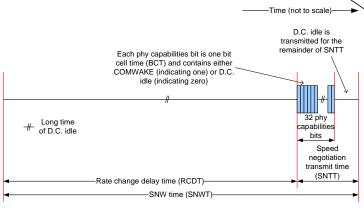
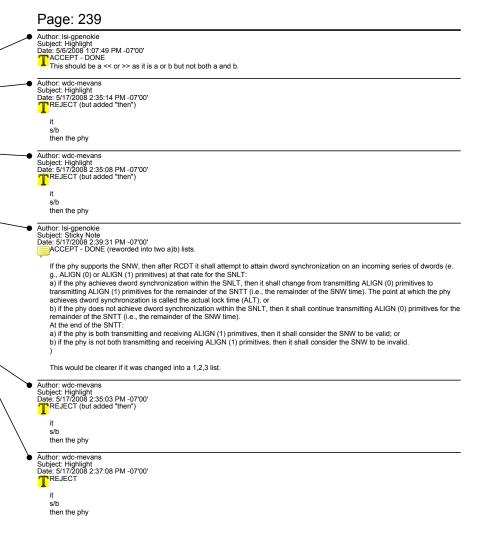



Figure 144 — SNW-3

Comments from page 239 continued on next page

28 January 2008 T10/1760-D Revision 14

Table 96 defines the SNW rate used in SNW-1, SNW-2, and Final-SNW.

Table 96 — SNW rates used in SNW-1, SNW-2, and Final-SNW

SNW	SNW rate
SNW-1	1.5 Gbps
SNW-2	3 Gbps
Final-SNW	Based on SNW-1, SNW-2, and SNW-3 validity: a) 1.5 Gbps if SNW-1 is valid and SNW-2 is invalid; and b) 3 Gbps if SNW-2 is valid and SNW-3 is invalid.

If the phy supports the SNW, it shall attempt to synchronize on an incoming series of dwords at that rate for the SNLT after RCDT. The received dwords may be ALIGN (0) or ALIGN (1) primitives. If the phy achieves dword synchronization within the SNLT, it shall change from transmitting ALIGN (0) primitives to transmixing ALIGN (1) primitives for the remainder of the SNTT (i.e., the remainder of the SNW time). The point of which phy achieves dword synchronization is called the actual lock time (ALT). If the phy does not achieve dword synchronization within the SNLT, it shall continue transmitting ALIGN (0) primitives for the remainder of the SNTT (i.e., the remainder of the SNW time).

At the end of the SNTT, if a phy is both transmitting and receiving ALIGN (1) primitives.

An all consider the SNW to be valid. If the phy is not both transmitting and receiving ALIGN (1) primitives, it shall consider the SNW to be invalid.

The phy shall disable SSC (see 5.3.8) during SNW-1, SNW-2, and Final-SNW.

6.7.4.2.3.3 SNW-3

SNW-3 allows the phys to exchange phy capabilities to establish phy parameters used in Train-SNW.

Figure 144 defines SNW-3, including:

- a) SNW time (SNWT);
- b) rate change delay time (RCDT); and
- c) speed negotiation transmit time (SNTT).

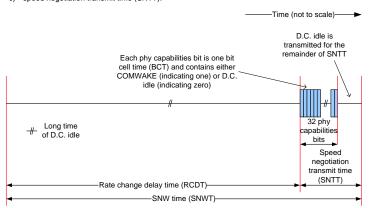


Figure 144 — SNW-3

239

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: wdc-mevans
Subject: Highlight
Date: 5/17/2008 2:36:54 PM -07'00'
TREJECT

it
s/b
then the phy

Author: intc-mseidel

Subject: Highlight Date: 6/24/2008 5:03:17 PM -07'00'

REJECT (Common clock architectures are a bad idea - avoid if possible. Negotiation of 1.5 Gbps or 3 Gbps with SSC is possible via SNW-3; trying to do so during SNW-1 and SNW-2 just invites legacy compatibility problems. There is no reliable hot-plug indication upon which the phy can rely.)

The last sentence is a serious issue for common-clock architectures. They ought to be able to use SSC especially if it has been negotiated on previously and there has not been a hot-plug event, since the other phys on the common clock have it on and the phy that is connected to it has handled SSC previously. It should also be OK to utilize SSC during SNW-1/2/Final; an attached receiver that responds with ALIGN(1) can obviously handle the SSC in the datastream.

T10/1760-D Revision 14

28 January 2008

Table 97 defines the content of each phy capabilities bit.

Table 97 - SNW-3 phy capabilities bit

Value	Transmitted
One	COMWAKE (see 6.6)
Zero	D.C. idle

If the phy supports SNW-3, it small:

- 1) transmit D.C. idle for an RCDT;
- 2) transmit 32 phy capabilities bits; and
- 3) transmit D.C. idle for the remainder of SNTT,

and shall receive a 32-bit phy capabilities value from the attached phy. If the attached phy does not support SNW-3, the shy expecitives bits are all cut to zero (i.e., D.C. idle)

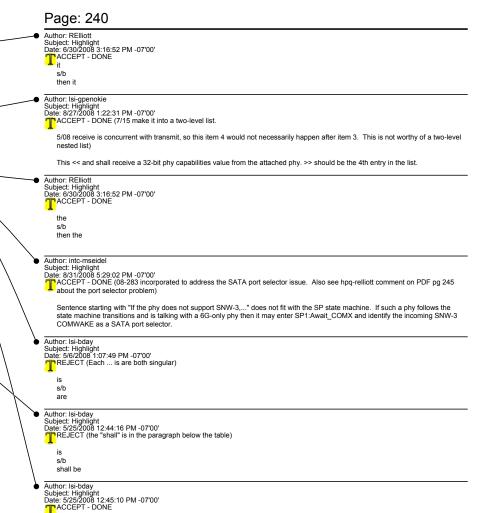
If the phy does not support SNW-3, the phy shall transmit D.C. idle for the entire SNWT and ignore any SNW-3 phy capabilities bits received.

The first phy capabilities bit is the START bit and is set to one. Each of the remaining 31 phy capabilities bits is set to one or zero. The receiver shall use the START bit of detect the beginning of the phy capabilities bits.

The phy shall consider SNW-3 to be valid if it supports SNW-3 and receive at least one phy capabilities bit sat to one. If the phy does not support SNW-3 or does not receive at least one phy capabilities bit set to one, it has been shall consider SNW-3 to be invalid.

The phy may transmit with SSC enabled or disabled (see 5.3.8) during SNW-3.

Table 98 defines the SNW-3 phy capabilities. For each bit defined as reserved, the phy shall transmit a zero (i.e., D.C. idle) and shall ignore the received value. Byte 0 shall be transmitted first and byte 3 shall be transmitted last. Within each byte, bit 7 shall be transmitted first and bit 0 shall be transmitted last (e.g., overall, the START bit is transmitted first and the PARITY bit is transmitted last).


Table 98 — SNW-3 phy capabilities

Byte\Bit	7	6	5	4	3	2	1	0
0	START (1b)	TX SSC TYPE	Rese	erved	RE	QUESTED LO	GICAL LINK R	ATE
		•	Supported	settings				
1	G1 WITHOUT SSC	G1 WITH SSC	G2 WITHOUT SSC	G2 WITH SSC	G3 WITHOUT SSC	G3 WITH SSC	Reserved	
2	Reserved							
3				Reserved				PARITY

The START bit shall be set to one. The phy's receiver shall use this bit to establish the timing for the subsequent bits:

A TX SSC TYPE bit set to one indicates that the phy's transmitter uses center-spreading SSC when SSC is enabled (e.g., the phy is an expander phy)(see 5.3.8). A TX SSC TYPE bit set to zero indicates that the phy's transmitter uses down-spreading SSC when SSC is enabled (e.g., the phy is a SAS phy), or that the phy does not support SSC.

NOTE 41 - The phy receiver may use the TX SSC TYPE bit to optimize its CDR circuitry.

T10/1760-D Revision 14

28 January 2008

Table 97 defines the content of each phy capabilities bit.

Table 97 - SNW-3 phy capabilities bit

Value	Transmitted
One	COMWAKE (see 6.6)
Zero	D.C. idle

If the phy supports SNW-3, it shall:

- 1) transmit D.C. idle for an RCDT;
- 2) transmit 32 phy capabilities bits; and
- 3) transmit D.C. idle for the remainder of SNTT,

and shall receive a 32-bit phy capabilities value from the attached phy. If the attached phy does not support SNW-3, the phy capabilities bits are all set to zero (i.e., D.C. idle).

If the phy does not support SNW-3, the phy shall transmit D.C. idle for the entire SNWT SNW-3 phy capabilities bits received.

The first phy capabilities bit is the START bit and is set to one. Each of the remaining 31 phy capabilities bits is set to one or zero. The receiver shall use the START bit to detect the beginning & the phy capabilities bits.

The phy shall consider SNW-3 to be valid if it supports SNW-3 and receive at least one phy capabilities bit set , to one. If the phy does not support SNW-3 or does not receive at least one phy capabilities bit set to one, it shall consider SNW-3 to be invalid.

The phy may transmit with SSC enabled or disabled (see 5.3.8) during SNW-3.

Table 98 defines the SNW-3 phy capabilities. For each bit defined as reserved, the phy shall transmit a zero (i.e., D.C. idle) and shall ignore the received value. Byte 0 shall be transmitted first and byte 3 shall be transmitted last. Within each byte, bit 7 shall be transmitted first and bit 0 shall be transmitted last (e.g., overall, the START bit is transmitted first and the PARITY bit is transmitted last).

Table 98 — SNW-3 phy capabilities

Byte\Bit	7	6	5	4	3	2	1	0
0	START (1b)	TX SSC TYPE	Rese	Reserved REQUESTED LOGICAL LINK RATE				
			Supported	settings				
1	G1 WITHOUT SSC	G1 WITH SSC	G2 WITHOUT SSC	G2 WITH SSC	G3 WITHOUT SSC	G3 WITH SSC	Rese	erved
2	Reserved							
3	Reserved PAGITY							

The START bit shall be set to one. The phy's receiver shall use this bit to establish the timing for the subsequent bits.

A TX SSC TYPE bit set to one indicates that the phy's transmitter uses center-spreading SSC when SSC is enabled (e.g., the phy is an expander phy)(see 5.3.8). A TX SSC TYPE bit set to zero indicates that the phy's transmitter uses down-spreading SSC when SSC is enabled (e.g., the phy is a SAS phy), or that the phy does not support SSC.

NOTE 41 - The phy receiver may use the TX SSC TYPE bit to optimize its CDR circuitry.

The receiver shall use the START bit to detect the beginning of the phy capabilities bits....

"...and establish the timing for the subsequent bits."

Author: Isi-bday Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00' receive s/b receives

Author: ktek-dmoore Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'
ACCEPT - DONE

receive s/b receives

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 12:42:29 PM -07'00'

REJECT (first noun/subject convention, but added then)

then the phy

Author: Isi-bday

Subject: Cross-Out

Date: 5/25/208 12:45:54 PM -07'00'
Date: 5/25/208 12:45:54 PM -07'00'
TREJECT (after a table defining fields, there must be a paragraph describing each one. However, will delete the second sentence, and the second sentence is the second sentence.

The START bit shall be set to one. The phy's receiver shall use this bit to establish the timing for the subsequent bits.

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

set to one

set to the value defined in table 98

28 January 2008 T10/1760-D Revision 14

The REQUESTED LOGICAL LINK RATE field indicates if the phy supports multiplexing (see 6.10) and, if so, the logical link rate that the phy is requesting. If the phy is managed by an SMP target port, the field is based on the REQUESTED LOGICAL LINK RATE field in the SMP PHY CONTROL function (see 10.4.3.28).

Table 99 defines the requested logical link rate based on the transmitted and received REQUESTED LOGICAL LINK RATE fields.

Table 99 — Requested logical link rate

Transmitted REQUESTED LOGICAL LINK RATE field	Received REQUESTED LOGICAL LINK RATE field	Requested logical link rate		
0h (i.e., no multiplexing)	Any	Negotiated physical link rate		
	8h (i.e., 1.5 Gbps)			
9h /i o 1 F Chno\	9h (i.e., 3 Gbps)	1.F.Chno		
8h (i.e., 1.5 Gbps)	Ah (i.e., 6 Gbps)	- 1.5 Gbps		
	Bh - Fh (i.e., future rates)			
	8h (i.e., 1.5 Gbps)	1.5 Gbps		
Oh (i.a. 2 Chna)	9h (i.e., 3 Gbps)	3 Gbps		
9h (i.e., 3 Gbps)	Ah (i.e., 6 Gbps)			
	Bh - Fh (i.e., future rates)			
	8h (i.e., 1.5 Gbps)	1.5 Gbps		
Ab (i.e. 6 Chee)	9h (i.e., 3 Gbps)	3 Gbps		
Ah (i.e., 6 Gbps)	Ah (i.e., 6 Gbps)	6 Gbps		
	Bh - Fh (i.e., future rates)	o Gups		

Table 100 defines whether or not multiplexing is enabled and defines the negotiated logical link rate based on the requested logical link rate (see table 99) and the negotiated physical link rate (see 6.7.4.2.4).

 ${\bf Table~100--Multiplexing~negotiation}$

Requested logical link rate (see table 99)	Negotiated physical link rate Multiplexing		Negotiated logical link rate	
	1.5 Gbps	Disabled	1.5 Gbps	
1.5 Gbps	3 Gbps	Enabled	1.5 Gbps	
	6 Gbps	Enabled	3 Gbps	
	1.5 Gbps	Disabled	1.5 Gbps	
3 Gbps	3 Gbps	Disabled	3 Gbps	
	6 Gbps	Enabled	3 Gbps	
	1.5 Gbps		1.5 Gbps	
6 Gbps	3 Gbps	Disabled	3 Gbps	
	6 Gbps		6 Gbps	
	1.5 Gbps		1.5 Gbps	
Negotiated physical link rate	3 Gbps	Disabled	3 Gbps	
	6 Gbps		6 Gbps	

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 241

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

the s/b then the

241

The supported settings bits include the G1 WITHOUT SSC bit, the G1 WITH SSC bit, the G2 WITHOUT SSC bit, the G2 WITH SSC bit, the G3 WITHOUT SSC bit, and the G3 WITH SSC bit.

- A G1 WITHOUT SSC bit set to one indicates that the phy supports G1 (i.e., 1.5 Gbps) without SSC. A G1 WITHOUT SSC bit set to zero indicates that the phy does not support G1 without SSC. If the phy supports SNW-1 and supports SNW-3, then the G1 WITHOUT SSC bit shall be set to one.
- A G1 WITH SSC bit set to one indicates that the phy supports G1 (i.e., 1.5 Gbps) with SSC. A G1 WITH SSC bit set to zero indicates that the phy does not support G1 with SSC.

A G2 WITHOUT SSC bit set to one indicates that the phy supports G2 (i.e., 3 Gbps) without SSC. A G2 WITHOUT SSC bit set to zero indicates that the phy does not support G2 without SSC. If the phy supports SNW-2 and supports SNW-3, then the G2 WITHOUT SSC bit shall be set to one.

A G2 WITH SSC bit set to one indicates that the phy supports G2 (i.e., 3 Gbps) with SSC. A G2 WITH SSC bit set to zero indicates that the phy does not support G2 with SSC.

A G3 WITHOUT SSC bit set to one indicates that the phy supports G3 (i.e., 6 Gbps) without SSC. A G3 WITHOUT SSC bit set to zero indicates that the phy does not support G3 without SSC.

A G3 WITH SSC bit set to one indicates that the phy supports G3 (i.e., 6 Gbps) with SSC. A G3 WITH SSC bit set to zero indicates that the phy does not support G3 with SSC.

Table 101 defines the priority of the supported settings bits.

242

Table 101 — Supported settings bit priorities

Priority	Bit
Highest	G3 WITH SSC bit
	G3 WITHOUT SSC bit
	G2 WITH SSC bit
	G2 WITHOUT SSC bit
	G1 WITH SSC bit
Lowest	G1 WITHOUT SSC bit

If none of the transmitted supported settings bits are equal to their corresponding received supported settings bits, then the phy shall consider a phy reset problem (see 6.7.4.2.4) to have occurred.

The PARITY bit provides for error detection of all the SNW-3 phy capabilities bits. The PARITY bit shall be set to one or zero such that the total number of SNW-3 phy capabilities bits that are set to one is even, including the START bit and the PARITY bit. If the PARITY bit received is incorrect based upon the received SNW phy capabilities bits, then the parity is bad and the phy shall consider a phy reset problem (see 6.7.4.2.4) to have occurred.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 242

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

Delete

"If none of the transmitted supported settings bits are equal to their corresponding received supported settings bits, then the phy shall consider a phy reset problem (see 6.7.4.2.4) to have occurred."

This is untrue now that the UNSUPPORTED_PHY_ATTACHED value is defined. See related Isi-bday comment on page 246.

Table 102 lists some example SNW-3 phy capabilities values.

Table 102 — Example SNW-3 phy capabilities values

Code ^a	Description
80540000h	Down-spreading SSC G1, G2, and G3 with SSC supported
80FC0001h	Down-spreading SSC G1, G2, and G3 with and without SSC supported
80A80000h	G1, G2, and G3 without SSC supported
C0FC0000h	Center-spreading SSC G1, G2, and G3 with and without SSC supported
C9FC0000h	Center-spreading SSC Requested 3 Gbps logical link rate G1, G2, and G3 with and without SSC supported
C8F00001h	Center-spreading SSC Requested 1.5 Gbps logical link rate G1 and G2 with and without SSC supported
a Expressed as	s a 32-bit value with bit 0 (i.e., the START bit) as the MSB

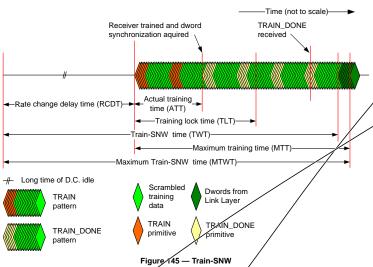
and bit 31 as the LSB (i.e., the PARITY bit).

6.7.4.2.3.4 Train-SNW

Figure 145 defines the Train-SNW, including:

- a) maximum Train-SNW window time (MTWT);
- b) rate change delay time (RCDT);
 c) maximum train time (MTT);
 d) train lock time (TLT); and

Page: 243


Author: RElliott Subject: Highlight Date: 7/12/2008 12:37:58 PM -07'00'

bit 0 (i.e., the START bit) as the MSB and bit 31 as the LSB

byte 0 bit 7 (i.e., the START bit) as the MSB and byte 3 bit 0 as the LSB

since the phy capabilities bits are now described as a 4-byte structure, not a series of 32 bits numbered 0 through 31

e) actual training time (ATT).

The Train-SNW utilizes TRAIN and TRAIN DONE (see 7.2) to create training patterns, defined in table 103.

Table 103 — Training patterns

Training pattern	Description
TRAIN pattern	Sequence of: 1) TRAIN primitive sequence; and 2) 58 dwords set to 00000000h that are transmitted scrambled and 8b10b encoded.
TRAIN_DONE pattern	Sequence of: 1) TRAIN_DONE primitive sequence; and 2) 58 dwords set to 00000000h that are transmitted scrambled and 8b10b encoded.

The scrambler is the same as that defined for the link layer (see 7.6) and shall be initialized at the end of RCDT. The scrambler shall not be re-initialized for the remainder of the Train-SNW.

The phy shall start transmitting TRAIN patterns at the end of RCDT. The first TRAIN pattern may have either starting disparity. The number of TRAIN patterns transmitted is determined by the time required for the phy's receiver to complete training and acquire dword synchronization. The phy shall transmit at least one TRAIN

If the phy's receiver is trained and acquires dword synchronization before TLT, then the phy shall stop transmitting TRAIN patterns and start transmitting TRAIN DONE patterns. The phy shall transmit a minimum of four TRAIN_DONE patterns.

If the phy:

a) transmits four or more TRAIN_DONE patterns; and

Page: 244

Author: hpq-relliott Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00' CACCEPT - DONE

> reword sentence as: forms training patterns using ...

Author: pmcs-tsymons

Date: 5/19/2008 7:14:06 AM -07'00'

ACCEPT - DONE (yes, transmission of a TRAIN/TRAIN_DONE pattern should be consider atomic and not interrupted. Adding "after completing transmission of the current TRAIN [or TRAIN_DONE] pattern" in two places.)

When a receiver detects either TRAIN or TRAIN_DONE the text is unclear whether the transmitter should complete transmitting an entire TRAIN or TRAIN_DONE pattern, or if it should immediately start to transmit the next state pattern (after transmitting only a partial TRAIN or TRAIN_DONE pattern).

I believe that the intention is that a pattern should always be transmitted in it's entirety before transitioning to the next state. The following text includes suggested changes (in blue) to clarify the text.

6.7.4.2.3.4 Train-SNW

The Train-SNW utilizes TRAIN and TRAIN DONE (see 7.2) to create training patterns, defined in table 103. --Table 103

<<add: Each pattern shall be completely transmitted before another pattern or primitive is started. >>

The scrambler is the same as that defined for the link layer (see 7.6) and shall be initialized at the end of RCDT. The scrambler shall not be re-initialized for the remainder of the Train-SNW.

The phy shall start transmitting TRAIN patterns at the end of RCDT. The first TRAIN pattern may have either starting disparity. The number of TRAIN patterns transmitted is determined by the time required for the phy's receiver to complete training and acquire dword synchronization. The phy shall transmit at least one TRAIN pattern.

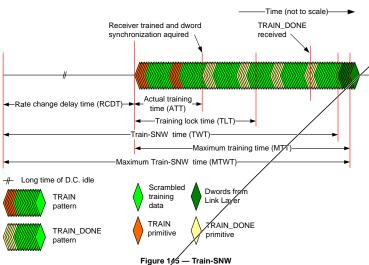
If the phy's receiver is trained and acquires dword synchronization before TLT, then the phy shall stop transmitting TRAIN patterns and start transmitting TRAIN DONE patterns. The phy shall transmit a minimum of four TRAIN DONE patterns. If the phy:

- a) transmits four or more TRAIN_DONE patterns; and
- b) receives a minimum of one TRAIN_DONE before MTT,

then the phy shall:

- a) stop transmitting TRAIN DONE patterns << add: when the current pattern is complete; >>
- b) start transmitting dwords from the link layer; and
- c) consider the Train-SNW to be valid.

If the phy does not receive TRAIN_DONE before MTT and transmit four or more TRAIN_DONE patterns, then it shall consider the Train-SNW to be invalid


Author: intc-mseidel

REJECT (the point of the training sequence is not to provide a precise sequence of known bits that the receiver examines one-byone. The point is to provide wide spectral content that helps a DFE tune quickly and generally - similar to the tuning it continues to use after training completes, but without worry (yet) that bit errors will cause problems. Either starting disparity suffices for that purpose. The fact that the scrambling continues across the data for all the patterns bolsters this; the first bits are unlikely to be received properly, so the receiver would have trouble doing a bit-by-bit comparison.)

The training sequence is not unique due to an unknown initial running disparity and an unspecified treatment of the random scrambled data during the TRAIN and TRAIN_DONE primitives. The paragraph following Table 103 should add something like "The scrambler shall not run during TRAIN or TRAIN DONE primitives; the bit pattern produced during the Train-SNW window shall be the same as a continuous scrambled data pattern with TRAIN and TRAIN_DONE primitives inserted at the proper positions." In addition, the next paragraph (second sentence) should change "pattern may have either starting disparity" to "pattern shall start with positive running disparity".

Comments from page 244 continued on next page

e) actual training time (ATT).

The Train-SNW utilizes TRAIN and TRAIN_DONE (see 7.2) to create training patterns, defined in table 103.

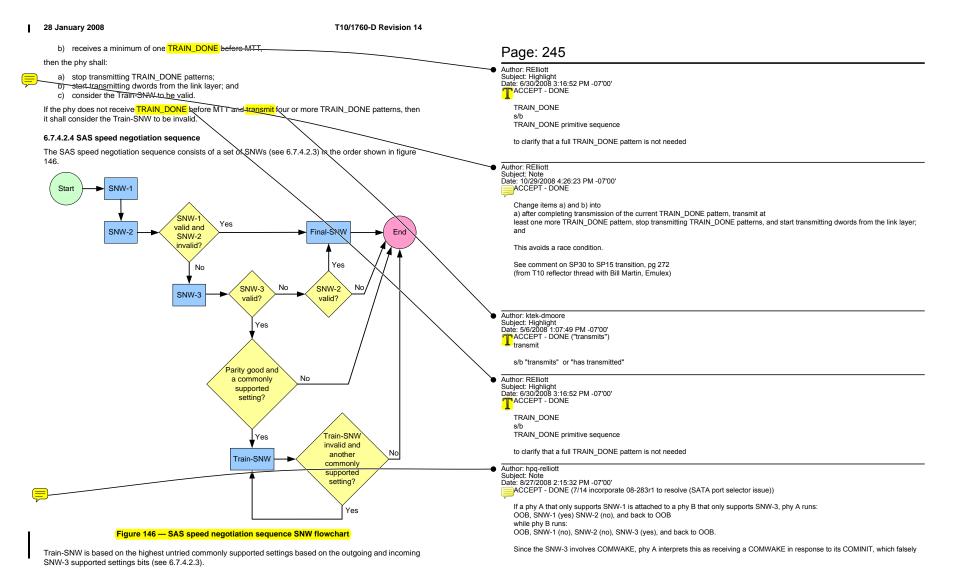
Table 103 — Training patterns

Training pattern	Description
TRAIN pattern	Sequence of: 1) TRMN primitive sequence; and 2) 55 dwords set to 00000000h that are transmitted scrambled and 8b10b encoded.
TRAIN_DONE pattern	Stquence of: 1) TRAIN_DONE primitive sequence; and 2) 58 dwords set to 00000000h that are transmitted scrambled and 8b10b encoded.

The scrambler is the same as that defined for the link layer (see 7.6) and shall be initialized at the end of RCDT. The scrambler shall not be re-initialized for the remainder of the Train-SNW.

The phy shall start transmitting TRAIN patterns at the end of RCDT. The first TRAIN pattern may have either starting disparity. The number of TRAIN patterns transmitted is determined by the time required for the physic receiver to complete training and acquire dword synchronization. The phy shall transmit at least one TRAIN

If the phy's receiver is trained and acquires dword synchronization before TLT, then the phy shall stop transmitting TRAIN patterns and start transmitting TRAIN_DONE patterns. The phy shall transmit a minimum of four TRAIN_DONE patterns.


If the phy:

a) transmits four or more TRAIN_DONE patterns; and

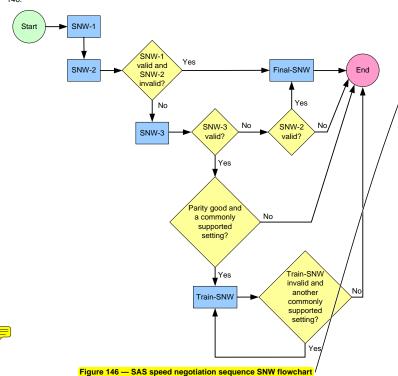
Author: hpq-relliott Subject: Note Date: 5/19/2008 7:01:12 AM -07'00'

ACCEPT - DONE (as "The phy shall not perform pattern comparison on the data dwords in the training pattern.")

The phy shall not perform pattern comparison on the incoming TRAIN pattern and TRAIN DONE pattern to train and acquire dword

28 January 2008 T10/1760-D Revision 14

b) receives a minimum of one TRAIN_DONE before MTT, then the phy shall:



- a) stop transmitting TRAIN_DONE patterns;
- b) start transmitting dwords from the link layer; and
- c) consider the Train-SNW to be valid.

If the phy does not receive TRAIN_DONE before MTT and transmit four or more TRAIN_DONE patterns, then it shall consider the Train-SNW to be invalid.

6.7.4.2.4 SAS speed negotiation sequence

The SAS speed negotiation sequence consists of a set of SNWs (see 6.7.4.2.3) in the order shown in figure 146.

Train-SNW is based on the highest untried commonly supported settings based on the outgoing and incoming SNW-3 supported settings bits (see 6.7.4.2.3).

245

Working Draft Serial Attached SCSI - 2 (SAS-2)

identifies a SATA port selector. Phy A's ATTACHED SATA PORT SELECTOR bit will be set incorrectly in the SMP DISCOVER response.

When phy B runs SNW-1 again and sends COMINIT, that should cause phy A to realize that a SAS device is attached, not a SATA device. However, they may keep repeating this forever.

In 7.11, rule d) causes a Broadcast (Change) when that bit toggles from 0 to 1, so infinite Broadcast (Changes) will result at the hotplug timeout intervals.

Author: intc-mseidel

Aution: Interniseder
Subject: Highlight
Date: 5/19/2008 7:26:27 AM -07'00'

TREJECT (this flowchart just shows the possible orders in which the SNWs are performed. Once they are all performed, whether it was considered successful or not is beyond the scope of the flowchart.) was considered successful or not is beyond the scope of the flowchart.)

This figure should indicate where the phy reset problems occur, and an additional decision diamond should be added between the Final-SNW box and the End circle.

T10/1760-D Revision 14 28 January 2008 If a Train-SNW is invalid and there are additional, untried, commonly supported settings exchanged during Page: 246 SNW-3, then a new Train-SNW shall be performed based on the next highest, untried, commonly supported Author: Isi-bday Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' A phy reset problem occurs if: -TACCEPT - DONE settings a) after SNW-3, if SNW-1, SNW-2, and SNW-3 are all invalid b) after Final-SNW, if Final-SNW is invalid; s/b c) after SNW-3, if SNW-3 is valid and: setting A) the parity is bad; or Author: RElliott Subject: Cross-Out B) there are no commonly supported se Date: 6/30/2008 3:16:52 PM -07'00' d) after a Train-SNW, if the Train-SNW is invalid and the are no additional, untried, commonly supported settings. Phy reset problems terminate the SAS speed negotiation sequence and are counted and reported in the PHY Author: RElliott RESET PROBLEM COUNT field in the SMP REPORT PHY ERROR LOS page (see 10:4.3.11) and the Subject: Cross-Out Protocol-Specific Port log page (see 10.2.8.1). ACCEPT - DONE Figure 147 shows speed negotiation between a phy A and phy B where phys participate in: Delete "after SNW-3, if SNW-1, SNW-2, and SNW-3 are all invalid;" to remedy hpq-relliott comment 1) SNW-1, supported by phy A but not by phy B; 2) SNW-2, supported by both phys; Author: hpq-relliott Subject: Note Date: 5/19/2008 2:40:08 PM -07'00' 3) SNW-3, supported by phy A but not by phy B; and 4) Final-SNW negotiating 3 Gbps. ACCEPT - DONE (Deleting row a). The state machine transitions from SP14:SAS_Fail to SP8:SAS_Start, which chooses the Phy A and phy B detect: UNSUPPORTED_PHY_ATTACHED VALUE and transitions to SP1:00B_COMINIT. a) SNW-1 invalid; (Deleting row c)B), which also results in the UNSUPPORTED_PHY_ATTACHED value. See Isi-bday comment. Deleted one other SNW-2 valid; and sentence related to that incorrect notion.) SNW-3 invalid, Failure to find any supported speed (either by row a) or by row c)B)) is not supposed to be a phy reset problem; that just means two incompatible devices are attached, which is not the same as a broken device being attached or the link having reliability problems (the original meaning). That could be counted with a new counter Author: Isi-gpenokie Subject: Cross-Out Date: 6/25/2008 8:09:59 AM -07'00' TexpEJEC1 (the "and: "is conjoining the phrase "if SNW-3 is valid" with the A)B) list. Either A or B can be chosen. The "or" is conjoining a)b)c)d). An Isi-bday comment gets rid of B) - if that is accepted, then this will become simpler, but the "and" will remain) This << and >> should be deleted as right now it reads << and: or >> Author: Isi-bday Subject: Cross-Out Date: 5/19/2008 1:51:30 PM -07'00' ACCEPT - DONE (also added comment on page 242 to delete a sentence with similar intentions) there are no commonly supported settings This case is an UNSUPPORTED_PHY_ATTACHED in SP state machine now. So not a reset problem.

Author: RElliott

smallcaps

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE
PHY RESET PROBLEM COUNT field

Comments from page 246 continued on next page

If a Train-SNW is invalid and there are additional, untried, commonly supported settings exchanged during SNW-3, then a new Train-SNW shall be performed based on the next highest, untried, commonly supported (settings)

A phy reset problem occurs if:

- a) after SNW-3, if SNW-1, SNW-2, and SNW-3 are all invalid;
- b) after Final-SNW, if Final-SNW is invalid;
- c) after SNW-3, if SNW-3 is valid and:
 - A) the parity is bad; or
 - B) there are no commonly supported settings;

01

 d) after a Train-SNW, if the Train-SNW is invalid and there are no additional, untried, commonly supported settings.

Phy reset problems terminate the SAS speed negotiation sequence and are counted and reported in the PHY RESET PROBLEM COUNT field in the SMP REPORT PHY ERROR LOG page (see 10.4.3.11) and the Protocol-Specific Port log page (see 10.2.8.1).

Figure 147 shows speed negotiation between a phy A and phy B where phys participate in:

- 1) SNW-1, supported by phy A but not by phy B;
- 2) SNW-2, supported by both phys;
- 3) SNW-3, supported by phy A but not by phy B; and
- 4) Final-SNW negotiating 3 Gbps.

Phy A and phy B detect:

- a) SNW-1 invalid;
- b) SNW-2 valid; and
- c) SNW-3 invalid,

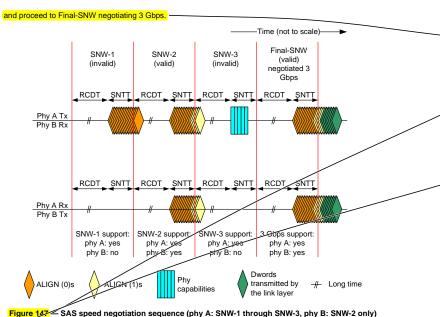


Figure 148 shows speed negotiation between a phy A and a phy B where both phys participate in:

- 1) SNW-1, supported by both phys;
- 2) SNW-2, supported by both phys;
- 3) SNW-3, supported by both phys; and
- 4) Train-SNW.

Phy A and phy B detect:

- a) SNW-1 valid;
- b) SNW-2 valid; and
- c) SNW-3 valid,

Page: 247

Author: Isi-gpenokie Subject: Highlight Date: 8/28/2008 12:57:04 PM -07'00'

ACCEPT - DONE (change to "After...a)b)c), then the phys proceed")

that makes no sense. The 1)-4) list gives the order. This discusses the results within that order)

This << and proceed to Final-SNW negotiating 3 Gbps. >> should be item d in the above a,b,c list.

Author: intc-mseidel

Subject: Highlight Date: 5/19/2008 2:50:47 PM -07'00'

TREJECT (Figure C.2 shows a phy supporting SNW-1/2/3 negotiating with a phy supporting SNW-1/2. This figure (147) shows a SAS-1.1 phy only supporting SNW-2.)

There should be a SAS speed negotiation sequence diagram indicating how the SAS-2 protocol interacts with legacy SAS-1.1 devices. It could also indicate the interaction with legacy phys.

Author: RElliott

Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Make figure 148 the first example, since it is the simplest (both phys support everything)



Figure 148 — SAS speed negotiation sequence (both phys SNW-1 through SNW-3)

Page: 248

Author: Isi-bday
Subject: Cross-Out
Date: 57/19/2008 2:51:55 PM -07'00'
TREJECT (that word is used in the intro to each of these figures)
negotiating

Author: Isi-gpenokie
Subject: Highlight
Date: 8/27/2008 2:19:40 PM -07'00'
TACCEPT - DONE (change to "After...a)b)c), then the phys proceed" in all such paragraphs)
This << and proceed to Train-SNW negotiating based on SNW-3 phy capabilities bits.
>> should be item d in the above a,b,c list.

28 January 2008 T10/1760-D Revision 14

Figure 149 shows a speed negotiation sequence where phy B does not achieve dword synchronization during Final-SNW, creating a phy reset problem. If this occurs, the handshake is not complete and the phy reset sequence is retried.

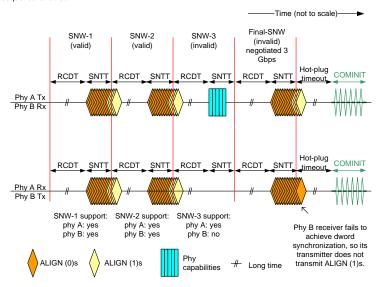


Figure 149 — SAS speed negotiation sequence - phy reset problem in Final-SNW

Page: 249

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

the s/b then the

Figure 150 shows a speed negotiation sequence in which a phy reset problem is encountered in SNW-3 because the phys do not exchange the phy capabilities bits properly (e.g., due to a parity error).

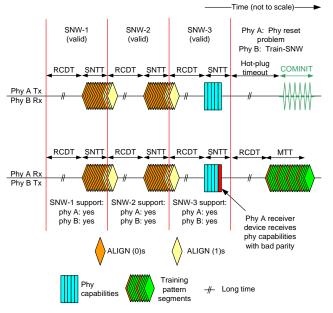


Figure 150 — SAS speed negotiation sequence - phy reset problem in SNW-3

Figure 151 shows a speed negotiation sequence in which a phy reset problem is encountered in Train-SNW because either phy does not complete training within the MTT interval of several training windows exhausting all commonly supported settings exchanged in SNW-3.

250

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 250

Author: Isi-bday Subject: Highlight Date: 5/19/2008 5:15:31 PM -07'00'

ACCEPT - DONE (as "This example assumes that only one commonly supported setting is exchanged in the phy capabilities bits.")

This figure doesn't show several training windows. Suggest:

... within the MTT interval. This figure illustrates when only a single commonly supported setting was exchanged in SNW-3.

28 January 2008 T10/1760-D Revision 14

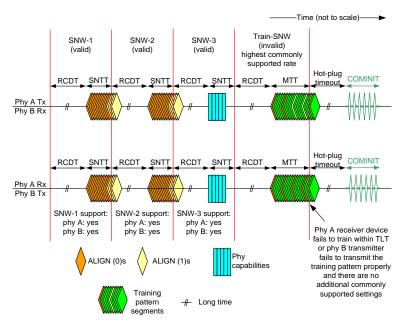


Figure 151 — SAS speed negotiation sequence - phy reset problem in Train-SNW

This page contains no comments

Figure 152 shows two Train-SNWs, if supported settings bits are exchanged that contain more than one commonly supported setting and the Train-SNW using the highest commonly supported setting is invelid, a second Train-SNW is performed using the next-highest commonly supported setting.

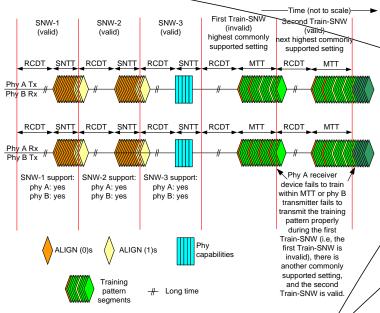
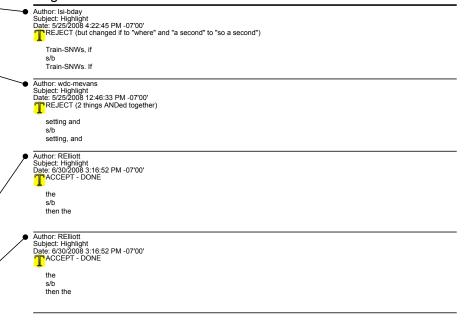


Figure 152 — SAS speed negotiation sequence - multiple Train-SNWs

For more examples of speed negotiations, see Annex C.

6.7.4.3 Multiplexing sequence

If SNW-3 indicates multiplexing (see 6.10) is enabled (see table 100 in 6.7.4.2.3.3), the phy shall transmit the multiplexing sequence immediately after the speed negotiation sequence.


The multiplexing sequence is:

- 1) MUX (LOGICAL LINK 0);
- 2) MUX (LOGICAL LINK 1);
- 3) MUX (LOGICAL LINK 0);
- 4) MUX (LOGICAL LINK 1);
- 5) MUX (LOGICAL LINK 0); and
- 6) MUX (LOGICAL LINK 1).

The phy shall not transmit deletable primitives for physical link rate tolerance management (see 7.3) during the multiplexing sequence.

If SNW-3 indicates multiplexing is not enabled, the phy shall not transmit the multiplexing sequence.

Page: 252

28 January 2008 T10/1760-D Revision 14

The phy shall assign the incoming logical links to its logical phys based on the first MUX primitive it receives:

- a) MUX (LOGICAL LINK 0) indicates the position of logical link 0 and indicates the next dword is in logical link 1: or
- b) MUX (LOGICAL LINK 1) indicates the position of logical link 1 and indicates the next dword is in logical link 0.

The phy shall handle errors during the multiplexing sequence (i.e., after receiving the first MUX primitive) as follows:

- a) If the phy loses dword synchronization, it shall restart the link reset sequence rather than attempt to reestablish dword synchronization;
- b) If the phy receives a dword that is not a MUX primitive before receiving the MUX primitive expected in that position, it shall discard the dword;
- c) If the phy receives an invalid dword it shall discard the dword; and
- d) If the pay receives a MUX paintive that does not match the MUX primitive expected in that position (i.e., it receives MUX (LOGICAL LINK 1) on logical link 0 or reserves MUX (LOGICAL LINK 0) on logical link 1), it shall restart the link reset sequence.

6.7.5 Phy reset sequence after devices are attached

Since SATA and SAS signal cable connected do not include power lines, it is not possible to detect the physical insertion of the signal cable connector onto a plug. Non-cabled environments may similarly not have a way to detect physical insertion of a device. As a result, every time a phy resex-sequence is originated:

- a) expander phys that are enabled but not active shall scignate a new phy reset sesuence repeatedly, with no more than a hot-plug timeout (see table 93 in 6.74) between each attempt, but a speed negotiation sequence completes successfully;
- b) SAS initiator phys should originate a new phy reset sequence after every hot-plug timeout; and
- c) SAS target phys should not originate a new phy reset sequence after their first attempt.

```
Page: 253
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
    If
    s/b
    (part of global change to lowercase a)b)c) entries)
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 12:48:19 PM -07'00'
 REJECT (first noun/subject convention, but added "then")
    s/b
    then the phy
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
    If
    s/b
    (part of global change to lowercase a)b)c) entries)
Author: wdc-mevans
Author, wide-flevaris
Subject: Highlight
Date: 5/25/2008 12:48:26 PM -07'00'
PREJECT (first noun/subject convention, but added "then")
    s/b
    then the phy
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    s/b
    (part of global change to lowercase a)b)c) entries)
Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 12:48:52 PM -07'00'
```

This should be an << or >> as any one of the items in the list could be happen not all have to happen.

Comments from page 253 continued on next page

ACCEPT - DONE

28 January 2008 T10/1760-D Revision 14

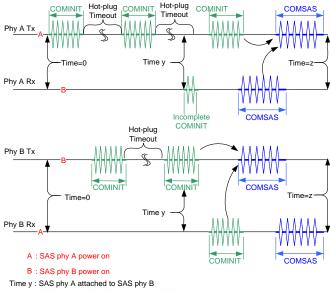
The phy shall assign the incoming logical links to its logical phys based on the first MUX primitive it receives:

- a) MUX (LOGICAL LINK 0) indicates the position of logical link 0 and indicates the next dword is in logical link 1; or
- b) MUX (LOGICAL LINK 1) indicates the position of logical link 1 and indicates the next dword is in logical link 0.

The phy shall handle errors during the multiplexing sequence (i.e., after receiving the first MUX primitive) as follows:

- a) If the phy loses dword synchronization, it shall restart the link reset sequence rather than attempt to reestablish dword synchronization;
- b) If the phy receives a dword that is not a Math pripative before receiving the MUX primitive expected in that position, it shall discard the dword;
- c) If the phy receives an invalid dword, it snall discard the dword; and
- d) If the phy receives a MUX primitive that does not match the MUX primitive expected in that position (i.e., it receives MUX (LOGICAL LINK 1) on logical link 0 or receives MUX (LOGICAL LINK 0) on logical link 1), it shall restart the link reset sequence.

6.7.5 Phy reset sequence after devices are attached


Since SATA and SAS signal cable connectors do not include power lines, it is not possible to detect the physical insertion of the signal cable connector onto a plug. Non-cabled environments may similarly set have a way to detect physical insertion of a device. As a result, every time a phy reset sequence is originated:

- a) expander phys that are enabled but not active shall originate a new phy reset sequence repeatedly, with no more than a hot-plug timeout (see table 93 is 6.7.1) between each attempt, until a speed negotiation sequence completes successfully:
- b) SAS initiator phys should originate a new phy reset sequence after every bot-plug timeout; and
- c) SAS target phys should not originate a new phy reset sequence after their first attempt.

```
Author: wdc-mevans
Adultor: Wide Treatins
Subject: Highlight
Date: 5/25/2008 12:48:31 PM -07'00'
TREJECT (first noun/subject convention, but added "then")
     s/b
     then the phy
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 {\mathbb T}ACCEPT - DONE
     s/b
     (part of global change to lowercase a)b)c) entries)
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 12:48:41 PM -07'00'
 REJECT (first noun/subject convention, but added "then")
    it
     s/b
     then the phy
Author: wdc-mevans
Subject: Highlight
Date: 5/21/2008 4:46:33 PM -07'00'
PREJECT (similarly means the reason is similar to that expressed in the first sentence. Also opens it up to reasons of all sorts.)
     similarly
     s/b
     also
 Author: intc-mseidel
Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'
 TREJECT (T10 style using FrameMaker is to use standard capitalization for such references. Word is only capable of capitalizing such references, but is not an example to follow)
```

"table 93" s/b "Table 93". All such instances of "table" and "figure" that indicate a particular object should be capitalized.

Figure 153 shows how two phys complete the phy reset sequence if the phys are not attached at power on. In this example, phy A and phy B are attached some time before phy B's second hot-plug timeout occurs. Phy B's OOB detection circuitry detects a COMINIT after the attachment, and therefore phy B transmits COMSAS, since it has both transmitted and received a COMINIT. Upon receiving COMSAS, phy A transmits its own COMSAS. The SAS speed negotiation sequence follows.

Time z : SAS phy A and SAS phy B start the SAS speed negotiation sequence

Figure 153 — Hot-plug and the phy reset sequence

6.8 SP (phy layer) state machine

6.8.1 SP state machine overview

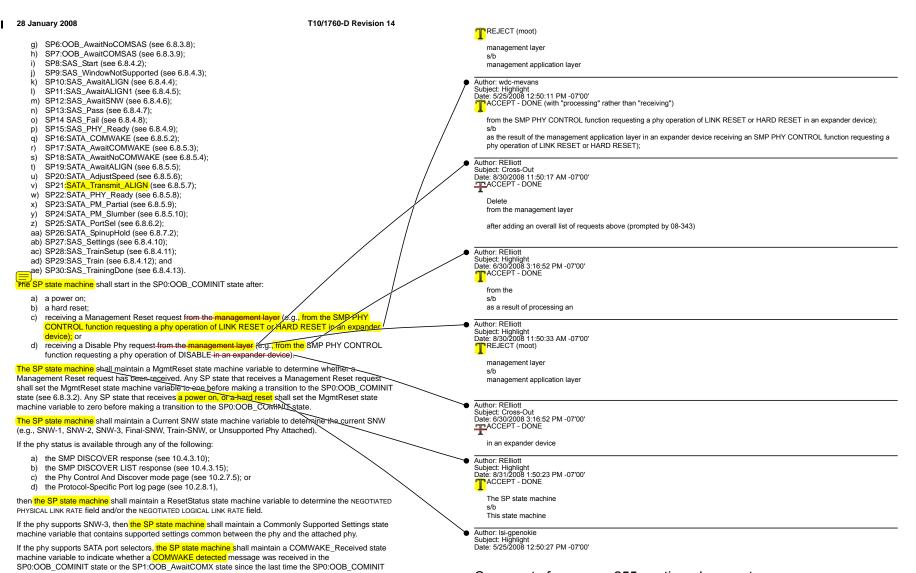
The SP state machine controls the phy reset sequence. This state machine consists of three sets of states:

- a) OOB sequence (OOB) states;
- b) SAS speed negotiation (SAS) states; and
- c) SATA host emulation (SATA) states.

This state machine consists of the following states:

- a) SP0:OOB_COMINIT (see 6.8.3.2)(initial state);
- b) SP1:OOB_AwaitCOMX (see 6.8.3.3);
- c) SP2:OOB_NoCOMSASTimeout (see 6.8.3.4);
- d) SP3:OOB_AwaitCOMINIT_Sent (see 6.8.3.5);
- e) SP4:OOB_COMSAS (see 6.8.3.6);
- f) SP5:OOB_AwaitCOMSAS_Sent (see 6.8.3.7);

This page contains no comments


If the phy supports SATA port selectors, the SP state machine shall maintain a COMWAKE_Received state

SP0:OOB COMINIT state or the SP1:OOB AwaitCOMX state since the last time the SP0:OOB COMINIT

machine variable to indicate whether a COMWAKE detected message was received in the

g) SP6:OOB_AwaitNoCOMSAS (see 6.8.3.8); Page: 255 h) SP7:OOB AwaitCOMSAS (see 6.8.3.9); SP8:SAS Start (see 6.8.4.2): Author: RElliott SP9:SAS_WindowNotSupported (see 6.8.4.3); Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' SP10:SAS AwaitALIGN (see 6.8.4.4); TACCEPT - DONE SP11:SAS_AwaitALIGN1 (see 6.8.4.5); m) SP12:SAS AwaitSNW (see 6.8.4.6); SATA_Transmit_ALIGN n) SP13:SAS_Pass (see 6.8.4.7); o) SP14 SAS Fail (see 6.8.4.8); SATA_TransmitALIGN p) SP15:SAS_PHY_Ready (see 6.8.4.9); Author: RElliott q) SP16:SATA_COMWAKE (see 6.8.5.2); Subject: Note SP17:SATA AwaitCOMWAKE (see 6.8.5.3); Date: 8/30/2008 12:30:15 PM -07'00' SP18:SATA_AwaitNoCOMWAKE (see 6.8.5.4) ACCEPT - DONE SP19:SATA AwaitALIGN (see 6.8.5.5); SP20:SATA_AdjustSpeed (see 6.8,5.6); Add: SP21:SATA Transmit ALIGN (see 6.8.5.7): This state machine receives the following requests from the management application layer or a layer outside the scope of this w) SP22:SATA_PHY_Ready (see 6.8.5.8); a) Management Reset from the management application layer; x) SP23:SATA_PM_Partial (see 6.8.5.9); b) Disable Phy from the management application layer; SP24:SATA_PM_Slumber (see 6.8.5.10) c) Transmit SATA Port Selection Signal from the management application layer; z) SP25:SATA_PortSel (see 6.8.6.2); d) Enter Partial request from the SATA link layer, if any: aa) SP26:SATA_SpinupHold (see £.6.7.2); e) Enter Slumber from the SATA link layer, if any; ab) SP27:SAS_Settings (\$96.8.4.10); f) Exit Partial from the SATA link layer, if any; and ac) SP28:SAS_TrainSetup (see 6.8.4.11); g) Exit Slumber from the SATA link layer, if any. ad) SP29:SAS_Train (see 6.8.4.12); and ae) SP30:SAS_TrainingDone (see 6.8.4.13). prompted by 08-343. The SP state machine shall start in the SP0:OOB_COMINIT state after: Further elucidation could be added in chapter 4 about how, if SP reports that SATA is attached: 1, a SAS device morphs into a SATA host (the SATA link layer defined in SATA 2.6 interfaces with SP) a) a power on; 2. an expander device puts its phy under control of a SATA host in an STP/SATA bridge (whose SATA link layer interfaces with SP) b) a hard reset: c) receiving a Management Reset request from the management layer to the SMP PHY
CONTROL function requesting a phy operation of LINK RESET or HAND RESET an expander but that is ignored for now. d) receiving a Disable Phy request from the management layer (e.g., from the SMP PHY CONTROL function requesting a phy operation of DISABLE-in an expander device). Author: RElliott Subject: Highlight
Date: 8/30/2008 12:30:08 PM -07'00' The SP state machine shall maintain a MgmtReset state machine variable to determine whether a Management Reset request has been received. Any SP state that receives a Management Reset request ACCEPT - DONE shall set the MgmtReset state machine variable to one before making a transition to the SP0:008_COMINIT state (see 6.8.3.2). Any SP state that receives a power on, or a hard reset shall set the MgmtRese state The SP state machine machine variable to zero before making a transition to the SP0:OOB_COMINIT state. This state machine The SP state machine shall maintain a Current SNW state machine variable to determine the current SNW (e.g., SNW-1, SNW-2, SNW-3, Final-SNW, Train-SNW, or Unsupported Phy Attached). Author: RElliott Subject: Cross-Out If the phy status is available through any of the following: Date: 8/30/2008 11:50:12 AM -07'00' a) the SMP DISCOVER response (see 10.4.3.10); b) the SMP DISCOVER LIST response (see 10.4.3.15); c) the Phy Control And Discover mode page (see 10.2.7.5); or from the management layer d) the Protocol-Specific Port log page (see 10.2.8.1), after adding an overall list of requests above (prompted by 08-343) then the SP state machine shall maintain a ResetStatus state machine variable to determine the NEGOTIATED PHYSICAL LINK RATE field and/or the NEGOTIATED LOGICAL LINK RATE field. Author: RElliott If the phy supports SNW-3, then the SP state machine shall maintain a Commonly Supported Settings state Subject: Highlight Date: 8/30/2008 11:50:25 AM -07'00' machine variable that contains supported settings common between the phy and the attached phy.

Comments from page 255 continued on next page

g) SP6:OOB_AwaitNoCOMSAS (see 6.8.3.8); h) SP7:OOB AwaitCOMSAS (see 6.8.3.9);

i) SP8:SAS Start (see 6.8.4.2):

SP9:SAS_WindowNotSupported (see 6.8.4.3);

SP10:SAS AwaitALIGN (see 6.8.4.4);

SP11:SAS_AwaitALIGN1 (see 6.8.4.5);

m) SP12:SAS AwaitSNW (see 6.8.4.6);

n) SP13:SAS_Pass (see 6.8.4.7);

o) SP14 SAS Fail (see 6.8.4.8);

p) SP15:SAS_PHY_Ready (see 6.8.4.9);

q) SP16:SATA_COMWAKE (see 6.8.5.2);

SP17:SATA AwaitCOMWAKE (see 6.8.5.3);

SP18:SATA_AwaitNoCOMWAKE (see 6.8.5.4);

SP19:SATA AwaitALIGN (see 6.8.5.5);

SP20:SATA_AdjustSpeed (see 6.8.5.6);

SP21:SATA Transmit ALIGN (see 6.8.5.7):

w) SP22:SATA_PHY_Ready (see 6.8.5.8);

x) SP23:SATA_PM_Partial (see 6.8.5.9);

y) SP24:SATA_PM_Slumber (see 6.8.5.10);

z) SP25:SATA_PortSel (see 6.8.6.2);

aa) SP26:SATA_SpinupHold (see 6.8.7.2);

ab) SP27:SAS_Settings (see 6.8.4.10);

ac) SP28:SAS_TrainSetup (see 6.8.4.11);

ad) SP29:SAS_Train (see 6.8.4.12); and ae) SP30:SAS_TrainingDone (see 6.8.4.13).

Fig. SP state machine shall start in the SP0:OOB_COMINIT state after:

a) a power on;

b) a hard reset;

c) receiving a Management Reset request from the management layer (e.g., from the SMP PHY CONTROL function requesting a phy operation of LINK RESET or HARD RESET in an expanded device); or

d) receiving a Disable Phy request from the gement layer /e.g., from the SMP PHY CONTROL function requesting a phy operation of DISABLE in an expander device).

The SP state machine shall maintain a MgmtReset state machine variable to determine whether a Management Reset request has been received. Any SP state that receives a Management Reset request shall set the MgmtReset state machine variable to one before making a transition to the SP0:OOB_COM/NIT state (see 6.8.3.2). Any SP state that receives a power on, or a hard reset shall set the MgmtReset state machine variable to zero before making a transition to the SP0:OOB_COMINIT state.

The SP state machine shall maintain a Current SNW state machine variable to determine the current SNW (e.g., SNW-1, SNW-2, SNW-3, Final-SNW, Trzin-SNW, or Unsupported Phy Attached).

If the phy status is available through any of the following:

a) the SMP DISCOVER response (see 10.4.3.10);

b) the SMP DISCOVER LIST response (see 10.4.3.15);

c) the Phy Control And Discover mode page (see 10.2.7.5); or

d) the Protocol-Specific Port log page (see 10.2.8.1),

then the SP state machine shall maintain a ResetStatus state machine variable to determine the NEGOTIATED PHYSICAL LINK RATE field and/or the NEGOTIATED LOGICAL LINK RATE field.

If the phy supports SNW-3, then the SP state machine shall maintain a Commonly Supported Settings state machine variable that contains supported settings common between the phy and the attached phy.

If the phy supports SATA port selectors, the SP state machine shall maintain a COMWAKE_Received state machine variable to indicate whether a COMWAKE detected message was received in the SP0:OOB COMINIT state or the SP1:OOB AwaitCOMX state since the last time the SP0:OOB COMINIT

Working Draft Serial Attached SCSI - 2 (SAS-2)

TACCEPT - DONE

This << a power on, or a hard reset >> should be << a power on or a hard reset >>. Delete the comma.

Author: RElliott Subject: Highlight
Date: 8/30/2008 2:01:00 PM -07'00'

The SP state machine

This state machine

Author: RElliott Subject: Highlight Date: 8/30/2008 2:04:54 PM -07'00' TACCEPT - DONE

> the SP state machine this state machine

Author: RElliott Subject: Highlight Date: 8/30/2008 2:04:05 PM -07'00' ACCEPT - DONE

> the SP state machine this state machine

Author: RElliott Subject: Highlight
Date: 8/30/2008 2:04:15 PM -07'00'
ACCEPT - DONE

> the SP state machine then this state machine

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

COMWAKE detected COMWAKE Detected state was entered, and the SP state machine shall transition to the SP25:SATA_PortSel state whenever it receives a Transmit SATA Port Selection Signal request.

The SP state machine sends the following messages to the SP_DWS state machine (see 6.9):

- a) Start DWS; and
- b) Stop DWS.

The SP state machine seceives the following messages from the SP_DWS state machine:

- a) DWS Lost; andb) DWS Reset.
- The SP state machine shall maintain the timers listed in table 104.

Table 104 — SP state machine timers

Timer	Initial value
COMSAS Detect Timeout timer	COMSAS detect timeout (see table 87 in 6.6.1)
Await ALIGN Timeout timer	Await ALIGN timeout (see table 94-in 6.7.2.2)
Hot-Plug Timeout timer	Hot plug timeout (see table 93 in 6.7.1)
RCDT timer	RCDT (see table 95 in 6.7.4.2)
SNLT timer	SNLT (see table 95 in 6.7.4.2)
SNTT timer	SNTT (see table 95 in 6.7.4.2)
TLT timer	TLT (see table 95 in 6.7.4.2)
MTT timer	MTT (see table 95 in 6.7.4.2)

6.8.2 SP transmitter and receiver

The SP transmitter transmits OOB signals and dwords on the physical link based on messages from the SP state machine (see 6.8).

The SP transmitter receives the following messages from the SP state machine:

- a) Transmit COMINIT;
- b) Transmit COMSAS;
- c) Transmit COMWAKE;
- d) Transmit SATA Port Selection Signal;
- e) Transmit D10.2;
- f) Set Rate with a Physical Link Rate argument, and an SSC On or an SSC Off argument;
- g) Transmit ALIGN with an argument indicating the specific type (e.g., Transmit ALIGN (0));
- h) Transmit Phy Capabilities Bits;
- i) Transmit TRAIN Pattern;
- j) Transmit TRAIN_DONE Pattern; and
- k) Transmit MUX Sequence.

When not otherwise instructed, the SP transmitter transmits D.C. idle.

Upon receiving a Transmit MUX Sequence message, the SP transmitter transmits:

- 1) MUX (LOGICAL LINK 0);
- 2) MUX (LOGICAL LINK 1);
- 3) MUX (LOGICAL LINK 0);
- 4) MUX (LOGICAL LINK 1);
- 5) MUX (LOGICAL LINK 0); and
- 6) MUX (LOGICAL LINK 1).

The SP transmitter shall complete any physical link rate change requested with the Set Rate message within RCDT (see table 95 in 6.7.4.2).

Page: 256 Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:24:56 PM -07'00' REJECT (but split into an a)b) list which might help) s/b the SP state machine Author: RElliott Subject: Highlight
Date: 8/30/2008 2:04:37 PM -07'00'
ACCEPT - DONE the SP state machine this state machine Author: RElliott Subject: Highlight Date: 8/30/2008 2:00:43 PM -07'00' ACCEPT - DONE The SP state machine s/b This state machine Author: RElliott Subject: Highlight
Date: 8/30/2008 2:00:46 PM -07'00'
ACCEPT - DONE The SP state machine This state machine Author: RElliott Subject: Highlight
Date: 8/30/2008 2:00:50 PM -07'00' The SP state machine This state machine Author: RElliott Subject: Highlight Date: 8/31/2008 5:52:13 PM -07'00' TACCEPT - DONE

1 Set Rate with a Physical Link Rate argument, and an SSC On or an SSC Off argument;

f) Set Physical Link Rate with an argument specifying the physical link rate (e.g., 1.5 Gbps, 3 Gbps, or 6 Gbps);

Split this into:

g) Set SSC with an argument of On or Off:

The SP transmitter sends the following messages to the SP state machine:

- a) COMINIT Transmitted:
- b) COMSAS Transmitted;
- c) COMWAKE Transmitted:
- SATA Port Selection Signal Transmitted;
- TRAIN DONE Pattern Transmitted:
- Phy Capabilities Bits Transmitted; and
- g) MUX Sequence Transmitted.

The SP receiver receives OOB signals and dwords from the physical link and sends messages to the SP state machine indicating what it has received.

The SP receiver receives the following messages from the SP state machine:

- a) Set Rate with a Physical Link Rate argument, and an SSC On argument or an SSC Off argument;
- b) Start Training; and
- c) Abort Training.

The SP receiver sends the following messages to the SP state machine:

- COMINIT Detected;
- b) COMSAS Detected;
- c) COMWAKE Detected;
- COMSAS Completed;
- e) COMWAKE Completed:
- ALIGN Received with an argument indicating the specific type (e.g., ALIGN Received (0));
- g) Phy Capabilities Bits Received with arguments indicating the supported settings bits received;
- h) Training Completed;
- TRAIN_DONE Received; and
- j) Dword Received.

The ALIGN Received, Dword Received, and TRAIN DONE Received messages are only sent when the SP_DWS state machine has achieved dword synchronization.

For SATA speed negotiation, the ALIGN Received (0) message includes an argument containing the physical link rate at which the ALIGN (0) primitives were detected. For SAS speed negotiation, only ALIGNs at the physical link rate specified by the last Set Rate message received by the SP transmitter cause ALIGN Received messages.

The SP transmitter relationship to other transmitters is defined in 4.3.2. The SP receiver relationship to other receivers is defined in 4.3.3.

Page: 257

Author: wdc-mevans

Subject: Highlight Date: 5/21/2008 4:51:57 PM -07'00'

ACCEPT - DONE (deleted sentence, incorporating the concepts into the "SP receiver sends" sentence below as "The SP receiver sends the following messages to the SP state machine indicating OOB signals and dwords received from the physical link". This matches the wording used in all the other XYZ receiver sections.)

s/b

the SP receiver

Author: RElliott Subject: Cross-Out Date: 8/31/2008 5:37:39 PM -07'00'

ACCEPT - DONE

Delete:

and an SSC On argument or an SSC Off argument;

The receiver (unlike the transmitter) doesn't care if SSC is on or off

Author: RElliott

Subject: Highlight Date: 8/31/2008 5:49:05 PM -07'00'

TCACCEPT - DONE

Set Rate with a Physical Link Rate argument

Set Physical Link Rate with an argument specifying the physical link rate (e.g., 1.5 Gbps, 3 Gbps, or 6 Gbps);

Author: RElliott

Date: 8/31/2008 5:38:20 PM -07'00'

Add "Receive Phy Capabilities Bits" which will be sent by SP when it starts RCDT

Author: RElliott Subject: Note

Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

The SP receiver receives the following messages from the SP_DWS state machine (see 6.9):

- a) Sync Acquired; and
- b) Sync Lost.

Author: elx-bmartin

Subject: Highlight

Subject: Highlight

Date: 9/1/2008 12:17:41 PM -07'00'

"TACCEPT - DONE (7/15 add a message at the beginning of RCDT called Receive Phy Capabilities Bits. When the SP receiver gets TACCEPT - DIONE (7/15 add a message at the Deginining of ROD) to Rod (avoiding need for SP to send Start and Stop messages))

g) Phy Capabilities Bits Received with arguments indicating the supported settings bits received;

There is no text or diagrams that indicate how this message is generated by the SP receiver. There are qualifications on when the SP receiver should be looking for the Phy Capabilities Bits based on the state of the SP state machine.

The SP transmitter sends the following messages to the SP state machine:

- a) COMINIT Transmitted:
- b) COMSAS Transmitted;
- c) COMWAKE Transmitted:
- d) SATA Port Selection Signal Transmitted;
- e) TRAIN DONE Pattern Transmitted:
- Phy Capabilities Bits Transmitted; and
- g) MUX Sequence Transmitted.

The SP receiver receives OOB signals and dwords from the physical lipterand sends messages to the SP state machine indicating what it has received.

The SP receiver receives the following messages from the SP state machine:

- a) Set Rate with a Physical Link Rate argument, and an SSC On argument or an SSC Off argument;
- b) Start Training; and
- c) Abort Training.

The SP receiver sends the following messages to the SP state machine:

- a) COMINIT Detected;
- b) COMSAS Detected;
- c) COMWAKE Detected;
- COMSAS Completed;
- e) COMWAKE Completed:
- ALIGN Received with an argument indicating the specific type (e.g., ALIGN Received (0)); g) Phy Capabilities Bits Received with arguments indicating the supported settings bits received;

- h) Training Completed; TRAIN_DONE Received; and
- j) Dword Received.

The ALIGN Received, Dword Received, and TRAIN DONE Received messages are only sent when the SP_DWS state machine has achieved dword synchronization.

For SATA speed negotiation, the ALIGN Received (0) message includes an argument containing the physical link rate at which the ALIGN (0) primitives were detected. For SAS speed negotiation, only ALIGNs at the physical link rate specified by the last Set Rate message received by the SP transmitter cause ALIGN Received messages.

The SP transmitter relationship to other transmitters is defined in 4.3.2. The SP receiver relationship to other receivers is defined in 4.3.3.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE (added "with an argument of Good Parity or Bad Parity")

Should Phy Capabilities Bits Received return an argument of Good Parity/Bad Parity, Parity Good/Bad, or what?

This is used later on a few times, questioned by Isi-bday

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

when s/b after

Author: RElliott Subject: Highlight
Date: 8/31/2008 5:49:38 PM -07'00'

the last Set Rate message received by the SP transmitter

.. the SP receiver

The SP transmitter and SP receiver each receive the message

and change Set Rate to Set Physical Link Rate

6.8.3 OOB sequence states

6.8.3.1 OOB sequence states overview

Figure 154 shows the OOB sequence states. These states are indicated by state names with a prefix of OOB.

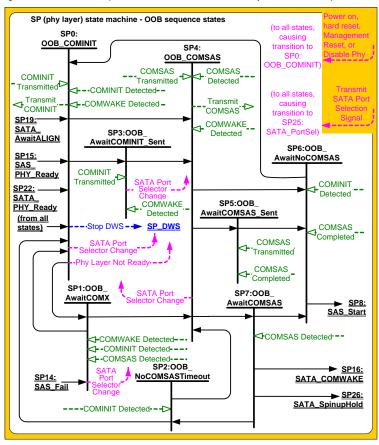


Figure 154 — SP (phy layer) state machine - OOB sequence states

This page contains no comments

T10/1760-D Revision 14

6.8.3.2 SP0:OOB COMINIT state

6.8.3.2.1 State description

This state is the initial state for this state machine.

Upon entry into this state, the phy shall:

- a) set the COMWAKE_Received state machine variable to zero;
- b) send a Stop DWS message to the SP DWS state machine;
- c) send a Phy Layer Not Ready confirmation to the link layer;
- d) set the ATTACHED SATA DEVICE bit to zero in the SMP DISCOVER response (see 10.4.3.10);
- e) if this state was entered due to power on, set the ATTACHED SATA PORT SELECTOR bit to zero in the SMP DISCOVER response (see 10.4.3.10); and
- f) if this state was not entered because of a Disable Phy request, send a Transmit COMINIT message to the SP transmitter.

If this state was entered because of a Disable Phy request, then upon entry into this state, this state shall:

- a) ignore COMINIT Detected messages until this state is re-entered due to a power on, hard reset, or Management Reset request; and
- b) set the ResetStatus state machine variable to DISABLED.

If this state was entered due to power on or hard reset, then upon entry into this state, this state shall set the ResetStatus state machine variable to UNKNOWN.

If this state was entered because of a Management Reset request, then upon entry into this state, this state shall:

- a) if the ResetStatus state machine variable is not set to RESET_IN_PROGRESS, SPINUP_HOLD, G1. G2, or G3, set the ResetStatus state machine variable to UNIKNOWN; or
- b) if the ResetStatus state machine variable is set to RESET_IN_PROGRESS, SPINUP_HOLD, G1, G2, or G3, set the ResetStatus state machine variable to RESET_IN_PROGRESS.

If this state was not entered due to a power on, hard reset, Disable Phy, or Management Reset request, then upon entry into this state, this state shall:

- a) if the ResetStatus state machine variable is not set to PHY_RESET_PROBLEM, SPINUP_HOLD, or UNSUPPORTED_PHY_ATTACHED, set the ResetStatus state machine variable to UNKNOWAL; or
- b) if the ResetStatus state machine variable is set to PHY_RESET_PROBLEM, SPINUP_HOLD, or UNSUPPORTED_PHY_ATTACHED, not shange the ResetStatus state machine variable.

If the phy supports SATA port selectors and this state receives a COMMAKE Detected message, this state shall:

- a) if the ResetStatus state machine variable is not set to PHY_RESET_PROBLEM, SPINUF_HQLD, or UNSUPPORTED_PHY_ATTACHED, set the ResetStatus state machine variable to PORT SELECTOR:
- b) set the COMWAKE Received state machine variable to one; and
- c) if the ATTACHED SATA PORT SELECTOR bit is set to zero in the SMP DISCOVER response (see 10.4.3.10):
 - A) set the ATTACHED SATA PORT SELECTOR bit to one in the SMP DISCOVER response; and
 - B) send a SATA Port Selector Change confirmation to the link layer.

This state machine waits for receipt of a COMINIT Transmitted message and/or a COMINIT Detected message.

6.8.3.2.2 Transition SP0:OOB_COMINIT to SP1:OOB_AwaitCOMX

This transition shall occur if this state receives a COMINIT Transmitted message and has not received a COMINIT Detected message.

Page: 259 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE set s/b then set Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE send s/b then send Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE set s/b then set Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE set s/b then set Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE set s/b then set Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE not s/b then not Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

Comments from page 259 continued on next page

6.8.3.2 SP0:OOB COMINIT state

6.8.3.2.1 State description

This state is the initial state for this state machine.

Upon entry into this state, the phy shall:

- a) set the COMWAKE_Received state machine variable to zero;
- b) send a Stop DWS message to the SP_DWS state machine;
- c) send a Phy Layer Not Ready confirmation to the link layer;
- d) set the ATTACHED SATA DEVICE bit to zero in the SMP DISCOVER response (see 10.4.3.10);
- e) if this state was entered due to power on, set the ATTACHED SATA PORT SELECTOR bit to zero in the SMP DISCOVER response (see 10.4.3.10); and
- f) if this state was not entered because of a Disable Phy request, send a Transmit COMINIT message to the SP transmitter.

If this state was entered because of a Disable Phy request, then upon entry into this state, this state shall:

- a) ignore COMINIT Detected messages until this state is re-entered due to a power of, hard reset, or Management Reset request; and
- b) set the ResetStatus state machine variable to DISABLED.

If this state was entered due to power on or hard reset, then upon entry into this state, this state shall set the ResetStatus state machine variable to UNKNOWN.

If this state was entered because of a Management Reset request, then upon entry into this state, this state shall:

- a) if the ResetStatus state machine variable is not set to RESE/_IN_PROGRESS, SPINUP_HOLD, G1, G2, or G3, set the ResetStatus state machine variable to JNKNOWN; or
- if the ResetStatus state machine variable is set to RESET_IN_PROGRESS, SPINUP_HOLD, G1, G2, or G3, set the ResetStatus state machine variable to RESET_IN_PROGRESS.

If this state was not entered due to a power on, hard reset, Disable Phy, or Management Reset request, then upon entry into this state, this state shall:

- a) if the ResetStatus state machine variable into set to PHY_RESET_PROBLEM, SPINUP_HOLD, or UNSUPPORTED_PHY_ATTACHED, set the ResetStatus state machine variable to UNKNOWN; or
- if the ResetStatus state machine variable is set to PHY_RESET_PROBLEM, SPINUP_HOLD, or UNSUPPORTED_PHY_ATTACHED, not change the ResetStatus state machine variable.

If the phy supports SATA port selector, and this state receives a COMWAKE Detected message, this state

- if the ResetStatus state machine variable is not set to PHY_RESET_PROBLEM, SPINUP_HOLD, or UNSUPPORTED_PHY_ATTACHED, set the ResetStatus state machine variable to PORT SELECTOR.
- b) set the COMWAXE_Received state machine variable to one; and
- c) if the ATTACHES SATA PORT SELECTOR bit is set to zero in the SMP DISCOVER response (see 10.4.3.10):
 - A) set the ATTACHED SATA PORT SELECTOR bit to one in the SMP DISCOVER response; and
 - B) send a SATA Port Selector Change confirmation to the link layer.

This state machine waits for receipt of a COMINIT Transmitted message and/or a COMINIT Detected message.

6.8.3.2.2 Transition SP0:OOB_COMINIT to SP1:OOB_AwaitCOMX

This transition shall occur if this state receives a COMINIT Transmitted message and has not received a COMINIT Detected message.

Working Draft Serial Attached SCSI - 2 (SAS-2)

set s/b then set

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

s/b . then:

6.8.3.2.3 Transition SP0:OOB COMINIT to SP3:OOB AwaitCOMINIT Sent

This transition shall occur if this state receives a COMINIT Detected message and has not received a

6.8.3.2.4 Transition SP0:OOB_COMINIT to SP4:OOB_COMSAS

This transition shall occur if this state receives both a COMINIT Transmitted message and a COMINIT Detected message.

6.8.3.3 SP1:OOB AwaitCOMX state

6.8.3.3.1 State description

Upon entry into this state, the phy shall initialize and start the Hot-Plug Timeout timer if this phy is:

- a) an expander phy; or
- b) an initiator phy or target phy implementing the Hot-Plug Timeout timer.

If the phy supports SATA port selectors and this state receives a COMWAKE Detected message, this state shall:

- a) if the ResetStatus state machine variable is not set to PHY_RESET_PROBLEM, SPINUP_HOLD, or UNSUPPORTED_PHY_ATTACHED, set the ResetStatus state machine variable to PORT SELECTOR;
- b) set the COMWAKE Received state machine variable to one; and
- c) if the ATTACHED SATA PORT SELECTOR bit is set to zero in the SMP DISCOVER response (see 10 4 3 10)
- A) set the ATTACHED SATA PORT SELECTOR bit to one in the SMP DISCOVER response; and
- B) send a SATA Port Selector Change confirmation to the link layer.

6.8.3.3.2 Transition SP1:OOB AwaitCOMX to SP0:OOB COMINIT

This transition shall occur if the Hot-Plug Timeout timer expires.

If the COMWAKE_Received state machine variable is set to zero and the ATTACHED SATA PORT SELECTOR bit is set to one in the SMP DISCOVER response (see 10.4.3.10), the state machine shall, before the transition:

- set the ATTACHED SATA PORT SELECTOR bit to zero in the SMP DISCOVER response; and
- send a SATA Port Selector Change confirmation to the link layer.

Before the transition, if this state was entered from SP0:OOB_COMINIT, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.3.3.3 Transition SP1:OOB AwaitCOMX to SP4:OOB COMSAS

This transition shall occur after receiving either a COMINIT Detected message or a COMSAS Detected message. If COMSAS Detected was received, this transition shall include a COMSAS Detected argument

If the ATTACHED SATA PORT SELECTOR bit is set to one in the SMP DISCOVER response (see 10.4.3.10), the state machine shall, before the transition:

- a) set the ATTACHED SATA PORT SELECTOR bit to zero in the SMP DISCOVER response; and
- b) send a SATA Port Selector Change confirmation to the link layer.

6.8.3.4 SP2:OOB NoCOMSASTimeout state

6.8.3.4.1 State description

Upon entry into this state, the phy shall initialize and start the Hot-Plug Timeout timer if this phy is:

- a) this phy is an expander phy; or
- b) this phy is an initiator phy or target phy implementing the Hot-Plug Timeout timer.

Page: 260

Author: intc-mseidel Subject: Highlight Date: 8/27/2008 2:20:12 PM -07'00'

TACCEPT - DONE (7/14 incorporate 08-283r1 to resolve (SATA port selector issue). See hpg-relliott comment on PDF pg 245)

There is potential for a phy to become confused during Speed Negotiation during this state. Consider Phy1 supporting only 6G talking with Phy2 supporting only 1.5G, 3G, and SATA, or 1.5G and SATA. Phy2 will transmit ALIGN during SNW-1 and SNW-2, while Phy1 will transmit D.C. idle. During SNW-3, Phy1 will transmit COMWAKEs as part of the phy capabilities data, but Phy2 will have transitioned to SP1:OOB_AwaitCOMX from SP14:SAS_Fail, since the maximum SAS speed negotiation window has been attempted and there have not been any successful negotiated physical link rates. Once in the SP1:Await_COMX state, Phy2 will detect COMWAKE and (if it supports SATA port selectors) then decide that the attached phy is a SATA port selector. Phy2 would then run the TRANSMIT SATA PORT SELECTION SIGNAL phy operation, which sends a sequence of five COMINIT OOB signals. There should be a note in the standard explaining this interaction, and also we should ensure that the state machines don't do anything funny under all combinations of SAS/SATA Gen1/2/3 support. For example, when the Gen1-only phy decides it is connected to a SATA port selector, it can send a SATA port selection signal consisting of several COMINITs. These COMINITs can reset the Gen3 phy, causing an endless cycle.

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

set s/b then set

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

s/b , then:

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

the

s/b then the

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

either

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

this s/b

Comments from page 260 continued on next page

6.8.3.2.3 Transition SP0:OOB COMINIT to SP3:OOB AwaitCOMINIT Sent

This transition shall occur if this state receives a COMINIT Detected message and has not received a COMINIT Transmitted message.

6.8.3.2.4 Transition SP0:OOB_COMINIT to SP4:OOB_COMSAS

This transition shall occur if this state receives both a COMINIT Transmitted message and a COMINIT Detected message.

6.8.3.3 SP1:OOB AwaitCOMX state

6.8.3.3.1 State description

Upon entry into this state, the phy shall initialize and start the Hot-Plug Timeout timer if this phy is:

- a) an expander phy; or
- b) an initiator phy or target phy implementing the Hot-Plug Timeout timer.

If the phy supports SATA port selectors and this state receives a COMWAKE Detected message, this state shall:

- a) if the ResetStatus state machine variable is not set to PHY_RESET_PROBLEM, SPINUP_HOLD, or UNSUPPORTED_PHY_ATTACHED, set the ResetStatus state machine variable to PORT_SELECTOR;
- b) set the COMWAKE Received state machine variable to one; and
- c) if the ATTACHED SATA PORT SELECTOR bit is set to zero in the SMP DISCOVER response (see 10.4.3.10):
 - A) set the ATTACHED SATA PORT SELECTOR bit to one in the SMP DISCOVER response; and
 - B) send a SATA Port Selector Change confirmation to the link layer.

6.8.3.3.2 Transition SP1:OOB_AwaitCOMX to SP0:OOB_COMINIT

This transition shall occur if the Hot-Plug Timeout timer expires.

If the COMWAKE_Received state machine variable is set to zero and the ATTACHED SATA PORT SELECTOR bit is set to one in the SMP DISCOVER response (see 10.4.3.10), the state machine shall, before the transition:

- a) set the ATTACHED SATA PORT SELECTOR bit to zero in the SMP DISCOVER response; and
- b) send a SATA Port Selector Change confirmation to the link layer.

Before the transition, if this state was entered from SP0:OOB_COMINIT, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.3.3.3 Transition SP1:OOB AwaitCOMX to SP4:OOB COMSAS

This transition shall occur after receiving either a COMINIT Detected message or a COMSAS Detected message. If COMSAS Detected was received, this transition shall include a COMSAS Detected argument.

If the ATTACHED SATA PORT SELECTOR bit is set to one in the SMP DISCOVER response (see 10.4.3.10), the state machine shall, before the transition:

- a) set the ATTACHED SATA PORT SELECTOR bit to zero in the SMP DISCOVER response; and
- b) send a SATA Port Selector Change confirmation to the link layer.

6.8.3.4 SP2:OOB_NoCOMSASTimeout state

6.8.3.4.1 State description

260

Upon entry into this state, the phy shall initialize and start the Hot-Plug Timeout timer if this phy is:

- a) this phy is an expander phy; or
- b) this phy is an initiator phy or target phy implementing the Hot-Plug Timeout timer.

Working Draft Serial Attached SCSI - 2 (SAS-2)

then this

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

> the s/b

then the

T10/1760-D Revision 14

6.8.3.4.2 Transition SP2:OOB NoCOMSASTimeout to SP0:OOB COMINIT

This transition shall occur if the Hot-Plug Timeout timer expires.

6.8.3.4.3 Transition SP2:OOB NoCOMSASTimeout to SP4:OOB COMSAS

This transition shall occur after receiving a COMINIT Detected message.

6.8.3.5 SP3:OOB_AwaitCOMINIT_Sent state

6.8.3.5.1 State description

This state waits for a COMINIT Transmitted message.

If the phy supports SATA port selectors and this state receives a COMWAKE Detected message, this state shall:

- a) if the ResetStatus state machine variable is not set to PHY_RESET_PROBLEM, SPINUP_HOLD, or UNSUPPORTED_PHY_ATTACHED, set to ResetStatus state machine variable to PORT SELECTOR; and
- b) if the ATTACHED SATA PORT SELECTOR bit is set to zero in the SMP DISCOVER response (see 10.4.3.10): —
 - A) set the ATTACHED SATA PORT SELECTOR bit to one in the SMP DISCOVER response; and
 - B) send a SATA Port Selector Change confirmation to the link layer.

6.8.3.5.2 Transition SP3:OOB AwaitCOMINIT Sent to SP4:OOB COMSAS

This transition shall occur after receiving a COMINIT Transmitted message.

6.8.3.6 SP4:OOB COMSAS state

6.8.3.6.1 State description

Upon entry into this state, the phy shall send a Transmit COMSAS message to the SP transmitted

This state waits for receipt of a COMSAS Transmitted message and/or a COMSAS Detected message.

If the phy supports SATA port selectors and this state receives a COMWAKE Detected message, this state shall:

- a) if the ResetStatus state machine variable is not set to PHY_RESET_PROBLEM, SPINUP_HOLD, or UNSUPPORTED_PHY_ATTACHED, set the ResetStatus state machine variable to PORT SELECTOR: and
- b) if the ATTACHED SATA PORT SELECTOR bit is set to zero in the SMP DISCOVER response (see 10.4.3.10): -
 - A) set the ATTACHED SATA PORT SELECTOR bit to one in the SMP DISCOVER response; and
 - B) send a SATA Port Selector Change confirmation to the link layer.

6.8.3.6.2 Transition SP4:OOB COMSAS to SP5:OOB AwaitCOMSAS Sent

This transition shall occur if this state receives a COMSAS Detected message or this state was entered with a COMSAS Detected argument, and this state has not received a COMSAS Transmitted message.

If the ATTACHED SATA PORT SELECTOR bit is set to one in the SMP DISCOVER response (see 10.4.3.10), the state machine shall set the ATTACHED SATA PORT SELECTOR bit to zero in the SMP DISCOVER response and send a SATA Port Selector Change confirmation to the link layer before the transition.

6.8.3.6.3 Transition SP4:OOB_COMSAS to SP6:OOB_AwaitNoCOMSAS

This transition shall occur if this state receives both a COMSAS Transmitted message and a COMSAS Detected message.

Page: 261 Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

set s/b then set

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

s/b , then:

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

this s/b then this

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

set s/b then set

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

s/h , then:

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

the s/b then the

If the ATTACHED SATA PORT SELECTOR bit is set to one in the SMP DISCOVER response (see 10.4.3.10), the state machine shall set the ATTACHED SATA PORT SELECTOR bit to zero in the SMP DISCOVER response and send a SATA Port Selector Change confirmation to the link layer before the transition.

6.8.3.6.4 Transition SP4:OOB COMSAS to SP7:OOB AwaitCOMSAS

This transition shall occur if this state receives a COMSAS Transmitted message and has not received a COMSAS Detected message.

6.8.3.7 SP5:OOB_AwaitCOMSAS_Sent state

6.8.3.7.1 State description

This state waits for receipt of a COMSAS Transmitted message.

6.8.3.7.2 Transition SP5:OOB_AwaitCOMSAS_Sent to SP6:OOB_AwaitNoCOMSAS

This transition shall occur after receiving a COMSAS Transmitted message

If this state received a COMSAS Completed message, it stall include a COMSAS Completed argument with the transition.

6.8.3.8 SP6:OOB_AwaitNoCOMSAS state

6.8.3.8.1 State description

This state machine waits for a COMSAS Completed message, which indicates that COMSAS has been completely received.

6.8.3.8.2 Transition SP6:OOB AwaitNoCOMSAS to SP0:OOB COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.3.8.3 Transition SP6:OOB AwaitNoCOMSAS to SP8:SAS Start

This transition shall occur after receiving a COMSAS Completed message, or shall occur if a COMSAS Completed argument was received in the transition.

6.8.3.9 SP7:OOB_AwaitCOMSAS state

6.8.3.9.1 State description

Upon entry into this state, the phy shall initialize and start the COMSAS Detect Timeout timer.

6.8.3.9.2 Transition SP7:OOB_AwaitCOMSAS to SP2:OOB_NoCOMSASTimeout

This transition shall occur if the phy does not support SATA and the COMSAS Detect Timeout timer expires.

The state machine shall set the MgmtReset state machine variable to zero before the transition.

6.8.3.9.3 Transition SP7:OOB_AwaitCOMSAS to SP6:OOB_AwaitNoCOMSAS

This transition shall occur after receiving a COMSAS Detected message.

The state machine shall set the MgmtReset state machine variable to zero before the transition.

The state machine shall set the ATTACHED SATA PORT SELECTOR bit to zero in the SMP DISCOVER response (see 10.4.3.10). If the ATTACHED SATA PORT SELECTOR bit in the SMP DISCOVER response was set to one prior to this transition, the state machine shall send a SATA Port Selector Change confirmation to the link layer before the transition.

Page: 262

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

the s/b

then the

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 4:26:21 PM -07'00'
TREJECT (but added "then")

it s/b

then this state

T10/1760-D Revision 14

6.8.3.9.4 Transition SP7:OOB_AwaitCOMSAS to SP16:SATA_COMWAKE

This transition shall occur if:

- a) the phy supports SATA;
- b) the COMSAS Detect Timeout timer expires; and
 - A) the MgmtReset state machine variable is set to one; or
 - B) the phy does not implement SATA spinup hold.

The state machine shall set the MgmtReset state machine variable to zero before the transition.

The state machine shall set the ATTACHED SATA DEVICE bit to one in the SMP DISCOVER response (see 10.4.3.10) before the transition.

6.8.3.9.5 Transition SP7:OOB_AwaitCOMSAS to SP26:SATA _SpinupHold

This transition shall occur if:

- a) the phy supports SATA:
- b) the COMSAS Detect Timeout timer expires;
- c) the phy implements SATA spinup hold; and
- d) the MgmtReset state machine variable is set to zero.

The state machine shall set the ATTACHED SATA DEVICE bit to one in the SMP DISCOVED response (see 10.4.3.10) before the transition.

6.8.4 SAS speed negotiation states

6.8.4.1 SAS speed negotiation states overview

Figure 155 shows the SAS speed negotiation states, in which the phy has detected that it is attached to a SAS phy or expander phy rather than a SATA phy, and performs the SAS speed negotiation sequence. These states are indicated by state names with a prefix of SAS.

Page: 263

and the states in the state machine perform

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 4:26:45 PM -07'00'
PREJECT (this is a definition of the whole not a subset)

states, in
s/b
states in

Author: wdc-mevans
Subject: Highlight
Date: 5/21/2008 3:09:24 PM -07'00'
PREJECT
and performs

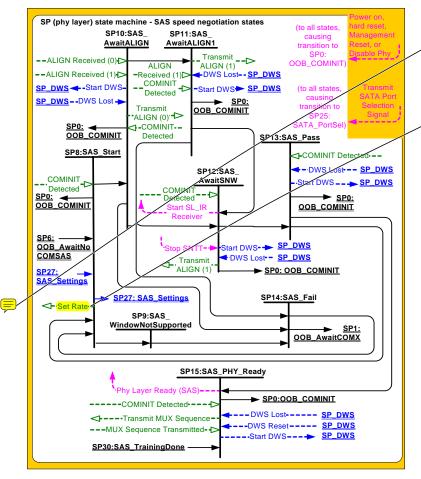


Figure 155 — SP (phy layer) state machine - SAS speed negotiation states

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE SP8 to SP1 transition is missing This is taken if SP14:SAS_Fail runs out of SNWs and none have been valid. Rather than going right to SP1 as in SAS-1.1, SAS-2 visits SP8 first...

Set Rate Change to

Author: RElliott

Set Physical Link Rate and Set SSC

Subject: Highlight Date: 8/31/2008 6:09:48 PM -07'00'

Page: 264

Figure 156 shows the SAS speed negotiation states related to SNW-3 and Train-SNW.

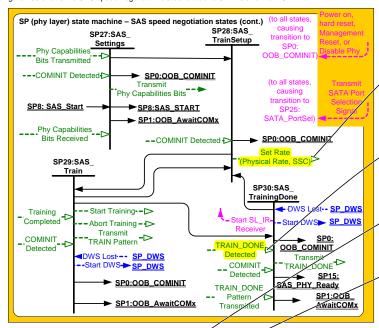
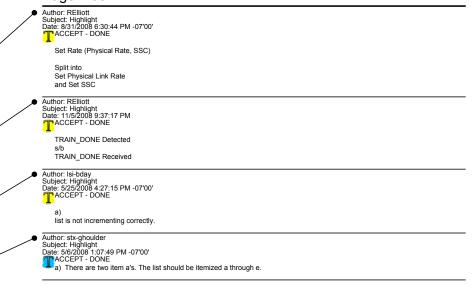


Figure 156 — SP (phy layer) state machine - SAS speed negotiation states for SNW-3 and Train-SNW

6.8.4.2 SP8:SAS_Start state

6.8.4.2.1 State description

This is the initial state for the SAS speed negotiation sequence.


Upon entry into this state, the phy shall initialize and start the RCDT timer.

If this state is entered from SP6:OOB_AwaitNoCOMSAS, then the Current SNW state machine variable shall be set to SNW-1. If this state is not entered from SP6:OOB_AwaitNoCOMSAS, then the Current SNW state machine variable shall be set to:

- a) SWV-2 if the Current SNW state machine variable is set to SNW-1;
- a) SNW-3 if the Current SNW state machine variable is set to SNW-2, and either SNW-1 is invalid or SNW-2 is valid;
- Final-SNW if the Current SNW state machine variable is set to SNW-2, SNW-1 is valid, and SNW-2 is invalid;
- Final-SNW if the Current SNW state machine variable is set to SNW-3, SNW-3 is invalid, and SNW-2 is valid; or
- d) Unsupported Phy Attached if the Current SNW state machine variable is set to SNW-3, SNW-3 is invalid, and SNW-2 is invalid.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 265

265

After the Current SNW state machine variable is updated, if the Current SNW state machine variable is not set to Unsupported Phy Attached, then this state shall:

- a) initialize and start the RCDT timer; and
- b) if the SNW specified by the Current SNW state machine variable is supported, send a Set Rate message to the SP transmitter and SP receiver with:
 - the Physical Link Rate argument set to 1.5 Gbps and an SSC Off argument, if the Current state machine variable is set to SNW-1;
 - B) the Physical Ligk Rate argument set to 3 Gbps and an SSC Off argument, if the Current SNW state machine variable is set to SNW-2;
 - C) the Physical Link Rate argument set to 1.5 Gbps and an SSC Off argument, if the Current SNW state machine variable is set to Final SNW, SNW-1 was valid and SNW-2 was invalid;
 - D) the Physical Link Rate argument set to 3 Gbps and an SSC Off argument, if the Current SNW state machine variable is set to Final-SNW and SNW-2 was valid; or
 - E) the Physical Link Rate argument set to 1.5 Gbps and either an SSC On argument or an SSC Off argument, if the Current SNW state machine variable is set to SNW-3.

During this state D.C. idle shall be transmitted.

6.8.4.2.2 Transition SP8:SAS_Start to SP0:OOB_COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to DNKNOWN.

6.8.4.2.3 Transition SP8:SAS_Start to SP1:OOB_AwaitCOMX

This transition shall occur if the Current SNW state machine variable is set to Unsupported Phy Attached.

Before the transition, this state shall set the ResetStatus state machine variable to UNSUPPORTED PHY ATTACHED.

6.8.4.2.4 Transition SP8:SAS_Start to SP9:SAS_WindowNotSupported

This transition shall occur after the RCDT timer expires if the SNW indicated by the Current SNW state machine variable is not supported.

6.8.4.2.5 Transition SP8:SAS Start to SP10:SAS AwaitALIGN

This transition shall occur after the RCDT timer expires if:

- a) the Current SNW state machine variable is not set to SNW-3; and
- b) the SNW indicated by the Current SNW state machine variable is supported.

6.8.4.2.6 Transition SP8:SAS_Start to SP27:SAS_Settings

This transition shall occur after the RCDT timer expires if:

- a) the Current SNW state machine variable is set to SNW-3; and
- b) SNW-3 is supported.

6.8.4.3 SP9:SAS_WindowNotSupported state

6.8.4.3.1 State description

Upon entry into this state, the phy shall initialize and start the SNTT timer.

During this state D.C. idle shall be transmitted.

6.8.4.3.2 Transition SP9:SAS_WindowNotSupported to SP14:SAS_Fail

This transition shall occur after the SNTT timer expires.

Page: 266

Author: Isi-bday

Subject: Cross-Out Date: 6/25/2008 8:16:40 AM -07'00'

- ACCEPT DONE (reworded as:

 After the Current SNW state machine variable is updated, if:
 - a) the Current SNW state machine variable is not set to Unsupported Phy Attached; and
- b) the SNW specified by the Current SNW state machine variable is supported, then this state shall send a Set Rate message to the SP transmitter and SP receiver with:
- a) the Physical Link Rate argument set to 1.5 Gbps and an SSC Off argument, if the Current SNW state machine variable is set to

SNW-1:

initialize and start the RCDT timer

Not needed here, since this is already listed upon entry into this state.

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 4:27:30 PM -07'00' TACCEPT - DONE

This << supported, send a Set >> should be << supported, then send a Set >>

Author: RElliott Subject: Note Date: 8/31/2008 6:31:46 PM -07'00' ACCEPT - DONE

Convert A)B)C)D)E) into a table, with question columns of

Other conditions

and answer columns of: Message(s) to SP transmitter Messages to SP receiver

Change Set Rate into two messages: Set Physical Link Rate and Set SSC since the receiver doesn't care (as much) about SSC

Author: Isi-bday

Subject: Highlight
Date: 8/3/1/2008 5:58:19 PM -07'00'

"TACCEPT - DONE (Agree, that Set Rate is bogus. Deleting as part of converting this to a table. Setting SSC on or off is still important, though, since we allow SSC to be enabled during SNW-3.)

the Physical Link Rate argument set to 1.5 Gbps.

Is 1.5G operation required? If not, then setting to 1.5 isn't a requirement here, since OOB signalling with "effective" 1.5G OOB signal can happen with transmitter being set to something higher. I think item E can be deleted, since the appropriate Set Rate will happen prior to training

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 4:28:02 PM -07'00'

**REJECT (there are 136 instances of "after receiving" vs 17 of "after this state receives". The shorter wording wins.)

receivina

Comments from page 266 continued on next page

After the Current SNW state machine variable is updated, if the Current SNW state machine variable is not set to Unsupported Phy Attached, then this state shall:

- a) initialize and start the RCDT timer; and
- b) if the SNW specified by the Current SNW state machine variable is supported, send a Set Rate message to the SP transmitter and SP receiver with:
- message to the SP transmitter and SP received with.

 A) the Physical Link Rate argument set to 1.5 Gbps and an SSC Off argument, if the Current SNW state machine variable is set to SNW-1;
 - B) the Physical Link Rate argument set to 3 Gbps and an SSC Off argument, if the Current SNW state machine variable is set to SNW-2;
 - C) the Physical Link Rate argument set to 1.5 Gbps and an SSC Off argument, if the Current SNW state machine variable is set to Final-SNW, SNW-1 was valid and SNW-2 was invalid;
 - D) the Physical Link Rate argument set to 3 Gbps and an SSC Off argument, if the Current SNW state machine variable is set to Final-SNW and SNW-2 was valid; or
 - E) the Physical Link Rate argument set to 1.5 Gbps and either an SSC On argument or an SSC Off argument, if the Current SNW state machine variable is set to SNW-3.

During this state D.C. idle shall be transmitted.

6.8.4.2.2 Transition SP8:SAS_Start to SP0:OOB_COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.4.2.3 Transition SP8:SAS_Start to SP1:OOB_AwaitCOMX

This transition shall occur if the Current SNW state machine variable is set to Unsupported Phy Attached.

Before the transition, this state shall set the ResetStatus state machine variable to UNSUPPORTED_PHY_ATTACHED.

6.8.4.2.4 Transition SP8:SAS_Start to SP9:SAS_WindowNotSupported

This transition shall occur after the RCDT timer expires if the SNW indicated by the Current SNW state machine variable is not supported.

6.8.4.2.5 Transition SP8:SAS Start to SP10:SAS AwaitALIGN

This transition shall occur after the RCDT timer expires if:

- a) the Current SNW state machine variable is not set to SNW-3; and
- b) the SNW indicated by the Current SNW state machine variable is supported.

6.8.4.2.6 Transition SP8:SAS_Start to SP27:SAS_Settings

This transition shall occur after the RCDT timer expires if:

- a) the Current SNW state machine variable is set to SNW-3; and
- b) SNW-3 is supported.

6.8.4.3 SP9:SAS_WindowNotSupported state

6.8.4.3.1 State description

266

Upon entry into this state, the phy shall initialize and start the SNTT timer.

During this state D.C. idle shall be transmitted.

6.8.4.3.2 Transition SP9:SAS_WindowNotSupported to SP14:SAS_Fail

This transition shall occur after the SNTT timer expires.

Working Draft Serial Attached SCSI - 2 (SAS-2)

this state receives

T10/1760-D Revision 14

6.8.4.4 SP10:SAS AwaitALIGN state

6.8.4.4.1 State description

Upon entry into this state, the phy shall:

- a) initialize and start the SNTT timer and SNLT timer;
- b) send a Start DWS message to the SP DWS state machine; and
- c) repeatedly send Transmit ALIGN (0) messages to the SP transmitter.

Each time this state receives a DWS Lost message, this state may send a Start DWS message to the SP DWS state machine to re-acquire dword synchronization without running a new link reset sequence.

6.8.4.4.2 Transition SP10:SAS AwaitALIGN to SP0:OOB COMINIT

This transition shall occur after receiving 1946 Lost message if this state does not send a Start DWS message, or after reseiving STUMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN

6.8.4.4.3 Transition SP10:SAS_AwaitALIGN to SP11:SAS_AwaitALIGN1

This transition shall occur if this state receives an ALIGN Received (0) message before the SNLT timer expires.

6.8.4.4.4 Transition SP10:SAS AwaitALIGN to SP12:SAS AwaitSNW

This transition shall occur if this state receives an ALIGN Received (1) message before the SNLT timer expires.

6.8.4.4.5 Transition SP10:SAS AwaitALIGN to SP14:SAS Fail

This transition shall occur if the SNTT timer expires.

6.8.4.5 SP11:SAS AwaitALIGN1 state

6.8.4.5.1 State description

This state shall repeatedly send Transmit ALIGN (1) messages to the SP transmitter.

Each time this state receives a DWS Lost message, this state may send a Start DW2 message to the SP_DWS state machine to re-acquire dword synchronization without running a few link reset sequence.

6.8.4.5.2 Transition SP11:SAS AwaitALIGN1 to SP0:OOB COMINITY

This transition shall occur after receiving a DWS Lost message it his state does not send a Start DWS message, or after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.4.5.3 Transition SP11:SAS_AwaitALIGN1 to SP12:SAS_AwaitSNW

This transition shall occur if this state receives an ALIGN Received (1) message before the SNLT timer expires. This indicates that the other phy has been able to achieve dword synchronization in the current SNW.

6.8.4.5.4 Transition SP11:SAS AwaitALIGN1 to SP14:SAS Fail

This transition shall occur if the SNTT timer expires. This indicates that the other by has not been able to achieve dword synchronization in the current SNW.

Page: 267

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:28:24 PM -07'00'

REJECT (there are 136 instances of "after receiving" vs 17 of "after this state receives". The shorter wording wins.)

receiving s/b

this state receives

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:28:35 PM -07'00'

TREJECT

receiving

s/b

this state receives

Author: wdc-mevans

Subject: Highlight Date: 5/21/2008 3:02:16 PM -07'00'

ACCEPT - DONE (converted into an a)b) list)

message, or s/b

message or

Author: wdc-mevans

Subject: Highlight Date: 5/21/2008 3:10:21 PM -07'00'

ACCEPT - DONE

other s/b

attached

Author: wdc-mevans

Subject: Highlight Date: 5/21/2008 3:10:34 PM -07'00'

ACCEPT - DONE

other s/b

attached

6.8.4.6 SP12:SAS AwaitSNW state

6.8.4.6.1 State description

This state shall repeatedly send Transmit ALIGN (1) messages to the SP transmitter.

If the Current SNW state machine variable is set to Final-SNW, this state shall send a Start SL_IR Regeive confirmation to the link layer.

Each time this state receives a DWS Lost message, this state may send a Start DWS message to the SP_DWS state machine to re-acquire dword synchronization without running a new link reset sequence.

This state waits for the SNTT timer to expire or for a Stop SNTT request.

6.8.4.6.2 Transition SP12:SAS_AwaitSNW to SPS:OOB_COMINIT

This transition shall occur after receiving Styll Lost message if this state does not send a Start DWS message, or after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.4.6.3 Transition SP12:SAS_AwaitSNW to SP13:SAS_Pass

This transition shall occur after the SNTT timer expires or after receiving a Stop SNTT request.

6.8.4.7 SP13:SAS Pass state

6.8.4.7.1 State description

This state determines if:

- a) another SAS SNW is required; or
- b) the SAS speed negotiation sequence is complete.

Each time this state receives a DWS Lost message, this state may send a Start DWS message to the SP_DWS state machine to re-acquire dword synchronization without ranning a new link reset sequence.

6.8.4.7.2 Transition SP13:SAS_Pass to SP0:059_COMINIT

This transition shall occur after receiving a DWS Lost message if this state does not send a Start DWS message, or after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.4.7.3 Transition SP13:SAS Pass to SP8:SAS Start

This transition shall occur if the Current SNW state machine variable is not set to Final-SNW.

6.8.4.7.4 Transition SP13:SAS_Pass to SP15:SAS_PHY_Ready

This transition shall occur if the Current SNW state machine variable is set to Final-SNW.

6.8.4.8 SP14:SAS Fail state

6.8.4.8.1 State description

This state determines if:

- a) another SAS SNW is required; or
- b) the SAS speed negotiation sequence is complete.

6.8.4.8.2 Transition SP14:SAS_Fail to SP1:OOB_AwaitCOMX

This transition shall occur if the Current SNW state machine variable is set to Final-SNW.

Before the transition, this state shall set the ResetStatus state machine variable to PHY_RESET_PROBLEM.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 268

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:28:57 PM -07'00' TREJECT

receiving s/b

this state receives

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:29:31 PM -07'00' REJECT (but converted into an a)b) list)

message, or after receiving

message or after this state receives

Author: wdc-mevans

Subject: Highlight
Date: 5/25/2008 4:29:57 PM -07'00'

receiving

s/b

this state receives

Author: wdc-mevans

Subject: Highlight Date: 5/21/2008 3:03:23 PM -07'00' REJECT (but converted into an a)b) list)

message, or after receiving

message or after this state receives

28 January 2008

T10/1760-D Revision 14

6.8.4.8.3 Transition SP14:SAS Fail to SP8:SAS Start

This transition shall occur if the Current SNW state machine variable is not set to Final-SNW.

6.8.4.9 SP15:SAS PHY Ready state

6.8.4.9.1 State description

This state waits for a COMINIT Detected message, a DWS Lost message, or a DWS Reset message.

Upon entry into this state, the phy shall:

- a) if multiplexing is enabled (see table 100 in 6.7.4.2.3.3):
 - 1) send a Transmit MUX Sequence message to the SP transmitter; and
 - after receiving MUX Sequence Transmitted, send a Phy Layer Ready (SAS) confirmation to the link layer to indicate that the physical link has been brought up successfully in SAS mode;
- b) if multiplexing is not enabled, send a Phy Layer Ready (SAS) confirmation to the link layer to indicate
 that the physical link has been brought up successfully in SAS mode;
- c) if the SP transmitter is transmitting at 1.5 Gbps, set the ResetStatus state machine variable to G1;
- d) if the SP transmitter is transmitting at 3 Gbps, set the ResetStatus state machine variable to G2; and
- e) if the SP transmitter is transmitting at 6 Gbps, set the ResetSistus state machine variable to G3.

While in this state dwords from the link layer are transmitted at the regotiated physical link rate at the retail established in the previous SNW.

If multiplexing is disabled, each time this state receives a DWS Lost nessage, this state may send a Start DWS message to the SP_DWS state machine to re-acquire dword synchronization without running a new link reset sequence.

NOTE 42 - If multiplexing is enabled and this state receives a DWS Lost message, this state does not send a Start DWS message and the state machine transitions to SP0:OOB_COMINIT.

6.8.4.9.2 Transition SP15:SAS_PHY_Ready to SP0:OOB_COMINIT

This transition shall occur after:

- a) receiving a DWS Lost message, if this state does not send a Start DWS message:
- b) receiving a DWS Lost message followed by a COMINIT Detected message, if this state loss not send a Start DWS message; or
- c) receiving a DWS Reset message.

This transition may-but-should not occur after receiving a COMINIT Detected message before receiving a DWS Lost message, or after receiving a COMINIT Detected message after sending a Start DWS message (i.e., the SP state machine should ignore COMINIT Detected messages unless the SP_DWS state machine has indicated loss of dword synchronization).

6.8.4.10 SP27:SAS_Settings state

6.8.4.10.1 State description

This state transmits and receives phy capabilities bits.

Upon entry to this state, the phy shall:

- a) initialize and start the SNTT timer;
- set the Commonly Supported Settings state machine variable to indicate that there are no commonly supported settings; and
- c) send a Transmit Phy Capabilities Bits message to the SP transmitter.

If a Phy Capabilities Bits Received message is received with the argument of parity good, then this state shall set the Commonly Supported Settings state machine variable to the supported settings that are set to one in both the transmitted and received phy capabilites bits.

This state waits for the SNTT timer to expire.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 269

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
:
s/b
, then:

Author: Isi-gpenokie Subject: Cross-Out Date: 6/24/2008 5:15:56 PM -07'00'

This <<to indicate that the physical link has been brought up successfully in SAS mode >> add nothing to the standard and should be deleted.

Author: Isi-gpenokie Subject: Cross-Out Date: 6/24/2008 5:16:03 PM -07'00'

This << to indicate that the physical link has been brought up successfully in SAS mode >> adds nothing to the standard and should be deleted.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

send s/b then send

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

set s/b then set

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

> set s/b then set

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

set s/b

Comments from page 269 continued on next page

6.8.4.8.3 Transition SP14:SAS Fail to SP8:SAS Start

This transition shall occur if the Current SNW state machine variable is not set to Final-SNW.

6.8.4.9 SP15:SAS PHY Ready state

6.8.4.9.1 State description

This state waits for a COMINIT Detected message, a DWS Lost message, or a DWS Reset message.

Upon entry into this state, the phy shall:

- a) if multiplexing is enabled (see table 100 in 6.7.4.2.3.3):
 - 1) send a Transmit MUX Sequence message to the SP transmitter; and
 - 2) after receiving MUX Sequence Transmitted, send a Phy Layer Ready (SAS) confirmation to the link layer to indicate that the physical link has been brought up successfully in SAS prote;
- b) if multiplexing is not enabled, send a Phy Layer Ready (SAS) confirmation to the fink layer to indicate that the physical link has been brought up successfully in SAS mode.
- c) if the SP transmitter is transmitting at 1.5 Gbps, set the ResetStatus state machine variable to G1;
- d) if the SP transmitter is transmitting at 3 Gbps, set the PesetStatus state machine variable to G2; and
- e) if the SP transmitter is transmitting at 6 Gbps, set the ResetStatus state machine variable to G3.

While in this state dwords from the link layer are transmitted at the negotiated physical link rate at the rate established in the previous SNW.

If multiplexing is disabled, each time this state receives a DWS Lost message, this state may send a Start DWS message to the SP_DWS state machine to re-acquire dwerd synchronization without running a new link reset sequence.

NOTE 42 - If multiplexing is enabled and this state receives a DWS Lost message, this state does not send a Start DWS message and the state machine transitions to SP0:OOB_COMINIT.

6.8.4.9.2 Transition SP15:SAS PHY Ready to SP0:OOB COMINIT

This transition shall occur after:

- a) receiving a DWS Lost message, it this state does not send a Start DWS message;
- b) receiving a DWS Lost message followed by a COMINIT Detected message, if this state does not send a Start DWS message; or
- c) receiving a DWS Reset message.

This transition may-but-should not occur after receiving a COMINIT Setected message before receiving a DWS Lost message, or after receiving a COMINIT Detected message after sending a Start DWS message (i.e., the SP state machine should ignore COMINIT Detected messages unless the SP_DWS state machine has indicated loss of dword synchronization).

6.8.4.10 SP27:SAS_Settings state

6.8.4.10.1 State description

This state transmits and receives phy capabilities bits.

Upon entry to this state, the phy shall:

- a) initialize and start the SNTT timer;
- set the Commonly Supported Settings state machine variable to indicate that there are no commonly supported settings; and
- c) send a Transmit Phy Capabilities Bits message to the SP transmitter.

If a Phy Capabilities Bits Received message is received with the argument of parity good, then this state shall set the Commonly Supported Settings state machine variable to the supported settings that are set to one in both the transmitted and received phy capabilites bits.

This state waits for the SNTT timer to expire.

Working Draft Serial Attached SCSI - 2 (SAS-2)

then set

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE (changed to:
"at the negotiated physical link rate (i.e., the rate established in the previous SNW)")
at the negotiated physical link rate at the rate
doesn't make sense

Author: Isi-bday

Subject: Highlight
Date: 6/24/2008 5:13:32 PM -07'00'
The EJECT (just one of each layer. There may be multiple "link layer state machines")
layer

s/b layer(s)

could be multiple link layers if muxxing.

Author: RElliott
Subject: Highlight
Date: 6/30/2/008 3:16:52 PM -07'00'
TACCEPT - DONE
state
s/b
state

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

each s/b then each

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 4:30:47 PM -07'00'

TREJECT (State descriptions define what the state machine must do when it receives certain combinations of inputs; they do not cover what the state machine must not do when infinite other possible combinations of inputs occur. The previous paragraph dictates what happens when multiplexing is disabled and DWS Lost arrives. This note explains what happens when multiplexing is enabled and DWS Lost arrives - NOTHING SPECIAL. There is no extra requirement to define here; the behavior in the note is just pointing out what happens based on the existing rules.)

This note <<NOTE 42 - If multiplexing is enabled and this state receives a DWS Lost message, this state does not send a Start DWS message and the state machine transitions to SP0:OOB_COMINIT. >> contains as least 2 requirements. One requirement << If multiplexing is enabled and this state receives a DWS Lost message, this state does not send a Start DWS message >> should be in this section. The other << If multiplexing is enabled and this state receives a DWS Lost message, the state machine transitions to SP0:OOB_COMINIT. >> should be in the transition to OOB_COMINIT section.

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 4:31:41 PM -07'00'
TREJECT (but added "receiving" here)
after:
s/b
after this state receives:

Comments from page 269 continued on next page

6.8.4.8.3 Transition SP14:SAS Fail to SP8:SAS Start

This transition shall occur if the Current SNW state machine variable is not set to Final-SNW.

6.8.4.9 SP15:SAS PHY Ready state

6.8.4.9.1 State description

This state waits for a COMINIT Detected message, a DWS Lost message, or a DWS Reset message. Upon entry into this state, the phy shall:

- a) if multiplexing is enabled (see table 100 in 6.7.4.2.3.3):
- 1) send a Transmit MUX Sequence message to the SP transmitter; and
- 2) after receiving MUX Sequence Transmitted, send a Phy Layer Ready (%AS) confirmation to the link layer to indicate that the physical link has been brought up successfully in SAS mode.
- b) if multiplexing is not enabled, send a Phy Layer Ready (SAS) confirmation to the link layer to indicate that the physical link has been brought up successfully in SAS mode;
- c) if the SP transmitter is transmitting at 1.5 Gbps, set the Reset status state machine variable to G1;
- d) if the SP transmitter is transmitting at 3 Gbps, set the ResetStatus state machine variable to G2; and
- e) if the SP transmitter is transmitting at 6 Gbps, set the ResetStatus state machine variable to Garage

While in this state dwords from the link layer are transmitted at the negotiated physical link rate established in the previous SNW.

If multiplexing is disabled, each time this state receives a DWS Lost message, bis state may send a Start DWS message to the SP_DWS state machine to re-acquire dword synchronization without running a new jureset sequence.

NOTE 42 - If multiplexing is enable, and this state receives 2 UWS Lost message, this state does not send a Start DWS message and the state macking transitions to SP0:00B, COMINIT.

6.8.4.9.2 Transition SP15:SAS PAY Ready to SP0:OOB COMING

This transition shall occur after

- a) receiving a DWS Lost message, if this state does not send a Start DWS message;
- b) receiving a DWS Lost message followed by a COMINIT Detected message, if this state does not send
 a Start DWS passage; or
- c) receiving a DWS Reset message.

This transition may but should not occur after receiving a COMINIT Detected message before receiving a DWS Lost message, or after receiving a COMINIT Detected message after sending a Start DWS message (i.e., the SP state machine should reacre COMINIT Detected messages unless the SP DWS state machine has indicated loss of dword synchronization:

6.8.4.10 SP27:SAS_Settings state

6.8.4.10.1 State description

This state transmits and receives phy capabilities bits.

Upon entry to this state, the phy shall:

- a) initialize and start the SNTT timer;
- set the Commonly Supported Settings state machine variable to indicate that there are no commonly supported settings; and
- c) send a Transmit Phy Capabilities Bits message to the SP transmitter.

If a Phy Capabilities Bits Received message is received with the argument of parity good, then this state shall set the Commonly Supported Settings state machine variable to the supported settings that are set to one in both the transmitted and received phy capabilities bits.

This state waits for the SNTT timer to expire.

Subject: Cross-Out Date: 5/25/2008 4:31:50 PM -07'00' ACCEPT - DONE receiving [Delete this word based on the above change.] Author: wdc-mevans Subject: Cross-Out Date: 5/25/2008 4:31:55 PM -07'00' receiving [Delete this word based on the above change.] Author: wdc-mevans Subject: Cross-Out Date: 5/25/2008 4:32:00 PM -07'00' ACCEPT - DONE [Delete this word based on the above change.] Author: wdc-meyans Subject: Cross-Out Date: 5/25/2008 4:32:39 PM -07'00' REJECT may but [Delete the redundant words.] Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:32:48 PM -07'00' REJECT receiving s/b this state receives Author: Isi-apenokie Subject: Highlight Date: 5/25/2008 4:32:26 PM -07'00' ACCEPT - DONE (with commas) This << This transition may but should not occur after >> should at least be changed to << This transition may, but should not. occur after >> but I would rather see if restated as << This transition should not occur after I >> Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:33:06 PM -07'00' REJECT receiving s/b this state receives Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:34:57 PM -07'00' REJECT (but converted into an a)b) list which might help) message, or

Author: wdc-mevans

Comments from page 269 continued on next page

6.8.4.8.3 Transition SP14:SAS Fail to SP8:SAS Start

This transition shall occur if the Current SNW state machine variable is not set to Final-SNW.

6.8.4.9 SP15:SAS PHY Ready state

6.8.4.9.1 State description

This state waits for a COMINIT Detected message, a DWS Lost message, or a DWS Reset message.

Upon entry into this state, the phy shall:

- a) if multiplexing is enabled (see table 100 in 6.7.4.2.3.3):
 - 1) send a Transmit MUX Sequence message to the SP transmitter; and
 - 2) after receiving MUX Sequence Transmitted, send a Phy Layer Ready (SAS) confirmation to the link layer to indicate that the physical link has been brought up successfully in SAS mode;
- b) if multiplexing is not enabled, send a Phy Layer Ready (SAS) confirmation to the link layer te indicate that the physical link has been brought up successfully in SAS mode;
- c) if the SP transmitter is transmitting at 1.5 Gbps, set the ResetStatus state machine variable to G1;
- d) if the SP transmitter is transmitting at 3 Gbps, set the ResetStatus state machine variable to G2; and
- e) if the SP transmitter is transmitting at 6 Gbps, set the ResetStatus state machine variable to G3.

While in this state dwords from the link layer are transmitted at the negotiated physical link rate at the rate established in the previous SNW.

If multiplexing is disabled, each time this state receives a DWS Lost message, this state may send a Start DWS message to the SP_DWS state machine to re-acquire dword synchronization without running a new link reset sequence.

NOTE 42 - If multiplexing is enabled and this state receives a DWS Lost message, this state does not send a Start DWS message and the state machine transitions to SP0:OOB_COMINIT.

6.8.4.9.2 Transition SP15:SAS PHY Ready to SP0:OOB COMINIT

This transition shall occur after:

- a) receiving a DWS Lost message, if this state does not send a Start DWS message:
- b) receiving a DWS Lost message followed by a COMINIT Detected message, if this state does not send a Start DWS message; or
- c) receiving a DWS Reset message.

This transition may-but-should not occur after receiving a COMINIT Detected message before receiving a DWS Lost message, or after receiving a COMINIT Detected message after sending a Start DWS missage (i.e., the SP state machine should ignore COMINIT Detected messages unless the SP_DWS state machine has indicated loss of dword synchronization).

6.8.4.10 SP27:SAS_Settings state

6.8.4.10.1 State description

This state transmits and receives phy capabilities bits.

Upon entry to this state, the phy shall:

- a) initialize and start the SNTT timer;
- b) set the Commonly Supported Settings state machine variable to indicate that there are no commonly supported settings; and

269

c) send a Transmit Phy Capabilities Bits message to the SP transmitter.

If a Phy Capabilities Bits Received message is received with the argument of parity good, then this state shall set the Commonly Supported Settings state machine variable to the supported settings that are set to one in both the transmitted and received phy capabilities bits.

This state waits for the SNTT timer to expire.

Working Draft Serial Attached SCSI - 2 (SAS-2)

s/b message or

Author: Isi-bday
Subject: Highlight
Date: 6/24/2008 5:09:59 PM -07'00'
TACCEPT - DONE

parity good s/b good parity

6.8.4.10.2 Transition SP27:SAS_Settings to SP0:OOB_COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.4.10.3 Transition SP27:SAS_Settings to SP1:OOB_AwaitCOMX

This transition shall occur after the SNTT timer expires if:

- a) a Phy Capabilities Bits Received message is received with an argument of parity bad; er-
- b) no commonly supported settings exist after the Commonly Supported Settings state machine variable is set as a result of receiving a Phy Capabilities Bits Received message.

Before the transition, this state shall:

- a) if a Phy Capabilities Bits Received message is received with an argument of parity bad, set the ResetStatus state machine variable to PHY_RESET_PROBLEM; or
- b) if no commonly supported settings exist after the Commonly Supported Settings state machine variable is set, set the ResetStatus state machine variable to UNSUPPORTED_PHY_ATTACHEN

6.8.4.10.4 Transition SP27:SAS_Settings to SP8:SAS_Start

This transition shall occur if:

- a) the SNTT timer expires; and
- b) a Phy Capabilities Bits Received message is not received during this state.

6.8.4.10.5 Transition SP27:SAS_Settings to SP28:SAS_TrainSetup

This transition shall occur:

- a) after the SNTT timer expires; and
- b) if the Commonly Supported Settings state machine variable indicates there is at least one componly supported setting.

6.8.4.11 SP28:SAS_TrainSetup

6.8.4.11.1 State description

Upon entry into this state, the phy shall:

- a) initialize and start the RCDT timer; and
- b) send a Set Rate message to the SP transmitter and receiver with the arguments set to reflect the highest priority commonly supported setting contained in the Commonly Supported Settings state

After the Set Rate message is sent, the Commonly Supported Settings state machine variable shall be set to indicate that the supported settings bit used for the Set Rate message is no longer in common.

During this state D.C. idle shall be transmitted.

6.8.4.11.2 Transition SP28:SAS TrainSetup to SP0:OOB COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.4.11.3 Transition SP28:SAS TrainSetup to SP29:SAS Train

This transition shall occur after the RCDT timer expires.

Page: 270

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:35:17 PM -07'00' TREJECT receiving s/b this state receives Author: Isi-bday Subject: Highlight Date: 6/24/2008 5:10:06 PM -07'00' TACCEPT - DONE parity bad; bad parity; Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE set s/b then set Author: Isi-bday Subject: Highlight Date: 6/24/2008 5:10:14 PM -07'00' TACCEPT - DONE parity bad, s/b bad parity, Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

set

s/b then set

Author: RElliott Subject: Highlight
Date: 8/31/2008 6:01:31 PM -07'00'
ACCEPT - DONE

Set Rate message to the SP transmitter and receiver

Set Physical Link Rate message to the SP transmitter and to the SP receiver and send a Set SSC message to the SP transmitter

Author: RElliott Subject: Highlight
Date: 8/31/2008 6:32:24 PM -07'00' TACCEPT - DONE

Set Rate

Comments from page 270 continued on next page

6.8.4.10.2 Transition SP27:SAS_Settings to SP0:OOB_COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.4.10.3 Transition SP27:SAS_Settings to SP1:OOB_AwaitCOMX

This transition shall occur after the SNTT timer expires if:

- a) a Phy Capabilities Bits Received message is received with an argument of parity bad; or
- b) no commonly supported settings exist after the Commonly Supported Settings state machine variable is set as a result of receiving a Phy Capabilities Bits Received message.

Before the transition, this state shall:

- a) if a Phy Capabilities Bits Received message is received with an argument of parity bad, set the ResetStatus state machine variable to PHY_RESET_PROBLEM; or
- b) if no commonly supported settings exist after the Commonly Supported Settings state machine variable is set, set the ResetStatus state machine variable to UNSUPPORTED_PHY_ATTACHED.

6.8.4.10.4 Transition SP27:SAS_Settings to SP8:SAS_Start

This transition shall occur if:

- a) the SNTT timer expires; and
- b) a Phy Capabilities Bits Received message is not received during this state.

6.8.4.10.5 Transition SP27:SAS_Settings to SP28:SAS_TrainSetup

This transition shall occur:

- a) after the SNTT timer expires; and
- if the Commonly Supported Settings state machine variable indicates there is at least one commonly supported setting.

6.8.4.11 SP28:SAS_TrainSetup

6.8.4.11.1 State description

Upon entry into this state, the phy shall:

- a) initialize and start the RCDT timer; and
- b) send a Set Rate message to the SP transmitter and receiver with the arguments set to reflect the highest priority commonly supported setting contained in the Commonly Supported Settings state machine variable.

After the Set Rate message is sent, the Commonly Supported Settings state machine variable shall be set to indicate that the supported settings bit used for the Set Rate message is no longer in common.

During this state D.C. idle shall be transmitted.

6.8.4.11.2 Transition SP28:SAS TrainSetup to SP0:OOB COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.4.11.3 Transition SP28:SAS TrainSetup to SP29:SAS Train

This transition shall occur after the RCDT timer expires.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Change to Set Physical Link Rate messages and Set SSC message

Author: Relliott
Subject: Highlight
Date: 8/31/2008 6:00:56 PM -07'00'

supported settings bit used for the Set Rate message s/b

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:35:21 PM -07'00'

selected supported settings bit

receiving

this state receives

T10/1760-D Revision 14

6.8.4.12 SP29:SAS Train state

6.8.4.12.1 State description

Upon entry into this state, the phy shall:

- a) initialize and start the MTT timer;
- b) initialize and start the TLT timer;
- c) send a Start Training message to the SP receiver; and
- d) send a Start DWS message to the SP DWS state machine.

This state shall repeatedly send Transmit TRAIN Pattern messages to the SP transmitter.

Each time this state receives a DWS Lost message, this state shall send a start DWS message to the SP_DWS state machine to re-acquire dword synchronization

If the MTT timer expires, then this state shall send an Abort Haining message to the SP receiver.

6.8.4.12.2 Transition SP29:SAS_Train to SP0:90B_COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.4.12.3 Transition SP29:SAS Train to SP1:OOB AwaitCOMX

This transition shall occur if

- a) the MTT timer expires; and
- b) the Commonly Supported Settings state machine variable does not contain additional commonly supported settings.

This is a phy reset problem.

Before the transition, this state shall set the ResetStatus state machine variable to PHY_RESET_PROBLEM

6.8.4.12.4 Transition SP29:SAS_Train to SP30:SAS_TrainingDone

This transition shall occur if:

- a) this state receives a Training Completed message before the TLT timer expires; and
- the dword synchronization is acquired.

6.8.4.12.5 Transition SP29:SAS_Train to SP28:SAS_TrainSetup

This transition shall occur if:

- a) the MTT timer expires; and
- b) the Commonly Supported Settings state machine variable contains additional commonly supported

6.8.4.13 SP30:SAS_TrainingDone state

6.8.4.13.1 State description

This state shall repeatedly send Transmit TRAIN DONE Pattern messages to the SP transmitter.

Each time this state receives a DWS Lost message, this state may send a Start DWS message to the SP_DWS state machine to re-acquire dword synchronization without running a new link reset sequence.

This state waits for the MTT timer to expire or a TRAIN_DONE Received message from the receiver.

This state shall send a Start SL_IR Receiver confirmation to the link layer when a TRAIN_DONE Received message is received.

Page: 271

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:35:44 PM -07'00' REJECT

> receiving s/b

this state receives

Author: Isi-gpenokie

Subject: Highlight
Date: 8/27/2008 2:25:44 PM -07'00'

TACCEPT - DONE (7/17 move the definition of a "phy reset problem" into the state machine description. Then make the transition just based on that.)

This << This transition shall occur if

- a) the MTT timer expires; and
- b) the Commonly Supported Settings state machine variable does not contain additional commonly supported settings.

This is a phy reset problem. >> should be << This transition shall occur if there is a phy reset problem as a result of:

- a) the MTT timer expiring; and
- b) the Commonly Supported Settings state machine variable not containing additional commonly supported settings. >>

Author: Isi-bday Subject: Highlight
Date: 10/17/2008 2:53:25 PM -07'00'
PACCEPT - DONE (

10/7: the "before" needs to also apply to b) dword sync

old: it already says "before... and" so the transition won't occur if the TLT has expired. The "before" wording is used elsewhere)

this state receives a Training Completed message before the TLT timer expires; and

b) dword synchronization is acquired.

- a) The TLT timer has not expired
- b) this state receives a Training Complete message; and
- c) dword synchronization is acquired.

(We do not want to make this transition if dword sync is aquired after the TLT time.)

Author: RElliott Subject: Note Date: 11/5/2008 11:26:33 PM

> Incorporate 08-425r1, which makes SP29 detect TRAIN Received or TRAIN_DONE Received before transitioning to SP30, and passes along an argument if TRAIN_DONE Received was received.

This is an additional fix coexisting with Bill Martin's "transmit one more TRAIN_DONE" change. This fix helps pre-standard transmitters; Bill's fix helps pre-standard receivers.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Move "to SP28" section ahead of "to SP30" section

Comments from page 271 continued on next page

6.8.4.12 SP29:SAS_Train state

6.8.4.12.1 State description

Upon entry into this state, the phy shall:

- a) initialize and start the MTT timer;
- b) initialize and start the TLT timer;
- c) send a Start Training message to the SP receiver; and
- d) send a Start DWS message to the SP DWS state machine.

This state shall repeatedly send Transmit TRAIN Pattern messages to the SP transmitter.

Each time this state receives a DWS Lost message, this state shall send a Start DWS message to the SP_DWS state machine to re-acquire dword synchronization.

If the MTT timer expires, then this state shall send an Abort Training message to the SP receiver.

6.8.4.12.2 Transition SP29:SAS_Train to SP0:OOB_COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.4.12.3 Transition SP29:SAS Train to SP1:OOB AwaitCOMX

This transition shall occur if

- a) the MTT timer expires; and
- the Commonly Supported Settings state machine variable does not contain additional commonly supported settings.

This is a phy reset problem.

Before the transition, this state shall set the ResetStatus state machine variable to PHY_RESET_PROBLEM.

6.8.4.12.4 Transition SP29:SAS_Train to SP30:SAS_TrainingDone

This transition shall occur if:

a) this state receives a Training Completed message before the TLT timer expires; and

b) dword synchronization is acquired.

6.8.4.12.5 Transition SP29:SAS_Train to SP28:SAS_TrainSetup

This transition shall occur if:

- a) the MTT timer expires; and
- b) the Commonly Supported Settings state machine variable contains additional commonly supported settings

6.8.4.13 SP30:SAS_TrainingDone state

6.8.4.13.1 State description

This state shall repeatedly send Transmit TRAIN DONE Pattern messages to the SP transmitter.

Each time this state receives a DWS Lost message, this state may send a Start DWS message to the SP_DWS state machine to re-acquire dword synchronization without running a new link reset sequence.

This state waits for the MTT timer to expire or a TRAIN_DONE Received message from the receiver.

This state shall send a Start SL_IR Receiver confirmation to the link layer when a TRAIN_DONE Received message is received.

T10/1760-D Revision 14

6.8.4.13.2 Transition SP30:SAS_TrainingDone to SP0:OOB_COMINIT

This transition shall occur after

- a) receiving a DWS Lost message if this state does not send a Start DWS message; or
- b) receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.4.13.3 Transition SP30:SAS_TrainingDone to \$521:OOB_AwaitCOMX

This transition shall occur if:

- a) TRAIN_DONE Received message is not received before the MTT timer expires; and
- b) the Commonly Supported Settings state machine variable does not contain additional commonly supported settings.

This is a phy reset problem.

Before the transition, this state shall set the ResetStatus state machine variable to PHY_RESET_PROBLEM.

6.8.4.13.4 Transition SP30:SAS_TrainingDone to SP28:SAS_TrainSetup

This transition shall occur if:

- a) the MTT timer expires; and
- b) the Commonly Supported Settings state machine variable contains additional commonly supported

6.8.4.13.5 Transition SP30:SAS TrainingDone to SP15:SAS PHY Ready

This transition shall occur if this state receives:

- a) at least four TRAIN_DONE Pattern Transmitted messages; and
- a TRAIN_DONE Received message before the MTT timer expires.

6.8.5 SATA host emulation states

6.8.5.1 SATA host emulation states overview

Figure 157 shows the SATA host emulation states, in which the phy has detected that it is attached to a SATA phy and behaves as if it were a SATA host phy, initiating the SATA speed negotiation sequence. These states are indicated by state names with a prefix of SATA.

The power management states defined in this standard are for SAS initiator phys that support SATA; expander devices that support SATA do not support power management-in this standard.

Page: 272

```
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 4:37:06 PM -07'00'
 REJECT (but moved "receiving" here)
```

after: s/b

28 January 2008

after this state receives:

Author: wdc-mevans Subject: Cross-Out Date: 5/25/2008 4:36:48 PM -07'00' ACCEPT - DONE

receivina

[Delete this word based on the above change.]

Author: wdc-mevans Subject: Cross-Out Date: 5/25/2008 4:36:55 PM -07'00' ACCEPT - DONE

receiving

[Delete this word based on the above change.]

Author: Isi-gpenokie Subject: Highlight Date: 8/27/2008 2:25:52 PM -07'00' ACCEPT - DONE (7/17 apply solution on pg 271)

This << This transition shall occur if:

- a) TRAIN_DONE Received message is not received before the MTT timer expires; and
- b) the Commonly Supported Settings state machine variable does not contain additional commonly supported settings. This is a phy reset problem. >> should be << This transition shall occur if there is a phy reset problem as a result of:
- a) the TRAIN_DONE Received message not being received before the MTT timer expires; and
- b) the Commonly Supported Settings state machine variable not containing additional commonly supported settings. >>

Author: wdc-meyans Subject: Cross-Out Date: 5/25/2008 4:37:50 PM -07'00' REJECT (no, that's a very important phrase)

This is a phy reset problem. [Delete the editorial comment.]

Author: RElliott Subject: Note Date: 10/29/2008 4:30:59 PM -07'00' ACCEPT - DONE

at least one TRAIN_DONE Pattern Transmitted message after receiving the TRAIN_DONE Received message in b) (i.e., after receiving TRAIN_DONE, transmit at least one more TRAIN_DONE).

There is a race condition if the phy's receiver completes its own training while receiving the fourth or later TRAIN_DONE pattern from the other phy (after the TRAIN_DONE primitive, during the data dwords), The phy sends TRAIN_DONE itself, but has not successfully received the TRAIN_DONE primitive yet so continues to wait. The other phy, however, receives this new TRAIN_DONE just fine, and because it has already sent four TRAIN_DONEs, proceeds on to the identification sequence. The

Comments from page 272 continued on next page

6.8.4.13.2 Transition SP30:SAS_TrainingDone to SP0:OOB_COMINIT

This transition shall occur after:

- a) receiving a DWS Lost message if this state does not send a Start DWS message; or
- b) receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.4.13.3 Transition SP30:SAS TrainingDone to SP1:OOB AwaitCOMX

This transition shall occur if:

- a) TRAIN_DONE Received message is not received before the MTT timer expires; and
- the Commonly Supported Settings state machine variable does not contain additional commonly supported settings.

This is a phy reset problem.

Before the transition, this state shall set the ResetStatus state machine variable to PHY_RESET_PR/BLEM.

6.8.4.13.4 Transition SP30:SAS_TrainingDone to SP28:SAS_TrainSetup

This transition shall occur if:

- a) the MTT timer expires; and
- the Commonly Supported Settings state machine variable contains additional commonly supported settings.

6.8.4.13.5 Transition SP30:SAS_TrainingDone to SP15:SAS_PHY_Ready

This transition shall occur if this state receives:

- a) at least four TRAIN_DONE Pattern Transmitted messages; and
- b) a TRAIN_DONE Received message before the MTT timer expires.

6.8.5 SATA host emulation states

6.8.5.1 SATA host emulation states overview

Figure 157 shows the SATA host emulation states, in which the phy has detected that it is attached to 25 the phy and behaves as if it were a SATA host phy, initiating the SATA speed negotiation sequence. These states are indicated by state names with a prefix of SATA.

The power management states defined in this standard are for SAS initiator phys that support SATA; expander devices that support SATA do not support power management-in this standard.

other phy sends SOAF etc. but this phy is oblivious.

By requiring the other phy to send one more TRAIN_DONE after it receives a TRAIN_DONE, both sides are sure to have seen at least one of them, and both are prepared for the identification sequence. (per T10 reflector thread with Bill Martin, Emulex)

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:39:46 PM -07'00'

phy, initiating s/b phy initiating

Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 4:38:58 PM -07'00'
TACCEPT - DONE

This << support SATA; expander devices >> should be << support SATA. Expander devices >>

Subject Highlight
Date: 5/25/2008 4:38:47 PM -07'00'

SATA; expander s/b SATA. Expander

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

Delete "in this standard" which is awkward wording

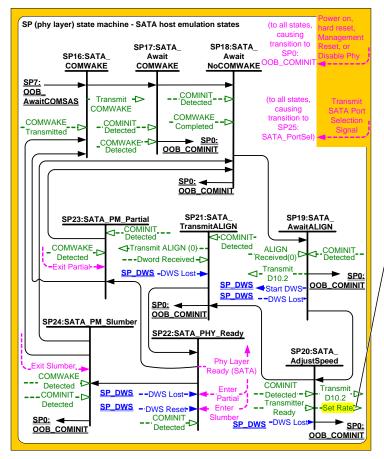


Figure 157 — SP (phy layer) state machine - SATA host emulation states

Page: 273

Author: RElliott
Subject: Highlight
Date: 8/31/2008 6:38:17 PM -07'00'

ACCEPT - DONE

Set Rate

Change to
Set Physical Link Rate

6.8.5.2 SP16:SATA COMWAKE state

6.8.5.2.1 State description

This state shall send a Transmit COMWAKE message to the SP transmitter and wait for a COMWAKE

6.8.5.2.2 Transition SP16:SATA_COMWAKE to SP17:SATA_AwaitCOMWAKE

This transition shall occur after receiving a COMWAKE Transmitted message

6.8.5.3 SP17:SATA_AwaitCOMWAKE state

6.8.5.3.1 State description

This state waits for COMWAKE to be received.

6.8.5.3.2 Transition SP17:SATA_AwaitCOMWAKE to SF0:OOB_COMINIT

This transition shall occur after receiving a COMINIT Detected message.

6.8.5.3.3 Transition SP17:SATA_AwaitCOMWAKE to SP18:SATA_AwaitNoCOMWAKE

This transition shall occur after receiving a COMWAKE Detected message.

6.8.5.4 SP18:SATA AwaitNoCOMWAKE state

6.8.5.4.1 State description

This state waits for a COMWAKE Completed message.

6.8.5.4.2 Transition SP18:SATA_AwaitNoCOMWAKE to SP2:00B_COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.5.4.3 Transition SP18:SATA AwaitNoCOMWAKE to SP19:SATA AwaitALIGN

This transition shall occur after receiving a CONVAKE Completed message.

6.8.5.5 SP19:SATA_AwaitALIGN state

6.8.5.5.1 State description

Upon entry into this state, the phy shall send a Start DWS message to the SP_DWS state machine.

- a) repeatedly send Transmit D10.2 messages to the SP transmitter;
- b) initialize and start the Await ALIGN Timeout timer; and
- c) wait for an ALIGN Received (0) message to be received or for the Await ALIGN Timeout timer to

The phy shall start transmitting D10.2 characters no later than a COMWAKE response time (see 6.7.2.2) after entry into this state.

6.8.5.5.2 Transition SP19:SATA AwaitALIGN to SP0:OOB COMINIT

This transition shall occur if the Await ALIGN Timeout timer expires or after receiving a DWS Lost message, or after receiving a COMINIT Detected message.

Page: 274

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:40:17 PM -07'00' TREJECT

> receiving s/b

this state receives

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:40:21 PM -07'00'

TREJECT

receiving

this state receives

Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 4:40:23 PM -07'00'

receiving

s/b

this state receives

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:40:25 PM -07'00'

REJECT

receiving

this state receives

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 4:40:29 PM -07'00' TREJECT

receiving

this state receives

Author: Isi-bday

Subject: Highlight Date: 8/31/2008 6:47:48 PM -07'00'

*ACCEPT - DONE (8/31 Added (which handles the D10.2 rate), but note that other intricacies of SATA speed negotiation are not TACCEPT - DONE (8/31 Added (which handles the D10.2 rate), but note that during influences of On A open insignature.

The mentioned like how the receiver decides the rate of the incoming ALIGNs and communicates that to SP and the transmitter.

7/9 do it. Bumping speeds is handled in SP20, but the initial speed is missing)

Need to include new list item to send a Set Rate to the transmitter

a) Send a Set Rate to the SP transmitter with a Physical Link Rate argument set to the lowest supported link rate, and either an SSC On argument or an SSC Off

Also update figure to have the "Set Rate" arrow from this state.

Comments from page 274 continued on next page

6.8.5.2 SP16:SATA COMWAKE state

6.8.5.2.1 State description

This state shall send a Transmit COMWAKE message to the SP transmitter and wait for a COMWAKE Transmitted message.

6.8.5.2.2 Transition SP16:SATA_COMWAKE to SP17:SATA_AwaitCOMWAKE

This transition shall occur after receiving a COMWAKE Transmitted message

6.8.5.3 SP17:SATA_AwaitCOMWAKE state

6.8.5.3.1 State description

This state waits for COMWAKE to be received.

6.8.5.3.2 Transition SP17:SATA_AwaitCOMWAKE to SP0:OOB_COMINIT

This transition shall occur after receiving a COMINIT Detected message.

6.8.5.3.3 Transition SP17:SATA_AwaitCOMWAKE to SP18:SATA_AwaitNoCOMWAKE

This transition shall occur after receiving a COMWAKE Detected message.

6.8.5.4 SP18:SATA AwaitNoCOMWAKE state

6.8.5.4.1 State description

This state waits for a COMWAKE Completed message.

6.8.5.4.2 Transition SP18:SATA_AwaitNoCOMWAKE to SP0:OOB_COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.5.4.3 Transition SP18:SATA AwaitNoCOMWAKE to SP19:SATA AwaitALIGN

This transition shall occur after receiving a COMWAKE Completed message.

6.8.5.5 SP19:SATA_AwaitALIGN state

6.8.5.5.1 State description

Upon entry into this state, the phy shall send a Start DWS message to the SP_DWS state machine.

This state shall:

274

- a) repeatedly send Transmit D10.2 messages to the SP transmitter;
- b) initialize and start the Await ALIGN Timeout timer; and
- c) wait for an ALIGN Received (0) message to be received or for the Await ALIGN Timeout timer to

The phy shall start transmitting D10.2 characters no later than a COMWAKE response time (see 6.7.2.2) after entry into this state.

6.8.5.5.2 Transition SP19:SATA AwaitALIGN to SP0:OOB COMINIT

This transition shall occur if the Await ALIGN Timeout timer expires or after receiving a DWS Lost message, or after receiving a COMINIT Detected message.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

> This transition shall occur if the Await ALIGN Timeout timer expires or after receiving a DWS Lost message, or after receiving a COMINIT Detected message.

a)b)c) list

T10/1760-D Revision 14

Before the transistion, this state shall:

- a) if the Await ALIGN Timeout timer expires, set the ResetStatus state machine variable to UNSUPPORTED_PHY_ATTACHED;
- b) after receiving a DWS Lost message, set the ResetStatus state machine variable to UNKNOWN; or
- after receiving a COMINIT Detected message, set the ResetStatus state machine variable to UNKNOWN.

6.8.5.5.3 Transition SP19:SATA AwaitALIGN to SP20:SATA AdjustSpeed

This transition shall occur if this state receives an ALIGN Received (0) message before the Await ALIGN Timeout timer expires. The ALIGN Received (0) message indicates an ALIGN (0) was received at any of the physical link rates supported by this phy.

6.8.5.6 SP20:SATA AdjustSpeed state

6.8.5.6.1 State description

This state waits for the SP transmitter to adjust to the same physical link rate of the ALIGNs that were detected by the receiver circuitry.

This state shall

- 1) send a Set Rate message to the SP transmitter; and
- 2) repeatedly send Transmit D10.2 messages to the SP transmitter.

6.8.5.6.2 Transition SP20:SATA_AdjustSpeed to SP0:OOB_COMINIT

This transition shall occur after receiving a <u>DWS</u> Lost message, or after receiving a <u>COMINIT Detected</u> message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.5.6.3 Transition SP20:SATA AdjustSpeed to SP21:SATA TransmitALIGN

This transition shall occur after receiving a Transmitter Ready message.

6.8.5.7 SP21:SATA_TransmitALIGN state

6.8.5.7.1 State description

This state shall repeatedly send Transmit ALIGN (0) messages to the SP transmitter.

6.8.5.7.2 Transition SP21:SATA_TransmitALIGN to SP0:OOB_COMINIT

This transition shall occur after receiving a DWS Lost message, or after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN

6.8.5.7.3 Transition SP21:SATA_TransmitALIGN to SP22:SATA_PHY_Ready

This transition shall occur after receiving three consecutive Dword Received messages containing primitives other than ALIGN (0).

6.8.5.8 SP22:SATA_PHY_Ready state

6.8.5.8.1 State description

While in this state dwords from the link layer are transmitted at the negotiated physical link rate at the rate established in the previous state.

Page: 275 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE set s/b then set Author: RElliott Subject: Highlight
Date: 8/31/2008 6:06:31 PM -07'00' TACCEPT - DONE Set Rate message to the SP transmitter Set Physical Link Rate message to the SP transmitter with an argument specifying the physical link rate of the ALIGNs that were It doesn't say how it figures that out. Since this is part of SATA host emulation, that seems fair to leave as an exercise for the We'll also remain quiet about setting SSC. We'll also remain quiet about how the receiver tests different speeds that it supports. SP doesn't implement that check (for SATA) the SP receiver must do so on its own. Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE message, or after receiving s/b message or Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:40:32 PM -07'00' TREJECT receiving s/b this state receives Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:40:37 PM -07'00' TREJECT receiving this state receives Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Comments from page 275 continued on next page

ACCEPT - DONE

message or

s/b

message, or after receiving

Before the transistion, this state shall:

- a) if the Await ALIGN Timeout timer expires, set the ResetStatus state machine variable to UNSUPPORTED_PHY_ATTACHED;
- b) after receiving a DWS Lost message, set the ResetStatus state machine variable to UNKNOWN; or
- after receiving a COMINIT Detected message, set the ResetStatus state machine variable to UNKNOWN.

6.8.5.5.3 Transition SP19:SATA AwaitALIGN to SP20:SATA AdjustSpeed

This transition shall occur if this state receives an ALIGN Received (0) message before the Await ALIGN Timeout timer expires. The ALIGN Received (0) message indicates an ALIGN (0) was received at any of the physical link rates supported by this phy.

6.8.5.6 SP20:SATA AdjustSpeed state

6.8.5.6.1 State description

This state waits for the SP transmitter to adjust to the same physical link rate of the ALIGNs that were detected by the receiver circuitry.

This state shall:

- 1) send a Set Rate message to the SP transmitter; and
- 2) repeatedly send Transmit D10.2 messages to the SP transmitter.

6.8.5.6.2 Transition SP20:SATA_AdjustSpeed to SP0:OOB_COMINIT

This transition shall occur after receiving a DWS Lost message, or after receiving a CC/MINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.5.6.3 Transition SP20:SATA AdjustSpeed to SP21:SAT/ TransmitAl/IGN

This transition shall occur after receiving a Transmitter Ready message.

6.8.5.7 SP21:SATA_TransmitALIGN state

6.8.5.7.1 State description

This state shall repeatedly send Transmit ALIGN (0) messages to the SP transmitter.

6.8.5.7.2 Transition SP21:SATA_Transmit/ALIGN to SP/0:OOB_COMINIT

This transition shall occur after receiving a DWS Lost nessage, or after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.5.7.3 Transition SP21:SATA_Transmit/LIGN to SP22:SATA_PHY_Ready

This transition shall occur after receiving frree consecutive Dword Received messages containing primitives other than ALIGN (0).

6.8.5.8 SP22:SATA_PHY_Ready state

6.8.5.8.1 State description

While in this state dwords from the link layer are transmitted at the negotiated physical link rate at the rate established in the previous state.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 4:41:04 PM -07'00'

receiving
s/b
this state receives

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 4:41:07 PM -07'00'

TREJECT

receiving
s/b
this state receives

Author: REJIcot

Author: REJIcot

receiving
s/b
this state receives

Author: REJIcot

Treject Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE (changed to:
"at the negotiated physical link rate (i.e., the rate established in the previous state)")

at the negotiated physical link rate at the rate

doesn't make sense

Upon entry into this state, this state shall: Page: 276 a) if the SP transmitter is transmitting at 1.5 Gbps, set the ResetStatus state machine variable to C1; Author: RElliott b) if the SP transmitter is transmitting at 3 Gbps, set the ResetStatus state machine variable to G2; or Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' c) if the SP transmitter is transmitting at 6 Gbps, set the ResetStatus state machine variable to G3. ACCEPT - DONE This state shall send a Phy Layer Ready (SATA) confirmation to the link layer to indicate that the physical link ully in SATA mode. set s/b This state waits for a COMINIT Detected message, a DWS Lost message, or a DWS Reset message. then set Each time this state receives a DWS Lost message, this state may send a Start DWS reessage to the Author: RElliott SP_DWS state machine to re-acquire dword synchronization without running a new link reset sequence. Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' 6.8.5.8.2 Transition SP22:SATA_PHY_Ready to SP0:QOB_COMINIT TACCEPT - DONE This transition shall occur after: set a) receiving a DWS Lost message, if this state does not send a Start DWS message; s/b then set receiving a DWS Lost message followed by a COMINIT Detected message, if this state does not send a Start DWS message; or b) receiving a DWS Reset message. Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' This transition may but should no occur after receiving a COMINIT Detected massage before receiving a DWS Lost message, or after receiving a COMINIT Detected message after sending a Start DWS message ACCEPT - DONE (i.e., the SP state machine should ignore COMINIT Detected messages unless the SP DWS state machine has indicated loss of dword synchronization. set s/b 6.8.5.8.3 Transition SP22:SATA PHY Ready to SP23:SATA PM Partial then set This transition shall occur after receiving an Enter Parial request. Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00' 6.8.5.8.4 Transition SP22:SATA_PHY_Ready to SP24:SATA_PM_Slumber ACCEPT - DONE This transition shall occur after receiving an Enter Slumber request Delete 6.8.5.9 SP23:SATA PM Partial state "to indicate that the physical link has been brought up successfully in SATA mode" 6.8.5.9.1 State description to match Isi-gpenokie comment on SP15:SAS_PHY_Ready This state waits for a COMWAKE Detected message or an Exit Partial request. Author: wdc-mevans 6.8.5.9.2 Transition SP23:SATA PM Partial to SP0:OOB COMINIT Subject: Highlight Date: 6/24/2008 5:16:43 PM -07'00' This transition shall occur after receiving a COMINIT Detected message. REJECT (deleted phrase instead, to match Isi-gpenokie comment on SP15:SAS_PHY_Ready) Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN brought up successfully 6.8.5.9.3 Transition SP23:SATA PM Partial to SP16:SATA COMWAKE established This transition shall occur after receiving a Exit Partial request. Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 4:42:27 PM -07'00'
REJECT (but pulled in "receiving") 6.8.5.9.4 Transition SP23:SATA_PM_Partial to SP18:SATA_AwaitNoCOMWAKE This transition shall occur after receiving a COMWAKE Detected message. after 6.8.5.10 SP24:SATA_PM_Slumber state after this state receives: 6.8.5.10.1 State description Author: wdc-mevans This state waits for a COMWAKE Detected message or an Exit Slumber request. Subject: Cross-Out Date: 5/25/2008 4:42:02 PM -07'00' 6.8.5.10.2 Transition SP24:SATA_PM_Slumber to SP0:OOB_COMINIT

Comments from page 276 continued on next page

This transition shall occur after receiving a COMINIT Detected message.

Upon entry into this state, this state shall:

- a) if the SP transmitter is transmitting at 1.5 Gbps, set the ResetStatus state machine variable to G1;
- b) if the SP transmitter is transmitting at 3 Gbps, set the ResetStatus state machine variable to G2; or
- c) if the SP transmitter is transmitting at 6 Gbps, set the ResetStatus state machine variable to G3.

 This state shall send a Phy Layer Ready (SATA) confirmation to the link layer to indicate that the physical link

has been <mark>brought up successfully in SATA mode</mark>.

This state waits for a COMINIT Detected message, a DWS Lost message, or a DWS Reset message.

Each time this state receives a DWS Lost message, this state may send a Start DWS message to the SP_DWS state machine to re-acquire dword synchronization المائلة out running a new link reset sequence

6.8.5.8.2 Transition SP22:SATA_PHY_Ready+0 SP0:OOB_COMPHT

This transition shall occur after

- a) receiving a DW3-Cost message, if this state does not send a Start DWS message:
- a) receiving a DWS Lost message followed by a COMINIT Detected message, if this state does not send a Start DWS message; or
- b) receiving a DWS Reset message.

This transition may but should not occur after receiving a COMINIT Detected message before receiving a DWS Lost message, or after receiving a COMINIT Detected message after sending a Start DWS message (i.e., the SP state machine should ignore COMINIT Detected messages unless the SP_DWS state machine has indicated loss of dword synchrosization).

6.8.5.8.3 Transition SP22:SATA_PHY_Ready to SP23:SATA_PM_Partial

This transition shall occur after receiving an Enter Partial request.

6.8.5.8.4 Transition SP22:SATA_PHY_Ready to SP24:SATA_PM_Slumber

This transition shall occur after receiving an Enter Slumber request.

6.8.5.9 SP23:SATA PM Partial state

6.8.5.9.1 State description

This state waits for a COMWAKE Detected message or an Exit Partial request.

6.8.5.9.2 Transition SP23:SATA PM Partial to SP0:OOB COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.5.9.3 Transition SP23:SATA PM Partial to SP16:SATA COMWAKE

This transition shall occur after receiving a Exit Partial request.

6.8.5.9.4 Transition SP23:SATA_PM_Partial to SP18:SATA_AwaitNoCOMWAKE

This transition shall occur after receiving a COMWAKE Detected message.

6.8.5.10 SP24:SATA_PM_Slumber state

6.8.5.10.1 State description

This state waits for a COMWAKE Detected message or an Exit Slumber request.

6.8.5.10.2 Transition SP24:SATA_PM_Slumber to SP0:OOB_COMINIT

This transition shall occur after receiving a COMINIT Detected message.

ACCEPT - DONE receiving [Delete this word based on the above change.] Subject: Cross-Out Date: 5/25/2008 4:42:08 PM -07'00' ACCEPT - DONE receiving [Delete this word based on the above change.] Author: RElliott Subject: Highlight Date: 7/9/2008 7:03:34 AM -07'00' ACCEPT - DONE a) s/b b) (from Ralph Weber, ENDL) Author: wdc-mevans Subject: Cross-Out Date: 5/25/2008 4:42:15 PM -07'00' ACCEPT - DONE receiving [Delete this word based on the above change.] Author: wdc-mevans Subject: Cross-Out Date: 5/25/2008 4:43:21 PM -07'00' REJECT may but [Delete redundant words.] Author: Isi-apenokie Subject: Highlight
Date: 5/25/2008 4:43:12 PM -07'00'
ACCEPT - DONE (with commas) This << This transition may but should not occur after >> should at least be changed to << This transition may, but should not, occur after >> but I would rather see if restated as << This transition should not occur after >> Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:43:46 PM -07'00' REJECT (but split into a)b) list which might help) message, or s/b message or Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 4:43:28 PM -07'00' receiving

Comments from page 276 continued on next page

Upon entry into this state, this state shall:

- a) if the SP transmitter is transmitting at 1.5 Gbps, set the ResetStatus state machine variable to G1;
- b) if the SP transmitter is transmitting at 3 Gbps, set the ResetStatus state machine variable to G2; or
- c) if the SP transmitter is transmitting at 6 Gbps, set the ResetStatus state machine variable to G3.

This state shall send a Phy Layer Ready (SATA) confirmation to the link layer to indicate that the physical link has been brought up successfully in SATA mode.

This state waits for a COMINIT Detected message, a DWS Lost message, or a DWS Reset message.

Each time this state receives a DWS Lost message, this state may send a Start DWS message to the SP_DWS state machine to re-acquire dword synchronization without running a new link reset sequence.

6.8.5.8.2 Transition SP22:SATA_PHY_Ready to SP0:OOB_COMINIT

This transition shall occur after:

- a) receiving a DWS Lost message, if this state does not send a Start DWS message:
- receiving a DWS Lost message followed by a COMINIT Detected message, if this state does not send a Start DWS message; or
- b) receiving-a DWS Reset message.

This transition may but should not occur after receiving a COMINIT Detected message before receiving a DWS Lost message, or after receiving a COMINIT Detected message after sending a Start DWS message (i.e., the SP state machine should ignore COMINIT Detected messages unless the SP DWS state machine has indicated loss of dword synchronization).

6.8.5.8.3 Transition SP22:SATA_PHY_Ready to SP22:SATA_PM_Partial

This transition shall occur after receiving an Enter Fartial request.

6.8.5.8.4 Transition SP22:SATA_PHY_Rearly to SP24:SATA_PM_S/umber

This transition shall occur after receiving an Enter Slumber request

6.8.5.9 SP23:SATA_PM_Partial state

6.8.5.9.1 State description

This state waits for a COMWAKE Detected message or an Exit Partial equest.

6.8.5.9.2 Transition SP23:SATA PM Partia to SP0:OOB COMINIT

This transition shall occur after receiving a COMINIT Detected message

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN

6.8.5.9.3 Transition SP23:SATA_PM_Partial to SF16:SATA_COMWAKE

This transition shall occur after receiving a Exit Partial request.

6.8.5.9.4 Transition SP23:SATA_PM_Partial to SP18:SATA_AwaitNoCOMWAKE

This transition shall occur after receiving a COMWAKE Detected message.

6.8.5.10 SP24:SATA_PM_Slumber state

6.8.5.10.1 State description

This state waits for a COMWAKE Detected message or an Exit Slumber request.

6.8.5.10.2 Transition SP24:SATA_PM_Slumber to SP0:OOB_COMINIT

This transition shall occur after receiving a COMINIT Detected message.

Working Draft Serial Attached SCSI - 2 (SAS-2)

this state receives Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:43:33 PM -07'00' TREJECT. receiving this state receives Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:43:53 PM -07'00' REJECT receiving this state receives Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE a Exit an Exit Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 4:43:57 PM -07'00'
TREJECT receiving s/h this state receives Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:44:01 PM -07'00' REJECT

receiving s/b

this state receives

Before the transition, this state shall set the ResetStatus state machine variable to UNKNOWN.

6.8.5.10.3 Transition SP24:SATA_PM_Slumber to SP16:SATA_COMWAKE

This transition shall occur after receiving & Sturnber request.

6.8.5.10.4 Transition SP24:SATA_PM_Slumber to SP18:SATA_AwaitNoCSMWAKE

This transition shall occur after receiving a COMWAKE Detected message.

6.8.6 SATA port selector state SP25:SATA_PortSel

6.8.6.1 State description

Figure 158 shows the SP25:SATA_PortSel state. This state controls transmission of the SATA port selection signal when a specified phy processes a Transmit SATA Port Selection Signal request.

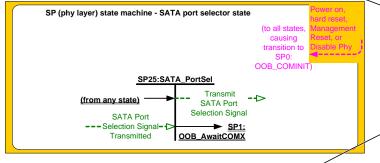
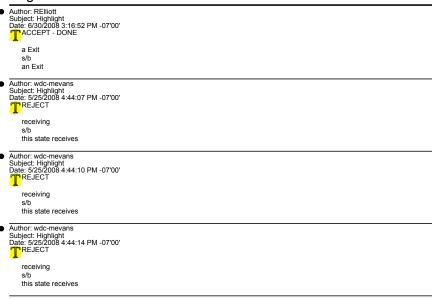


Figure 158 — SP (phy layer) state machine - SATA port selector state


Upon entry into this state, the phy shall:

- a) set the ResetStatus state machine variable to UNKNOWN;
- b) send a Transmit SATA Port Selection Signal message to the St transmitter;
- c) set the ATTACHED SATA PORT SELECTOR bit to zero in the SMIP DISCOVER response (see 10.4.3.10); and
- d) set the ATTACHED SATA DEVICE bit to zero in the SMP DISCOVER response.

6.8.6.2 Transition SP25:SATA_PortSel to SP1.00B_AwaitCOMX

This transition shall occur after receiving a SATA Port Selection Signal Transmitted message.

Page: 277

6.8.7 SATA spinup hold state SP26:SATA_SpinupHold

6.8.7.1 State description

Figure 159 shows the SP26:SATA SpinupHold state.

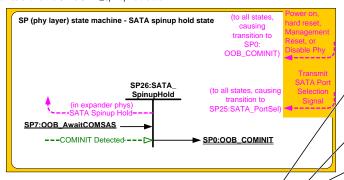


Figure 159 — SP (phy layer) state machine - SATA spinup hold state

Upon entry into this state, this state shall:

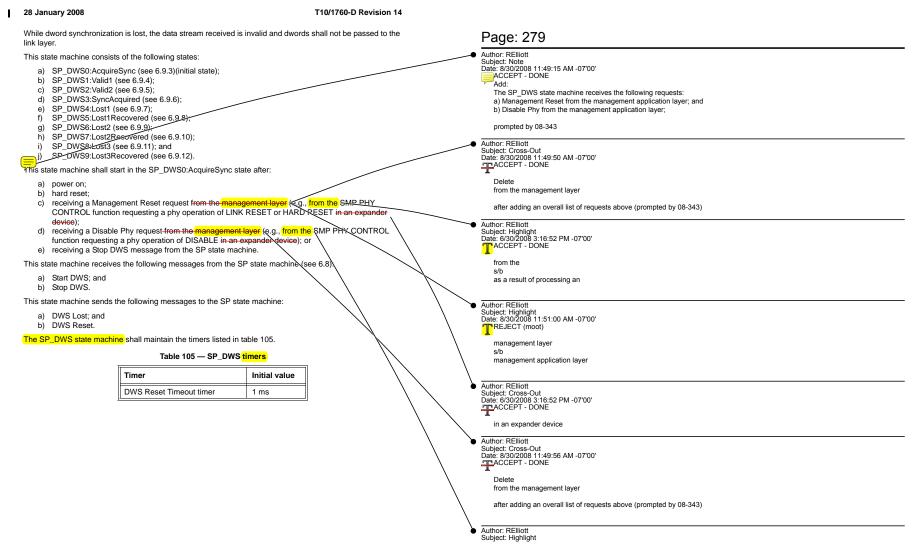
- a) if the ResetStatus state machine variable is set to SPINUP_HOLD, not many the ResetStatus state machine variable; or
- b) if the ResetStatus state machine variable is not set to SPINUD_HOLD.
 - A) set the ResetStatus state machine variable to SPINUP_HOLD; and
 - B) if this state machine is in an expander phy, send a SATA Spinup Hold confirmation to the link layer.

6.8.7.2 Transition SP26:SATA_SpinupHold to SP0:OOB_COMINIT

This transition shall occur if this state receives a COMINIT Detected message.

6.9 SP_DWS (phy layer dword synchronization) state machine

6.9.1 SP_DWS state machine overview


Each phy includes an SP_DWS state machine and an SP_DWS receiver.

The SP_DWS state machine establishes the same dword boundaries at the receiver as at the attached transmitter by searching for control characters. The SP_DWS receiver monitors and devodes the incoming data stream and forces K28.5 characters into the first character position to effectively perform dword alignment when requested by the SP_DWS state machine. K28.5 characters with either positive or negative disparity shall be accepted. The SP_DWS receiver continues to reestablish dword alignment by forcing received K28.5 characters into the first character position until a K28.5-based primitive (i.e., K28.5, Dxx.y, Dxx.y, Dxx.y, Dxx.y, Dxx.y) with correct disparity on each data character is detected. The resultant primitives, dwords and valid dword indicators (e.g., encoding error indicators) are sent to this state machine to enable it to determine the dword synchronization policy.

After dword synchronization has been achieved, this state machine monitors invalid dwords that are received. When an invalid dword is detected, it requires two valid dwords to nullify its effect. When four invalid dwords are detected without nullification, dword synchronization is considered lost.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE not s/b then not Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE s/b . then: Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE send s/b then send Author: wdc-mevans Subject: Cross-Out Date: 5/25/2008 4:45:58 PM -07'00' effectively [Delete the unnecessary word.] Author: wdc-meyans Subject: Highlight Date: 5/25/2008 4:47:11 PM -07'00' it requires two valid dwords to nullify its effect. When four invalid dwords are detected without nullification, dword synchronization is considered lost receipt of two valid dwords is required to nullify the effect of receiving the invalid dword. When four invalid dwords in a row are detected, dword synchronization is considered lost.

Page: 278

28 January 2008

T10/1760-D Revision 14

While dword synchronization is lost, the data stream received is invalid and dwords shall not be passed to the link laver.

This state machine consists of the following states:

- a) SP_DWS0:AcquireSync (see 6.9.3)(initial state);
- b) SP_DWS1:Valid1 (see 6.9.4);
- c) SP_DWS2:Valid2 (see 6.9.5);
- d) SP_DWS3:SyncAcquired (see 6.9.6);
- e) SP_DWS4:Lost1 (see 6.9.7);
- f) SP_DWS5:Lost1Recovered (see 6.9.8);
- g) SP_DWS6:Lost2 (see 6.9.9);
- h) SP_DWS7:Lost2Recovered (see 6.9.10);
- i) SP_DWS8:Lost3 (see 6.9.11); and
- j) SP_DWS9:Lost3Recovered (see 6.9.12).

This state machine shall start in the SP_DWS0:AcquireSync state after:

- a) power on;
- b) hard reset;
- c) receiving a Management Reset request from the management layer (e.g., from the SMP PHY CONTROL function requesting a phy operation of LINK RESET or HARD RESET in an expander device):
- d) receiving a Disable Phy request-from the management layer (e.g., from the SMP PHY CONTROL function requesting a phy operation of DISABLE in an expander device); or
- e) receiving a Stop DWS message from the SP state machine.

This state machine receives the following messages from the SP state machine (see 6.8)

- a) Start DWS; and
- b) Stop DWS.

This state machine sends the following messages to the St state machine:

- a) DWS Lost; and
- b) DWS Reset.

The SP_DWS state machine snall maintain the timers listed in table 105.

Table 105 — SP_DWS timers

Timer	Initial value
DWS Reset Timeout timer	1 ms

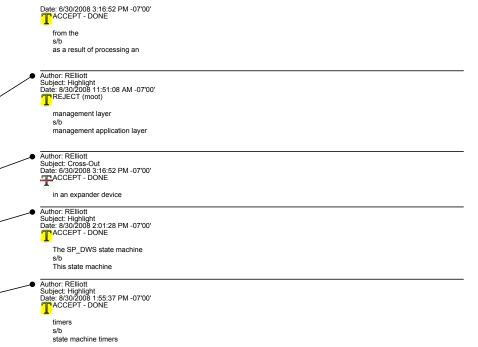
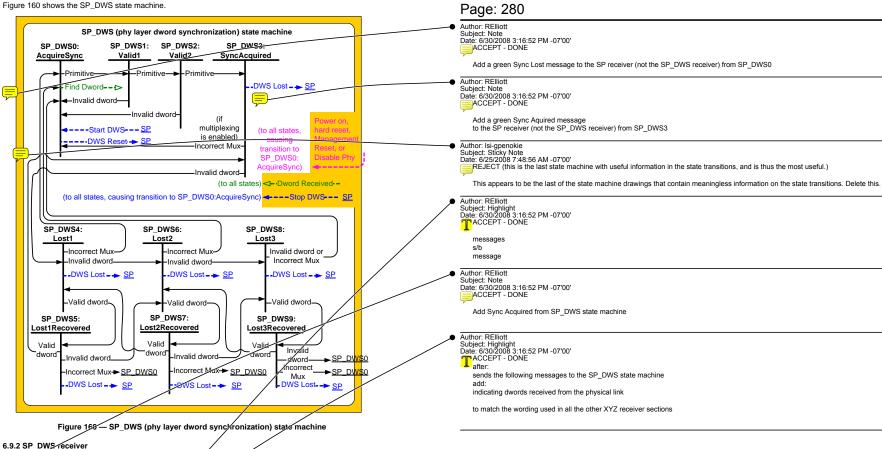



Figure 160 shows the SP_DWS state machine.

The SP_DWS receiver receives the following messages from the SF_DWS state machine:

a) Find Dword.

The SP_DWS receiver sends the following messages to the SP_DWS state machine:

- a) Dword Received (Primitive);
- b) Dword Received (Data Dword);
- c) Dword Received (Invalid); and
- Incorrect Mux Received.

The SP_DWS receiver also sends Dword Received confirmations to the link layer state machine receivers (e.g., SL_IR, SL, SSP, SMP, and XL). If multiplexing is enabled (see table 100 in 6.7.4.2.3.3), the \$P_DWS receiver shall use the first incoming MUX primitive to determine the logical phy to which it sends each Dword Received confirmation and shall not send an Dword Received confirmations until it seceives the first in coming MUX primitive.

Upon receiving a Find Dword message, the SP_DWS receiver shall monitor the input data stream and force each K28.5 character detected into the first character position of a possible dword. If the next three characters are data characters with correct disparity, it shall send the dword as a Dword Received (Primitive) message to the SP_WS state machine. Until it receives another Find Dword message, for every four characters receives it shall:

- a) send a Dwerd Received (Invalid) message to the SP_DWS state machine if the dword is an invalid dword (see 3.1.114);
- b) send a Dword Received (Primitive) message to the SP_DWS state machine if the dword is a primitive (i.e., the dword contains a K28.5 character in the first character position followed by three data characters): or
- c) send a Dword Received (Data Qword) message to the SP_DWS state machine if the dword is a data dword (i.e., it is not an invalid dword or a primitive).

The SP DWS receiver relationship to other receivers is defined in 43.3.

6.9.3 SP DWS0:AcquireSvnc state

6.9.3.1 State description

This is the initial state of this state machine.

After receiving a Start DWS message, this state shall:

- a) send a Find Dword message to the SP_DWS receiver; and
- b) initialize and start the DWS Reset Timeout timer;

If this state is entered from SP_DWS1:Valid1 or SP_DWS2:Valid2, this state shall send a Find Dword message to the SP_DWS receiver, and the DWS Reset Timeout timer shall continue running

If this state is entered from SP_DWS1; Valid1 or SP_DWS2; Valid2 and the DWS Reset Timeou expired, this state may send a DWS Reset message to the SP state machine (e.g., if the phy cl initiate a new link reset sequence because dword synchronization has been lost for too long).

This state shall not send a DWS Reset message to the SP until the DWS Reset Timeout timer expires If the DWS Reset Timeout timer expires, this state may send a DWS Reset message to the SP state machine.

6.9.3.2 Transition SP_DWS0:AcquireSync to SP_DWS1:Valid1

This transition shall occur after sending a Find Dword message and receiving a Dword Received (Primitive)

6.9.4 SP DWS1:Valid1 state

6.9.4.1 State description

This state is reached after one valid primitive has been received. This state waits for a second valid primitive or an invalid dword.

The DWS Reset Timeout timer shall continue running.

6.9.4.2 Transition SP_DWS1:Valid1 to SP_DWS0:AcquireSync

This transition shall occur after receiving a Dword Received (Invalid) message or after the DWS Reset Timeout timer expires.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 281

Author: wdc-mevans Subject: Highlight Date: 5/21/2008 4:55:02 PM -07'00'

281

ACCEPT - DONE (but added "then")

```
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
   The SP_DWS receiver also sends Dword Received confirmations to the link layer state machine receivers (e.g., SL_IR, SL, SSP,
   SMP, and XL).
   When the SP_DWS receiver receives a Sync Acquired message, it shall send the most recently received primitive and all
   subsequent dwords to the link layer state machine receivers (e.g., SL_IR, SL, SSP, SMP, and XL) as Dword Received
   It doesn't send every Dword Received while searching for dword sync; just those after dword sync has been achieved.
   This does let Dwords trickle upstream during SNWs (e.g. ALIGNs during SNW-1 and SNW-2). The link layers shouldn't care about
   any of them; there are no SOAFs or such inside the SNWs that would trigger any behavior. Plus, if SP has not yet reached a
   PHY_Ready state, the link layer state machines should still be hibernating.
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
   the
   then the
Author: wdc-mevans
Subject: Highlight
Date: 5/21/2008 4:53:27 PM -07'00'
REJECT
   the SP DWS receiver
Author: wdc-mevans
Subject: Highlight
Date: 5/21/2008 4:53:32 PM -07'00'
 REJECT
   the SP DWS receiver
Author: hpq-relliott
Subject: Note
Date: 6/25/2008 7:49:48 AM -07'00'

ACCEPT - DONE (Added Sync Acquired message from SP_DWS to SP_DWS receiver, which tells it to start forwarding Dword
   confirmations up to the link layer.)
   SP_DWS doesn't send Dword Received confirmations upstream until the phy
   reset sequence is completed. Some feedback from SP is needed to know when this happens.
```

Comments from page 281 continued on next page

The SP_DWS receiver also sends Dword Received confirmations to the link layer state machine receivers (e.g., SL_IR, SL, SSP, SMP, and XL). If multiplexing is enabled (see table 100 in 6.7.4.2.3.3), the SP_DWS receiver shall use the first incoming MUX primitive to determine the logical phy to which it sends each Dword Received confirmation and shall not send an Dword Received confirmations until it receives the first incoming MUX primitive.

Upon receiving a Find Dword message, the SP_DWS receiver shall monitor the input data stream and force each K28.5 character detected into the first character position of a possible dword. If the next three characters are data characters with correct disparity, it shall send the dword as a Dword Received (Primitive) message to the SP_DWS state machine. Until it receives another Find Dword message, for every four characters it receives it shall:

- a) send a Dword Received (Invalid) message to the SP_DWS state machine if the dword is an invalid dword (see 3.1.114);
- send a Dword Received (Primitive) message to the SP_DWS state machine if the dword is a primitive (i.e., the dword contains a K28.5 character in the first character position followed by three data characters) or
- send a Dword Received (Data Dword) message to the SP_DWS state machine if the dword is a data dword (i.e., it is not an invalid dword or a primitive).

The SP_DWS receiver relationship to other receivers is defined in 4.3.3.

6.9.3 SP DWS0:AcquireSvnc state

6.9.3.1 State description

This is the initial state of this state machine.

After receiving a Start DWS message, this state shall:

send a Find Dword message to the SP_DWS receiver; and

b) initialize and start the DWS Reset Timeout timer;

If this state is entered from SP_DWS1:Valid1 or SP_DWS2:Valid2. This state is entered from SP_DWS1:Valid1 or SP_DWS receiver, and the DWS Reset Fine pout timer shall continue running.

If this state is entered from SP_DWS1:Valid1 or SP_DWS2:Valid2 and the DWS Reset Timeout timer has expired, this state may send a DWS Reset message to the SP state machine (e.g., if the phychoeses to initiate a new link reset sequence because dword synchronization has been lost for toe long).

This state shall not send a DWS Reset message to the SP until the DWS Reset Timeout timer expires.

If the DWS Reset Timeout timer expires. This state may send a DWS Reset message to the SP state machine.

6.9.3.2 Transition SP_DWS0:AcquireSync to SP_DWS1:Valid1

This transition shall occur after sending a Find Dword message and receiving a Dword Received (Primitive) message.

6.9.4 SP DWS1:Valid1 state

6.9.4.1 State description

This state is reached after one valid primitive has been received. This state waits for a second valid primitive or an invalid dword.

The DWS Reset Timeout timer shall continue running.

6.9.4.2 Transition SP_DWS1:Valid1 to SP_DWS0:AcquireSync

This transition shall occur after receiving a Dword Received (Invalid) message or after the DWS Reset Timeout timer expires.

Author: wdc-mevans Subject: Highlight Date: 5/21/2008 4:55:16 PM -07'00' $\mathbf{T}_{\mathsf{it}}^{\mathsf{REJECT}}$ the SP_DWS receiver Author: wdc-mevans Subject: Highlight
Date: 5/21/2008 4:55:09 PM -07'00'

ACCEPT - DONE the SP_DWS receiver Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE In SP_DWS0, send Sync Lost to the SP receiver whenever Find Dword is sent to the SP_DWS receiver Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE this s/b then this Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:48:00 PM -07'00' TACCEPT - DONE receiver, and s/b receiver, and Author: Isi-apenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE In this << SP_DWS receiver, and the DWS Reset >> it looks like the comma is really a period. Author: elx-bmartin Subject: Cross-Out Date: 5/21/2008 4:58:18 PM -07'00' ACCEPT - DONE (merged the two, keeping the e.g.) "If this state is entered from SP_DWS1:Valid1 or SP_DWS2:Valid2 and the DWS Reset Timeout timer has expired, this state may send a DWS Reset message to the SP state machine (e.g., if the phy chooses to initiate a new link reset sequence because dword synchronization has been lost for too long)." This paragraph is a subset of this last paragraph in this subclause. Author: Isi-bday

the SP_DWS receiver

Comments from page 281 continued on next page

The SP_DWS receiver also sends Dword Received confirmations to the link layer state machine receivers (e.g., SL_IR, SL, SSP, SMP, and XL). If multiplexing is enabled (see table 100 in 6.7.4.2.3.3), the SP_DWS receiver shall use the first incoming MUX primitive to determine the logical phy to which it sends each Dword Received confirmation and shall not send an Dword Received confirmations until it receives the first incoming MUX primitive.

Upon receiving a Find Dword message, the SP_DWS receiver shall monitor the input data stream and force each K28.5 character detected into the first character position of a possible dword. If the next three characters are data characters with correct disparity, its hall send the dword as a Dword Received (Primitive) message to the SP_DWS state machine. Until it receives another Find Dword message, for every four characters it receives it shall:

- a) send a Dword Received (Invalid) message to the SP_DWS state machine if the dword is an invalid dword (see 3.1.114);
- send a Dword Received (Primitive) message to the SP_DWS state machine if the dword is a primitive (i.e., the dword contains a K28.5 character in the first character position followed by three data characters); or
- send a Dword Received (Data Dword) message to the SP_DWS state machine if the dword is a data dword (i.e., it is not an invalid dword or a primitive).

The SP_DWS receiver relationship to other receivers is defined in 4.3.3.

6.9.3 SP DWS0:AcquireSvnc state

6.9.3.1 State description

This is the initial state of this state machine.

After receiving a Start DWS message, this state shall:

a) send a Find Dword message to the SP_DWS receiver; and

b) initialize and start the DWS Reset Timeout timer;

If this state is entered from SP_DWS1:Valid1 or SP_DWS2:Valid2, this state shall send a Find Dword message to the SP_DWS receiver, and the DWS Reset Timeout timer shall continue running.

If this state is entered from SP_DWS1.Valid1 or SP_DWS2.Valid2 and be WS Reset Timeout timer has expired, this state may send a DWS Reset message to the SP state machine (e.g., if the phy chooses to initiate a new link reset sequence because dword synchronization has been lost for too long).

This state shall not send a DWS Reset message to the SP until the DWS Reset Timeout timer expires

If the DWS Reset Timeout timer expires, this state may send a DWS Reset message to the SP state machine.

6.9.3.2 Transition SP_DWS0:AcquireSync to SP_DWS1:Valid1

This transition shall occur after sending a Find Dword message and receiving a Dword Received (Primitive) message.

6.9.4 SP DWS1:Valid1 state

6.9.4.1 State description

This state is reached after one valid primitive has been received. This state waits for a second valid primitive or an invalid dword.

The DWS Reset Timeout timer shall continue running.

6.9.4.2 Transition SP_DWS1:Valid1 to SP_DWS0:AcquireSync

This transition shall occur after receiving a Dword Received (Invalid) message or after the DWS Reset Timeout timer expires.

Subject: Cross-Out Date: 5/21/2008 4:58:32 PM -07'00' ACCEPT - DONE (merged the two, keeping the e.g.) If this state is entered from SP DWS1:Valid1 or SP DWS2:Valid2 and the DWS Reset Timeout timer has expired, this state may send a DWS Reset message to the SP state machine (e.g., if the phy chooses to initiate a new link reset sequence because dword synchronization has been lost for too long). Redundant with last sentence in this section. Author: wdc-meyans Subject: Highlight
Date: 5/25/2008 4:48:23 PM -07'00' REJECT (2 things ANDed) :Valid2 and :Valid2, and Author: wdc-mevans Subject: Highlight Date: 5/21/2008 5:01:25 PM -07'00' REJECT chooses to initiate initiates Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE 1 this s/b then this Author: wdc-meyans Subject: Highlight Date: 5/25/2008 4:48:53 PM -07'00' TREJECT receivina s/b receives Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:48:45 PM -07'00' REJECT (there are 54 uses of "after sending" vs 9 uses of "after this state sends." Similar usage is found in the "receiving" phrases as well. The shorter phrase wins.) sending s/b this state sends Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:49:01 PM -07'00' TREJECT.

Comments from page 281 continued on next page

receiving

this state receives

The SP_DWS receiver also sends Dword Received confirmations to the link layer state machine receivers (e.g., SL_IR, SL_SSP, SMP, and XL). If multiplexing is enabled (see table 100 in 6.7.4.2.3.3), the SP_DWS receiver shall use the first incoming MUX primitive to determine the logical phy to which it sends each Dword Received confirmation and shall not send an Dword Received confirmations until it receives the first incoming MUX primitive.

Upon receiving a Find Dword message, the SP_DWS receiver shall monitor the input data stream and force each K28.5 character detected into the first character position of a possible dword. If the next three characters are data characters with correct disparity, it shall send the dword as a Dword Received (Primitive) message to the SP_DWS state machine. Until it receives another Find Dword message, for every four characters it receives it shall:

- a) send a Dword Received (Invalid) message to the SP_DWS state machine if the dword is an invalid dword (see 3.1.114);
- send a Dword Received (Primitive) message to the SP_DWS state machine if the dword is a primitive (i.e., the dword contains a K28.5 character in the first character position followed by three data characters): or
- send a Dword Received (Data Dword) message to the SP_DWS state machine if the dword is a data dword (i.e., it is not an invalid dword or a primitive).

The SP_DWS receiver relationship to other receivers is defined in 4.3.3.

6.9.3 SP_DWS0:AcquireSync state

6.9.3.1 State description

This is the initial state of this state machine.

After receiving a Start DWS message, this state shall:

- a) send a Find Dword message to the SP_DWS receiver; and
- b) initialize and start the DWS Reset Timeout timer;

If this state is entered from SP_DWS1:Valid1 or SP_DWS2:Valid2, this state shall send a Find Dword message to the SP_DWS receiver, and the DWS Reset Timeout timer shall continue running.

If this state is entered from SP_DWS1:Valid1 or SP_DWS2:Valid2 and the DWS Reset Timeout timer has expired, this state may send a DWS Reset message to the SP state machine (e.g., if the phy chooses to initiate a new link reset sequence because dword synchronization has been lost for too long).

This state shall not send a DWS Reset message to the SP until the DWS Reset Timeout timer expires.

If the DWS Reset Timeout timer expires, this state may send a DWS Reset message to the SP state machine.

6.9.3.2 Transition SP_DWS0:AcquireSync to SP_DWS1:Valid1

This transition shall occur after sending a Find Dword message and receiving a Dword Received (Primitive) message

6.9.4 SP_DWS1:Valid1 state

6.9.4.1 State description

This state is reached after one valid primitive has been received. This state waits for a second valid primitive or an invalid dword.

The DWS Reset Timeout timer shall continue running.

6.9.4.2 Transition SP_DWS1:Valid1 to SP_DWS0:AcquireSync

This transition shall occur after receiving a Dword Received (Invalid) message or after the DWS Reset Timeout timer expires.

Working Draft Serial Attached SCSI - 2 (SAS-2)

6.9.4.3 Transition SP DWS1:Valid1 to SP DWS2:Valid2

This transition shall occur after receiving a Dword Received (Primitive) message.

6.9.5 SP DWS2:Valid2 state

6.9.5.1 State description

This state is reached after two valid primitives have been received without adjusting the dword synchronization. This state waits for a third valid primitive or an invalid dword.

The DWS Reset Timeout timer shall continue running.

6.9.5.2 Transition SP_DWS2:Valid2 to SP_DWS0:AcquireSync

This transition shall occur after receiving a Dword Received (Invalid) message or after the DWS Reset

6.9.5.3 Transition SP_DWS2:Valid2 to SP_DWS3:SyncAcquired

This transition shall occur after receiving a Dword Received (Primitive) message.

6.9.6 SP DWS3:SyncAcquired state

6.9.6.1 State description

This state is reached after three valid primitives have been received without adjusting the dword synchronization.

The most recently received primitive and all subsequent dwords shall be forwarded for processing by the link

This state waits for a Dword Received (Invalid) message, which indicates that dword synchronization might be lost, or an Incorrect Mux Received message, which indicates that dword synchronization is lost.

If an Incorrect Mux Received message is received, this state shall send a DWS Lost message to the SP state machine.

6.9.6.2 Transition SP DWS3:SyncAcquired to SP DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

6.9.6.3 Transition SP_DWS3:SyncAcquired to SP_DWS4:Lost1

This transition shall occur after receiving a Dword Received (Invaiid) message.

6.9.7 SP DWS4:Lost1 state

6.9.7.1 State description

This state is reached when one invalid dword has been received and not nullified. This state waits for a bword Received message or an Incorrect Mux Received message.

If an Incorrect Mux Received message is received, this state shall send a DWS Lost message to the SP state machine.

6.9.7.2 Transition SP_DWS4:Lost1 to SP_DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

6.9.7.3 Transition SP_DWS4:Lost1 to SP_DWS5:Lost1Recovered

This transition shall occur after receiving a Dword Received (Data Dword) message or a Dword Received (Primitive) message.

Page: 282 Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 4:49:07 PM -07'00' TREJECT

receiving

s/b this state receives

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:49:12 PM -07'00'

REJECT

receivina

this state receives

Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 4:49:15 PM -07'00'

receiving s/b

this state receives

Author: RElliott Subject: Note

Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

Upon entry to SP_DWS3, send Sync Acquired to the SP receiver

Author: wdc-mevans

Subject: Highlight Date: 6/25/2008 6:44:17 AM -07'00'

REJECT ("may" is defined as granting "flexibility of choice". Dword Received (Invalid) doesn't have anything to do with choice or granting any entity permission to do something or not do something; it is an indication that dword synchronization might possibly have been lost.)

might s/b

may

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

this s/b

then this

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:49:30 PM -07'00'

REJECT

sending

Comments from page 282 continued on next page

6.9.4.3 Transition SP DWS1:Valid1 to SP DWS2:Valid2

This transition shall occur after receiving a Dword Received (Primitive) message.

6.9.5 SP_DWS2:Valid2 state

6.9.5.1 State description

This state is reached after two valid primitives have been received without adjusting the dword synchronization. This state waits for a third valid primitive or an invalid dword.

The DWS Reset Timeout timer shall continue running.

6.9.5.2 Transition SP DWS2:Valid2 to SP DWS0:AcquireSync

This transition shall occur after receiving a Dword Received (Invalid) message or after the DWS Reset

6.9.5.3 Transition SP_DWS2:Valid2 to SP_DWS3:SyncAcquired

This transition shall occur after receiving a Dword Received (Primitive) message.

6.9.6 SP_DWS3:SyncAcquired state

6.9.6.1 State description

This state is reached after three valid primitives have been received without adjusting the dword synchronization.

The most recently received primitive and all subsequent dwords shall be forwarded for processing by the link

This state waits for a Dword Received (Invalid) message, which indicates that dword synctronization might be lost, or an Incorrect Mux Received message, which indicates that dword synchronization is lost.

If an Incorrect Mux Received message is received, this state shall send a DWS Lost nessage to the SP state machine.

6.9.6.2 Transition SP_DWS3:SyncAcquired to SP_DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

6.9.6.3 Transition SP_DWS3:SyncAcquired to SP_DWS4:Lost1

This transition shall occur after receiving a Dword Received (Invalid) message.

6.9.7 SP DWS4:Lost1 state

6.9.7.1 State description

This state is reached when one invalid dword has been received and not nullified. This state waits for a Dword Received message or an Incorrect Mux Received message

If an Incorrect Mux Received message is received this state stall send a DWS Lost message to the SP state machine.

6.9.7.2 Transition SP_DWS4:Lost1 to SP_DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

6.9.7.3 Transition SP_DWS4:Lost1 to SP_DWS5:Lost1Recovered

This transition shall occur after receiving a Dword Received (Data Dword) message or a Dword Received (Primitive) message.

Working Draft Serial Attached SCSI - 2 (SAS-2)

this state sends

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:49:34 PM -07'00' TREJECT.

receiving

this state receives

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE s/b

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:49:37 PM -07'00'

TREJECT.

sending

then this

this state sends

Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 4:49:40 PM -07'00'
TREJECT

receiving

this state receives

282

T10/1760-D Revision 14

6.9.7.4 Transition SP DWS4:Lost1 to SP DWS6:Lost2

This transition shall occur after receiving a Dword Received (invalid) message.

6.9.8 SP DWS5:Lost1Recovered state

6.9.8.1 State description

This state is reached when a valid dword has been received after one invalid dword had been received. This state waits for a Dword Received message or an Incorrect Mux Received message.

If an Incorrect Mux Received message is received, this state shall send a DWS Lost message to the SP state machine.

6.9.8.2 Transition SP_DWS5:Lost1Recovered to SP_DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

6.9.8.3 Transition SP_DWS5:Lost1Recovered to SP_DWS3:SyncAcquired

This transition shall occur after receiving a Dword Received (Data Dword) message or a Dword Received (Primitive) message.

6.9.8.4 Transition SP DWS5:Lost1Recovered to SP DWS6:Lost2

This transition shall occur after receiving a Dword Received (Invalid) message.

6.9.9 SP DWS6:Lost2 state

6.9.9.1 State description

This state is reached when two invalid dwords have been received and not nullified. This state waits for a Dword Received message or an Incorrect Mux Received message.

If an Incorrect Mux Received message is received, this state shall send a DWS Lost message to the SP state machine.

6.9.9.2 Transition SP_DWS6:Lost2 to SP_DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

6.9.9.3 Transition SP_DWS6:Lost2 to SP_DWS7:Lost2Recovered

This transition shall occur after receiving a Dword Received (Data Dword) message or a Dword Received (Primitive) message.

6.9.9.4 Transition SP DWS6:Lost2 to SP DWS8:Lost3

This transition shall occur after receiving a Dword Received (Invalid) message.

6.9.10 SP_DWS7:Lost2Recovered state

6.9.10.1 State description

This state is reached when a valid dword has been received after two invalid dwords had been received. This state waits for a Dword Received message or an Incorrect Mux Received message.

If an Incorrect Mux Received message is received, this state shall send a DWS Lost message to the SP state machine.

6.9.10.2 Transition SP_DWS7:Lost2Recovered to SP_DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

Page: 283 Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 4:49:42 PM -07'00'

receiving s/b this state receives

Author: Rellicitt Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE this s/b then this

Author: wdc-mevans
Subject: Highlight
Date: 5/26/2008 4:49:45 PM -07'00'
TREJECT
...

sending s/b

this state sends

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:49:48 PM -07'00'

receiving s/b this state receives

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:49:50 PM -07'00'

receiving s/b this state receives

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

s/b then this

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:49:53 PM -07'00'

sending s/h

Comments from page 283 continued on next page

T10/1760-D Revision 14

6.9.7.4 Transition SP DWS4:Lost1 to SP DWS6:Lost2

This transition shall occur after receiving a Dword Received (Invalid) message.

6.9.8 SP DWS5:Lost1Recovered state

6.9.8.1 State description

This state is reached when a valid dword has been received after one invalid dword had been received. This state waits for a Dword Received message or an Incorrect Mux Received message.

If an Incorrect Mux Received message is received, this state shall send a DWS Lost message to the SP state machine.

6.9.8.2 Transition SP_DWS5:Lost1Recovered to SP_DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

6.9.8.3 Transition SP_DWS5:Lost1Recovered to SP_DWS3:SyncAcquired

This transition shall occur after receiving a Dword Received (Data Dword) message or a Dword Received (Primitive) message.

6.9.8.4 Transition SP_DWS5:Lost1Recovered to SP_DWS6:Lost2

This transition shall occur after receiving a Dword Received (Invalid) message

6.9.9 SP DWS6:Lost2 state

6.9.9.1 State description

This state is reached when two invalid dwords have been received and not nyilified. This state waits for a Dword Received message or an Incorrect Mux Received message.

If an Incorrect Mux Received message is received, this state shall send a DWS Lost message to the SP state machine.

6.9.9.2 Transition SP_DWS6:Lost2 to SP_DWS0:/acquireSyr/c

This transition shall occur after sending a DWS Lost message

6.9.9.3 Transition SP_DWS6:Lost2 to SP_DWS7:Los/2Recovered

This transition shall occur after receiving a Dword Received (Data Dword) message of a Dword Received (Primitive) message.

6.9.9.4 Transition SP DWS6:Lost2 to SP ZWS8:Lost3

This transition shall occur after receiving a Dword Received (Invalid) message.

6.9.10 SP_DWS7:Lost2Recovered state

6.9.10.1 State description

This state is reached when a valid dword has been received after two invalid dwords had been received. This state waits for a Dword Received message or an Incorrect Mux Received message.

If an Incorrect Mux Received message is received, this state shall send a DWS Lost message to the SP state machine.

6.9.10.2 Transition SP_DWS7:Lost2Recovered to SP_DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

Working Draft Serial Attached SCSI - 2 (SAS-2)

this state sends

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 4:49:55 PM -07'00'

receiving

this state receives

tills state receives

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 4:50:00 PM -07'00'

receiving

this state receives

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

this s/b

then this

Author: wdc-mevans

Subject: Highlight
Date: 5/25/2008 4:50:02 PM -07'00'

REJECT

sending s/b

this state sends

6.9.10.3 Transition SP DWS7:Lost2Recovered to SP DWS4:Lost1

This transition shall occur after receiving a Dword Received (Data Dword) message or a Dword Received (Primitive) message.

6.9.10.4 Transition SP_DWS7:Lost2Recovered to SP_DWS8:Lost3

This transition shall occur after receiving a Dword Received (Invalid) message.

6.9.11 SP DWS8:Lost3 state

6.9.11.1 State description

This state is reached when three invalid dwords have been received and not nullified. This state waits for a Dword Received message or an Incorrect Mux Received message.

If a Dword Received (Invalid) message is received (i.e., the fourth non-nullified invalid dword is received), this state shall send a DWS Lost message to the SP state machine.

If an Incorrect Mux Received message is received, this state shall send a DWS Lost message to the SP state machine.

6.9.11.2 Transition SP_DWS8:Lost3 to SP_DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

6.9.11.3 Transition SP_DWS8:Lost3 to SP_DWS9:Lost3Recovered

This transition shall occur after receiving s Dword Received (Data Dwsxd) message or a Dword Received (Primitive) message.

6.9.12 SP_DWS9:Lost3Recovered state

6.9.12.1 State description

This state is reached when a valid dword has been received after three invalid oxords had been received. This state waits for a Dword Received message or an Incorrect Mux Received message.

If a Dword Received (Invalid) message is received (i.e., the fourth non-nullified invalid dword is received), this state shall send a DWS Lost message to the SP state machine.

If an Incorrect Mux Received message is received, this state shall send a DWS Lost message to the SP state machine.

6.9.12.2 Transition SP_DWS9:Lost3Recovered to SP_DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

6.9.12.3 Transition SP_DWS9:Lost3Recovered to SP_DWS6:Lost2

This transition shall occur after receiving a Dword Received (Data Dword) message or a Dword Received (Primitive) message.

6.10 Multiplexing

If SNW-3 indicates multiplexing is enabled (see table 100 in 6.7.4.2.3.3), the phy shall begin multiplexing immediately after the multiplexing sequence (see 6.7.4.3).

Page: 284

then this

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:50:05 PM -07'00' TREJECT receiving s/b this state receives Author: wdc-mevans Subject: Highlight Date: 5/25/2008 4:50:07 PM -07'00' TREJECT receivina this state receives Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE this s/b then this Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE this s/b then this Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 4:50:10 PM -07'00' REJECT sending s/b this state sends Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 4:50:12 PM -07'00' receiving this state receives Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE this s/b

Comments from page 284 continued on next page

6.9.10.3 Transition SP_DWS7:Lost2Recovered to SP_DWS4:Lost1

This transition shall occur after receiving a Dword Received (Data Dword) message or a Dword Received (Primitive) message.

6.9.10.4 Transition SP_DWS7:Lost2Recovered to SP_DWS8:Lost3

This transition shall occur after receiving a Dword Received (Invalid) message.

6.9.11 SP DWS8:Lost3 state

6.9.11.1 State description

This state is reached when three invalid dwords have been received and not nullified. This state waits for a Dword Received message or an Incorrect Mux Received message.

If a Dword Received (Invalid) message is received (i.e., the fourth non-nullified invalid dword is received), this state shall send a DWS Lost message to the SP state machine.

If an Incorrect Mux Received message is received, this state shall send a DWS Lost message to the SP state machine.

6.9.11.2 Transition SP_DWS8:Lost3 to SP_DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

6.9.11.3 Transition SP_DWS8:Lost3 to SP_DWS9:Lost3Recovered

This transition shall occur after receiving a Dword Received (Data Dword) message or a Dword Received (Primitive) message.

6.9.12 SP_DWS9:Lost3Recovered state

6.9.12.1 State description

This state is reached when a valid dword has been received after three invalid dwords had been received. This state waits for a Dword Received message or an Incorrect Mux Received message.

If a Dword Received (Invalid) message is received (i.e., the fourth non-nullified invalid dword is received), this state shall send a DWS Lost message to the SP state shall send a DWS Lost message shall send a DWS Lost mes

If an Incorrect Mux Received message is received, this state shall send a DWS Lost message to the SP state machine.

6.9.12.2 Transition SP_DWS9:Lost3Recovered to SP_DWS0:AcquireSync

This transition shall occur after sending a DWS Lost message.

6.9.12.3 Transition SP_DWS9:Lost3Recovered to SP_DWS6:Lost2

This transition shall occur after receiving a Dword Received (Data Dword) message or a Dword Received (Primitive) message.

6.10 Multiplexing

If SNW-3 indicates multiplexing is enabled (see table 100 in 6.7.4.2.3.3), the \not hy shall begin multiplexing immediately after the multiplexing sequence (see 6.7.4.3).

Author: Wdc-mevans
Subject: Highlight

Author: wdc-mevans
Subject: Highlight
Date: \$7.25/2008 4:50:15 PM -07'00'

REJECT

sending
\$/b
this state sends

Author: RElliott
Subject: Highlight
Date: \$1.25/2008 4:50:15 PM -07'00'

CONTREJECT

Sending
\$/b
this state sends

Author: RElliott
Subject: Highlight
Date: \$1.20/2008 3:16.52 PM -07'00'

CONTREJECT

ACCEPT - DONE
the
\$/b
then the

Author: RElliott

28 January 2008 T10/1760-D Revision 14

Figure 161 shows multiplexing disabled (i.e., one logical link).

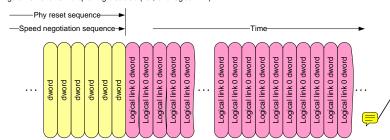
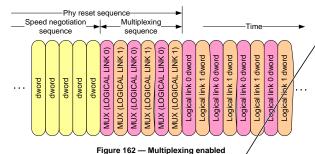



Figure 161 — Multiplexing disabled

Figure 162 shows multiplexing enabled (i.e., two logical links).

After the multiplexing sequence completes, each logical phy shall honor the deletable primitive insertion requirements for physical link rate tolerance management defined in 7.3. The logical phys shall ignore MUX primitives.

If a phy with multiplexing enabled ever loses dword synchronization, it shall restart the link reset sequence rather than attempt to reestablish dword synchronization.

Once the multiplexing sequence is complete, the phy shall not perform another multiplexing sequence until a new link reset sequence.

Once the multiplexing sequence is complete:

- a) a logical phy originating dwords shall transmit MUX as a deletable primitive (e.g., in place on an ALIGN) at least once every millisecond; and
- a logical phy forwarding dwords should transmit MUX as a deletable primitive at least once every millisecond to confirm the logical link numbers.

Transmitting NOTIFY has higher priority than transmitting MUX.

NOTE 43 - Periodic MUX transmission is for the convenience of logic analyzers and to provide additional assurance that the receiving phy is in agreement with the transmitting phy.

285

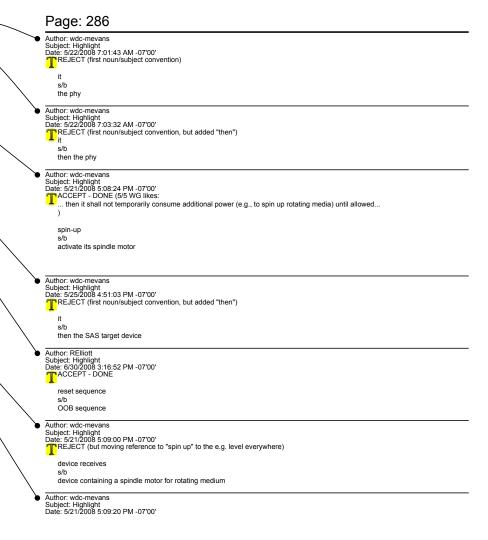
Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 285

```
Author: REliiott
Subject: Note
Date: 11/6/2008 5:45:59 PM
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 12:47:34 PM -07'00'
REJECT (first noun/subject convention, but added then)

it
s/b
then the phy

Author: REliiott
Subject: Highlight
Date: 5/30/2008 2:47:52 PM -07'00'
TRACCEPT - DONE
in place on
s/b
substituted in place of
```


If a phy ever receives a MUX primitive that does not match the MUX primitive expected in that position (i.e., it receives MUX (LOGICAL LINK 1) on logical link 0 or receives MUX (LOGICAL LINK 0) on logical link 1), it shall perform a link reset sequence.

6.11 Spin-up

If a SAS target device receives COMSAS during the reset sequence, it shall not spin-up until allowed by the SA_PC state machine (see 10.2.1%).

Expander devices that detect an attached SATA phy may halt the automationly reset sequence after the COMSAS Detect Timeout (see 6.8) to desay spin-up; this is called SATA spinks hald. This is reported in the NEGOTIATED PHYSICAL LINK RATE field in the SMP DISCOVER response (see 10.4.3.10) and is released with the SMP PHY CONTROL function (see 10.4.3.28).

NOTE 44 - Enclosures supporting both SATA devices and \$\hat{S}\\$ target devices may need to septence power to each attached device to avoid excessive power consumption during power on, since the \$\hat{S}\\$TA devices may spin-up automatically after power on if staggered spin-up is yot implemented (see \$\hat{S}\\$TA\\$).

Comments from page 286 continued on next page

If a phy ever receives a MUX primitive that does not match the MUX primitive expected in that position (i.e., it receives MUX (LOGICAL LINK 1) on logical link 0 or receives MUX (LOGICAL LINK 0) on logical link 1), it shall perform a link reset sequence.

6.11 Spin-up

If a SAS target device receives COMSAS during the reset sequence, it shall not spin-up until allowed by the SA_PC state machine (see 10.2.10).

Expander devices that detect an attached SATA phy may halt the automatic phy reset sequence after the COMSAS Detect Timeout (see 6.8) to delay spin-up; this is called SATA spinup hold. This is reported in the NEGOTIATED PHYSICAL LINK RATE field in the SMP DISCOVER response (see 10.4.3.10) and is released with the SMP PHY CONTROL function (see 10.4.3.28).

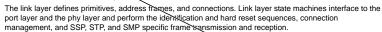
NOTE 44 - Enclosures supporting both SATA devices and SAS target devices may need-to sequence power to each attached device to avoid excessive power consumption during power on, since the SATA devices may spin-up automatically after power on if staggered spin-up is not implemented (see SATA-2).

REJECT (but changing to "temporary consumption of additional power")

spin-up
s/b
spindle motor activation

Author: Isi-appenokie
Subject: Highlight
Date: 8/27/2008 2:31:29 PM -07'00'
TACCEPT - DONE (Add a glossary entry for "SATA spinup hold". Change to "The resulting SATA spinup hold is reported in..."

it would be unclear the extent of the phrase that the i.e. is rephrasing, and there is nothing wrong with semicolons)


This << to delay spin-up; this is called SATA spinup hold. This >> should be << to delay spin-up (i.e., SATA spinup hold). This >>

Author: wdc-mevans
Subject: Cross-Out
Date: 5/6/2008 1:07:49 PM -07'00'
TTREJECT (the enclosure would not be doing this because it wants to... it's required to avoid power supply problems. The words are important)
inportant)

[Delete unnecessary words.]

7.1 Link layer overview =

7.2 Primitives

7.2.1 Primitives overview

Primitives are dwords whose first character is a K28.3 or K28.5. Primitives are not considered big-endian or little-endian; they are just interpreted as first, second, third, and last characters. Table 106 defines the

Table 106 — Primitive format

Character	Description
First	K28.5 control character (for primitives defined in this standard) or K28.3 control character (for primitives defined by SATA).
Second	Constant data character.
Third	Constant data character.
Last	Constant data character.

Page: 287

Author: ibm-ted-vojnovich

Subject: Note Date: 6/28/2008 10:38:45 AM -07'00'

REJECT (the main advice is: don't send the hard reset. It's only supposed to be used if an initiator thinks the target device is totally broken, providing the closest simulation of the old RESET# line in parallel SCSI that we can offer in a serial interconnect.

SAS-1 included an I_T NEXUS RESET task management function to solve this problem for most cases (e.g., as the initiator response to an I/O

SAS-2 includes more workarounds, as some initiators and targets did not support I. T. NEXLIS RESET like they should have:

a) Broadcast (Asynchronous Event) provides notification that a logical unit underwent a reset; and

b) QUERY UNIT ATTENTION task management function reports the reason for a Broadcast (Asynchronous Event)

We could perhaps add some text in chapter 4 or an informative annex explaining the way to use these tools, but that always generates arguments that we shouldn't "favor" one solution. SCSI always defines target behavior but rarely prescribes initiator behavior.

Section 7: Hard resets create real problems in expander solutions. For example, the following has been seen (and worked around with some vendor specific functions/broadcast async functions):

4 initiators ==>EXP A==>RAID controller. When initiator 1 sends a hard reset to the RAID controller, the port is reset...this, in turn, filters up to initiators 2,3,4 who intern issue their own hard resets...and so on. This hard reset storm is a problem that may need some thinking from a fabric paradigm view.

ie...would think at least some description of behavior or approach should be used for hard resets in a fabric paradigm.

Author: ibm-ted-vojnovich

Subject: Note Date: 5/25/2008 5:20:09 PM -07'00'

REJECT (5/5

1. the expander can be set up to a paranoid level that reverts a phy to zone group 0 (no access) if the link ever goes down, letting the zone manager go check the address if it wants before reestablishing permissions.

2. If the zone manager changes and zone permission table entries or zone phy information, the expander sends a Broadcast (Change) to at least all affected zone groups during the unlock step (see 4.9.6.5). This way initiators learn that their drives have disappeared or new drives have been added.

3. The issue of route table entries for subtractive phys being optimized away, causing shifting of entries of an expander is replaced by an end device, goes away if self-configuring expanders are used. Self-configuration is required for zoning

4. Exposing the zone group field to the endpoints was considered and rejected. It is not secure; the concept of zoning is that you trust everything in the ZPSDS and don't trust anything outside. Any incoming zone group field would have to be ignored. Outgoing fields were considered to allow non-zoning expanders to still try and filter Broadcasts (with no guarantee they do so correctly), but this was dropped. It is not backwards compatible, so expanders would have to filter based on SAS version.

Section 7: Broadcast change may need to think about the following: 4 initiators==>EXP A==> 4 disks such that initiator 1 is zoned to disk 1, 2 to 2, 3 to 3.. Now assume some initiator specific info on each disk (ie OS for server 1, different OS for server 2, etc). If the admin, inadvertently rearranges the disks (because needed to service expander or whatever), the SAS fabric would say all is fine even though there was an actual change. This leads to data corruption issues or, at the very least, an usuable system until admin figures out the problem (brute force, assuming admin even thought this was the issue, of 16 disk configurations until finding the correct one).

I think some method of scoreboarding the SAS address of targets to PHYs (present anyway since routing tables need to know this) would allow a broadcast change event if the table changed (currently does not). I am NOT talking about address based zoning.. that is much more complicated I think. I view this one as a big deal!!! I don't think this can be deferred to SES and I don't think one can assume this will not happen.

I could be had in forcing the initiator to track this table since they do discovery anyway. Anyway, think there needs to be some discussion on this front!!!!

Routing behavior "perception" seems to vary from vendor to vendor. In essence, when an expander is has a subtractive port, some initiator vendors believe (either have seen or FUD) that the routing table will be rearranged on the fly and thus get them confused when they update their entries. Would think some clarification is in order on what the behavior should

Zone group present in the open frame seems way to complicated and, frankly, turns this into an "implicit context protocol" which has not been used in 15 years on the networking side (TCP/IP, UDP, etc). Specifically, since the end point

Comments from page 287 continued on next page

7.1 Link layer overview =

The link layer defines primitives, address frames, and connections. Link layer state machines interface to the port layer and the phy layer and perform the identification and hard reset sequences, connection management, and SSP, STP, and SMP specific frame transmission and reception.

7.2 Primitives

7.2.1 Primitives overview

Primitives are dwords whose first character is a K28.3 or K28.5. Primitives are not considered big-endian or little-endian; they are just interpreted as first, second, third, and last characters. Table 106 defines the

Table 106 — Primitive format

Character	Description
First	K28.5 control character (for primitives defined in this standard) or K28.3 control character (for primitives defined by SATA).
Second	Constant data character.
Third	Constant data character.
Last	Constant data character.

Working Draft Serial Attached SCSI - 2 (SAS-2)

transmitter (initiator) transmits zone group =0 and the last expander before the receiver (target) transmits zone group=0, basically the end points have no clue what the zone group is. Therefore any artifical processing involves the receiver to go and look at the routing and permissions tables to figure what zone group the transmitter was in to figure out what the receiver should do with information. Seems real convoluted!!!! Since the receiver typically ignores the field why not use the following on page 332

- A) May be set to 0 or may have source zone group when transmitted by end point (aka entering the zone domain because end point)
- B) Set to zone group when transmitted by expander with inside ZPDS = 0 (aka leaving the zone domain because expander is at the boundary)
- C) Set to zone group when transmitted by expande with inside ZPDS=1 (aka staying within zone domain because expander and link is still in zone domain)
- D)May be ignored or acted on by receiver end point (aka leaving the zone domain because end point)
- E)May be ignored or acted on by receiving expander with inside ZPDS=0 (aka arriving from another zone domain)
- F) Acted on by receiving expander with inside ZPDS=1 (aka staying within zone domain because link and expander is still

This allows the end points to have the zone group info available if needed. Aka if transmitter does not support....set to 0...if receiver wants to act on it...notes 0 and treat as if one be zone domain (ZG=0 means all can see all) or not valid and take some default action. I view this as pretty important

This then puts the burden on the implementation to support...perhaps over time....but the point is that the approach is defined in the standard.

287

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 5:20:40 PM -07'00'

REJECT (a single comma is not valid for joining independent clauses; at the very least, a coordinating conjunction such as "and" would be needed. Since the second clause uses a pronoun "they" introduced by the prior sentence, and is referring to the endianness concept discussed by the prior sentence rather than a concept threading through the whole paragraph, it is better grammar to join them with a semicolon rather than create two independent sentences.)

This << little-endian; they are just interpreted as first, >> should be << little-endian, they are interpreted as first, >>

7.2.2 Primitive summary

Table 107 defines the deletable primitives.

Table 107 — Deletable primitives

Primitive		From ^b			To ^b			Primitive
Primitive	Use ^a	I	E	Т	ı	E	Т	sequence
ALIGN (0)	All,							
ALIGN (1)	SpNeg		Е	Ţ	1	Е	Т	Single
ALIGN (2)	All		-					
ALIGN (3)			ĺ					
MUX (LOGICAL LINK 0)	All		Е	Т	-	Е	т	Single
MUX (LOGICAL LINK 1)	A	١.	-	'	١.	_	·	Milgie
NOTIFY (ENABLE SPINUP)		I	Е		_		T	
NOTIFY (POWER LOSS EXPECTED)	All	I	Е				Т	Single
NOTIFY (RESERVED 1)	All				I	Е	Т	Sirigie
NOTIFY (RESERVED 2)					Ι	Е	Т	

- a The Use column indicates when the primitive is used:
- a) NoConn: SAS logical links, outside connections,
- b) Conn: SAS logical links, inside connections,
- c) All: SAS logical links, both outside connections or inside any type of connection;
- d) STP: SAS logical links, inside STF connections; or
- e) SpNeg: SAS physical links, during speed negotiation.
- b The From and To columns indicate the type of ports that originate each primitive or are the intended destinations of each primitive:
- a) I for SAS initiator ports;
- b) E for expander ports; and
- c) T for SAS target ports.

Expander ports are not considered originators of primitives that are passing through from expander port to expander port.

^c The Primitive sequence type columns indicate whether the primitive is sent as a single primitive sequence, a repeated primitive sequence, a continued primitive sequence, a triple primitive sequence, or a redundant primitive sequence (see 7.2.4).

Page: 288

Author: elx-nayalasomayajula

Subject: Note Date: 5/6/2008 1:07:49 PM -07'00'

REJECT (no, because they're not sent back-to-back. The sender might only be able to slip them into the data stream every 1/128

Section 7.2.5.3.3 states that NOTIFY (POWER LOSS EXPECTED) should be transmitted 3 times, so this should be a triple primitive sequence?

Author: Isi-bday
Subject: Cross-Out
Date: 5/25/2008 5:21:07 PM -07'00'
Date: 5/25/2008 5:21:07 PM -07'00'
TTACCEPT - DONE (changed to "All: SAS logical links and SATA physical links" and "SAS: SAS logical links, both outside
connections or inside any type of connection." Changed ALIGN(0) to "All, SpNeg", ALIGN(1) to "SAS, SpNeg", and remaining
"All"s to "SAS". Same in table 108.)

SAS physical links,

SATA also uses ALIGN(0) for speed negotiation.

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

sent as

Table 108 defines the primitives not specific to the type of connection.

Table 108 — Primitives not specific to type of connection (part 1 of 2)

		F	rom	b		To ^l)	Primitive	
Primitive	Use ^a	ı	E	Т	ı	E	Т	sequence type ^c	
AIP (NORMAL)			Е						
AIP (RESERVED 0)									
AIP (RESERVED 1)								Extended	
AIP (RESERVED 2)	NoConn				,	F	Т		
AIP (RESERVED WAITING ON PARTIAL)	NOCOIII				'			Exterided	
AIP (WAITING ON CONNECTION)			Е						
AIP (WAITING ON DEVICE)			Е						
AIP (WAITING ON PARTIAL)			Е						
BREAK	All	Ι	Е	Т	ı	Е	Т	Redundant	
BREAK_REPLY	All	_	Е	Т	I	Е	Т	Redundant	
BROADCAST (CHANGE)		_	I E		I				
BROADCAST (SES)				Т	I		,		
BROADCAST (EXPANDER)	NoConn		Е		I	,			
BROADCAST (ASYNCHRONOUS EVENT)				Т	Ι			Redundant	
BROADCAST (RESERVED 3)								Reduildant	
BROADCAST (RESERVED 4)									
BROADCAST (RESERVED CHANGE 0)					I				
BROADCAST (RESERVED CHANGE 1)					/				
CLOSE (CLEAR AFFILIATION)	STP	Т					Т		
CLOSE (NORMAL)		_/		Т				Triple	
CLOSE (RESERVED 0)	Conn /				1		Т	TTIPLE	
CLOSE (RESERVED 1)									
EOAF	NoConn	_	Е	Т	-	Е	Т	Single	
ERROR	All		Е		I	Е	Т	Single	
HARD_RESET	NoConn	Ι	Е		I	Е	Т	Redundant	
OPEN_ACCEPT	NoConn	Τ		Т	ı		Т	Single	

Page: 289

Author: stx-ghoulder Subject: Highlight Date: 5/25/2008 5:21:22 PM -07'00' REJECT (5/5 Gerry has no better suggestion)

not specific to the type of connection.

This seems to be an inappropriate title for Table 108. The table includes a "use" column which does specify a particular connection type in which the primitive is used, so they are specific to that type of connection. How about "not specific to SSP, SMP, or STP connection".

Author: stx-ghoulder
Subject: Highlight
Date: 5/6/2008 1:07.49 PM -07'00'
TREJECT (CLOSE is considered outside the connection, not inside it. CLOSE is intercepted by an expander, unlike the primitives inside connections which tend to be just blindly forwarded)

Why isn't this primitive in table 110 (primitives only used inside STP connections)? The description qualifies it for that table.

Author: stx-ghoulder
Subject: Highlight
Date: 5/6/2008 1:07.49 PM -07'00'
Date: 5/6/2008 1:07.49 PM -07'00'
REJECT (CLOSE is considered outside the connection, not inside it. CLOSE is intercepted by an expander, unlike the primitives inside connections which tend to be just blindly forwarded)

Conn

Why isn't this type of primitive in Table 109 (primitives only used within SSP and SMP connections)? The table description qualifies

T10/1760-D Revision 14

Table 108 — Primitives not specific to type of connection (part 2 of 2)

Use a	ı	F					
		E	Т	ı	E	Т	sequence type ^c
		Е					
	-	F	т				
	'	_	'				
		Е					
		Е					
	Ι		Т				
				١.		_	
				1		1	
NoConn							Single
							l
							//
							/
	Ι	Е	Т				/
		Е	Т	ı			/
	Ι		Т		ıF	т	i /
		Е		'			/
NoConn	Ι	Е	Т	ı	Е	T	Single
SpNog		_	т		_	т	Fodundant
Spiney	'	_		'	_	'	redundant
TRAIN_DONE TRAIN_DONE The Use column indicates when the primitive is used: a) NoConn: SAS logical links, outside connections; b) Conn: SAS logical links, inside connections; c) All: SAS logical links, inside connections; d) STP: SAS logical links, inside STP connections; e) SpNeg: SAS physical links, inside sTP connections; of SPNeg: SAS physical links, during speed negotiation. The From and To columns indicate the type of ports that originate each primitive or are the intended destinations of each primitive: a) I for SAS initiator ports; b) E for expander ports; c) T for SAS target ports. Expander ports are not considered originators of primitives that are passing through from expander port to expander port. The Primitive sequence type columns indicate whether the primitive is sent as a single primitive sequence, a repeated primitive sequence, an extended primitive							
	NoConn SpNeg inside any tr on. at originate tives that ar r the primitive sr	NoConn I SpNeg I Inside any type on. at originate each other times that are part the primitive is primitive sequence.	NoConn NoConn I E E I I I I I I I I I I I I I I I I	NoConn I E T E T I T I T I T I E T I T I T I E T I T I E T I T I E T I T I E T I T I E T I T I E T I T I T I T I T I T I T I T I T I T I	NoConn I E T I I SpNeg I E T I I I T I I I I I I I I I I I I I	NoConn I E T I E SpNeg I E T I E SpNeg I E T I E inside any type of connection; r on. at originate each primitive or are tives that are passing through from the primitive is sent as a single	NoConn I E T I E T NoConn I E T I E T SpNeg I E T I E T inside any type of connection; on. at originate each primitive or are the interest of the primitive is sent as a single primitive primitive sequence, an extended primitive sequence.

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

Page: 290

sent as

28 January 2008

Table 109 defines the primitives used only inside SSP and SMP connections.

Table 109 — Primitives used only inside SSP and SMP connections

Primitive	Use ^a	F	rom	b		То	b	Primitive	
Primitive	Use -	ı	Е	Т	I	Е	Т	sequence type ^c	
ACK	SSP	I		Т	I		Т	Single	
CREDIT_BLOCKED	SSP	Ι		Т	I		Т	Single	
DONE (ACK/NAK TIMEOUT)		Ι		Т					
DONE (CREDIT TIMEOUT)		I		Т					
DONE (NORMAL)		I		Т					
DONE (RESERVED 0)	SSP				I		Т	Single	
DONE (RESERVED 1)									
DONE (RESERVED TIMEOUT 0)								,	
DONE (RESERVED TIMEOUT 1)									
EOF	SSP, SMP	I		Т	I		Т	Single	
NAK (CRC ERROR)		Ι		Т					
NAK (RESERVED 0)	SSP				١,		т	Single	
NAK (RESERVED 1)	335				1		'	Sirigle	
NAK (RESERVED 2)								/ /	
RRDY (NORMAL)		I		Т					
RRDY (RESERVED 0)	SSP				ı		Т	Single	
RRDY (RESERVED 1)								/ /	
SOF	SSP, SMP	I		Т	I		Т	Single	

- ^a The Use column indicates when the primitive is used:
- a) SSP: SAS logical links, inside SSP connections; or
- b) SMP: SAS logical links, inside SMP connections.
- b The From and To columns indicate the type of ports that originate each primitive of are the intended destinations of each primitive:
- a) I for SSP initiator ports and SMP initiator ports;
- b) E for expander ports; and
- c) T for SSP target ports and SMP target ports.

Expander ports are not considered originators of primitives that are passing (hrough from expander

port to expander port.

C The Primitive sequence type columns indicate whether the primitive is sent-as a single primitive. sequence, a repeated primitive sequence, a continued primitive sequence, an extended primitive sequence, a triple primitive sequence, or a redundant primitive sequence (see 7.2.4).

Page: 291

```
Author: Isi-bday
Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'
     passing
     s/b
     forwarding dwords
     same comment applies in other tables.
Author: RElliott
Subject: Cross-Out
Date: 6/30/2008 3:16:52 PM -07'00'
```

Table 110 lists the primitives used only inside STP connections and on SATA physical links.

Table 110 — Primitives used only inside STP connections and on SATA physical links

Primitive	Use ^a	F	rom ^I	b		To ^b		Primitive
Frimuve	Use	I	Е	Т	I	Е	Т	sequence type c
SATA_CONT	STP, SATA	I		Т	I		Т	Single
SATA_DMAT	STP, SATA	I		Т	I		Т	Single
SATA_EOF	STP, SATA	1		Т	I		Т	Single
SATA_ERROR d	SATA		Е				Т	Single
SATA_HOLD	STP, SATA	I		Т	I		Т	Continued
SATA_HOLDA	STP, SATA	I		Т	I		Т	Continued
SATA_PMACK	STP, SATA							Repeated
SATA_PMNAK	STP, SATA	-1	Е				Т	Repeated
SATA_PMREQ_P	STP, SATA							Continued
SATA_PMREQ_S	STP, SATA							Continued
SATA_R_ERR	STP, SATA	I		Т	I		Т	Continued
SATA_R_IP	STP, SATA	I		Т	I		Т	Continued
SATA_R_OK	STP, SATA	- 1		Т	ı		Т	Continued
SATA_R_RDY	STP, SATA	I		Т	I		Т	Continued
SATA_SOF	STP, SATA	-1		Т	I		Т	Single
SATA_SYNC	STP, SATA	1		Т	ı		Т	Continued
SATA_WTRM	STP, SATA	ı		Т	I		Т	Continued
SATA_X_RDY	STP, SATA	1		Т	I		Т	Continued

- ^a The Use column indicates when the primitive is used:
- a) STP: SAS logical links, inside STP connections; or
- b) SATA: SATA physical links.
- b The From and To columns indicate the type of ports that originate each primitive or a the intended destinations of each primitive:
- a) I for STP initiator ports and SATA host ports;
- b) E for expander ports; and
- c) T for STP target ports and SATA device ports.

Expander ports are not considered originators of primitives that are passing through from expander port to expander port.

- ^c The Primitive sequence type columns indicate whether the primitive is sent as a single primitive sequence, a repeated primitive sequence, a continued primitive sequence, an extended primitive sequence, a triple primitive sequence, or a redundant primitive sequence (see 7.2.4).
- d Although included in this table, SATA_ERROR is not a primitive (see 3.1.172) since it starts with K28.6. It does not appear inside STP connections. It is an invalid dword, used by expander devices forwarding an error onto a SATA physical link (see 7.2.8.1).

Page: 292

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

sent as

292

7.2.3 Primitive encodings

Table 111 defines the primitive encoding for deletable primitives.

Table 111 — Primitive encoding for deletable primitives

Primitive		Cha	racter	·	Havadasimal
Primitive	1 st	2 nd	3 rd	4 th (last)	Hexadecimal
ALIGN (0)	K28.5	D10.2	D10.2	D27.3	BC4A4A7Bh
ALIGN (1)	K28.5	D07.0	D07.0	D07.0	BC070707h
ALIGN (2)	K28.5	D01.3	D01.3	D01.3	BC616161h
ALIGN (3)	K28.5	D27.3	D27.3	D27.3	BC7B7B7Bh
MUX (LOGICAL LINK 0)	K28.5	D02.0	D16.7	D31.4	BC02F09Fh
MUX (LOGICAL LINK 1)	K28.5	D04.7	D31.4	D27.4	BCE49F9Bh
NOTIFY (ENABLE SPINUP)	K28.5	D31.3	D31.3	D31.3	BC7F7F7Fh
NOTIFY (POWER LOSS EXPECTED)	K28.5	D31.3	D07.0	D01.3	BC7F0761h
NOTIFY (RESERVED 1)	K28.5	D31.3	D01.3	D07.0	BC7F6107h
NOTIFY (RESERVED 2)	K28.5	D31.3	D10.2	D10.2	BC7F4A4Ah

Table 112 defines the primitive encoding for primitives not specific to type of connection.

Table 112 — Primitive encoding for primitives not specific to type of connection (part 1 of 2)

Table 112 — I minute encouning for primitives not specific to type of confliction (part 1 of 2)									
Primitive		Char	acter		Hexadecimal				
Filmuve	1 st	2 nd	3 rd	4 th (last)	пехачесниа				
AIP (NORMAL)	K28.5	D27.4	D27.4	D27.4	BC9B9B9Bh				
AIP (RESERVED 0)	K28.5	D27.4	D31.4	D16.7	BC9B9FF0h				
AIP (RESERVED 1)	K28.5	D27.4	D16.7	D30.0	BC9BF01Eh				
AIP (RESERVED 2)	K28.5	D27.4	D29.7	D01.4	BC9BFD81h				
AIP (RESERVED WAITING ON PARTIAL)	K28.5	D27.4	D01.4	D07.3	BC9B8167h				
AIP (WAITING ON CONNECTION)	K28.5	D27.4	D07.3	D24.0	BC9B6718h				
AIP (WAITING ON DEVICE)	K28.5	D27.4	D30.0	D29.7	BC9B1EFDh				
AIP (WAITING ON PARTIAL)	K28.5	D27.4	D24.0	D04.7	BC9B18E4h				
BREAK	K28.5	D02.0	D24.0	D07.3	BC021867h				
BREAK_REPLY	K28.5	D02.0	D29.7	D16.7	BC02FDF0h				
BROADCAST (CHANGE)	K28.5	D04.7	D02.0	D01.4	BCE40281h				
BROADCAST (SES)	K28.5	D04.7	D07.3	D29.7	BCE467FDh				
BROADCAST (EXPANDER)	K28.5	D04.7	D01.4	D24.0	BCE48118h				
BROADCAST (ASYNCHRONOUS EVENT)	K28.5	D04.7	D04.7	D04.7	BCE4E4E4h				
BROADCAST (RESERVED 3)	K28.5	D04.7	D16.7	D02.0	BCE4F002h				
BROADCAST (RESERVED 4)	K28.5	D04.7	D29.7	D30.0	BCE4FD1Eh				
BROADCAST (RESERVED CHANGE 0)	K28.5	D04.7	D24.0	D31.4	BCE4189Fh				
BROADCAST (RESERVED CHANGE 1)	K28.5	D04.7	D27.4	D07.3	BCE49B67h				
CLOSE (CLEAR AFFILIATION)	K28.5	D02.0	D07.3	D04.7	BC0267E4h				
CLOSE (NORMAL)	K28.5	D02.0	D30.0	D27.4	BC021E9Bh				
CLOSE (RESERVED 0)	K28.5	D02.0	D31.4	D30.0	BC029F1Eh				
CLOSE (RESERVED 1)	K28.5	D02.0	D04.7	D01.4	BC02E481h				
EOAF	K28.5	D24.0	D07.3	D31.4	BC18679Fh				

28 January 2008 T10/1760-D Revision 14

Table 112 — Primitive encoding for primitives not specific to type of connection (part 2 of 2)

		Char	acter		
Primitive	1 st	2 nd	3 rd	4 th (last)	Hexadecimal
ERROR	K28.5	D02.0	D01.4	D29.7	BC0281FDh
HARD_RESET	K28.5	D02.0	D02.0	D02.0	BC020202h
OPEN_ACCEPT	K28.5	D16.7	D16.7	D16.7	BCF0F0F0h
OPEN_REJECT (BAD DESTINATION)	K28.5	D31.4	D31.4	D31.4	BC9F9F9Fh
OPEN_REJECT (CONNECTION RATE NOT SUPPORTED)	K28.5	D31.4	D04.7	D29.7	BC9FE4FDh
OPEN_REJECT (NO DESTINATION)	K28.5	D29.7	D29.7	D29.7	BCFDFDFDh
OPEN_REJECT (PATHWAY BLOCKED)	K28.5	D29.7	D16.7	D04.7	BCFDF0E4h
OPEN_REJECT (PROTOCOL NOT SUPPORTED)	K28.5	D31.4	D29.7	D07.3	BC9FFD67h
OPEN_REJECT (RESERVED ABANDON 1)	K28.5	D31.4	D30.0	D16.7	BC9F1EF0h
OPEN_REJECT (RESERVED ABANDON 2)	K28.5	D31.4	D07.3	D02.0	BC9F6702h
OPEN_REJECT (RESERVED ABANDON 3)	K28.5	D31.4	D01.4	D30.0	BC9F811Eh
OPEN_REJECT (RESERVED CONTINUE 0)	K28.5	D29.7	D02.0	D30.0	BCFD021Eh
OPEN_REJECT (RESERVED CONTINUE 1)	K28.5	D29.7	D24.0	D01.4	BCFD1881h
OPEN_REJECT (RESERVED INITIALIZE 0)	K28.5	D29.7	D30.0	D31.4	BCFD1E9Fh
OPEN_REJECT (RESERVED INITIALIZE 1)	K28.5	D29.7	D07.3	D16.7	BCFD67F0h
OPEN_REJECT (RESERVED STOP 0)	K28.5	D29.7	D31.4	D07.3	BCFD9F67h
OPEN_REJECT (RESERVED STOP 1)	K28.5	D29.7	D04.7	D27.4	BCFDE49Bh
OPEN_REJECT (RETRY)	K28.5	D29.7	D27.4	D24.0	BCFD9B18h
OPEN_REJECT (STP RESOURCES BUSY)	K28.5	D31.4	D27.4	D01.4	BC9F9B81h
OPEN_REJECT (WRONG DESTINATION)	K28.5	D31.4	D16.7	D24.0	BC9FF018h
OPEN_REJECT (ZONE VIOLATION)	K28.5	D31.4	D02.0	D27.4	BC9F029Bh
SOAF	K28.5	D24.0	D30.0	D01.4	BC181E81h
TRAIN	K28.5	D30.3	D30.3	D30.3	BC7E7E7Eh
TRAIN_DONE	K28.5	D30.3	D30.3	D10.2	BC7E7E4Ah

Table 113 defines the primitive encodings for primitives used only inside SSP and SMP connections.

Table 113 — Primitive encoding for primitives used only inside SSP and SMP connections

		01			
Primitive		Char	acter		Hexadecimal
	1 st	2 nd	3 rd	4 th (last)	
ACK	K28.5	D01.4	D01.4	D01.4	BC818181h
CREDIT_BLOCKED	K28.5	D01.4	D07.3	D30.0	BC81671Eh
DONE (ACK/NAK TIMEOUT)	K28.5	D30.0	D01.4	D04.7	BC1E81E4h
DONE (CREDIT TIMEOUT)	K28.5	D30.0	D07.3	D27.4	BC1E679Bh
DONE (NORMAL)	K28.5	D30.0	D30.0	D30.0	BC1E1E1Eh
DONE (RESERVED 0)	K28.5	D30.0	D16.7	D01.4	BC1EF081h
DONE (RESERVED 1)	K28.5	D30.0	D29.7	D31.4	BC1EFD9Fh
DONE (RESERVED TIMEOUT 0)	K28.5	D30.0	D27.4	D29.7	BC1E9BFDh
DONE (RESERVED TIMEOUT 1)	K28.5	D30.0	D31.4	D24.0	BC1E9F18h
EOF	K28.5	D24.0	D16.7	D27.4	BC18F09Bh
NAK (CRC ERROR)	K28.5	D01.4	D27.4	D04.7	BC819BE4h
NAK (RESERVED 0)	K28.5	D01.4	D31.4	D29.7	BC819FFDh
NAK (RESERVED 1)	K28.5	D01.4	D04.7	D24.0	BC81E418h
NAK (RESERVED 2)	K28.5	D01.4	D16.7	D07.3	BC81F067h
RRDY (NORMAL)	K28.5	D01.4	D24.0	D16.7	BC8118F0h
RRDY (RESERVED 0)	K28.5	D01.4	D02.0	D31.4	BC81029Fh
RRDY (RESERVED 1)	K28.5	D01.4	D30.0	D02.0	BC811E02h
SOF	K28.5	D24.0	D04.7	D07.3	BC18E467h

Table 114 lists the primitive encodings for primitives used only inside STP connections and on SATA physical

Table 114 — Primitive encoding for primitives used only inside STP connections and on SATA physical links

B-1		Char	acter		Harra da alesa el
Primitive	1 st	2 nd	3 rd	4 th (last)	Hexadecimal
SATA_CONT	K28.3	D10.5	D25.4	D25.4	7CAA9999h
SATA_DMAT	K28.3	D21.5	D22.1	D22.1	7CB53636h
SATA_EOF	K28.3	D21.5	D21.6	D21.6	7CB5D5D5h
SATA_ERROR a b	K28.6	D02.0	D01.4	D29.7	DC0281FDh
SATA_HOLD	K28.3	D10.5	D21.6	D21.6	7CAAD5D5h
SATA_HOLDA	K28.3	D10.5	D21.4	D21.4	7CAA9595h
SATA_PMACK	K28.3	D21.4	D21.4	D21.4	7C959595h
SATA_PMNAK	K28.3	D21.4	D21.7	D21.7	7C95F5F5h
SATA_PMREQ_P	K28.3	D21.5	D23.0	D23.0	7CB51717h
SATA_PMREQ_S	K28.3	D21.4	D21.3	D21.3	7C957575h
SATA_R_ERR	K28.3	D21.5	D22.2	D22.2	7CB55656h
SATA_R_IP	K28.3	D21.5	D21.2	D21.2	7CB55555h
SATA_R_OK	K28.3	D21.5	D21.1	D21.1	7CB53535h
SATA_R_RDY	K28.3	D21.4	D10.2	D10.2	7C954A4Ah
SATA_SOF	K28.3	D21.5	D23.1	D23.1	7CB53737h
SATA_SYNC	K28.3	D21.4	D21.5	D21.5	7C95B5B5h
SATA_WTRM	K28.3	D21.5	D24.2	D24.2	7CB55858h
SATA_X_RDY	K28.3	D21.5	D23.2	D23.2	7CB55757h

Except for SATA_ERROR, all values are defined by SATA (see SATA-2).
 Although included in this table, SATA_ERROR is not a primitive (see 3.1.172) since it starts with K28.6. It does not appear inside STP connections. It is an invalid dword, used by expander devices forwarding an error onto a SATA physical link (see 7.2.8.1).

7.2.4 Primitive sequences

7.2.4.1 Primitive sequences overview

Table 115 summarizes the types of primitive sequences.

Table 115 — Primitive sequences

	Primitive sequence type Number of times the transmitter transmitter transmit the primitive to transmit the primitive sequence		Number of times the receiver receives the primitive to detect the primitive sequence	Reference
=	Single	1	1	7.2.4.2
	Repeated	1 or more	1	7.2.4.3
	Continued	2 followed by SATA_CONT	1	7.2.4.4
	Extended	3	1	7.2.4.5
	Triple	3	3	7.2.4.6
	Redundant	6	3	7.2.4.7

Any number of deletable primitives may be sent inside primitive sequences without affecting the count or breaking the consecutiveness requirements. Rate matching deletable primitives shall be sent inside primitive sequences inside of connections if rate matching is enabled (see 7.13).

7.2.4.2 Single primitive sequence

Primitives labeled as single primitive sequences (e.g., RRDY, SATA_SOF) shall be transmitted one time to form a single primitive sequence.

Receivers count each primitive received that is labeled as a single primitive sequence as a distinct single primitive sequence.

ALIGNs, NOTIFYs, and MUXs are deletable primitives (see 7.2.5 and 7.3).

7.2.4.3 Repeated primitive sequence

Primitives that form repeated primitive sequences (e.g., SATA_PMACK) shall be transmitted one or more times. Only STP primitives form repeated primitive sequences. Any number of deletable primitives may be sent inside repeated primitive sequences as described in 7.2.4.1.

Figure 163 shows an example of transmitting a repeated primitive sequence.

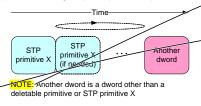


Figure 163 — Transmitting a repeated primitive sequence

Receivers do not count the number of times a repeated primitive is received (i.e., receivers are simply in the state of receiving the primitive). An expander device forwarding a repeated primitive sequence may transmit more repeated primitives than it receives (i.e., expand) or transmit fewer repeated primitives than it receives (i.e., contract).

Page: 298

 Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE

Convert the long column headers into footnotes. Change the columns to simply Transmit and Receive.

Author: Relliott
Subject: Highlight
Date: 6/30/2006 3:16:52 PM -07'00'

ACCEPT - DONE

sent
s/b
transmitted

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE
sent
s/b

transmitted

Author: RElliolt
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
sent
s/b
transmitted

Author: RElliott
Subject: Highlight
Date: 8/27/2008 2:32:43 PM -07'00'
TACCEPT - DONE

NOTE

s/b Note

Author: RElliott Subject: Note Date: 9/3/2008 1:36:44 PM -07'00'

Add: While transmitting a repeated primitive sequence, the expander device is considered to be originating (see 7.3.2) rather than forwarding (see 7.3.3) for purposes of deletable primitive insertion.

(from discussions with Jeff Gauvin, LSI. Same as continued primitive sequence comment.)

Author: wdc-mevans
Subject: Cross-Out
Date: 5/25/2008 5:22:55 PM -07'00'

TREJECT (deleting it changes the meaning. The point is that receivers don't receive primitive-by-primitive like in SAS; they enter a state where they're continuously receiving a primitive.)

Comments from page 298 continued on next page

7.2.4 Primitive sequences

7.2.4.1 Primitive sequences overview

Table 115 summarizes the types of primitive sequences.

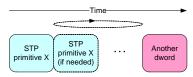
Table 115 — Primitive sequences

the primitive sequence		Number of times the receiver receives the primitive to detect the primitive sequence	Reference
Single	1	1	7.2.4.2
Repeated	1 or more	1	7.2.4.3
Continued	2 followed by SATA_CONT	1	7.2.4.4
Extended	3	1	7.2.4.5
Triple	3	3	7.2.4.6
Redundant	6	3	7.2.4.7

Any number of deletable primitives may be sent inside primitive sequences without affecting the count or breaking the consecutiveness requirements. Rate matching deletable primitives shall be sent inside primitive sequences inside of connections if rate matching is enabled (see 7.13).

7.2.4.2 Single primitive sequence

Primitives labeled as single primitive sequences (e.g., RRDY, SATA_SOF) shall be transmitted one time to form a single primitive sequence.


Receivers count each primitive received that is labeled as a single primitive sequence as a distinct single primitive sequence.

ALIGNs, NOTIFYs, and MUXs are deletable primitives (see 7.2.5 and 7.3).

7.2.4.3 Repeated primitive sequence

Primitives that form repeated primitive sequences (e.g., SATA_PMACK) shall be transmitted one or more times. Only STP primitives form repeated primitive sequences. Any number of deletable primitives may be sent inside repeated primitive sequences as described in 7.2.4.1.

Figure 163 shows an example of transmitting a repeated primitive sequence.

NOTE: Another dword is a dword other than a deletable primitive or STP primitive X

Figure 163 — Transmitting a repeated primitive sequence

Receivers do not count the number of times a repeated primitive is received (i.e., receivers are simply in the state of receiving the primitive). An expander device forwarding a repeated primitive sequence may transmit more repeated primitives than it receives (i.e., expand) or transmit fewer repeated primitives than it receives (i.e., contract).

Working Draft Serial Attached SCSI - 2 (SAS-2)

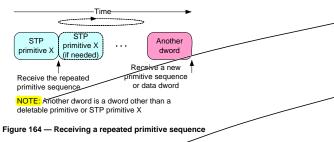
298

simply
[Delete the unnecessary word.]

28 January 2008

T10/1760-D Revision 14

Page: 299


TACCEPT - DONE

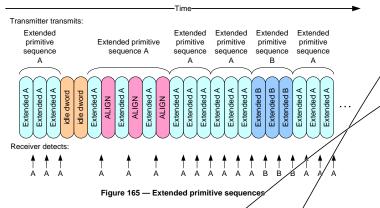
Subject: Highlight Date: 8/27/2008 2:32:54 PM -07'00'

Author: RElliott

NOTE:

Figure 164 shows an example of receiving a repeated primitive sequence.

7.2.4.4 Continued primitive sequence


Primitives that form continued primitive sequences (e.g., SATA_FOLD) shall be transmitted as specified in 7.17.3. Any number of deletable primitives may be sent inside continued primitive sequences as described in 7.2.4.1.

7.2.4.5 Extended primitive sequence

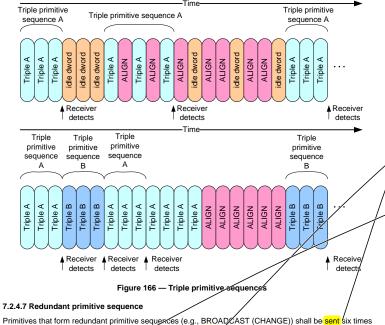
Primitives that form extended primitive sequences (e.g., APP shall be transmitted three times consecutively. Any number of deletable primitives may be sent inside extended primitive sequences as described in 7.2.4.1.

A receiver shall detect an extended primitive sequence after the primitive is received one time. The receiver shall process an extended primitive sequence the same as a single primitive sequence (see 7.2.4.2).

Figure 165 shows examples of extended primitive sequences.

7.2.4.6 Triple primitive sequence

Primitives that form triple primitive sequences (e.g., CLOSE (NORMAL)) shall be sent inree times consecutively. Any number of deletable primitives may be sent inside triple primitive sequences as described in 7.2.4.1.


Note Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE sent s/b transmitted Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE sent s/b transmitted Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE sent s/b transmitted Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE sent transmitted

Receivers shall detect a triple primitive sequence after the identical primitive is received in three consecutive dwords. After detecting a triple primitive sequence, a receiver shall not detect a second instance of the same triple primitive sequence until it has received three consecutive dwords that are not any of the following:

- a) the original primitive; or
- b) a deletable primitive.

Figure 166 shows examples of triple primitive sequences.

Primitives that form redundant primitive sequences (e.g., BROAD AST (CHANGE)) shall be sent six times consecutively. Any number of deletable primitives may be sent inside redundant primitive sequences as described in 7.2.4.1.

A receiver shall detect a redundant primitive sequence after the identical primitive is received in any three of six consecutive dwords. After detecting a redundant primitive sequence, a receiver shall not detect a second instance of the same redundant primitive sequence until it has received six consecutive dwords that are not any of the following:

- a) the original primitive; or
- b) a deletable primitive.

Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' REJECT (that was just stated in the previous sentence; we can't keep restating it everywhere, or it will be unreadable) dwords. s/b dwords after deletable primitives are deleted. Author: RElliott Addiof: Relifoli Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' s/b transmitted Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE sent s/b transmitted Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' REJECT (that was just stated in the previous sentence; we can't keep restating it everywhere, or it will be unreadable) dwords. s/b dwords after deletable primitives are deleted.

Page: 300

Author: wdc-mevans

28 January 2008 T10/1760-D Revision 14

Figure 167 shows examples of redundant primitive sequences.

Figure 167 — Redundant primitive sequences

7.2.5 Deletable primitives

7.2.5.1 ALIGN

ALIGNs are used for:

- a) OOB signals (see 6.6);
- b) character and dword alignment during the speed negotiation sequence (see 6.7.4.2);
- c) physical link rate tolerance management after the phy reset sequence (see 7.3); and d) rate matching during connections (see 7.13).

ALIGNs are deletable primitives (see 7.3).

Table 116 defines the different versions of ALIGN primitives.

Table 116 — ALIGN primitives

Primitive	Description
ALIGN (0)	Used for OOB signals, the speed negotiation sequence, physical link rate tolerance management, and rate matching.
ALIGN (1)	Used for the speed negotiation sequence, physical link rate tolerance management, and rate matching.
ALIGN (2)	Used for physical link rate tolerance management and rate matching.
ALIGN (3)	Osed for physical link rate tolerance management and rate matching.

Phys may use ALIGN (0) to construct 905 signals as described in 6.6. Phys use ALIGN (0) and ALIGN (1) during the speed negotiation sequence as described in 6.7.4.2. Phys shall rotate through ALIGN (0), ALIGN (1), ALIGN (2), and ALIGN (3) for all ALIGNs sent after the phy reset sequence.

Phys receiving ALIGNs after the phy reset sequence shall not verify the rotation and shall accept any of the ALIGNs at any time.

Phys shall only detect an ALIGN after decoding all four characters in the primitive.

NOTE 45 - SATA devices are allowed to decode every dword starting with a K28.5 as an ALIGN, since ALIGN is the only primitive defined starting with K28.5.

For physical link rate tolerance management and rate matching, ALIGNs may be replaced by NOTIFYs (see 7.2.5.3) or MUXs (see 7.2.5.2). ALIGNs shall not be replaced by NOTIFYs or MUXs during OOB signals or speed negotiation.

7.2.5.2 MUX (Multiplex)

MUX is used if multiplexing (see 6.10) is enabled (see table 100 in 6.7.4.2.3.3) as follows

- a) transmitted during the multiplexing sequence (see 6.7.4.3); and
- b) substituted for the state of the substituted for physical link rate tolerance management (see 7.3) or rate matching (see 7.13) to confirm the logical link number.

Substitution of a MUX for an ALIGN may or may not affect the ALIGN rotation (i.e., the MUX may take the place of one of the ALIGNs in the rotation through ALIGN (0), ALIGN (1), ALIGN (2), and ALIGN (3), OTIT NO

MUXs are deletable primitives (see 7.3). A phy supporting multiplexing shall process MUX primitives in logic running off the received clock without using an elasticity buffer rather than logic after the elasticity buffer, because they are not accompanied by additional deletable primitives (e.g., ALIGNs and/or NOTIFYs).

The versions of MUX are defined in table 117.

Table 117 MUX primitives

Primitive	Description
MUX (LOGICAL LINK 0)	Establishes the position of dwords in logical-link 0.
MUX (LOGICAL LINK 1)	Establishes the position of dwords in logical link 1.

See 6.10 for details on multiplexing.

Page: 302

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE sent s/b transmitted

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE (added NOTE:

"ALIGN rotation is performed on a physical phy basis and is used to reduce radiated emissions."

clarify that rotation is on a physical phy basis, not a logical phy basis.

Author: Isi-bday Subject: Cross-Out

Date: 5/6/2008 1:07:49 PM -07'00'

TREJECT (the SAS rule in the previous sentence is shall decode all four. This NOTE is highlighting that the rule differs from SATA, which allows for other behavior. If SATA ever prohibits it and becomes the same as SAS, then it'd be appropriate to remove the

NOTE 45 - SATA devices are allowed to decode every dword starting with a K28.5 as an ALIGN, since ALIGN is the only primitive defined starting with K28.5.

This is specifically discouraged in SATA 2.6, and so SAS should not encourage it.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

for s/b

in place of

Author: Isi-hday

Subject: Highlight
Date: 6/20/2008 5:04:44 PM -07'00' TACCEPT - DONE (5/5 "substituted... as defined in 6.10")

substituted

suggest

periodically substituted (see 6.10)

Author: wdc-mevans

Subject: Highlight Date: 5/30/2008 2:31:07 PM -07'00' REJECT (delete the "it" instead)

s/b

transmission of a MUX

Author: wdc-mevans

Comments from page 302 continued on next page

Table 116 defines the different versions of ALIGN primitives.

Table 116 — ALIGN primitives

Primitive	Description	
ALIGN (0)	Used for OOB signals, the speed negotiation sequence, physical link rate tolerance management, and rate matching.	
ALIGN (1)	Used for the speed negotiation sequence, physical link rate tolerance management, and rate matching.	
ALIGN (2)	Used for physical link rate tolerance management and rate matching.	
ALIGN (3)		

Phys may use ALIGN (0) to construct OOB signals as described in 6.6. Phys use ALIGN (0) and ALIGN (1) during the speed negotiation sequence as described in 6.7.4.2. Phys shall rotate through ALIGN (0), ALIGN (1), ALIGN (2), and ALIGN (3) for all ALIGNs sent after the phy reset sequence.

Phys receiving ALIGNs after the phy reset sequence shall not verify the rotation and shall accept any of the ALIGNs at any time.

Phys shall only detect an ALIGN after decoding all four characters in the primitive.

NOTE 45 - SATA devices are allowed to decode every dword starting with a K28.5 as an ALIGN, since ALIGN is the only primitive defined starting with K28.5.

For physical link rate tolerance management and rate matching, ALIGNs may be replaced by NOTIFYs (see 7.2.5.3) or MUXs (see 7.2.5.2). ALIGNs shall not be replaced by NOTIFYs or MUXs during OOB signals or speed negotiation.

7.2.5.2 MUX (Multiplex)

MUX is used if multiplexing (see 6.10) is enabled (see table 100 in 6.7.4.2.3.3) as follows:

- a) transmitted during the multiplexing sequence (see 6.7.4.3); and
- b) substituted for an ALIGN (see 7.2.5.1) being transmitted for physical link rate tolerance management (see 7.3) or rate matching (see 7.13) to confirm the logical link number.

Substitution of a MUX for an ALIGN may or may not affect the ALIGN rotation (i.e., the MUX may take the place of one of the ALIGNs in the rotation through ALIGN (0), ALIGN (1), ALIGN (2), and ALIGN (3), or it may

MUXs are deletable primitives (see 7.3). A phy supporting multiplexing shall process MUX primitives in logic running off the received clock without using an elasticity buffer rather than logic after the elasticity buffer, because they are not accompanied by additional deletable primitives (e.g., ALIGNs and/or NOTIFYs).

The versions of MUX are defined in table 117.

Table 117 — MUX primitives

Primitive	Description
MUX (LOGICAL LINK 0)	Establishes the position of dwords in logical link 0.
MUX (LOGICAL LINK 1)	Establishes the position of dwords in logical link 1.

See 6.10 for details on multiplexing.

302

Working Draft Serial Attached SCSI - 2 (SAS-2)

Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

the MUXs

T10/1760-D Revision 14

7.2.5.3 NOTIFY

7.2.5.3.1 NOTIFY overview

NOTIFY may be transmitted in place of any ALIGN (see 7.2.5.1) being transmitted for physical link rate tolerance management (see 7.3) and rate matching (see 7.13). Substitution of a NOTIFY for see ALIGN may or may not affect the ALIGN rotation (i.e., the NOTIFY may take the place of one of the ALIGNs in the relation through ALIGN (0), ALIGN (1), ALIGN (2), and ALIGN-(3), or it was delay the rotation). A specific NOTIFY shall not be transmitted in more than three consecutive dwords unit at least three other dwords have been transmitted.

NOTIFYs are deletable primitives (see 7.3). If a phy supports a specific NOTIFY primitive, it should decode it in logic running off the received clock without using an elasticity buffer rather than logic setter the elasticity buffer to avoid missing detection of important information.

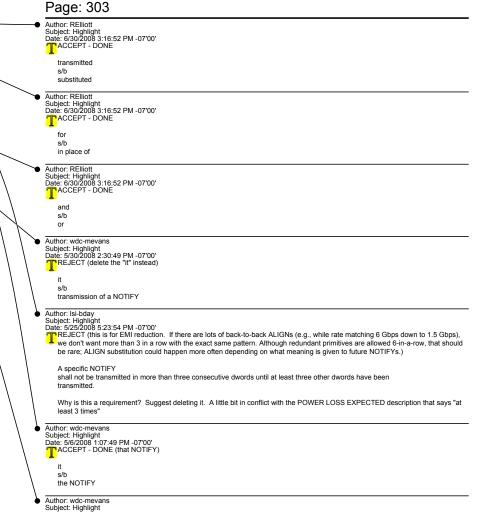
NOTIFY shall not be forwarded through expander devices. Expander devices shall substitute an ALIGN for a NOTIFY if necessary.

SAS target devices are not required to detect every transmitted NOTIFY.

The versions of NOTIFY representing different reasons are defined in table 118.

Table 118 — NOTIFY primitives

Primitive	Description	Reference
NOTIFY (ENABLE SPINUP)	Specify to a SAS target device that it may temporarily consume additional power while transitioning into the active or idle power condition state.	7.2.5.3.2
NOTIFY (POWER LOSS EXPECTED)	Specify to a SAS target device that power loss may occur within the time specified by the POWER LOSS TIMEOUT field in the Shared Port Control mode page (see 10.2.7.6).	7.2.5.3.3
NOTIFY (RESERVED 1)	- Reserved.	
NOTIFY (RESERVED 2)		


NOTIFY (RESERVED 1) and NOTIFY (RESERVED 2) shall be ignored by all devices.

7.2.5.3.2 NOTIFY (ENABLE SPINUP)

NOTIFY (ENABLE SPINUP) is transmitted by a SAS initiator port or expander port and is used to specify to an SAS target device that it may temporarily consume additional power (e.g., while spinning-up rotating media) while transitioning into the active or idle power condition state. The length of time the SAS target device consumes additional power and the amount of additional power is vendor specific. NOTIFY (ENABLE SPINUP) shall interact with the device's power condition state transitions, controlled by the Power Conditions mode page (see SPC-4) and/or the START STOP UNIT command (see SBC-3), as described in 10.2.10.

SAS initiator devices and expander devices shall use NOTIFY (ENABLE SPINUP) while attached to SSP target devices (i.e., devices that report SSP target port support in their IDENTIFY address frames). They shall transmit one NOTIFY (ENABLE SPINUP) after power on when the enclosure is ready for initial spin-up. After the initial NOTIFY (ENABLE SPINUP), they shall transmit NOTIFY (ENABLE SPINUP) periodically. Otherwise, the selection of when and how often to transmit NOTIFY (ENABLE SPINUP) is outside the scope of this standard.

NOTE 46 - The SAS initiator device or expander device uses NOTIFY (ENABLE SPINUP) to avoid exceeding enclosure power supply capabilities during spin-up of multiple SAS target devices. It may choose to rotate transmitting NOTIFY (ENABLE SPINUP) across all of its ports, distributing it to N ports at a time if the enclosure power supply is capable of powering N SAS target devices spinning up at a time. An expander

Comments from page 303 continued on next page

7.2.5.3 NOTIFY

7.2.5.3.1 NOTIFY overview

NOTIFY may be transmitted in place of any ALIGN (see 7.2.5.1) being transmitted for physical link rate tolerance management (see 7.3) and rate matching (see 7.13). Substitution of a NOTIFY for an ALIGN may or may not affect the ALIGN rotation (i.e., the NOTIFY may take the place of one of the ALIGNs in the rotation through ALIGN (0), ALIGN (1), ALIGN (2), and ALIGN (3), or it may delay the rotation). A specific NOTIFY shall not be transmitted in more than three consecutive dwords until at least three other dwords have been transmitted.

NOTIFYs are deletable primitives (see 7.3). If a phy supports a specific NOTIFY primitive, it should decode it in logic running off the received clock without using an elasticity buffer rather than logic after the elasticity buffer to avoid missing detection of important information.

NOTIFY shall not be forwarded through expander devices. Expander devices shall substitute an MAIGN for a NOTIFY if necessary.

SAS target devices are not required to detect every transmitted NOTIFY.

The versions of NOTIFY representing different reasons are defined in table 118.

Table 118 — NOTIFY primitives

Primitive	Description	Reference
NOTIFY (ENABLE SPINUP)	Specify to a SAS target device that it may temporarily consume additional power while transitioning into the active or idle power condition state.	7.2.5.3.2
NOTIFY (POWER LOSS EXPECTED)	Specify to a SAS target device that power loss may occur within the time specified by the POWER LOSS TIMEOUT field in the Shared Port Control mode page (see 10.2.7.6).	7.2.5.3.3
NOTIFY (RESERVED 1)	Reserved.	
NOTIFY (RESERVED 2)	Neserveu.	

NOTIFY (RESERVED 1) and NOTIFY (RESERVED 2) shall be ignored by all devices.

7.2.5.3.2 NOTIFY (ENABLE SPINUP)

NOTIFY (ENABLE SPINUP) is transmitted by a SAS initiator port or expander port and is used to specify to an SAS target device that it may temporarily consume additional power (e.g., while spinning up transitioning into the active or idle power condition state. The length of time the SAS target device consumes additional power and the amount of additional power is vendor specific. NOTIFY (ENABLE SPINUP) shall interact with the device's power condition state transitions, controlled by the Power Conditions mode page (see SPC-4) and/or the START STOP UNIT command (see SBC-3), as described in 10.2.10.

SAS initiator devices and expander devices shall use NOTIFY (ENABLE SPINUP) while attached to SSP target devices (i.e., devices that report SSP target port support in their IDENTIFY address frames). They shall transmit one NOTIFY (ENABLE SPINUP) after power on when the enclosure is ready for initial spin-up. After the initial NOTIFY (ENABLE SPINUP), they shall transmit NOTIFY (ENABLE SPINUP) periodically. Otherwise, the selection of when and how often to transmit NOTIFY (ENABLE SPINUP) is outside the scope of this standard.

NOTE 46 - The SAS initiator device or expander device uses NOTIFY (ENABLE SPINUP) to avoid exceeding enclosure power supply capabilities during spin-up of multiple SAS target devices. It may choose to rotate transmitting NOTIFY (ENABLE SPINUP) across all of its ports, distributing it to N ports at a time if the enclosure power supply is capable of powering N SAS target devices spin-up in the power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of powering N SAS target devices spin-up in time if the enclosure power supply is capable of the enclosure power

s/b then the phy Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' TRACCEPT - DONE into s/b Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE an SAS [it is interesting to me that this is the only remnant occurrence of this] Subject: Highlight Date: 5/21/2008 5:12:03 PM -07'00' ACCEPT - DONE (changed to "to spin up" to match phrasing used elsewhere) spinning-up s/b spinning up Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE transitioning into transitioning to "transition into" is only used for "into this state". "transition to" is used for all other cases. Corresponds to a comment on table 118 Author: wdc-mevans Subject: Highlight Date: 5/21/2008 5:12:45 PM -07'00' REJECT (two things anded/ored together don't get a comma) SPC-4) and/or SPC-4), and/or Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' REJECT (too wordy) They shall transmit one NOTIFY (ENABLE SPINUP) after power on when the enclosure is ready for initial spin-up. After the initial NOTIFY (ENABLE SPINUP), they shall transmit NOTIFY (ENABLE SPINUP) periodically. SAS initiator devices or expander devices shall transmit one NOTIFY (ENABLE SPINUP) after power on when the enclosure is

Date: 5/6/2008 1:07:49 PM -07'00'

28 January 2008 T10/1760-D Revision 14

7.2.5.3 NOTIFY

7.2.5.3.1 NOTIFY overview

NOTIFY may be transmitted in place of any ALIGN (see 7.2.5.1) being transmitted for physical link rate tolerance management (see 7.3) and rate matching (see 7.13). Substitution of a NOTIFY for an ALIGN may or may not affect the ALIGN rotation (i.e., the NOTIFY may take the place of one of the ALIGNs in the rotation through ALIGN (0), ALIGN (1), ALIGN (2), and ALIGN (3), or it may delay the rotation). A specific NOTIFY shall not be transmitted in more than three consecutive dwords until at least three other dwords have been transmitted.

NOTIFYs are deletable primitives (see 7.3). If a phy supports a specific NOTIFY primitive, it should decode it in logic running off the received clock without using an elasticity buffer rather than logic after the elasticity buffer to avoid missing detection of important information.

NOTIFY shall not be forwarded through expander devices. Expander devices shall substitute an ALIGN for a NOTIFY if necessary.

SAS target devices are not required to detect every transmitted NOTIFY.

The versions of NOTIFY representing different reasons are defined in table 118.

Table 118 — NOTIFY primitives

Primitive	Description	Reference
NOTIFY (ENABLE SPINUP)	Specify to a SAS target device that it may temporarily consume additional power while transitioning into the active or idle power condition state.	7.2.5.3.2
NOTIFY (POWER LOSS EXPECTED)	Specify to a SAS target device that power loss may occur within the time specified by the POWER LOSS TIMEOUT field in the Shared Port Control mode page (see 10.2.7.6).	7.2.5.3.3
NOTIFY (RESERVED 1)	Reserved.	
NOTIFY (RESERVED 2)	Reserved.	

NOTIFY (RESERVED 1) and NOTIFY (RESERVED 2) shall be ignored by all devices.

7.2.5.3.2 NOTIFY (ENABLE SPINUP)

NOTIFY (ENABLE SPINUP) is transmitted by a SAS initiator port or expanded port and is used to specify of SAS target device that it may temporarily consume additional power (e.g., while spinning-up rotating media) while transitioning into the active or idle power condition state. The length of time the SAS target device sonsumes additional power and the amount of additional power is vendyr specific. NOTIFY (ENABLE SPINUP) shall interact with the device's power condition state transitions, controlled by the Power Conditions mode page (see SPC-4) and/or the START STOP UNIT command (see SBC-3), as described in 10/2.10.

SAS initiator devices and expander devices shall use NOTIFY (ENABLE SPINUP) while attached to SSP target devices (i.e., devices that report SSP target port support in their IDENTIFY address frames. They shall transmit one NOTIFY (ENABLE SPINUP) after power on when the enclosure is ready for initial pin-up. After the initial NOTIFY (ENABLE SPINUP), they shall transmit NOTIFY (ENABLE SPINUP) periodically. Otherwise, the selection of when and how often to transmit NOTIFY (ENABLE SPINUP) is outside the scope of this standard.

NOTE 46 - The SAS initiator device or expander device dises NOTIFY (ENABLE SPINUP) to avoid exceeding enclosure power supply capabilities during spin-up of multiple SAS target devices. It may choose to rotate transmitting NOTIFY (ENABLE SPINUP) across all of its ports, distributing it to N ports at a tyle if the enclosure power supply is capable of powering N SAS target devices spinning up at a time. An expander

303

Working Draft Serial Attached SCSI - 2 (SAS-2)

ready for an SSP target device to consume additional power. After transmitting the initial NOTIFY (ENABLE SPINUP), SAS initiator devices and expander devices shall transmit NOTIFY (ENABLE SPINUP) periodically (e.g., once every several milliseconds).

Author: RElliott
Subject: Planting of additional power by

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
spin-up of
s/b
temporary consumption of additional power by

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

spin-up of
s/b
temporary consumption of additional power by

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
spinning up at a time
s/b
temporarily consuming additional power at the same time

device may allow this timing to be configured by an NVRAM programmed with enclosure-specific sequencing patterns, or may employ more complex, dynamic interaction with the enclosure power supply.

NOTE 47 - NOTIFY (ENABLE SPINUP) should be transmitted as frequently as possible to avoid incurring application layer timeous.

_T nexus loss, logical unit reset, and hard reset shall not cause a SAS target device to spin-up automaticall in receipt of NOTIFY (ENABLE SPINUP).)

A SAS target device with multiple SAS target ports shall honor NOTIFY (ENABLE SPINUP) from all its SAS target ports equivalently (e.g., if a SAS target device contains two SSP target ports A and B, powers on in the Stopped state, and receives a START STOP UNIT command with the START bit set to one through SSP target port B causes the SAS target device to spin up its rotating media (see 10.2.10)).

7.2.5.3.3 NOTIFY (POWER LOSS EXPECTED)

NOTIFY (POWER LOSS EXPECTED) is transmitted by a SAS initiator port & expander port and is used to specify to a SAS target device that power loss may occur within the time specified in the POWER LOSS TIMEOUT field in the Shared Port Control mode page (see 10.2.7.6).

NOTIFY (POWER LOSS EXPECTED) shall be transmitted at least three times by the SAS initiator port or expander port.

If a SAS target device supports NOTIFY (POWER LOSS EXPECTED) and receives NOTIFY (POWER LOSS EXPECTED) on an SSP target port, then the device server for each logical unit to which the SSP target port has access shall:

- stop writing data to the media on a block boundary (e.g., all write activity shall continue until a block boundary is reached then all writing shall stop);
- 2) clear all task sets as defined in SAM-4; and
- establish a unit attention condition for the initiator port associated with every I_T nexus as defined in SAM-4 (e.g., with the additional sense code set to COMMANDS CLEARED BY POWER LOSS NOTIFICATION).

If a SAS target device supports NOTIFY (POWER LOSS EXPECTED) and receives NOTIFY (POWER LOSS EXPECTED) on an SSP target port, then the SAS target device shall:

- a) on each phy that receives NOTIFY (POWER LOSS EXPECTED), if there is an SSP connection, then
 transmit a BREAK on that connection; and
- b) on each phy that does not receive NOTIFY (POWER LOSS EXPECTED), if there is an SSP connection, then transmit a BREAK or a CLOSE on that connection.

The SCSI application layer that receives a Power Loss Expected event shall:

- a) start the power loss timer;
- b) send an Accept_Reject OPENs (Reject SSP) request to all ST_T state machines (i.e., all SSP connection requests result in OPEN REJECT (RETRY));
- c) if a SCSI Command Received transport protocol service indication is received, then the device server shall abort that command and send an Accept_Reject OPENs (Reject SSP) request to the ST_T state machine on which the SCSI Command Received transport protocol service indication was received;
- d) if the power loss timeout timer expires, then the SCSI application layer shall send an Accept_Reject OPENs (Accept SSP) request to all ST_T state machines.

If any frames are received by the SAS target device after receiving NOTIFY (POWER LOSS EXPECTED) before a connection is closed, then the SAS target device shall discard the received frames.

After power on, the power loss timeout timer shall be initialized and stopped until a NOTIFY (POWER LOSS EXPECTED) is received.

Page: 304

```
    Author: RElliott
    Subject: Highlight
    Date: 6/30/2008 3:16:52 PM -07'00'
    ACCEPT - DONE
    application layer
    application layer
```

SCSI application layer

```
Author: stx-ghoulder
```

Subject: Highlight Date: 6/28/2008 11:08:46 AM -07'00'

TACCEPT - DONE (deleting the paragraph. It's trying to point out that power on is the only event that causes automatic spinup; hard reset, etc. do not.)

_T nexus loss, logical unit reset, and hard reset shall not cause a SAS target device to spin-up automatically on receipt of NOTIFY (ENABLE SPINUP).

The point of this sentence is unclear. This clause specifies NOTIFY(ENABLE SPINUP) alone gives permission of device to spin up – does this sentence mean that a reset just before a NOTIFY revokes the spinup permission?

```
Author: wdc-mevans
Subject: Highlight
Date: 6/28/2008 11:08:12 AM -07'00'
REJECT (deleting the paragraph instead.)
```

I_T nexus loss, logical unit reset, and hard reset shall not cause a SAS target device to spin-up automatically on receipt of NOTIFY (ENABLE SPINUP).

If a SAS target device is in the Stopped power condition state (see x.x), then the device shall not transition from the Stopped state (e.g., start the device's spindle motor) after an I_T nexus loss, logical unit reset, or hard reset until the device has received both a START STOP UNIT command with the START bits et to one and a NOTIFY (ENABLE SPINUP).

```
Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
Spin up
s/b
temporary consumption of additional power
```

temporary consumption of additional power

```
Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'
ACCEPT - DONE ('received by any of'')
from all
s/b
received on any of
```

Author: wdc-mevans Subject: Highlight Date: 5/30/2008 2:34:25 PM -07'00'

honor s/b process a

Comments from page 304 continued on next page

device may allow this timing to be configured by an NVRAM programmed with enclosure-specific sequencing patterns, or may employ more complex, dynamic interaction with the enclosure power supply.

NOTE 47 - NOTIFY (ENABLE SPINUP) should be transmitted as frequently as possible to avoid incurring

receipt of NOTIFY (ENABLE SPINUP

A SAS target device with multiple SAS target ports shall honor NOTIFY (ENABLE SPINUP) from all its SAS target ports equivalently (e.g., if a SAS target device contains two SSP target ports A and B, powers on in the Stopped state, and receives a START STOP UNIT command with the START bit set to one through SSP target port A, then a NOTIFY (ENABLE SPINUP) received on SSP target port B causes the SAS target device to spin up its rotating media (see 10.2.10)).

7.2.5.3.3 NOTIFY (POWER LOSS EXPECTED)

NOTIFY (POWER LOSS EXPECTED) is transmitted by a SAS initiator port or expander port and is used to specify to a SAS target device that power loss may occur within the time specified in the POWER LOSS TIMEOUT field in the Shared Port Control mode page (see 10.2.7.6).

NOTIFY (POWER LOSS EXPECTED) shall be transmitted at least three times by the SAS initiator port or expander port.

If a SAS target device supports NOTIFY (POWER LOSS EXPECTED) and receives NOTIFY (POWER LOSS EXPECTED) on an SSP target port, then the device server for each logical unit to which the SSP target port has access shall:

- 1) stop writing data to the media on a block boundary (e.g., all write activity shall continue until a block boundary is reached then all writing shail stop)
- 2) clear all task sets as defined in SAM-4; and
- establish a unit attention condition for the sitiator port associated with every I_T nexus as defined in SAM4 (e.g., with the additional sense code set to COMMANDS CLEARED BY POWER LOSS NOTIFICATION)

If a SAS target device supports NOTIFY (POWER LOSS EXPECTED) and receives NOTIFY (POWER LOSS EXPECTED) on an SSP target port, the SAS target device shall:

- a) on each phy that receives NOTIFY (POWER LOSS EXPECTED), if there is an SSP connection, then transmit a BREAK on that connection; and
- b) on each phy that does not receive NOTIFY (POWER LOSS EXPECTED), if there is an SSP connection, then transmit a BREAK or a CLOSE on that connection.

The SCSI application layer that receives a Power Loss Expected event shall

- a) start the power loss timer;
- b) send an Accept_Reject OPENs (Reject SSP) request to all ST_T state machines (i.e., stl SSP connection requests result in OPEN_REJECT (RETRY));
- c) if a SCSI Command Received transport protocol service indication is received, then the device service shall abort that command and send an Accept_Reject OPENs (Reject SSP) request to the ST_T state machine on which the SCSI Command Received transport protocol sessice indication was received;
- d) if the power loss timeout timer expires, then the SCSI application layer shall send as Accept Reject OPENs (Accept SSP) request to all ST_T state machines.

If any frames are received by the SAS target device after receiving NOTIFY (POWER LOSS EXPECTED before a connection is closed, then the SAS target device shall discard the received frames.

After power on, the power loss timeout timer shall be initialized and stopped until a NOTIFY (POWER LOSS EXPECTED) is received.

Author: wdc-mevans Subject: Cross-Out Date: 5/30/2008 2:34:49 PM -07'00'

PREJECT (this emphasizes that they're equivalent. Moved in front of the new verb "process", however) equivalently [Delete the unnecessary word.] Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' REJECT (the "two" is important) two SSP target ports A and B, SSP target port A and SSP target port B, Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' causes s/b allows Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE spin up its rotating media temporary consumption of additional power

Author: Isi-bday

Subject: Highlight Date: 6/28/2008 11:12:17 AM -07'00'

🏲 ACCEPT - DONE (as "stop writing data to the media as soon as possible withough creating read errors for future reads (e.g., on a direct-access block device, a physical block boundary is reached)". This rule needs to be followed in principle by all device types,

stop writing data

if a block device, stop writing data...

Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

ACCEPT - DONE

reached then

reached, then

Author: RElliott

Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

Merge these two paragraphs with the same conditions into one a) and b) list, and shift make the current lists one level deeper

Author: wdc-mevans

Comments from page 304 continued on next page

device may allow this timing to be configured by an NVRAM programmed with enclosure-specific sequencing patterns, or may employ more complex, dynamic interaction with the enclosure power supply.

NOTE 47 - NOTIFY (ENABLE SPINUP) should be transmitted as frequently as possible to avoid incurring

T nexus loss, logical unit reset, and hard reset shall not cause a SAS target device to spin-up automatically n receipt of NOTIFY (ENABLE SPINUP).

A SAS target device with multiple SAS target ports shall honor NOTIFY (ENABLE SPINUP) from all its SAS target ports equivalently (e.g., if a SAS target device contains two SSP target ports A and B, powers on in the Stopped state, and receives a START STOP UNIT command with the START bit set to one through SSP target port A, then a NOTIFY (ENABLE SPINUP) received on SSP target port B causes the SAS target device to spin up its rotating media (see 10.2.10)).

7.2.5.3.3 NOTIFY (POWER LOSS EXPECTED)

NOTIFY (POWER LOSS EXPECTED) is transmitted by a SAS initiator port or expander port and is used to specify to a SAS target device that power loss may occur within the time specified in the POWER LOSS TIMEOUT field in the Shared Port Control mode page (see 10.2.7.6).

NOTIFY (POWER LOSS EXPECTED) shall be transmitted at least three times by the SAS initiator port or expander port.

If a SAS target device supports NOTIFY (POWER LOSS EXPECTED) and receives NOTIFY (POWER LOSS EXPECTED) on an SSP target port, then the device server for each logical unit to which the SSP target port has access shall:

- 1) stop writing data to the media on a block boundary (e.g., all write activity shall continue until a block boundary is reached then all writing shall stop);
- 2) clear all task sets as defined in SAM-4; and
- 3) establish a unit attention condition for the initiator port associated with every I T nexus as defined in SAM-4 (e.g., with the additional sense code set to COMMANDS CLEARED BY POWER LOSS

If a SAS target device supports NOTIFY (POWER LOSS EXPECTED) and receives NOTIFY (POWER LOSS EXPECTED) on an SSP target port, then the SAS target device shall:

- a) on each phy that receives NOTIFY (POWER LOSS EXPECTED), if there is an SSP connection, then transmit a BREAK on that connection; and
- b) on each phy that does not receive NOTIFY (POWER LOSS EXPECTED), if there is an SSP connection, then transmit a BREAK or a CLOSE on that connection.

The SCSI application layer that receives a Power Loss Expected event shall:

- a) start the power loss timer;
- b) send an Accept Reject OPENs (Reject SSP) request to all ST T state machines (i.e., all SSP connection requests result in OPEN REJECT (RETRY));
- c) if a SCSI Command Received transport protocol service indication is received, then the device server shall abort that command and send an Accept_Reject OPENs (Reject SSP) request to the ST_T state machine on which the SCSI Command Received transport protocol service indication was received;
- d) if the power loss timeout timer expires, then the SCSI application layer shall send an Accept Reject OPENs (Accept SSP) request to all ST_T state machines.

If any frames are received by the SAS target device after receiving NOTIFY (POWER LOSS EXPECTED) before a connection is closed, then the SAS target device shall discard the received frames.

After power on, the power loss timeout timer shall be initialized and stopped until a NOTIFY (POWER LOSS EXPECTED) is received.

Working Draft Serial Attached SCSI - 2 (SAS-2)

304

Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'
REJECT (the layer receives the event from another entity in the target device. The target device doesn't receive the event)

layer in the SAS target device

Author: Isi-bday Subject: Cross-Out

Date: 5/30/2008 2:41:38 PM -07'00'

TACCEPT - DONE (5/5 keep sentence but downgrade shall to should. Also reworded to active tense:

"If the SAS target device receives any frames after receiving NOTIFY (POWER LOSS EXPECTED) before a connection is closed, then it should discard the received frames.")

If any frames are received by the SAS target device after receiving NOTIFY (POWER LOSS EXPECTED) before a connection is closed, then the SAS target device shall discard the received frames.

I think the requirement to issue BREAK or CLOSE above is sufficient.

T10/1760-D Revision 14

Page: 305

Author: RElliott

7.2.6 Primitives not specific to type of connections

7.2.6.1 AIP (Arbitration in progress)

AIP is sent by an expander device after a connection request to specify that the connection request is being processed and specify the status of the connection request.

The versions of AIP representing different statuses are defined in table 119.

Table 119 — AIP primitives

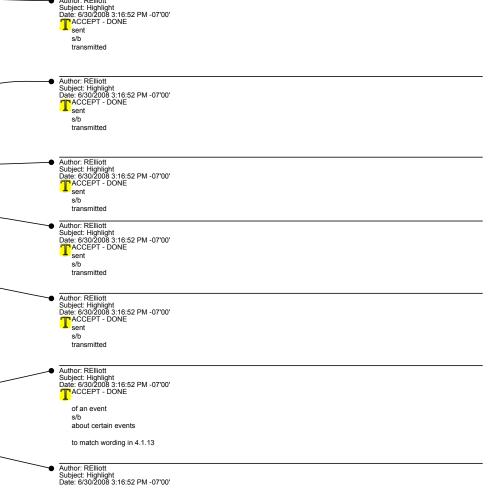
Primitive	Description
AIP (NORMAL)	Expander device has accepted the connection request. This may be sent multiple times (see 7.12.4.3).
AIP (RESERVED 0)	
AIP (RESERVED 1)	Reserved. Processed the same as AIP (NORMAL).
AIP (RESERVED 2)	
AIP (WAITING ON CONNECTION)	Expander device has determined the routing for the connection request, but either the destination phys are all being used for connections or there are insufficient routing resources to example the connection request. This may be sent multiple times (see 7.12.4.3).
AIP (WAITING ON DEVICE)	Expander device has determined the routing for the connection request and forwarded it to the output physical link. This is sent ene time (see 7.12.4.3).
AIP (WAITING ON PARTIAL)	Expander device has determined the routing for the connection request, but the destination phys are all busy with other partial pathways. This may be sent multiple times (see 7.12.4.3).
AIP (RESERVED WAITING ON PARTIAL)	Reserved. Processed the same as AIP (WAITING ON PARTIAL).

See 7.12 for details on connections.

7.2.6.2 BREAK

BREAK is used to abort a connection request or break a connection.

See 7.12.6 and 7.12.8 for details on breaking connections.


7.2.6.3 BREAK_REPLY

BREAK_REPLY is used to confirm the receipt of a BREAK.

See 7.12.6 and 7.12.8 for details on breaking connections.

7.2.6.4 BROADCAST

BROADCASTs are used to notify all SAS ports in a domain ef an event.

Comments from page 305 continued on next page

28 January 2008 T10/1760-D Revision 14

7.2.6 Primitives not specific to type of connections

7.2.6.1 AIP (Arbitration in progress)

AIP is sent by an expander device after a connection request to specify that the connection request is being processed and specify the status of the connection request.

The versions of AIP representing different statuses are defined in table 119.

Table 119 — AIP primitives

Primitive	Description
AIP (NORMAL)	Expander device has accepted the connection request. This may be sent multiple times (see 7.12.4.3).
AIP (RESERVED 0)	
AIP (RESERVED 1)	Reserved. Processed the same as AIP (NORMAL).
AIP (RESERVED 2)	
AIP (WAITING ON CONNECTION)	Expander device has determined the routing for the connection request, but either the destination phys are all being used for connections or there are insufficient routing resources to complete the connection request. This may be sent multiple times (see 7.12.4.3).
AIP (WAITING ON DEVICE)	Expander device has determined the routing for the connection request and forwarded it to the output physical link. This is sent one time (see 7.12.4.3).
AIP (WAITING ON PARTIAL)	Expander device has determined the routing for the connection request, but the destination phys are all busy with other pavial pathways. This may be sent multiple times (see 7.12.4.3).
AIP (RESERVED WAITING ON PARTIAL)	Reserved. Processed the same as AIP (WATTING ON PARTIAL).

See 7.12 for details on connections.

7.2.6.2 BREAK

BREAK is used to abort a connection request or break a connection.

See 7.12.6 and 7.12.8 for details on breaking connections.

7.2.6.3 BREAK_REPLY

BREAK_REPLY is used to confirm the receipt of a BREAK.

See 7.12.6 and 7.12.8 for details on breaking connections.

7.2.6.4 BROADCAST

BROADCASTs are used to notify all SAS ports in a domain of an event.

TACCEPT - DONE

domain
s/b
SAS domain

Author: RElliott
Subject. Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

all SAS ports
s/b
SAS ports and expander devices

to match a change in 4.1.13 per lsi-bbesmer

The versions of BROADCAST representing different Broadcast types are defined in table 120.

Table 120 — BROADCAST primitives

Primitive	Description
BROADCAST (CHANGE)	Broadcast (Change)
BROADCAST (RESERVED CHANGE 0)	Broadcast (Reserved Change 0)
BROADCAST (RESERVED CHANGE 1)	Broadcast (Reserved Change 1)
BROADCAST (SES)	Broadcast (SES)
BROADCAST (EXPANDER)	Broadcast (Expander)
BROADCAST (ASYNCHRONOUS EVENT)	Broadcast (Asynchronous Event)
BROADCAST (RESERVED 3)	Broadcast (Reserved 3)
BROADCAST (RESERVED 4)	Broadcast (Reserved 4)

A phy that has not completed the link reset sequence shall not transmit a BROADCAST. A phy shall not transmit a BROADCAST inside a connection.

A BROADCAST received by a phy that has not completed the link reset sequence shall be ignored.

See 4.1.13 for definitions of Broadcasts.

7.2.6.5 CLOSE

CLOSE is used to close a connection. This primitive may be originated by a SAS initiator port or a SAS target

The versions of CLOSE representing different reasons are defined in table 121.

Table 121 — CLOSE primitives

Primitive	Description	
CLOSE (CLEAR AFFILIATION)	Close an open STP connection and clear the affiliation (see 7.17.4). Processed the same as CLOSE (NORMAL) if: a) the connection is not an STP connection; b) the connection is an STP connection, but affiliations are not implemented by the STP target port; or c) the connection is an STP connection, but an affiliation is not present.	
CLOSE (NORMAL)	Close a connection.	
CLOSE (RESERVED 0)	- Reserved. Processed the same as CLOSE (NORMAL).	
CLOSE (RESERVED 1)		

See 7.12.7 for details on closing connections.

7.2.6.6 EOAF (End of address frame)

EOAF specifies the end of an address frame.

See 7.8 for details on address frames.

Page: 306

Author: stx-ghoulder

Subject: Highlight Date: 5/25/2008 5:25:38 PM -07'00'

TACCEPT - DONE (change "representing different Broadcast types" to "representing different Broadcasts (see table 7 in 4.1.13)" and delete the last paragraph of this section. Keep the table column, though - it's what translates all-caps BROADCAST primitives into the mixed-case Broadcast term (just like the SMP ZONED BROADCAST function defines which field values correspond to each Broadcast)

Description

None of these descriptions provide useful information. The description column contents should be replaced with a reference to Table 7, which does have a useful description.

Author: stx-ghoulder
Subject: Highlight
Date: 5/6/2008 1:07-49 PM -07'00'
Date: 5/6/2008 1:07-49 PM -07'00'
ACCEPT - DONE (although we don't say that for all the other NoConn primitives like SOAF and EOAF, this one could be particularly confusing and I agree this sentence would be helpful)

Should this sentence be added? "A BROADCAST received inside a connection shall be ignored."

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

Delete:

See 4.1.13 for definitions of Broadcasts.

and replace by referencing table 7 in 4.1.13 earlier, above table 120

T10/1760-D Revision 14

7.2.6.7 ERROR

ERROR should be sent by an expander device when it is forwarding dwords from a SAS physical link or SATA physical link to a SAS physical link and it receives an invalid dword or an ERROR.

NOTE 48 - Since an 8b10b coding error in one dword is sometimes not-stateted until the next dword (see table 86 in 6.3.5), expander devices should avoid deleting invalid dwords or ERROMS sclass necessary (e.g., if the elasticity buffer is full) to avoid hiding evidence that an error has occurred.

See 7.15 for details on error handling by expander devices.

7.2.6.8 HARD_RESET

HARD_RESET is used to force a phy to generate a hard reset set port. This primitive is only valid after the phy reset sequence without an intervening identification sequence (see 4.4) and shall be ignored at other times.

7.2.6.9 OPEN_ACCEPT

OPEN_ACCEPT specifies the acceptance of a connection request.

See 7.12 for details on connection requests.

7.2.6.10 OPEN_REJECT

OPEN_REJECT specifies that a connection request has been rejected and specifies the reason for the rejection. The result of some OPEN_REJECTs is to abandon (i.e., not retry) the connection request and the result of other OPEN_REJECTs is to retry the connection request.

Page: 307

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
sent
s/b
transmitted

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

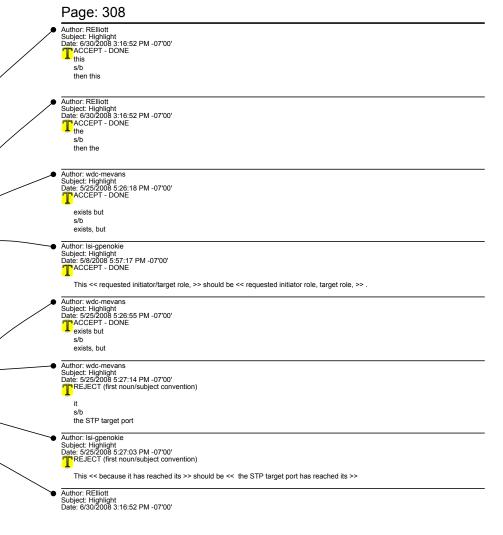
it s/b

the expander device

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

hard reset s/b

hard reset (see 4.4.2)


Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

> request and s/b request, and

All of the OPEN_REJECT versions defined in table 122 shall result in the originating port abandoning the connection request.

Table 122 — Abandon-class OPEN REJECT primitives

Primitive	Originator	Description
OPEN_REJECT (BAD DESTINATION)	Expander phy	A connection request routes to a destination expander phy in the same expander port as the source expander phy and the expander port is using the direct routing method (see 4.6.7.1).
OPEN_REJECT (CONNECTION RATE NOT SUPPORTED)	Any phy	The requested connection rate is not supported on some physical link on the pathway between the source phy and destination phy. When a SAS initiator phy is directly attached to a SAS target phy, the requested connection rate is not supported by the destination phy.
		If the connection rate is 1.5 Gbps, this shall be considered an abandon-class OPEN_REJECT.
		If the connection rate is greater than 1.5 Gbps, the connection request shall be modified and reattempted as described in 7.8.3.
OPEN_REJECT (PROTOCOL NOT SUPPORTED)	Destination phy	Phy with destination SAS address exists but the destination phy does not support the requested initiator/target role, protocol, initiator connection tag, or features (i.e., the values in the INITIATOR PORT bit, the PROTOCOL field, the INITIATOR CONNECTION TAG field, and/or the FEATURES field in the OPEN address frame are not supported).
OPEN_REJECT (RESERVED ABANDON 1)	Unknown	Reserved. Process the same as OPEN_REJECT (WRONG DESTINATION).
OPEN_REJECT (RESERVED ABANDON 2)		
OPEN_REJECT (RESERVED ABANDON 3)		
OPEN_REJECT (STP RESOURCES BUSY)	Destination phy	STP target port with destination SAS address exists but Me STP target port supports affiliations and is not able to establish an affiliation with this STP initiator port (e.g., because it has reached its maximum number of affiliations), or the STP target port does not support affiliations, and all of the available ATA task file registers have been allocated to other STP initiator ports (see 7.17.4). Prosess the same as OPEN_REJECT (WRONG DESTINATION) for han-STP connection requests.
OPEN_REJECT (WRONG DESTINATION)	Destination phy	The destination SAS address does not match the SAS address of the SAS port to which the connection request was delivered.
OPEN_REJECT (ZONE VIOLATION)	Zoning expander phy	The connection request is from a zone group that does not have permission to access the zone group that contains the destination phy according to the zone permission table of an unlocked zoning expander device.

Comments from page 308 continued on next page

All of the OPEN_REJECT versions defined in table 122 shall result in the originating port abandoning the connection request.

Table 122 — Abandon-class OPEN_REJECT primitives

Primitive	Originator	or Description			
OPEN_REJECT (BAD DESTINATION)	Expander phy	A connection request routes to a destination expander phy in the same expander port as the source expander phy and the expander port is using the direct routing method (see 4.6.7.1).			
OPEN_REJECT (CONNECTION RATE NOT SUPPORTED)	Any phy	The requested connection rate is not supported on some physical link on the pathway between the source phy and destination phy. When a SAS initiator phy is directly attached to a SAS target phy, the requested connection rate is not supported by the destination phy. If the connection rate is 1.5 Gbps, this shall be considered an abandon-class OPEN_REJECT.			
		If the connection rate is greater than 1.5 Gbps, the connection request shall be modified and reattempted as described in 7.8.3.			
OPEN_REJECT (PROTOCOL NOT SUPPORTED)	Destination phy	Phy with destination SAS address exists but the destination phy does not support the requested initiator/target role, protocol, initiator connection tag, or features (i.e., the values in the INITIATOR PORT bit, the PROTOCOL field, the INITIATOR CONNECTION TAG field, and/or the FEATURES field in the OPEN address frame are not supported).			
OPEN_REJECT (RESERVED ABANDON 1)					
OPEN_REJECT (RESERVED ABANDON 2)	Unknown	Reserved. Process the same as OPEN_REJECT (WRONG DESTINATION).			
OPEN_REJECT (RESERVED ABANDON 3)					
OPEN_REJECT (STP RESOURCES BUSY)	Destination phy	STP target port with destination SAS address exists but the STP target port supports affiliations and is not able to establish an affiliation with this STP initiator port (e.g., because it has reached its maximum number of affiliations), or the STP target port does not support affiliations and all of the available ATA task file registers have been allocated to other STP initiator ports (see 7.17.4). Process the same as OPEN_REJECT (WRONG DESTINATION) for non-STP connection requests.			
OPEN_REJECT (WRONG DESTINATION)	Destination phy	The destination SAS address does not match the SAS address of the SAS port to which the connection request was delivered.			
OPEN_REJECT (ZONE VIOLATION)	Zoning expander phy	The connection request is from a zone group that does not have permission to access the zone group that contains the destination phy according to the zone permission table of an unlocked zoning expander device.			

Working Draft Serial Attached SCSI - 2 (SAS-2)

308

ATA task file registers s/b affiliation contexts

All of the OPEN_REJECT versions defined in table 123 shall result in the originating port retrying the connection request.

Table 123 — Retry-class OPEN REJECT primitives

Primitive	Originator	Description				
OPEN_REJECT (NO DESTINATION) ^a	Expander phy	An expander device in the pathway is not configuring and determines that: a) there is no such destination phy; b) the connection request routes to a destination expander phy in the same expander port as the source expander phy and the expander port is using the subtractive routing method; or c) the SAS address is valid for an STP target port in an STP/SATA bridge, but the initial Register - Device to Host FIS has not been successfully received (see 10.4.3.12).				
OPEN_REJECT (PATHWAY BLOCKED) b	Expander phy	An expander device determined the pathway was blocked by higher priority connection requests.				
OPEN_REJECT (RESERVED CONTINUE 0) ° OPEN_REJECT (RESERVED CONTINUE 1) °	Unknown	Reserved. Process the same as OPEN_REJECT (RETRY).				
OPEN_REJECT (RESERVED INITIALIZE 0) a	Unknown	Reserved. Process the same as OPEN_REJECT (NO				
OPEN_REJECT (RESERVED INITIALIZE 1) a	Unknown	DESTINATION).				
OPEN_REJECT (RESERVED STOP 0) b	Helesense	Reserved. Process the same as OPEN_REJECT				
OPEN_REJECT (RESERVED STOP 1) b	Unknown	(PATHWAY BLOCKED).				
OPEN_REJECT (RETRY) ^C	Destination phy or zoning expander phy	Either: a) a phy with destination SAS address exists but is temporarily not able to accept connections (see 7.16.1, 7.17.5, and 7.18.3); b) an expander device in the pathway is configuring and would otherwise have returned OPEN_REJECT (NO DESTINATION)(see 4.7.2 and 7.12.4.2.5); c) an expander device in the pathway is locked and would otherwise have returned OPEN_REJECT (ZONE VIOLATION)(see 4.9.3.5 and 7.12.4.2.5); or d) an expander device in the pathway has reduced functionality (see 4.6.8 and 7.12.4.2.5).				

If the I_T Nexus Loss timer is already running, it continues running; if it is not already running, it is / initialized and started. Stop retrying the connection request if the I_T Nexus Loss timer expires.
If the I_T Nexus Loss timer is already running, it continues running. Stop retrying the connection request if the I_T Nexus Loss timer expires.

NOTE 49 - Some SAS logical phys compliant with earlier versions of this standard also transmit OPEN_REJECT (RETRY) if they receive an OPEN address frame while their SL_CC state machines are in the SL_CCs.BreakWait state (see 7.14.4.7).

Working Draft Serial Attached SCSI - 2 (SAS-2)

309

Page: 309

Author: stx-ghoulder Subject: Highlight Date: 6/2/2008 7:18:12 AM -07'00' REJECT (no, that's a very crucial sentence. If an expander is in the middle of configuring, it returns OPEN_REJECT (RETRY) instead of OPEN_REJECT (NO DESTINATION). Added "(see 4.7.2)" in case the word "configuring" is not understood by someone without an expander focus.) is not configuring and Delete this phrase, it adds nothing useful and may have a confusing meaning to some readers. Author: wdc-mevans Subject: Highlight Date: 5/25/2008 5:27:42 PM -07'00' phy and s/b phy, and Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE configuring add (see 4.7.2) Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 5:28:04 PM -07'00'
ACCEPT - DONE (dropped the semicolon, kept the it) This << continues running; if it is not already running, it is >> should be << continues running. If the I_T Nexus Loss timer is not already running, it is >>

^c If the I_T Nexus Loss timer (see 8.2.2) is already running, it is stopped.

T10/1760-D Revision 14

28 January 2008

When a SAS logical phy detects more than one reason to transmit an OPEN_REJECT, the SL_CC state machine determines the priority in the SL_CC2:Selected state (see 7.14.4.4).

When an expander logical phy detects more than one reason to transmit an OPEN_REJECT, the ECM determines the priority (see 7.12.4).

See 7.12 for details on connection requests.

7.2.6.11 SOAF (Start of address frame)

SOAF specifies the start of an address frame.

See 7.8 for details on address frames.

7.2.6.12 TRAIN

TRAIN is used during Train-SNW during speed negotiation.

See 6.7.4.2.3.4 for details on Train-SNW.

7.2.6.13 TRAIN_DONE

TRAIN_DONE is used during Train-SNW during speed negotiation.

See 6.7.4.2.3.4 for details on Train-SNW.

7.2.7 Primitives used only inside SSP and SMP connections

7.2.7.1 ACK (Acknowledge)

ACK specifies the positive acknowledgement of an SSP frame.

See 7.16.3 for details on SSP frame transmission.

7.2.7.2 CREDIT_BLOCKED

CREDIT_BLOCKED specifies that no more credit is going to be sent during this connection.

See 7.16.4 for details on SSP flow control.

7.2.7.3 DONE

DONE is used to start closing an SSP connection and specify a reason for doing so. This primitive may be originated by an SSP initiator port or an SSP target port. DONE is not used to close an SMP or STP connection.

Page: 310

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 5:28:21 PM -07'00'

ACCEPT - DONE ("no more RRDYs are going to be transmitted during this connection (i.e., credit is not going to be increased)")

RRDYs are

Author: wdc-mevans

Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'

to close during

28 January 2008

T10/1760-D Revision 14

Page: 311

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

SSP state machine
s/b

SSP state machines

The versions of DONE representing different reasons are defined in table 124. The SSP state machine describes when these are used (see 7.16.8).

Table 124 — DONE primitives

Primitive	Description	
DONE (ACK/NAK TIMEOUT)	The SSP state machine (see 7.16.8) timed out waiting for an ACK or NAK, and the phy is going to transmit BREAK in 1 ms unless DONE is received within 1 ms of transmitting the DONE (ACK/NAK TIMEOUT).	
DONE (RESERVED TIMEOUT 0)	Reserved. Processed the same as DONE (ACK/NAK TIMEOUT).	
DONE (RESERVED TIMEOUT 1)	Neserved. Frocessed the same as DONE (ACK/NAK TIMEOUT).	
DONE (NORMAL)	Finished transmitting all frames.	
DONE (RESERVED 0)	Reserved. Processed the same as DONE (NORMAL).	
DONE (RESERVED 1)		
DONE (CREDIT TIMEOUT)	The SSP state machine (SSP 17.16.8) timed out waiting for an RRDY or received a CREDIT BLOCKED, and the phy is going to transmit BREAK if it provides transmit frame credit for 1 ms without receiving a frame or a DONE.	

See 7.16.7 for details on closing SSP connections.

7.2.7.4 EOF (End of frame)

EOF specifies the end of an SSP or SMP frame.

See 7.16.3 for details on SSP frame transmission and 7.18.1 for details on SMP frame transmission.

7.2.7.5 NAK (Negative acknowledgement)

NAK specifies the negative acknowledgement of an SSP frame and the reason for doing so.

The versions of NAK representing different reasons are defined in table 125.

Table 125 — NAK primitives

Primitive	Description		
NAK (CRC ERROR)	The frame had a bad CRC, or an invalid dword or an ERROR was received during frame reception.		
NAK (RESERVED 0)			
NAK (RESERVED 1)	Reserved. Processed the same as NAK (CRC ERROR).		
NAK (RESERVED 2)			

See 7.16.3 for details on SSP frame transmission.

7.2.7.6 RRDY (Receiver ready)

RRDY is used to increase SSP frame credit.

T10/1760-D Revision 14

28 January 2008

The versions of RRDY representing different reasons are defined in table 126.

Table 126 — RRDY primitives

Primitive Description	
RRDY (NORMAL)	Increase transmit frame credit by one.
RRDY (RESERVED 0)	Becaused Processed the same as BBDV (NORMAL)
RRDY (RESERVED 1)	Reserved. Processed the same as RRDY (NORMAL).

A phy shall not transmit RRDY after transmitting CREDIT_BLOCKED in a connection. See 7.16.4 or details on SSP flow control.

7.2.7.7 SOF (Start of frame)

SOF specifies the start of an SSP or SMP frame.

See 7.16.3 for details on SSP frame transmission and 7.18.1 for details on SMP frame transmission.

7.2.8 Primitives used only inside STP connections and on SATA physical links

7.2.8.1 SATA_ERROR

SATA_ERROR should be sent by an expander device when it is forwarding dwords from a SAS logical link to a SATA physical link and it receives an invalid dword or an ERROR.

NOTE 50 - Since an 8b10b coding error in one dword is sometimes not detected until the next dword (see table 86 in 6.3.5), expander devices should avoid deleting invalid dwords or ERRORs unless necessary (e.g., if the elasticity buffer is full) to avoid hiding evidence that an error has occurred.

See 6.9 for details on error handling by expander devices.

Although included in this subclause, SATA_ERROR is not a primitive (see 3.1.172) since it starts with K28.6. It does not appear inside STP connections. It is an invalid dword.

7.2.8.2 SATA_PMACK, SATA_PMNAK, SATA_PMREQ_P, and SATA_PMREQ_S (Power management acknowledgements and requests)

SATA_PMREQ_P and SATA_PMREQ_S request entry into the interface power management partial and slumber states. SATA_PMACK is used to accept a power management request. SATA_PMNAK is used to reject a power management request.

See 7.10 for rules on handling the power management primitives.

7.2.8.3 SATA HOLD and SATA HOLDA (Hold and hold acknowledge)

See 7.17.2 for rules on STP flow control, which uses SATA_HOLD and SATA_HOLDA.

7.2.8.4 SATA_R_RDY and SATA_X_RDY (Receiver ready and transmitter ready)

When a SATA port has a frame to transmit, it transmits SATA_X_RDY and waits for SATA_R_RDY before transmitting the frame.

7.2.8.5 Other primitives used inside STP connections and on SATA physical links

Other primitives used in STP connections and on SATA physical links are defined in SATA.

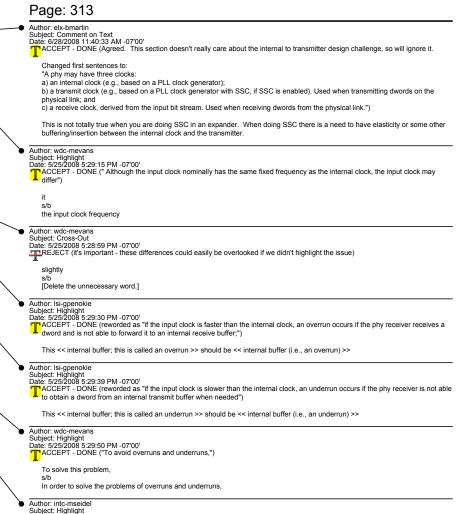
Page: 312

SATA_ERROR

```
Author: RElliott
 Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
  TACCEPT - DONE
     when it
     s/b
     while the expander device
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE
     sent
     s/b
     transmitted
 Author: wdc-mevans
 Subject: Highlight
Date: 6/2/2008 7:07:22 AM -07'00'
    REJECT (deleting instead... no need to repeat the noun)
     s/b
     the expander device
 Author: RElliott
 Subject: Highlight
Date: 8/31/2008 2:23:07 PM -07'00'
  ACCEPT - DONE
     It
     SATA_ERROR
 Author: RElliott
 Subject: Highlight
Date: 8/31/2008 2:23:18 PM -07'00'
  ACCEPT - DONE
     It
```

7.3 Physical link rate tolerance management


7.3.1 Physical link rate tolerance management overview

The internal clock for a phy is typically based on a PLL with its own clock generator and is used when transmitting dwords on the physical link. When receiving, however, dwords need to be latched based on a clock derived from the input bit stream itself. Although the input clock is nominally a fixed frequency, it way differ slightly from the internal clock frequency up to the physical link rate tolerance defined in table 53 (see 5.3.3). Over time:

- a) if the input clock is faster than the internal clock, the phy receiver may receive a dword and not be able to forward it to an internal suffer; this is called an overrun; or
- b) if the input clock is slower than the internal clock, the phy receive may not have a dword when needed in an internal buffer; this is called an internal.

To solve this problem, phy transmitters insert deletable primitives thee 7.2.5) in the dword stream. Phy receivers may pass deletable primitives through to their internal buffers, and may strip them out when an overrun occurs. Phy receivers add deletable primitives when an underrun occurs. The internal logic shall ignore all deletable primitives that arrive in the internal buffers.

Circuitry (e.g., an elasticity buffer) is required to absorb the slight differences in requencies between the phys. Figure 168 shows an example of an elasticity buffer. The frequency tolerance for a phy is specified in 5.3.3.

7.3 Physical link rate tolerance management

7.3.1 Physical link rate tolerance management overview

The internal clock for a phy is typically based on a PLL with its own clock generator and is used when transmitting dwords on the physical link. When receiving, however, dwords need to be latched based on a clock derived from the input bit stream itself. Although the input clock is nominally a fixed frequency, it may differ slightly from the internal clock frequency up to the physical link rate tolerance defined in table 53 (see 5.3.3). Over time:

- a) if the input clock is faster than the internal clock, the phy receiver may receive a dword and not be able to forward it to an internal buffer; this is called an overrun; or
- b) if the input clock is slower than the internal clock, the phy receiver may not have a dword when needed in an internal buffer; this is called an underrun.

To solve this problem, phy transmitters insert deletable primitives (see 7.2.5) in the dword stream. Phy receivers may pass deletable primitives through to their internal buffers, or may strip them out when an overrun occurs. Phy receivers add deletable primitives when an underrun occurs. The internal logic shall ignore all deletable primitives that arrive in the internal buffers.

Circuitry (e.g., an elasticity buffer) is required to absorb the slight differences in frequencies between the phys. Figure 168 shows an example of an elasticity buffer. The frequency tolerance for a phy is specified in 5.3.3.

Working Draft Serial Attached SCSI - 2 (SAS-2)

313

Date: 5/25/2008 5:30:10 PM -07'00'
TREJECT (no, they pretty much must do so. What else are they going to send? It'd be complicated to try to send idle dwords or continued primitives at this time)

Second paragraph, third sentence: ""Phy receivers add deletable" s/b "Phy receivers may add deletable"

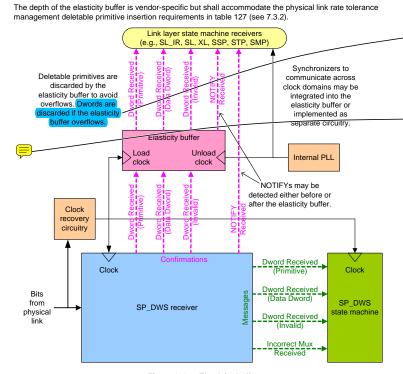


Figure 168 — Elasticity buffer

Page: 314

Author: stx-ghoulder

Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

REJECT (first sentence says why deletable primitives are discarded - to avoid the second sentence. Second sentence says what happens to any dwords if an overflow occurs - they are discarded.)

Dwords are discarded if the elasticity buffer overflows.

This sentence is redundant with the previous sentence. Change this to "ALIGN primitives may be added to prevent buffer underflows" or just delete it.

 Author: RElliott Subject: Note Date: 10/30/2008 3:26:57 PM -07'00' ACCEPT - DONE

Elasticity buffer loading is only enabled after the phy reset sequence completes (e.g., for SAS physical link, after a Start SL_IR Receiver confirmation and before a Phy Layer Not Ready confirmation from the SP state machine)

and add SP state machine driving a Load enable input in the elasticity buffer.

This wording ignores how SATA is handled; it's not clear if 7.3 intends to cover SATA or not (some sentences include wording like "for SAS physical links" and others do not, and the SATA 2/256 ALIGN insertion frequency is not mentioned)

(from T10 reflector thread with Bill Martin, Emulex)

7.3.2 Phys originating dwords

A logical phy that is the original source for the dword stream (i.e., a logical phy that is not an expander logical phy forwarding dwords from another expander logical phy) shall insert deletable primitives for physical link rate tolerance management after the phy reset sequence completes as described in table 127.

Table 127 — Physical link rate tolerance management deletable primitive insertion requirement

Physical link rate	Requirement		
1.5 Gbps One deletable primitive within every 128 dwords ^a			
3 Gbps	Two deletable primitives within every 256 dwords ^b		
6 Gbps	Four deletable primitives within every 512 dwords		
Phys compliant with previous versions of this standard were required to insert one			

deletable primitives within every 4 096 dwords at 3.5 Gbps.

Deletable primitives within every 4 096 dwords at 3.5 Gbps.

NOTE 51 - These numbers escumt for the worst case clock frequency differences between the fastest phy transmitter and the slowest phy receiver (e.g., a senter-spreading expander phy originating dwords in an STP connection at +2 400 ppm that are forwarded to a down-spreading-SATA device with an internal clock at -5 350 ppm). The difference of 7 750 ppm (i.e., 0.775 % or 1/129) is less than The SLICAN insertion rate of 1/1

128 (i.e., 7 813 ppm or 0.781 25 %), ensuring there are enough deletable primitives for the progressiver to delete without having to buffer dwords.

Deletable primitives inserted for physical link rate tolerance management are in addition to deletable primitives inserted for rate matching (see 7.13). See Annex H for a summary of their combined requirement

See 7.2.5.1 for details on rotating through ALIGN (0), ALIGN (1), ALIGN (2), and ALIGN (3). NOTIFYs may also be transmitted in place of ALIGNs (see 7.2.5.3) on SAS logical links. MUXs may also be transmitted in place of ALIGNs on multiplexed SAS physical links.

7.3.3 Expander phys forwarding dwords

An expander device that is forwarding dwords (i.e., is not the original source) is allowed to insert or delete as many deletable primitives as required to match the transmit and receive connection rates. It is not required to transmit the number of deletable primitives for physical link rate tolerance management described in table 127 when forwarding to a SAS logical link. It shall increase or reduce that number based on close frequency differences between the phy transmitting the dwords to the expander device and the expander device receiving phy (e.g., if receiving at 100 ppm and transmitting at +100 ppm, it transmits fewer deletable primitives that it receives).

The expander device is also required to insert deletable primitives for rate matching (see 7.13). During an Sx connection, the expander device shall:

- a) preserve the incoming rate of any additional deletable primitives that it receives that are not discarded because of physical link rate tolerance management or rate matching (e.g. the 1/128 deletable primitives received from an originating STP initiator phy compliant with previous versions of this standard for STP initiator phy throttling); or
- b) transmit one deletable primitive within every 128 dwords,

without discarding any data dwords or primitives. It may reduce the length of repeated primitive sequences (i.e., primitive, SATA CONT, and data dword sequences).

NOTE 52 - One possible implementation for expander devices forwarding dwords is for the expander device to delete all deletable primitives received and to insert deletable primitives at the transmit phy whenever its elasticity buffer is embty.

The STP target port of an STP/SATA bridge is allowed to insert or delete as many deletable primitives as required to match the transmit and receive connection rates. It is not required to transmit any particular

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 315 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE (5/5 "is originating the dwords"...) original source Need better wording to avoid confusion with the OPEN sender Author: intc-mseidel Subject: Highlight Date: 5/25/2008 5:30:52 PM -07'00' ACCEPT - DONE (added "This standard has a higher frequency due to SSC (see xx).") Notes a and b should include short explanation why insertion requirement is now so different, something like: "The different requirement in this version is due to the worst-case presence of different types of SSC in the datastream. Author: RElliott Subject: Note Date: 9/25/2008 3:16:14 PM -07'00' ACCEPT - DONE Add footnote calculating the times: 128 dwords at 1.5 Gbps, 256 dwords at 3 Gbps, and 512 dwords at 6 Gbps are each nominally 3 413.3 ns. (this answers the question of how often deletable primitives appear.) Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' TRACCEPT - DONE Tihs << NOTE 51 - These numbers >> should be made into a table footnote c in the above table. Author: Isi-gpenokie Subject: Highlight Date: 10/17/2008 7:08:34 PM -07'00' ACCEPT - DONE (problem went away incidentally when converted into a note. No automatic mechanism in place. Don't want to put non-blocking spaces around the / in this case, since they are not used elsewhere) Set up frame to prevent a line brake on a << / >>. Author: RElliott Date: 6/30/2008 3:16:52 PM -07'00' ALIGN insertion rate deletable primitive insertion rate Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Need better phrase for "original source" to avoid confusion with the sender of the OPEN. This statement applies to both directions.

Comments from page 315 continued on next page

CEPT - DONE (5/5 " i.e., is not originating dwords")

Author: wdc-mevans

315

Subject: Highlight Date: 5/25/2008 5:32:54 PM -07'00'

7.3.2 Phys originating dwords

A logical phy that is the original source for the dword stream (i.e., a logical phy that is not an expander logical phy forwarding dwords from another expander logical phy) shall insert deletable primitives for physical link rate tolerance management after the phy reset sequence completes as described in table 127.

Table 127 — Physical link rate tolerance management deletable primitive insertion requirement

Physical link rate	Requirement
1.5 Gbps	One deletable primitive within every 128 dwords ^a
3 Gbps	Two deletable primitives within every 256 dwords ^b
6 Gbps	Four deletable primitives within every 512 dwords

Phys compliant with previous versions of this standard were required to insert one deletable primitive within every 2 048 dwords at 1.5 Gbps. Phys compliant with previous versions of this standard were required to insert two deletable primitives within every 4 096 dwords at 3 Gbps.

NOTE 51 - These numbers account for the worst case clock frequency differences between the fastest phy transmitter and the slowest phy receiver (e.g., a center-spreading expander phy originating dwords in an STP connection at +2 400 ppm that are forwarded to a down-spreading SATA device with an internal clock at -5 350 ppm). The difference of 7 750 ppm (i.e., 0.775 % or 1/129) is less than the ALIGN insertion rate of 1/ 128 (i.e., 7 813 ppm or 0.781 25 %), ensuring there are enough deletable primitives for the phy receiver to delete without having to buffer dwords.

Deletable primitives inserted for physical link rate tolerance management are in addition to deletable primitives inserted for rate matching (see 7.13). See Annex H for a summary of their combined requirements

See 7.2.5.1 for details on rotating through ALIGN (0), ALIGN (1), ALIGN (2), and ALIGN (3). NOTIFYS Z also be transmitted in place of ALIGNs (see 7.2.5.3) on SAS logical links. MUXs may also be transmitted in place of ALIGNs on multiplexed SAS physical links.

7.3.3 Expander phys forwarding dwords

An expander device that is forwarding dwords (i.e., is not the ariginal source) is allowed to its many deletable primitives as required to match the transmit and receive connection rates, It is not required to transmit the number of deletable primitives for physical link rate tolerance management described in table 27 when forwarding to a SAS logical link. It shall increase or reduce that number based on clock frequency differences between the phy transmitting the dwords to the expander device and the expander device's receiving phy (e.g., if receiving at 100 ppm and transmitting at +100 ppm, it transmits fewer deletable

The expander device is also required to insert deletable primitives for rate matching (see 7.13). During an STP connection, the expander device shall:

- a) preserve the incoming rate of any additional deletable primitives that it receives that are not discarded because of physical link rate tolerance management or rate matching (e.g. the 17128 deletable primitives received from an originating STP initiator phy compliant with previous versions of this standard for STP initiator phy throttling); or
- b) transmit one deletable primitive within every 128 dwords,

without discarding any data dwords or primitives. It may reduce the length of repeated primitive sequences (i.e., primitive, SATA CONT, and data dword sequences).

NOTE 52 - One possible implementation for expander devices forwarding dwords is for the expander device to delete all deletable primitives received and to insert deletable primitives at the transmit phy whenever its elasticity buffer is empty.

The STP target port of an STP/SATA bridge is allowed to insert or delete as many deletable primitives as required to match the transmit and receive connection rates. It is not required to transmit any particular

Working Draft Serial Attached SCSI - 2 (SAS-2)

TREJECT (need to refer only to the "expander device that is forwarding" per the first sentence)

An expander device

Author: elx-bmartin

Subject: Cross-Out Date: 6/28/2008 11:53:32 AM -07'00'

REJECT (5/5 change to "It shall increase or reduce that number based on clock frequency differences between the expander device's receiving phy and the expander device's transmitting phy (e.g., if receiving at -100 ppm and transmitting at +100 ppm, then it transmits fewer deletable primitives that it receives". This plus bolstering the earlier description of transmitting with SSC should

It shall increase or reduce that number based on clock frequency differences between the phy transmitting the dwords to the expander device and the expander device's receiving phy (e.g., if receiving at -100 ppm and transmitting at +100 ppm, it transmits fewer deletable primitives that it receives).

Delete this sentence. This does not clarify the difference of three different clock domains that are caused by SSC.

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 5:34:01 PM -07'00'

REJECT (only one "number" in the previous sentence, and don't want to repeat the whole "for physical link rate tolerance

management" phrase)

that number based

the number of deletable primitives transmitted based

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 5:32:47 PM -07'00'

TREJECT (still need to refer only to the "expander device that is forwarding" per the first sentence)

It

s/b

An expander device

Author: wdc-meyans

Subject: Highlight Date: 5/25/2008 5:31:45 PM -07'00' TACCEPT - DONE

forwarding to

forwarding dwords to

Author: elx-bmartin

Subject: Highlight Date: 5/25/2008 5:34:18 PM -07'00' ACCEPT - DONE

that s.b.

than

Author: wdc-mevans

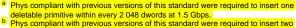
Subject: Highlight Date: 5/25/2008 5:34:34 PM -07'00'

REJECT

it

315

the expander device


Comments from page 315 continued on next page

7.3.2 Phys originating dwords

A logical phy that is the original source for the dword stream (i.e., a logical phy that is not an expander logical phy forwarding dwords from another expander logical phy) shall insert deletable primitives for physical link rate tolerance management after the phy reset sequence completes as described in table 127.

Table 127 — Physical link rate tolerance management deletable primitive insertion requirement

	Physical link rate Requirement		
1.5 Gbps One deletable primitive within every 128 dwords ^a		One deletable primitive within every 128 dwords ^a	
	3 Gbps	Two deletable primitives within every 256 dwords ^b	
	6 Gbps	Four deletable primitives within every 512 dwords	

Phys compliant with previous versions of this standard were required to insert two deletable primitives within every 4 096 dwords at 3 Gbps.

NOTE 51 - These numbers account for the worst case clock frequency differences between the fastes/ phy transmitter and the slowest phy receiver (e.g., a center-spreading expander phy originating dwords ir/an STP connection at +2 400 pm that are forwarded to a down-spreading SATA device with an internal cl/ck at -5 350 ppm). The difference of 7 750 ppm (i.e., 0.775 % or 1/129) is less than the ALIGN insertion rate of 1/128 (i.e., 7 813 ppm or 0.781 25 %), ensuring there are enough deletable primitives for the phy/feceiver to delete without having to buffer dwords.

Deletable primitives inserted for physical link rate tolerance management are in addition to deletable primitives inserted for rate matching (see 7.13). See Annex H for a summary of their combined requirements.

See 7.2.5.1 for details on rotating through ALIGN (0), ALIGN (1), ALIGN (2), and ALIGN (3). NOTIFY's may also be transmitted in place of ALIGNs (see 7.2.5.3) on SAS logical links. MUXs may also be transmitted in place of ALIGNs on multiplexed SAS physical links.

7.3.3 Expander phys forwarding dwords

An expander device that is forwarding dwords (i.e., is not the original source) is allowed to insert or delete as many deletable primitives as required to match the transmit and receive connection rates. It is not required to transmit the number of deletable primitives for physical link rate tolerance management described in table 127 when forwarding to a SAS logical link. It shall increase or reduce that number based on plock frequency differences between the phy transmitting the dwords to the expander device and the expander device's receiving phy (e.g., if receiving at 100 ppm and transmitting at 110 ppm, it transmits fewer deletable primitives that it receives).

The expander device is also required to insert deletable primitives for rate matching (see 7.13). During an STP connection, the expander device shall:

- a) preserve the incoming rate of any additional deletable primitives that it receives that are not discarded because of physical link rate tolerance management or rate matching (e.g. the 1/128 deletable primitives received from an originating STP initiator phy compliant with previous versions of this standard for STP initiator phy throttling); or
- b) transmit one deletable primitive within every 1/28 dwords,

without discarding any data dwords or primitives. It may reduce the length of repeated primitive sequences (i.e., primitive, SATA CONT, and data dword sequences).

NOTE 52 - One possible implementation for expander devices forwarding dwords is for the expander device to delete all deletable primitives received and to insert deletable primitives at the transmit phy whenever its elasticity buffer is empty.

315

The STP target port of an STP/SATA bridge is allowed to insert of delete as many deletable primitives as required to match the transmit and receive connection rates. It is not required to transmit any particular

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 5:34:48 PM -07'00'
TREJECT

It
s/b
An expander device

Author: wdc-mevans
Subject: Highight
Date: 5/25/2008 5:35:09 PM -07'00'

TREJECT

It
s/b
The STP target port

number of deletable primitives for physical link rate tolerance management when forwarding to a SAS logical link and is not required to ensure that any deletable primitives it transmits are in pairs.

NOTE 53 - Due to physical link rate tolerance management deletable primitive removal, the STP target portmay not receive a pair of deletable primitives every 256 dwords, even if the STP imitiator port transmitted them in pairs. However, the rate of the dword stream allows for insertion by the STP/SATA bridge. One possible implementation is for the STP/SATA bridge to delete all deletable primitive insertion by the STP target port and to fiscal two consecutive ALIGNs at the SATA host port when its elasticity buffer is empty or milen 254 non-ALIGN dwords have been transmitted. It may need to buffer up to 2 dwords concurrently being received by the STP target port while it does so.

7.4 Idle physical links

Idle dwords are vendor-specific data dwords which are scrambled (see 7.6).

Phys shall transmit idle dwords if there are no other dwords to transmit and:

- a) no connection is open; or
- b) an SSP or SMP connection is open.

SATA_SYNC is a continued primitive sequence which may contain vendor-specific data dwords (see 7.2.4.4) which are scrambled (see 7.6) during an STP connection.

7.5 CRC

7.5.1 CRC overview

All frames include cyclic redundancy check (CRC) values to help detect transmission errors.

Frames transmitted in an STP connection shall include a CRC as defined by SATA (see SATA-2). Address frames, SSP frames, and SMP frames shall include a CRC as defined by this standard.

Annex D contains information on CRC generation/checker implementation.

Table 128 defines notation used in the following text describing CRC calculation. Arithmetic is modulo 2.

Table 128 — CRC notation and definitions (part 1 of 2)

Notation	Definition					
T(i)	A transformation over the non-negative integers (i.e., Z^+): $T(i)=i+7-2(i\ mod\ 8), i\geq 0, i\in Z^+$					
F(x)	A polynomial representing the bits covered by the CRC: $F(x) = b_0 x^{(k-1)} + b_1 x^{(k-2)} + \ldots + b_{(k-2)} x + b_{(k-1)}$ where: $k \text{ is the number of bits}$ $b_1 \text{ describes a bit, where the bit index i denotes that bit } b_1 \text{ is more significant than bit } b_{(i+1)}$ For example, if the frame, except for the CRC field, contains one data dword set to 516F3019h (i.e., $F(x) = 516F3019h), \text{ then:}$ $F(x) = x^{30} + x^{28} + x^{24} + x^{22} + x^{21} + x^{19} + x^{18} + x^{17} + x^{16} + x^{13} + x^{12} + x^4 + x^3 + x$ (i.e., $F(x) = 8AF60C98h)$					
F _t (x)	$\begin{split} F(x) & \text{ with the bit positions of each byte transposed (i.e., bit 7 is bit 0, bit 6 is bit 1, etc.):} \\ F_1(x) &= b_{T(0)}x^{(k\cdot1)} + b_{T(1)}x^{(k\cdot2)} + + b_{T(k\cdot2)}x + b_{T(k\cdot1)} \\ & \text{For example, if the frame, except for the CRC field, contains one data dword set to 516F3019h (i.e., F(x) = 516F3019h), then:} \\ F_1(x) &= x^{31} + x^{27} + x^{25} + x^{23} + x^{22} + x^{21} + x^{20} + x^{18} + x^{17} + x^{11} + x^{10} + x^7 + x^4 + x^3 \\ (i.e., F_1(x) = 8AF60C98h) \end{split}$					

Working Draft Serial Attached SCSI - 2 (SAS-2)

316

Page: 316

Author: RElliott Subject: Note Date: 10/17/2008 5:45:01 PM -07'00'

·hhA

An expander device supporting the SSC modulation type of center-spreading also includes a center-spreading tolerance buffer (see 5.7.6.4).

so this rule about expanders, buried in the physical layer section, is not overlooked. It is an "is" rather than "shall" to avoid possible conflicting shalls if the wording in either section changes.

Table 128 — CRC notation and definitions (part 2 of 2)

Notation	Definition
L(x)	The identity polynomial of degree 31 (i.e., a polynomial with all of the coefficients set to one): $ L(x) = x^{31} + x^{30} + \ldots + x + 1 $ (i.e., $ L(x) = FFFFFFFFh) $
G(x)	The CRC generator polynomial (i.e., the divisor polynomial): $G(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$ (i.e., $G(x) = 1_04C11DB7h$)
R(x)	The remainder polynomial, which is of degree less than 32.
R _t (x)	R(x) with the bit positions of each byte transposed.
Q(x)	A quotient polynomial resulting from CRC calculation by the transmitter. This value is discarded.
Q'(x)	A quotient polynomial resulting from CRC calculation by the receiver. This value is discarded.
M(x)	A polynomial representing the transmitted frame including the CRC field, which is of degree k+31.
M'(x)	A polynomial representing the received frame including the received cRc field. If the received frame has no errors, then $M'(x) = M(x)$ and $M'(x)$ is of degree k+31.
M _t '(x)	M'(x) with the bit positions of each byte transposed.
R'(x)	The result of finding the remainder of an error-free reception of M(x), and also the remainder of $x^{32}L(x)$ / G(x), which is a unique constant polynomial: $R'(x) = x^{31} + x^{30} + x^{26} + x^{25} + x^{24} + x^{18} + x^{15} + x^{14} + x^{12} + x^{11} + x^{10} + x^{8} + x^{6} + x^{5} + x^{4} + x^{3} + x + 1$ (i.e., R'(x) = C704DD7Bh)
R _t '(x)	R'(x) with the bit positions of each byte transposed: $R_t'(x) = x^{28} + x^{27} + x^{26} + x^{23} + x^{22} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{14} + x^{10} + x^5 + 1$ (i.e., $R_t'(x) = 1$ CDF4421h)

7.5.2 CRC generation

The CRC is calculated from F(x) as follows:

$$x^{k}L(x) + x^{32}F_{t}(x) = Q(x)G(x) + R(x)$$

That is:

- 1) the frame F(x), not including the CRC field, is transposed into $F_t(x)$;
- 2) the first 32 bits of the transposed frame are inverted (i.e., $x^k L(x)$ is added);
- 3) 32 bits of zero are appended to the end (i.e., $F_t(x)$ is multiplied by x^{32}); and
- 4) this result is divided by the generator polynomial G(x) to find the remainder R(x).

The transmitter shall present M(x) to the 8b10b encoder:

$$M(x) = x^{32}F(x) + L(x) + R_t(x)$$

That is, the inverted transposed remainder is appended to the end of the frame, then this result (i.e., M(x)) is presented to the 8b10b encoder for transmission.

For the purposes of CRC computation, inverting the first 32 bits of a frame may be performed by one of the following methods:

a) inverting the first 32 bits of the frame F(x) and seeding the CRC remainder register with 00000000h;

317

- b) seeding the CRC remainder register with FFFFFFFh; or
- c) prepending the constant 62F52692h to F(x) and seeding the CRC remainder register with 0000000h.

Working Draft Serial Attached SCSI - 2 (SAS-2)

NOTE 54 - The bit order of F(x) used to calculate the CRC is the same order as the bit transmission order (i.e., the bits within each byte encoded into a data dword are transposed to match the implicit transposition in the 8b10b encoding process).

Figure 169 shows the CRC process for an address frame, an SSP frame and SMP frame.

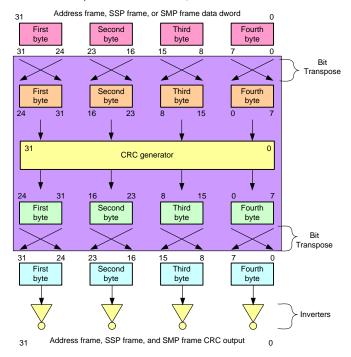


Figure 169 — Address frame, SSP frame, and SMP frame CRC bit ordering

Dwords in STP frames are little-endian and are fed into the STP CRC generator without swapping bits within each byte and without inverting the output like the SAS CRC generator. Figure 170 shows the STP CRC bit ordering.

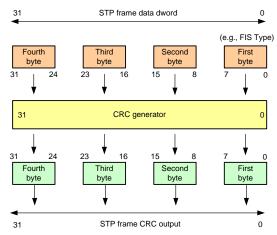


Figure 170 — STP frame CRC bit ordering

Since STP is little-endian, the first byte of a dword is in bits 7:0 rather than 31:24 as in SSP and SMP. As a result, the first byte contains the least-significant bit. In SSP and SMP, the first byte contains the most-significant bit.

See 7.7 for details on how the CRC generator fits into the dword flow along with the scrambler.

7.5.3 CRC checking

The CRC of received frame is calculated by the receiver in the same manner that it is generated by the transmitter

That is:

- 1) the received frame M'(x), including the CRC field, is transposed into $M'_t(x)$;
- 2) the first 32 bits of the received transposed frame are inverted;
- 3) 32 bits of zero are appended to the end; and
- 4) this result is divided by the generator polynomial G(x) to find the remainder.

A received frame that has not incurred any CRC detectable errors during transmission generates a remainder equal to R'(x).

319

If there were no transmission errors, then the received frame M'(x) equals M(x):

$$M'(x) = M(x)$$

= $x^{32}F(x) + L(x) + R_t(x)$

The CRC R'(x) is derived as follows:

$$\begin{split} x^{(k+32)}L(x) + x^{32}M_t{}'(x) &= x^{(k+32)}L(x) + x^{32}(x^{32}F_t(x) + L(x) + R(x)) \\ &= x^{32}Q(x)G(x) + x^{32}L(x) \end{split}$$

Working Draft Serial Attached SCSI - 2 (SAS-2)

However, G(x) divides x³²L(x):

$$x^{32}L(x) = Q'(x)G(x) + R'(x)$$

Since L(x) and G(x) are known and constant, R'(x) is known and constant and is expected by the receiver after calculating the CRC of a received frame.

From the previous two results:

$$x^{(k+32)}L(x) + x^{32}(x^{32}F_t(x) + L(x) + R(x)) = (x^{32}Q(x) + Q'(x)) G(x) + R'(x)$$

R'(x) is then transposed and inverted, in the same manner as is done by the transmitter, to obtain:

$$R_{t}'(x) + L(x) = 1CDF4421h$$

Alternatively to this process, the receiver may check the CRC validity of the frame by stripping off the last 32 bits, leaving F(x), and calculating the CRC as defined in 7.5.2. The frame has a valid CRC if the result L(x) + R₁(x) equals the last 32 bits of the frame which were stripped.

See 7.7 for details on where the CRC checker fits into the dword flow along with the descrambler.

7.6 Scrambling

Scrambling is used to reduce the probability of long strings of repeated patterns appearing of the physical link.

All data dwords are scrambled. Table 129 lists the scrambling for different types of data/dwords.

Table 129 — Scrambling for different data dword types/

Connection	Data dword				
state	type	Description of scrambling			
Outside connections	SAS idle dword	When a connection is not open and there are no other dwords to transmit, vendor-specific scrambled data dwords shall be transmitted.			
Connections	Address frame	After an SOAF, all data dwords shall be scrambled until the EOAF.			
Inside SSP	SSP frame	After an SOF, all data dwords shall be scrambled until the EOF.			
connection	SSP idle dword	When there are no other dwords to transmit, vendor-specific scrambled data dwords shall be transmitted.			
Inside SMP	SMP frame	After an SOF, all data dwords shall be scrambled until the EOF.			
connection	SMP idle dword	When there are no other dwords to transmit, vendor-specific scrambled data dwords shall be transmitted.			
	STP frame	After a SATA_SOF, all data dwords shall be scrambled until the SATA_EOF.			
Inside STP connection	Continued primitive	After a SATA_CONT, vendor-specific scrambled data dwords shall be transmitted until a primitive other than a deletable primitive is transmitted.			

Data dwords being transmitted shall be XORed with a defined pattern to produce a scrambled value encoded and transmitted on the physical link. Received data dwords shall be XORed with the same pattern after decoding to produce the original data dword value, provided there are no transmission errors.

The pattern that is XORed with the data dwords is defined by the output of a linear feedback shift register implemented with the following polynomial:

$$G(x) = x^{16} + x^{15} + x^{13} + x^4 + 1.$$

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 320

```
Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'
PREJECT (only 2 things being ANDed)
open and
s/b
open, and
```

The output of the pattern generator is 16 bits wide. For each data dword the output of the generator is applied to the lower 16 bits (i.e., bits 15 through 0) of the 32-bit data dword being transmitted or received; the next output of the generator is applied to the upper 16 bits (i.e., bits 31 through 16).

NOTE 55 - Scrambling is not based on data feedback, so the sequence of values XORed with the data being transmitted is constant.

The value of the linear feedback shift register shall be initialized at each SOF and SOAF to FFFF For detailed requirements about scrambling of data dwords following SATA_SOF and SOF_CONT, see

NOTE 56 - STP scrambling uses two linear feedback shift registers, since continued primitive sequences may occur inside STP frames and the STP frame and the continued primitive sequence have independent scrambling patterns.

Annex F contains information on scrambling implementations.

Page: 321

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' Taccept - done

> The output of the pattern generator is 16 bits wide. For each data dword the output of the generator is applied to the lower 16 bits (i. e., bits 15 through 0) of the 32-bit data dword being transmitted or received; the next output of the generator is applied to the upper 16 bits (i.e., bits 31 through 16).

The output of the pattern generator is 16 bits wide. For each data dword, two outputs of the pattern generator are used as follows: a) the first output of the generator is applied to the lower 16 bits (i.e., bits 15 through 0) of the 32-bit data dword being transmitted or received; and

b) the second output of the generator is applied to the upper 16 bits (i.e., bits 31 through 16).

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

> dword s/b

dword,

Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 2:51:44 PM -07'00'

REJECT (converted into an unordered list instead with other changes; new comment added)

This << transmitted or received; the next output of the generator is applied to the upper 16 bits >> should be << transmitted or received with the next output of the generator applied to the upper 16 bits >>

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' PREJECT (This is just explanatory material and is of NOTE quality)

This note << NOTE 55 - Scrambling is not based >> should be made into normative text.

7.7 Bit order of CRC and scrambler

Figure 171 shows how data dwords and primitives are routed to the bit transmission logic in figure 134 (see 6.5). Data dwords go through the CRC generator and scrambler.

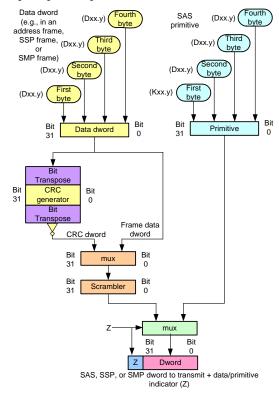


Figure 171 — Transmit path bit ordering

Figure 172 shows the routing of dwords received from the bit reception logic in figure 135 (see 6.5).

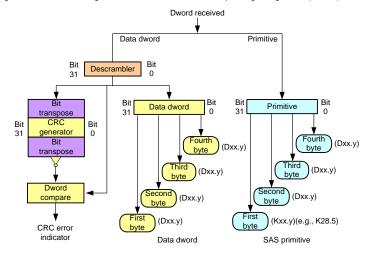


Figure 172 — Receive path bit ordering

T10/1760-D Revision 14

Figure 173 shows the STP transmit path bit ordering.

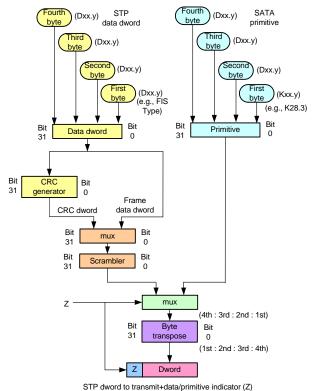
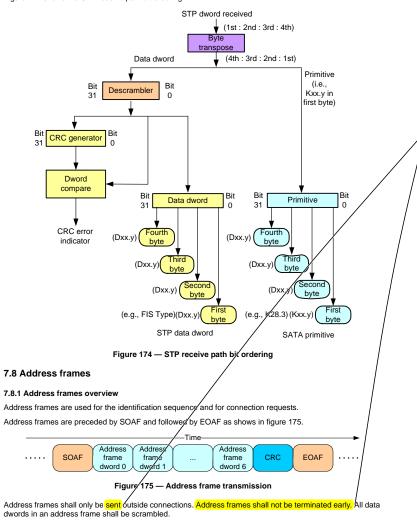



Figure 173 — STP transmit path bit ordering

This page contains no comments

28 January 2008

Figure 174 shows the STP receive path bit ordering.

325

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 325

```
Author: RElliott
Subject: Highlight
Date: 5/30/2008 2:58:10 PM -07'00'
TACCEPT - DONE ("Partial address frames (i.e., not containing the number of data dwords defined for the frame) shall not be transmitted."

Address frames shall not be terminated early.
s/b
When an address frame is transmitted, the number of data dwords defined for the frame shall be transmitted.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
sent
s/b
transmitted
```

Table 130 defines the address frame format.

Table 130 — Address frame format

Byte\Bit	7	6	5	4	3	2	1	0
0		ADDRESS FRAME TYPE						
1								
27		Frame type dependent bytes						
28	(MSB)	CRC (LSB)						
31							(LSB)	

The ADDRESS FRAME TYPE field indicates the type of address frame and is defined in table 131. This field determines the definition of the frame type dependent bytes.

Table 131 — ADDRESS FRAME TYPE field

Code	Address frame type	Description
0h	IDENTIFY	Identification sequence
1h	OPEN	Connection request
All others	Reserved	

The CRC field contains a CRC value (see 7.5) that is computed over the entire address frame prior to the CRC field

Address frames with unknown address frame types, incorrect lengths, or CRC errors shall be ignored by the recipient.

28 January 2008

T10/1760-D Revision 14

7.8.2 IDENTIFY address frame

Table 132 defines the IDENTIFY address frame format used for the identification sequence. The IDENTIFY address frame is sent by each logical phy after the phy reset sequence completes if the physical link is a SAS physical link. The IDENTIFY address frame sent by each logical phy in a physical phy shall be identical.

Table 132 — IDENTIFY address frame format

Byte\Bit	7	6	5	4	3	2	1	0
0	Reserved DEVICE TYPE				ADDRESS FRAME TYPE (0h)			
1		Rese	erved			REASON		
2	Reserved			SSP INITIATOR PORT	STP INITIATOR PORT	SMP INITIATOR PORT	Restricted (for OPEN address frame)	
3	Reserved				SSP TARGET PORT	STP TARGET PORT	SMP TARGET PORT	Restricted (for OPEN address frame)
4	DEVICE NAME							
11								
12	SAS ADDRESS —							
19								
20	PHY IDENTIFIER							
21	Reserved				INSIDE ZPSDS PERSISTENT	REQUESTED INSIDE ZPSDS	BREAK_REPLY CAPABLE	
22		Reserved ————						
27								
28	(MSB)							
31		=		CRC		•	(LSB)	

The DEVICE TYPE field indicates the type of device containing the phy, and/s defined in table 133.

Table 133 — DEVICE TYPE field

Code	Description
001b	End device
010b	Expander device
011b	Expander device compliant with a previous version of this standard
All others	Reserved

The ADDRESS FRAME TYPE field shall be set to 0h.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 327

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE
subject: Highlight
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE
sent
s/b
transmitted

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE
sent
subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE
On
s/b
the value defined in table 132

The REASON field indicates the reason for the link reset sequence and is defined in table 134.

Table 134 — REASON field

Code	Description
0h	Unknown reason
1h	Power on
2h	Hard reset (e.g., phy received a HARD_RESET primitive during the hard reset sequence)(see 4.4.2), or SMP PHY CONTROL function HARD RESET phy operation (see 10.4.3.28)
3h	SMP PHY CONTROL function LINK RESET phy operation, or TRANSMIT SATA PORT SELECTION SIGNAL phy operation (see 10.4.3.28)
4h	Loss of dword synchronization (see 6.9)
5h	After the multiplexing sequence completes, MUX (LOGICAL LINK 0) received in logical link 1 or MUX (LOGICAL LINK 1) received in logical link 0 (see 6.10).
6h	I_T nexus loss timer expired in the STP target port of an STP/SATA bridge when the phy was attached to a SATA device (see 4.5)
7h	Break Timeout Timer expired (see 7.12.8)
8h	Phy test function stopped (see 10.4.3.29)
9h	Expander device reduced functionality (see 4.6.8)
Ah - Fh	Reserved

An SSP INITIATOR PORT bit set to one indicates that an SSP initiator port is present. An SSP INITIATOR PORT bit set to zero indicates that an SSP initiator port is not present. Expander devices shall set the SSP INITIATOR PORT bit to zero.

An STP INITIATOR PORT bit set to one indicates that an STP initiator port is present. An STP INITIATOR PORT bit set to zero indicates that an STP initiator port is not present. Expander devices shall set the STP INITIATOR PORT bit to zero.

An SMP INITIATOR PORT bit set to one indicates that an SMP initiator port is present. An SMP INITIATOR PORT bit set to zero indicates that an SMP initiator port is not present. Expander devices may set the SMP INITIATOR

An SSP TARGET PORT bit set to one indicates that an SSP target port is present. An SSP TARGET PORT bit set to zero indicates that an SSP target port is not present. Expander devices shall set the SSP TARGET PORT bit to zero.

An STP TARGET PORT bit set to one indicates that an STP target port is present. An STP TARGET PORT bit set to zero indicates that an STP target port is not present. Expander devices shall set the STP TARGET PORT bit to Zero.

An SMP TARGET PORT bit set to one indicates that an SMP target port is present. An SMP TARGET PORT bit set to zero indicates that an SMP target port is not present. Expander devices shall set the SMP TARGET PORT bit to one.

The DEVICE NAME field indicates the device name (see 4.2.4) of the SAS device or expander device transmitting the IDENTIFY address frame. A DEVICE NAME field set to 00000000 00000000h indicates the device name is not provided in this field.

328

NOTE 57 - In expander devices, the SEVICE NAME field, if not set to 00000000 00000000h, contains the same value as the SAS ADDRESS field.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 328

Author: Isi-bbesmer

Subject: Note Date: 6/28/2008 11:43:54 AM -07'00'

ACCEPT - DONE (5/5 accept the proposed wording)

Clarification needed on what to set REASON to for wide-ports?

For example, if have 4-wide port (Phys 0-3), and receive HR on Phy 0, is REASON set to 2 for all 4 phys, or just Phy 0?

Proposed wording from George Penokie:

Hard reset (e.g., the port containing this phy received a HARD_RESET primitive during the hard reset sequence)(see 4.4.2), or SMP PHY CONTROL function HARD RESET phy operation (see 10.4.3.28)

Author: Isi-gpenokie

Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

TREJECT (this is just exhibiting a side-effect of the other rules. If upgraded into normative text, it would look like a special rule that needs to be followed)

This note << NOTE 57 - In expander devices, the >> should be made into normative text.

For SAS ports, the SAS ADDRESS field indicates the port identifier (see 4.2.7) of the SAS port transmitting the IDENTIFY address frame. For expander ports, the SAS ADDRESS field indicates the device name (see 4.2.4) of the expander device transmitting the IDENTIFY address frame.

The PHY IDENTIFIER field indicates the phy identifier of the phy transmitting the IDENTIFY address frame.

The REQUESTED INSIDE ZPSDS bit indicates the value of the REQUESTED INSIDE ZPSDS bit in the zone phy information (see 4.9.3.1) at the time the IDENTIFY address frame is transmitted. If the phy transmitting the IDENTIFY address frame is contained in an end device, a non-zoning expander device, or a zoning expander device with zoning disabled, then the REQUESTED INSIDE ZPSDS bit shall be set to zero.

The INSIDE ZPSDS PERSISTENT bit indicates the value of the INSIDE ZPSDS PERSISTENT bit in the zone phy information (see 4.9.3.1) at the time the IDENTIFY address frame is transmitted. If the phy transmitting the IDENTIFY address frame is contained in an end device, a non-zoning expander device, or a zoning expander device with zoning disabled, then the INSIDE ZPSDS PERSISTENT bit shall be set to zero.

The BREAK_REPLY CAPABLE field indicates that the phy is capable of responding to received BREAK primitive sequences with a BREAK REPLY primitive sequence (see 7.12-5).

See 4.1.4 for additional requirements concerning the DEVICE TYPE field, SSP INITIATOR PORT bit, STP INITIATOR PORT bit, STP TARGET PORT bit, STP TARGET PORT bit, SMP TARGET PORT

The CRC field is defined in 7.8.1.

Page: 329

Author: Isi-bbesmer Subject: Highlight Date: 5/25/2008 5:36:28 PM -07'00'

DEVICE TYPE field,

S

DEVICE TYPE field, BREAK_REPLY CAPABLE bit,

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

bit,

bit, the

several times in this paragraph

7.8.3 OPEN address frame

Table 135 defines the OPEN address frame format used for connection requests.

Table 135 — OPEN address frame format

Byte\Bit	7	6	5	4	3	2	1	0
0	INITIATOR PORT		PROTOCOL			ADDRESS FRA	AME TYPE (Ih)
1		FEATU	IRES			CONNEC	TION RATE	
2	(MSB)			UTIATOD OO	NNECTION T	**		
3		•	INITIATOR CONNECTION TAG (LSB)				(LSB)	
4				NECTINIATION!	CAC ADDRE	ee		
11		DESTINATION SAS ADDRESS —————						
12		SOURCE SAS ADDRESS						
19								
20		SOURCE ZONE GROUP						
21		PATHWAY BLOCKED COUNT						
22	(MSB)	ARBITRATION WAIT TIME						
23		•		ARBITRATIC	IN WAIT TIME	:		(LSB)
24								
27		MORE COMPATIBLE FEATURES						
28	(MSB)	CRC (LSB)						
31								

An INITIATOR PORT bit set to one specifies that the source port is acting as a SAS initiator port. An ANTIATOR PORT bit set to zero specifies that the source port of acting as a SAS target port. If a SAS target/vitiator port sets the INITIATOR PORT bit to one, it shall operate only in its initiator role during the connection. If a SAS target initiator port sets the INITIATOR PORT bit to zero, it shall operate only in its target role during the connection.

If a SAS target/initiator port accepts an OPEN address frame with the INITIATOR PORT bit set to one, it shall operate only in its target role during the connection. If a SAS target/initiator port accepts an OPEN address frame with the INITIATOR PORT bit set to zero, it shall operate only in its initiator role during the connection.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 330

Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 5:36:47 PM -07'00'
ACCEPT - DONE

This << If a SAS target/initiator port sets the INITIATOR PORT bit to one >> should be << If a SAS port sets the INITIATOR PORT bit to one >>

Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 5:36:56 PM -07'00'

This << If a SAS target/ initiator port sets the INITIATOR PORT bit to >> should be << If a SAS port sets the INITIATOR PORT bit to >>

Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 5:37:04 PM -07'00'
TACCEPT - DONE

This << If a SAS target/initiator port accepts an >> should be << If a SAS port accepts an >>

Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 5:37:11 PM -07'00'

This << If a SAS target/initiator port accepts >> should be << If a SAS port accepts >>

28 January 2008

T10/1760-D Revision 14

The PROTOCOL field specifies the protocol for the connection being requested and is defined in table 136.

Table 136 - PROTOCOL field

т		
	Code	Description
	000b	SMP
	001b	SSP
	010b	STP
	All others	Reserved
1		

The ADDRESS FRAME TYPE field shall be set to 1h.

The FEATURES field specifies any additional features that are incompatible with previous versions of this standard and is defined in table 137.

Table 137 — FEATURES field

Code	Description
0h	No additional features
All others	Reserved

The CONNECTION RATE field specifies the connection rate (see 4.1.12) being requested between the source and destination, and is defined in table 138.

Table 138 — CONNECTION RATE field

Code	Description
8h	1.5 Gbps
9h	3 Gbps
Ah	6 Gbps
Bh - Fh	Reserved for future connection rates
All others	Reserved

A SAS initiator port shall set the initial CONNECTION RATE field to:,

- a) the highest supported connection rate supported by a potential pathway as determined during the discover process (e.g., based on the logical link rates of each logical link resorted in the SMP DISCOVER responses); or
- b) the logical link rate of the logical phy used to fransmit the OPEN address frame

If a SAS initiator port selected a connection rate based on discover process information but the connection request results in OPEN_REJECT (CONNECTION RATE NOT SUPPORTED), the discover process information is no longer current and should be run again.

A SAS target port shall set the initial CONNECTION RATE field to:

- a) the last known good connection rate exablished with the SAS initiator port; or
- b) for the first frame it intends to transmit in the connection, the connection rate that was used by the SAS initiator port to deliver the command or task management function for that frame.

Each time a connection request with a connection rate greater than 1.5 Gbps results in OPEN_REJECT / (CONNECTION RATE NOT SUPPORTED), the SAS port shall reattempt the connection request with a lower

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 331

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE 1h s/b the value defined in table 135 Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE the s/b then the Author: wdc-mevans Subject: Highlight Date: 5/25/2008 5:37:32 PM -07'00' ACCEPT - DONE ("and the discover process should") and should s/b and the process should Author: wdc-mevans Subject: Highlight Date: 5/25/2008 5:38:27 PM -07'00' REJECT (first noun/subject convention) it the SAS target port Author: Isi-apenokie Subject: Highlight
Date: 5/25/2008 5:38:22 PM -07'00' REJECT (first noun/subject convention) This << frame it intends to transmit >> should be << frame the SAS target port intends to transmit >> Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 5:41:22 PM -07'00'

PREJECT (7.12.2.2 uses the word "results") Each time a connection request with a connection rate greater than 1.5 Gbps results in OPEN_REJECT (CONNECTION RATE NOT SUPPORTED),

Each time a SAS port receives an OPEN_REJECT (CONNECTION RATE NOT SUPPORTED) in response to a connection request

including a connection rate greater than 1.5 Gbps,

connection rate (e.g., drop from 6 Gbps to 3 Gbps or 1.5 Gbps) and send the same frames in the resulting connection that it intended to send at the same connection rate.

The Initiator Connection TAG field is used for SSP and STP connection requests to provide a SAS initiator port an alternative to using the SAS target port's SAS address for context tookup when the SAS target port originates a connection request. SAS por STP initiator ports shall set the Initiator sequence. The field to be provided, an SSP or STP initiator port should set the Initiator Connection TAG field to be provided, an SSP or STP initiator port should set the Initiator Connection TAG field be a unique value ger SAS target port. When requesting a connection to a SAS initiator port, a SAS target port. When requesting a connection to a SAS initiator port, a SAS target port by the connection TAG field to the regist recent value received on the value received in one of the connection requests for one of the outstanding commands or task management functions from the SAS initiator port. A SAS initiator port shall use the same Instantor Connection TAG field value when it has no commands or task management functions outstanding to that SAS target port. ASAS target port, and shall only change the Initiator RONNECTION TAG field value when it has no commands or task management functions outstanding to that SAS target port. ASAS target ports are not required to check consistency of the INITIATOR CONNECTION TAG field in different connection requests from the same SAS initiator port. SMP initiator ports shall set the Instantor Connection TAG field to EFFFh or SMP connection requests.

The DESTINATION SAS ADDRESS field specifies the port identifier (see 4:27) of the SAS port to which a connection is being requested.

The SOURCE SAS ADDRESS field specifies the port identifier (see 4.2.7) of the SAS port that originated the OPEN address frame.

The SOURCE ZONE GROUP field identifies the zone group of the phy making the connection request. Zone group values between 128 and 255, inclusive, are reserved. The SOURCE ZONE GROUP field shall be:

- a) set to zero when transmitted by an end device;
- b) set to zero when transmitted by an expander device on a phy with the INSIDE ZPSDS bit set to zero
- set to the source zone group for the outgoing connection request as described in table 33 (see 4.9.3.5) when transmitted by an expander device on a phy with the INSIDE ZPSDS bit set to one;
- d) ignored when received by an end device;
- e) ignored when received by an expander device on a phy with the INSIDE ZPSDS bit set to zero; and
- f) used to determine the source zone group for the incoming connection request as described in table 33 (see 4.9.3.5) when received by an expander device on a phy with the INSIDE ZPSDS bit set to one.

The PATHWAY BLOCKED COUNT field specifies the number of times the port has retried this connection request due to receiving OPEN_REJECT (PATHWAY BLOCKED), OPEN_REJECT (RESERVED STOP 0), or OPEN_REJECT (RESERVED STOP 1). The port shall not increment the PATHWAY BLOCKED COUNT value past FFh. If the port changes connection requests, it shall set the PATHWAY BLOCKED COUNT field to 00h.

The ARBITRATION WAIT TIME field specifies how long the port transmitting the OPEN address frame has been waiting for a connection request to be accepted or rejected. This time is maintained by the port layer in an Arbitration Wait Time timer (see 8.2.2). For values from 0000h to 7FFFh, the Arbitration Wait Time timer increments in one microsecond steps. For values from 8000h to FFFFh, the Arbitration Wait Time timer

Subject: Highlight Date: 5/30/2008 2:57:06 PM -07'00' it s/b the SAS port Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 2:57:20 PM -07'00'

This << connection that it intended to send at the >> should be << connection that the SAS port intended to send at the >>

Page: 332

Author: wdc-mevans

Change this sentence to singular, and add a "then" for the "if"

```
Author: wdc-mevans
Subject: Highlight
Date: 5/30/2008 2:58:24 PM -07'00'
TACCEPT - DONE ("that this field be")
field be
s/b
field to be
```

```
Author: RElliott
Subject: Highlight
Date: 8/27/2008 2:45:39 PM -07'00'
TACCEPT - DONE
they
```

Reword paragraph as singular

```
Author: Isi-gpenokie
Subject: Highlight
Date: 5/30/2008 2:59:24 PM -07'00'
```

This << unique value per SAS target port >> should be << unique value for each SAS target port >>

```
Author: wdc-mevans
Subject: Highlight
Date: 5/30/2008 3.00:00 PM -07'00'
TREJECT (first noun/subject convention)

it
s/b
the SAS initiator port
```

Author: Isi-gpenokie Subject: Highlight

connection rate (e.g., drop from 6 Gbps to 3 Gbps or 1.5 Gbps) and send the same frames in the resulting connection that it intended to send at the initial connection rate.

The INITIATOR CONNECTION TAG field is used for SSP and STP connection requests to provide a SAS initiator port an alternative to using the SAS target port's SAS address for context lookup when the SAS target port originates a connection request. SSP or STP initiator ports shall set the INITIATOR CONNECTION TAG field to FFFFh if they do not require the field be provided by the SAS target port. If they do require the field to be provided, an SSP or STP initiator port should set the INITIATOR CONNECTION TAG field to a unique value per SAS target port. When requesting a connection to a SAS initiator port. 2 SAS target port shall set the INITIATOR CONNECTION TAG field to the most recent value received or the value received in one of the connection requests for one of the outstanding commands er task management functions from the SAS initiator port. A SAS initiator port shall use the same HITIATOR CONNECTION TAG field value for all connection requests to the same SAS target port, and small only change the INITIATOR CONNECTION TAG field value when it has no commands or task management functions outstanding to that SAS target port. SAS target ports are not required to check consistency of the INITIATOR CONNECTION TAG field in different connection requests from the same SAS initiator port. SMP initiator ports shall set the INITIATOR CONNECTION TAG field to FFFFh for SMP connection requests

The DESTINATION SAS ADDRESS field specifies the port identifier (see 4.2.7) of the SAS port to which a connection is being requested.

The SOURCE SAS ADDRESS field specifies the port identifier (see 4.2.7) of the SAS port that originated the OPEN address frame.

The SOURCE ZONE GROUP field identifies the zone group of the phy making the connection request. Zone group values between 128 and 255, inclusive, are reserved. The SOURCE ZONE GROUP field shall be:

- a) set to zero when transmitted by an end device;
- b) set to zero when transmitted by an expander device on a phy with the INSIDE ZPSDS bit set to zero;
- c) set to the source zone group for the outgoing connection request as described in table 33 (see 4.9.3.5) when transmitted by an expander device on a phy with the INSIDE ZPSDS bit set to one,
- d) ignored when received by an end device;
- e) ignored when received by an expander device on a phy with the INSIDE ZPSDS bit set to zero; and
- used to determine the source zone group for the incoming connection request as described in table 33 (see 4.9.3.5) when received by an expander device on a phy with the INSIDE ZPSDS bit set to one.

The PATHWAY BLOCKED COUNT field specifies the number of times the port has retried this connection request due to receiving OPEN_REJECT (PATHWAY BLOCKED), OPEN_REJECT (RESERVED STOP 0), or OPEN_REJECT (RESERVED STOP 1). The port shall not increment the PATHWAY BLOCKED COUNT value past FFh. If the port changes connection requests, it shall set the PATHWAY BLOCKED COUNT field to 00h.

The ARBITRATION WAIT TIME field specifies how long the port transmitting the OPEN address frame has been waiting for a connection request to be accepted or rejected. This time is maintained by the port layer in an Arbitration Wait Time timer (see 8.2.2). For values from 0000h to 7FFFh, the Arbitration Wait Time timer increments in one microsecond steps. For values from 8000h to FFFFh, the Arbitration Wait Time timer

Date: 5/30/2008 3:01:03 PM -07'00' TREJECT (first noun/subject convention means "it" is "A SAS initiator port." If you read the rest of the sentence, you should see that "SAS target port...to that SAS target port" would make no sense) This << value when it has no >> should be << value when that SAS target port has no >> Author: wdc-meyans Subject: Highlight
Date: 8/27/2008 2:50:00 PM -07'00'

ACCEPT - DONE (7/17 change to an a)b) list not logically ANDing here, so comma + and is OK for independent clauses) port, and port and Author: Isi-bbesmer Adulto: Is-buesnier
Subject: Cross-Out
Date: 5/6/2008 1:07:49 PM -07:00'
PT-ACCEPT - DONE
Zone group values between 128 and 255, inclusive, are reserved. Proposal 07-017r2 SAS-2 SAS-2 More zone groups (Steve Johnson, LSI Logic) Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE zero s/b 00h Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE zero s/b

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

00h

ACCEPT - DONE

This << and >> should be << or >> as only one case is true not all.

28 January 2008

T10/1760-D Revision 14

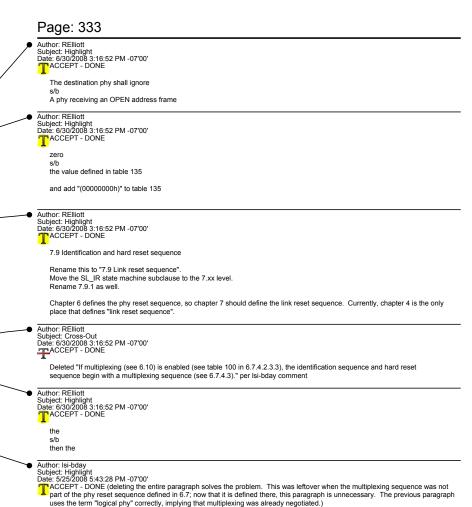
increments in one millisecond steps. The maximum value represents 32 767 ms + 32 768 μ s. Table 139 describes several values of the ARBITRATION WAIT TIME field. See 7.12.3 for details on arbitration fairness.

Table 139 - ARBITRATION WAIT TIME field

Code	Description
0000h	0 μs
0001h	1 µs
7FFFh	32 767 µs
8000h	0 ms + 32 768 μs
8001h	1 ms + 32 768 µs
FFFFh	32 767 ms + 32 768 year

The MORE COMPATIBLE FEATURES field shall be set to zero. The destination phy shall ignore the MORE COMPATIBLE FEATURES field.

The CRC field is defined in 7.8.1.


7.9 Identification and hard reset sequence

7.9.1 Identification and hard reset sequence overview

After the phy reset sequence (see 6.7) has been completed indicating the physical link is using SAS rather than SATA, each logical phy either:

- a) performs an identification sequence by transmitting one or three IDENTIFY address frames (see 7.8.2); or
- b) performs a hard reset sequence by transmitting a HARD_RESET primitive sequence (see 7.2.6.8).

If multiplexing (see 6.10) is enabled (see table 100 in 6.7.4.2.3.3), the is entitication sequence and hard reset sequence begin with a multiplexing sequence (see 6.7.4.3).

Comments from page 333 continued on next page

increments in one millisecond steps. The maximum value represents 32 767 ms + 32 768 μ s. Table 139 describes several values of the ARBITRATION WAIT TIME field. See 7.12.3 for details on arbitration fairness.

Table 139 — ARBITRATION WAIT TIME field

Code	Description
0000h	0 μs
0001h	1 µs
7FFFh	32 767 µs
8000h	0 ms + 32 768 μs
8001h	1 ms + 32 768 µs
FFFFh	32 767 ms + 32 768 µs

The MORE COMPATIBLE FEATURES field shall be set to zero. The destination phy shall ignore the MORE COMPATIBLE FEATURES field.

The CRC field is defined in 7.8.1.

7.9 Identification and hard reset sequence

7.9.1 Identification and hard reset sequence overview

After the phy reset sequence (see 6.7) has been completed indicating the physical link is using SAS rather than SATA, each logical phy either:

- a) performs an identification sequence by transmitting one or three IDENTIFY address frames (see 7.8.2); or
- b) performs a hard reset sequence by transmitting a HARD_RESET primitive sequence (see 7.2.6.8).

If multiplexing (see 6.10) is enabled (see table 100 in 6.7.4.2.3.3), the identification sequence and hard reset sequence begin with a multiplexing sequence (see 6.7.4.3).

333

Working Draft Serial Attached SCSI - 2 (SAS-2)

is preceded by

Muxxing sequence is not part of (begins) the id or hard reset sequence.. it's part of the phy reset sequence.

T10/1760-D Revision 14

after the phy reset sequence.

28 January 2008

Figure 176 shows two phys with multiplexing disabled performing the identification sequence. Only one IDENTIFY address frame is shown in this example.

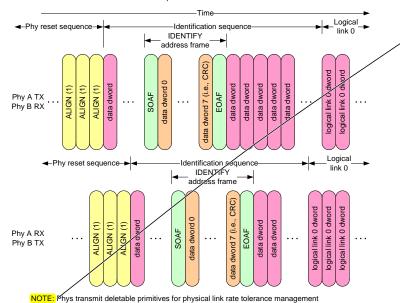
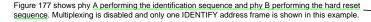



Figure 176 — Identification sequence

Page: 334

 Author: Relliott Subject: Highlight Date: 8/27/2008 2:51:07 PM -07'00'
 ACCEPT - DONE
 NOTE s/b
 Note

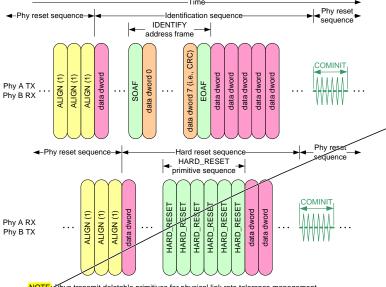


Figure 177 — Hard reset sequence

Each logical phy receives an IDENTIFY address frame or a HARD_RESET primitive sequence from the logical phy to which it is attached. The combination of a phy reset sequence, an optional hard reset sequence followed by another phy reset sequence, and an identification sequence is called a link reset sequence (see 4.4.1).

If a phy receives a valid IDENTIFY address frame within 1 ms of phy reset sequence completion, the SAS address in the outgoing IDENTIFY address frame(s) and the SAS address in the incoming IDENTIFY address frame determine the port to which a phy belongs (see 4.1.4). The phy ignores subsequent IDENTIFY address frames and HARD_RESET primitives until another phy reset sequence occurs.

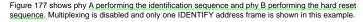
If a phy receives a HARD_RESET primitive sequence within 1 ms of phy reset sequence completion, it shall be considered a reset event and cause a hard reset (see 4.4.2) of the port containing that phy.

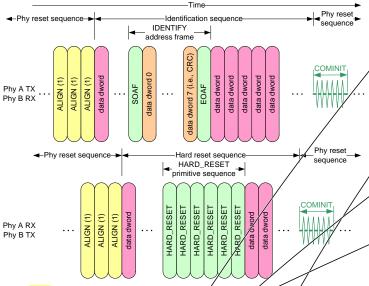
If a <u>phy</u> does not receive a HARD_RESET primitive sequence or a valid IDENTIFY address frame within 1 ms of phy reset sequence completion, it shall restart the phy reset sequence.

7.9.2 SAS initiator device rules

After a link reset sequence, or after receiving a Broadcast (Change), a management application client behind an SMP initiator port should perform a discover process (see 4.7).

A performing the identification sequence and phy B performing the hard reset sequence phy A attempting to perform the identification sequence and phy B performing the hard reset sequence. Because phy A receives a HARD_RESET primitive sequence, a hard reset sequence actually occurs. "identification sequence" usually means both transmit and receive of an IDENTIFY address frame, not just transmit. The new wording better agrees with this convention. Author: RElliott Subject: Highlight Date: 8/27/2008 2:51:47 PM -07'00' TACCEPT - DONE NOTE s/b Note Author: RElliott Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE -Change The combination of a phy reset sequence, an optional hard reset sequence followed by another phy reset sequence, and an identification sequence is called a link reset sequence (see 4.4.1). to this (and move it above the figures): For SATA, a link reset sequence is a phy reset sequence (see 6.7). For SAS, a link reset sequence is either a) the following sequence: 1) a phy reset sequence indicating that the physical link is using SAS rather than SATA; and 2) an identification sequence. b) the following sequence: 1) a phy reset sequence indicating that the physical link is using SAS rather than SATA; 2) a hard reset sequence; 3) another phy reset sequence indicating that the physical link is using SAS rather than SATA; and 4) an identification sequence. Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE phy s/b logical phy Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the


Page: 335

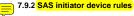

TACCEPT - DONE

Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

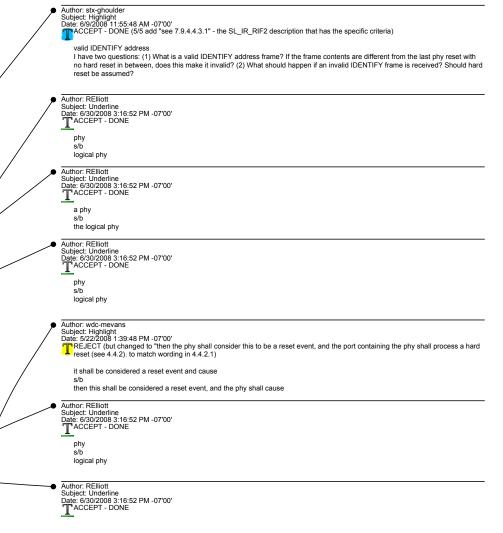
Author: RElliott

Comments from page 335 continued on next page

NOTE: Phys transmit deletable primitives for physical link rate tolerance management after the phy reset sequence.

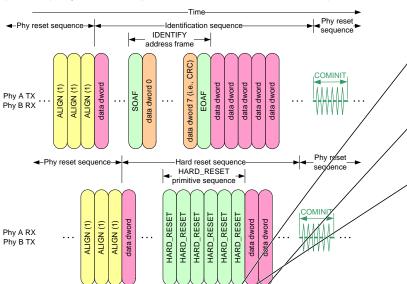

Figure 177 — Hard reset sequence

Each logical phy receives an IDENTIFY address fraction of a AARD_RESET printitive sequence from the logical phy to which it is attached. The combinatory of a pay reset sequence, an optional hard reset sequence followed by another phy reset sequence. and another phy reset sequence (see 4.4.1).


If a phy receives a valid IDENTIFY address frame within 1 ms of phy result sequence completion, the SAS address in the outgoing IDENTIFY address frame (s) and the SAS address in the incoming IDENTIFY address frame determine the port to which a phy belongs (see 4.1.4). The phy ignores subsequent IDENTIFY address frames and HARD_RESET primitives until another phy reset sequence occurs.

If a phy receives a HARD_RESET primitive sequence within 1 ms of phy reset sequence completion, it shall be considered a reset event and cause a hard reset (see 4.4.2) of the port containing that phy.

If a phy does not receive a HARD_RESET primitive sequence or a valid IDENTIFY address frame within 1 ms of phy reset sequence completion, it shall restart the phy reset sequence.



After a link reset sequence, or after receiving a Broadcast (Change), a management application client behind an SMP initiator port should perform a discover process (see 4.7).

Comments from page 335 continued on next page

Figure 177 shows phy A performing the identification sequence and phy B performing the hard reset sequence. Multiplexing is disabled and only one IDENTIFY address frame is shown in this example.

NOTE: Phys transmit deletable primitives for physical link rate tolerance management after the phy reset sequence.

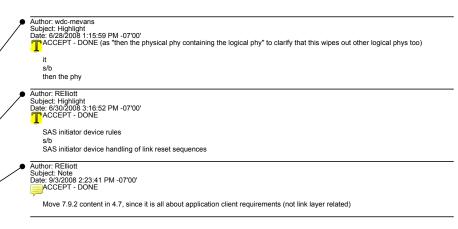
Figure 177 — Hard reset sequence

Each logical phy receives an IDENTIFY address frame or a/HAR/D_RESET primitive sequence from the logical phy to which it is attached. The combination of a ply reset sequence, an optional hard reset sequence followed by another phy reset sequence, and an identification sequence is called a link reset sequence (see 4.4.1).

If a phy receives a valid IDENTIFY address frame within 1 ms of phy reset sequence completion, the SAS address in the outgoing IDENTIFY address frame/s) and the SAS address in the incoming IDENTIFY address frame determine the port to which a phy belongs (see 4.1.4). The phy ignores subsequent IDENTIFY address frames and HARD_RESET primitives until another phy reset sequence occurs.

If a phy receives a HARD_RESET primitive sequence within 1 ms of phy reset sequence completion, it shall be considered a reset event and cause a hard reset (see 4.4.2) of the port containing that phy.

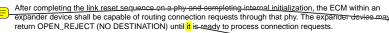
If a phy dows not receive a HARD_REST/T primitive sequence or a valid IDENTIFY address frame within 1 ms of phy veset sequence completion, it wall restart the phy reset sequence.


7.9.2 SAS initiator device rules

After a link reset sequence, or after receiving a Broadcast (Change), a management application client behind an SMP initiator port should perform a discover process (see 4.7).

335

Working Draft Serial Attached SCSI - 2 (SAS-2)


phy s/b logical phy

When a discover process is performed after a link reset sequence, the management application client discovers all the devices in the SAS domain. When a discover process is performed after a Broadcast (Change), the management application client determines which devices have been added to or removed from the SAS domain.

The discover information may be used to select connection rates for connection requests (see 7.8.3).

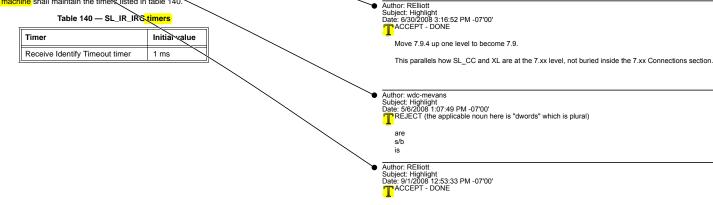
7.9.3 Expander device rules

After a link reset sequence, or after receiving a Broadcast (Change), the meagement application client behind an SMP initiator port in a self-configuring expander device shall follow the SAS initiator device rules (see 7.52) to perform a discover process (see 4.7).

The ECM of an externally configurable expander device is dependent on the completion of the discover process (see 4.7) for routing connection requests using the table routing method.

7.9.4 St. IR (link layer identification and hard reset) state machines

7.9.4.1 SL_IR state machines overview


The SL_IR (link layer identification and hard reset) state machines control the flow of dwords on the physical link that are essociated with the identification and hard reset sequences. The state machines are as follows:

- a) SL_IR_TIR (transmit IDENTIFY or HARD_RESET) state machine (see 7.9.4.3);
- b) SL_IR_RIF (receive DENTIFY address frame) state machine (see 7.9.4.4); and
- c) SL IR IRC (identification and hard reset control) state machine (see 7.9.4.5).

The SL_IR state machines send the following messages to the SL state machines (see 7.44) in SAS devices or the XL (see 7.15) state machine is expander devices:

- a) Enable Disable SAS Link (Enable); and
- b) Enable Disable SAS Link (Disable).

The SL_IR_IRC state machine shall maintain the timers listed in table 140.

Page: 336

ACCEPT - DONE

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Author: RElliott

Expander device rules Expander device handling of link reset sequences Author: RElliott Subject: Note Date: 9/3/2008 2:24:08 PM -07'00' ACCEPT - DONE Move 7.9.3 middle paragraph into 4.7, since it is about application client requirements (not link layer related) Author: wdc-mevans Subject: Highlight Date: 5/22/2008 2:06:46 PM -07'00' REJECT (first noun/subject convention) it s/b the expander device Author: hpq-relliott Subject: Note Date: 9/3/2008 2:24:52 PM -07'00' ACCEPT - DONE (moved application client rules from 7.92 and 7.9.3 into new section 4.7.2 Starting the discover process) Mentioning Broadcast (Change) in 7.9.2 and 7.9.3 is not ideal, since 7.9 is the identification and hard reset sequence section. The general application client rules for handling

Comments from page 336 continued on next page

direct attached resets as well as Broadcast (Changes) belongs elsewhere.

When a discover process is performed after a link reset sequence, the management application client discovers all the devices in the SAS domain. When a discover process is performed after a Broadcast (Change), the management application client determines which devices have been added to or removed from the SAS domain.

The discover information may be used to select connection rates for connection requests (see 7.8.3).

7.9.3 Expander device rules

After completing the link reset sequence on a phy and completing internal initialization, the ECM within an expander device shall be capable of routing connection requests through that phy. The expander device may return OPEN_REJECT (NO DESTINATION) until it is ready to process connection requests.

After a link reset sequence, or after receiving a Broadcast (Change), the management application client behind an SMP initiator port in a self-configuring expander device shall follow the SAS initiator device rules (see 7.9.2) to perform a discover process (see 4.7).

The ECM of an externally configurable expander device is dependent on the completion of the discover process (see 4.7) for routing connection requests using the table routing method.

7.9.4 SL_IR (link layer identification and hard reset) state machines

7.9.4.1 SL IR state machines overview

The SL_IR (link layer identification and hard reset) state machines control the flow of dwords on the physical link that are associated with the identification and hard reset equences. The state machines are as follows:

- a) SL_IR_TIR (transmit IDENTIFY or HARD_RESET) state machine (see 7.9.4.3);
- b) SL_IR_RIF (receive IDENTIFY address frame) state machine (see 7.9.4.4); and
- c) SL_IR_IRC (identification and hard reset control) state machine (see 7.9.4.5).

The SL_IR state machines send the following rhessages to the SL state machines (see 7.14) in SAS devices or the XL (see 7.15) state machine in expander devices:

- a) Enable Disable SAS Link (Enable); and
- b) Enable Disable SAS Link (Disable).

The SL_IR_IRC state machine shall maintain the timers listed in table 140.

Table 140 — SL_IR_IRC timers

Timer	Initial value
Receive Identify Timeout timer	1 ms

XL (see 7.15) state machine XL state machine (see 7.15) Author: RElliott Subject: Highlight
Date: 8/30/2008 2:02:44 PM -07'00'
ACCEPT - DONE The SL_IR_IRC state machine This state machine Author: RElliott Subject: Highlight
Date: 8/30/2008 1:53:23 PM -07'00' timers

state machine timers

Figure 178 shows the SL_IR state machines.

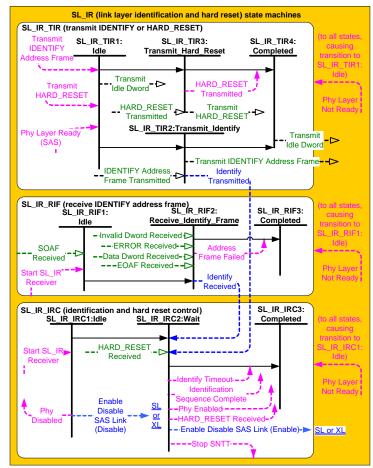


Figure 178 — SL_IR (link layer identification and hard reset) state machines

This page contains no comments

7.9.4.2 SL IR transmitter and receiver

The SL_IR transmitter receives the following messages from the SL_IR state machines indicating primitive sequences, frames, and dwords to transmit:

- a) Transmit IDENTIFY Address Frame;
- b) Transmit HARD_RESET; and
- c) Transmit Idle Dword.

Upon receiving a Transmit IDENTIFY Address Frame message, the SL IR transmitter shall transmit:

- 1) SOAF:
- 2) data dwords;
- 3) EOAF; and
- 4) at least 3 idle dwords.

NOTE 58 - Phys compliant with previous versions of this standard were not required to transmit die dwords

The SL_IR transmitter sends the following messages to the SL_IR state machines.

- a) HARD RESET Transmitted; and
- b) IDENTIFY Address Frame Transmitted.

The SL_IR receiver sends the following messages to the SL_IR state machines indicating primitive sequences and dwords received from the SP_DWS receiver (see 6.9.2):

- a) SOAF Received:
- b) Data Dword Received;
- c) EOAF Received:
- d) ERROR Received;
- Invalid Dword Received; and
- f) HARD_RESET Received.

The SL_IR receiver shall not require reception of any idle dwords after an IDENTIFY address frame.

The SL IR receiver shall ignore all other dwords.

The SL_IR transmitter relationship to other transmitters is defined in 4.3.2. The SL_IR receiver relationship to other receivers is defined in 4.3.3

7.9.4.3 SL_IR_TIR (transmit IDENTIFY or HARD_RESET) state machine

7.9.4.3.1 SL_IR_TIR state machine overview

The SL_IR_TIR state machine's function is to transmit one or three IDENTIFY address frames or a HARD_RESET primitive after the phy layer enables the link layer. This state machine consists of the following

- %L_IR_T!X1:Idle (see 7.9.4.3.2)(initial state);
- SL_IB_TIR2:Transmit_Identify (see 7.9.4.3.3);
- c) SI_IR_TIR3:Transmit_Hard_Reset (see 7.9.4.3.4); and
- SL IR TIR4:Completed (see 7.9.4.3.5). d)

state machine shall start in the SL_IR_TIR1:Idle state. This state machine shall transition to the SL IR TIR1:Idle state from any other state after receiving a Phy Layer Not Ready confirmation.

7.9.4.3.2 SL_IR_TIR1:Idle state

7.9.4.3.2.1 State description

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SL IR transmitter.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 338

Author: hpq-relliott

Subject: Note Date: 6/28/2008 2:06:59 PM -07'00'

ACCEPT - DONE (added:

"NOTE If multiplexing is enabled, each SL_IR_IRC state machine sends a Stop SNTT request to the phy layer. The phy layer honors the first request and ignores the second request.")

need to clarify how SP works with two SL_IRs in multiplexing. Does each one send Stop SNTT upon receiving its IDENTIFY address frame?

Author: RElliott

Subject: Note Date: 8/30/2008 12:00:26 PM -07'00'

ACCEPT - DONE

The SL_IR_TIR state machine receives the following requests from the management application layer:

- a) Transmit IDENTIFY Address Frame; and
- b) Transmit HARD RESET.

prompted by 08-343

7.9.4.3.2.2 Transition SL_IR_TIR1:Idle to SL_IR_TIR2:Transmit_Identify

This transition shall occur after both:

- a) a Phy Layer Ready (SAS) confirmation is received; and
- b) a Transmit IDENTIFY Address Frame request is received.

7.9.4.3.2.3 Transition SL IR TIR1:Idle to SL IR TIR3:Transmit Hard Reset

This transition shall occur after both:

- a) a Phy Layer Ready (SAS) confirmation is received; and
- b) a Transmit HARD_RESET request is received.

7.9.4.3.3 SL_IR_TIR2:Transmit_Identify state

7.9.4.3.3.1 State description

Upon entry into this state, this state shall send either one or three Transmit IDENTIFY Address Frame messages to the SL_IR transmitter.

NOTE 59 - Phys compliant with previous versions of this standard only transmitted one Transmit IDENTIFY Address Frame message.

After this state receives an IDENTIFY Address Frame Transmitted message in response to its first Transmit IDENTIFY Address Frame message, this state shall send an Identify Transmitted message to the SL_IR_IRC state machine.

7.9.4.3.3.2 Transition SL_IR_TIR2:Transmit_Identify to SL_IR_TIR4:Completed

If this state sends one Transmit IDENTIFY Address Frame message, this transition shall occur after sending an Identify Transmitted message to the SL IR IRC state machine.

If this state sends three Transmit IDENTIFY Address Frame messages, this fransition shall occur after receiving three Identify Transmitted messages.

7.9.4.3.4 SL_IR_TIR3:Transmit_Hard_Reset state

7.9.4.3.4.1 State description

Upon entry into this state, this state shall send a Transmit HARD_RESET message to the SL_IR transmitter.

After this state receives a HARD_RESET Transmitted message, this state shall send a HARD_RESET Transmitted confirmation to the management application layer.

7.9.4.3.4.2 Transition SL_IR_TIR3:Transmit_Hard_Reset to SL_IR_TIR4:Completed

This transition shall occur after sending a HARD_RESET Transmitted confirmation to the management application layer.

7.9.4.3.5 SL_IR_TIR4:Completed state

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SLLIR transmitter

7.9.4.4 SL_IR_RIF (receive IDENTIFY address frame) state machine

7.9.4.4.1 SL IR RIF state machine overview

The SL_IR_RIF state machine receives an IDENTIFY address frame and checks the IDENTIFY address frame to determine if the frame should be accepted or discarded by the link layer.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 339

Author: RElliott Subject: Highlight Date: 650/2008 3:16:52 PM -07'00'
TACCEPT - DONE

this s/b then this

Author: RElliott Subject: Highlight Date: 670/2008 3:16:52 PM -07'00'
TACCEPT - DONE

this s/b then this

339

This state machine consists of the following states:

- a) SL IR RIF1:Idle (see 7.9.4.4.2)(initial state):
- b) SL_IR_RIF2:Receive_Identify_Frame (see 7.9.4.4.3); and
- c) SL IR RIF3:Completed (see 7.9.4.4.4).

This state machine shall start in the SL_IR_RIF1:Idle state. This state machine shall transition to the SL IR RIF1:Idle state from any other state after receiving a Phy Layer Not Ready confirmation.

7.9.4.4.2 SL IR RIF1:Idle state

7.9.4.4.2.1 State description

This state waits for an SOAF to be received from the physical link, indicating an address frame is arriving.

7.9.4.4.2.2 Transition SL_IR_RIF1:Idle to SL_IR_RIF2:Receive_Identify_Frame

This transition shall occur after both:

- a) a Start SL_IR Receiver confirmation is received; and
- b) an SOAF Received message is received.

7.9.4.4.3 SL IR RIF2:Receive Identify Frame state

7.9.4.4.3.1 State description

This state receives the dwords of an address frame and the EOAF.

If this state receives an SOAF Received message, then this state shall discard any previously received dwords for the address frame, send an Address Frame Failed confirmation to the management application layer to indicate that an invalid address frame was received, and start receiving the new address trame

If this state receives more than eight Data Dword Received messages after an SOAF Received message and before an EOAF Received message, then this state shall discard the address frame and send an Address Frame Failed confirmation to the management application layer to indicate that an invalid address frame was

If this state receives an Invalid Dword Received message or an ERROR Received message after an SOAF Received message and before an EOAF Received message, then this state shall:

- a) ignore the invalid dword or ERROR; or
- b) discard the address frame and send an Address Frame Failed confirmation to the management application layer to indicate that an invalid address frame was received.

After receiving an EOAF Received message, this state shall check if it the received frame is a valid IDENTIFY

This state shall accept an IDENTIFY address frame and send an Identify Received message to the SL IR IRC state machine if:

- a) the ADDRESS FRAME TYPE field is set to 0h (i.e., IDENTIFY);
- b) the number of bytes between the SOAF and EOAF is 32; and
- the CRC field contains a good CRC.

Otherwise, this state shall discard the address frame and send an Address Frame Failed confirmation to the management application layer to indicate that an invalid address frame was received.

7.9.4.4.3.2 Transition SL IR RIF2:Receive Identify Frame to SL IR RIF3:Completed

This transition shall occur after sending an Identify Received message confirmation.

7.9.4.4.4 SL_IR_RIF3:Completed state

This state waits for a Phy Layer Not Ready confirmation.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 340

Author: Isi-bday

Subject: Cross-Out Date: 5/25/2008 5:45:25 PM -07'00'

TREJECT (the phy event information counter for phy event source 20h counts these; see table 37 on page 118)

send an Address Frame Failed confirmation to the management application

laver.

This confirmation isn't used elsewhere in the spec. With potential for multiple IDENTIFY frames now, it's possible to reach the normal completion after this Address Frame Failed has already been sent. Suggest remove this confirmation, and just rely on either reaching Identification Sequence Complete or Identify Timeout.

Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

more than eight Data Dword Received messages

(i.e., 32 bytes)

Author: Isi-gpenokie

Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

**ACCEPT - DONE ("or" is correct - the implementation is allowed to choose either approach - ignore the dword (probably causing a CRC error and a frame length error), or discard the frame containing the dword (without relying on the CRC to go bad or the frame length to be wrong). Changing the preface to "shall either:" to emphasize that)

It seems like this << or >> should be << and >> but that would be a different requirement in that the state would do both a and b rather that have to pick either a or b. I'm not sure which was intended.

Author: RElliott Subject: Highlight
Date: 8/30/2008 8:55:48 AM -07'00'

message confirmation

message

(per 08-343)

340

T10/1760-D Revision 14

7.9.4.5 SL_IR_IRC (identification and hard reset control) state machine

7.9.4.5.1 SL IR IRC state machine overview

The SL_IR_IRC state machine ensures that IDENTIFY address frames have been both received and transmitted before enabling the rest of the link layer, and notifies the link layer if a HARD_RESET primitive sequence is received before an IDENTIFY address frame has been received.

This state machine consists of the following states:

- a) SL_IR_IRC1:Idle (see 7.9.4.5.2)(initial state);
- b) SL IR IRC2:Wait (see 7.9.4.5.3); and
- c) SL_IR_IRC3:Completed (see 7.9.4.5.4).

This state machine shall start in the SL_IR_IRC1:Idle state. This state machine shall transition to the SL_IR_IRC1:Idle state from any other state after receiving a Phy Layer Not Ready confirmation.

7.9.4.5.2 SL_IR_IRC1:Idle state

7.9.4.5.2.1 State description

This state waits for the link layer to be enabled. Upon entry into this state, this state shall:

- a) send an Enable Disable SAS Link (Disable) message to SL state machines (see 7.14) or XL state machine (see 7.15) halting any link layer activity; and
- send a Phy Disabled confirmation to the port layer and the management application layer indicating that the phy is not ready for use.

7.9.4.5.2.2 Transition SL_IR_IRC1:Idle to SL_IR_IRC2:Wait

This transition shall occur after a Start SL IR Receiver confirmation is received.

7.9.4.5.3 SL_IR_IRC2:Wait state

7.9.4.5.3.1 State description

This state ensures that an IDENTIFY address frame has been received by the SL_IR_RIF state machine and that an IDENTIFY address frame has been transmitted by the SL_IR_XR state machine before enabling the rest of the link layer. The IDENTIFY address frames may be transmitted and received on the physical link in any order

After this state receives an Identify Received message, it shall send a Stop SNTT request to the phy layer.

After this state receives an Identify Transmitted message, it shall initialize and start the Receive Identify Timeout timer. If an identify Received message is received before the Receive Identify Timeout timer expires, this state shall:

- send an Identification Sequence Complete confirmation to the management application layer, with arguments carrying the contents of the incoming IDENTIFY address frame;
- b) send an Enable Disable SAS Link (Enable) message to the SL state machines (see 7.14) in a SAS logical phy or the XL state machine (see 7.15) in an expander logical phy indicating that the rest of the link layer may start operation; and
- c) send a Phy Enabled confirmation to the port layer and the management application layer indicating that the phy is ready for use.

If the Receive Identify Timeout timer expires before an Identify Received message is received, this state shall send an Identify Timeout confirmation to the management application layer to indicate that an identify timeout occurred.

If this state_receives a HARD_RESET Received message before an Identify Received message is received, this state shall send a HARD_RESET Received confirmation to the port layer and the management application layer and a Stop SNTT request to the phy layer.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 341

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 5:46:02 PM -07'00' REJECT (not logical AND, so comma + and is OK to join independent clauses) layer, and s/b layer and Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE to SL s/b to the SL Author: wdc-mevans Subject: Highlight Date: 5/25/2008 5:46:17 PM -07'00' REJECT s/b this state Author: wdc-mevans Subject: Highlight Date: 5/25/2008 5:46:23 PM -07'00' TREJECT. it s/b this state Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE this s/b then this Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE this s/b then this

If this state receives a HARD_RESET Received message after an Identify Received message is received, the HARD_RESET Received message shall be ignored.

7.9.4.5.3.2 Transition SL IR IRC2:Wait to SL IR IRC3:Completed

This transition shall occur after sending a HARD_RESET Received confirmation, Identify Timeout confirmation, or an Identification Sequence Complete and an Phy Enabled confirmation.

7.9.4.5.4 SL IR IRC3:Completed state

This state waits for a Phy Layer Not Ready confirmation.

7.10 Power management

SATA interface power management is not supported in STP.

STP initiator ports shall not generate SATA_PMREQ_P, SATA_PMREQ_S, of SATA_PMACK. If an STP initiator port receives SATA_PMREQ_P or SATA_PMREQ_S, it shall reply with SATA_PMNAK.

If an expander device receives SATA_PMREQ_P or SATA_PMREQ_S from a SATA device while an STP connection is not open, it shall not forward from the primitives arrives while an STP initiator port and shall reply with SATA_PMNAK. If one of these primitives arrives while an STP connection is open, it may forward the primitive to the STP initiator port

SCSI idle and standby power conditions, implemented with the START STOR UNIT columned (see SBC-3) and the Power Condition mode page (see SPC-4), may be supported by SSP initiator polys and SSP target ports as described in 10.2.10.

ATA idle and standby power modes, implemented with the IDLE, IDLE IMMEDIATE, STANDBY STANDBY IMMEDIATE, and CHECK POWER MODE commands (see ATA8-ACS), may be supported by Straintiator ports. The ATA sleep power mode, implemented with the SLEEP command, shall not be used.

7.11 SAS domain changes (Broadcast (Change) usage)

After power on or receiving Broadcast (Change) via an SMP initiator port, the management application of should scan the SAS domain using the discover process (see 4.7) to search for SAS initiator devices, SAS target devices, and expander devices.

The expander device shall originate Broadcast (Change) from at least one phy in each expander port other than the expander port that is the cause for originating Broadcast (Change).

Expander devices shall originate Broadcast (Change) for the following expander phy-related reasons:

 a) after an expander phy's SP state machine transitions from the SP15:SAS_PHY_Ready or SP22:SATA_PHY_Ready state to the SP0:OOB_COMINIT state (see 6.8);

NOTE 60 - This occurs when the expander phy is reset or disabled with the SMP PHY CONTROL function DISABLE, LINK RESET, HARD RESET, or TRANSMIT SATA PORT SELECTION SIGNAL phy operations (see 10.4.3.28) as well as when dword synchronization is unexpectedly lost.

- after a virtual phy has been disabled with the SMP PHY CONTROL function DISABLE phy operation
 or started processing a reset requested by the LINK RESET or HARD RESET phy operations (see
 10.4.3.28).
- after an expander phy's SP state machine reaches the SP26 SATA_SpinupHold state and sends a SATA Spinup Hold confirmation as defined in 6.8.7 and 6.11;
- d) after an expander phy's SP state machine receives a COMWAKE Detected message in states SP0:OOB_COMINIT, SP1:OOB_AwaitCOMX, SP3:OOB_AwaitCOMINIT_Sent, or SP4:OOB_COMSAS if the ATTACHED SATA PORT SELECTOR bit is set to zero in the SMP DISCOVER response (see 10.4.3.10) prior to receiving the COMWAKE detected message (see 6.8.3 and table 272 in 10.4.3.10).
- e) after an expander phy's SP state machine transitions from the SP1:OOB_AwaitCOMX state to the SP0:OOB_COMINIT state if the ATTACHED SATA PORT SELECTOR bit was set to one in the SMP

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
  TACCEPT - DONE
    the
    s/b
    then the
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
    s/h
    then it
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 5:47:02 PM -07'00'
 ACCEPT - DONE
    it
    s/b
    the primitive
Author: wdc-mevans
Subject: Highlight
Date: 5/22/2008 1:28:58 PM -07'00'
 REJECT (first noun/subject convention. Added "then" however)
    the expander device
Author: Isi-gpenokie
Subject: Highlight
Date: 5/22/2008 1:28:37 PM -07'00'
 REJECT (first noun/subject convention)
    This << not open, it shall not forward >> should be << not open, the expander device shall not forward >>
Author: wdc-mevans
Subject: Highlight
Date: 5/22/2008 1:29:38 PM -07'00'

ACCEPT - DONE (plus added "then")
    s/h
    the expander device
Author: Isi-gpenokie
Subject: Highlight
Date: 5/22/2008 1:29:48 PM -07'00'
 ACCEPT - DONE (plus added "then")
    This << connection is open, it may forward the >> should be << connection is open, the expander device may forward the >>
Author: RElliott
Date: 9/3/2008 2:20:50 PM -07'00'
ACCEPT - DONE
```

Page: 342

If this state receives a HARD_RESET Received message after an Identify Received message is received, the HARD_RESET Received message shall be ignored.

7.9.4.5.3.2 Transition SL IR IRC2: Wait to SL IR IRC3: Completed

This transition shall occur after sending a HARD_RESET Received confirmation, Identify Timeout confirmation, or an Identification Sequence Complete and an Phy Enabled confirmation.

7.9.4.5.4 SL IR IRC3:Completed state

This state waits for a Phy Layer Not Ready confirmation.

7.10 Power management

SATA interface power management is not supported in STP.

STP initiator ports shall not generate SATA_PMREQ_P, SATA_PMREQ_S, or SATA_PMACK. If an STP initiator port receives SATA_PMREQ_P or SATA_PMREQ_S, it shall reply with SATA_PMNAK.

If an expander device receives SATA_PMREQ_P or SATA_PMREQ_S from a SATA device while an STP connection is not open, it shall not forward it to any STP initiator port and shall reply with SATA_PMNAK. If one of these primitives arrives while an STP connection is open, it may forward the primitive to the STP initiator port

SCSI idle and standby power conditions, implemented with the START STOP UNIT command (see SBC-3) and the Power Condition mode page (see SPC-4), may be supported by SSP initiator ports and SSP target ports as described in 10.2.10.

ATA idle and standby power modes, implemented with the IDLE, IDLE IMMEDIATE, STANDBY, STANDBY IMMEDIATE, and CHECK POWER MODE commands (see ATA8-ACS), may be supported by STP initiator ports. The ATA sleep power mode, implemented with the SLEEP command, shall not be used.

7.11 SAS domain changes (Broadcast (Change) usage)

After power on or receiving Broadzest (Change) via an SMP initiator port, the management application client should scan the SAS domain using the discover process (see 4.7) to search for SAS initiator devices. SAS target devices, and expander devices.

The expander device shall originate Broadcast (Change) from at least one phy in each expander port other than the expander port that is the cause for originating Broadcast (Change).

Expander devices shall originate Broadcast (Change) for the following expander phy-related reasons:

 after an expander phy's SP state machine transitions from the SP15 SAS_PHY_Ready or SP22:SATA_PHY_Ready state to the SP0:OOB_COMINIT state (see 6.8);

NOTE 60 - This occurs when the expander phy is reset or disastical with the SMP PHY CONTROL function DISABLE, LINK RESET, HARD RESET or निरम्भाऽआाँ SATA PORT SELECTION SIGNAL phy operations (see 10.4.3.28) as well as नांका dword synchronization is unexpectedly lost.

- after a virtual phy has been disabled with the SMP PHY CONTROL function DISABLE phy operation or started processing a reset requested by the LINK RESET or HARD RESET phy operations (see 10.4.3.28).
- after an expander phy's SP state machine reaches the SP26 SATA_SpinupHold state and sends a SATA Spinup Hold confirmation as defined in 6.8.7 and 6.11;
- d) after an expander phy's SP state machine receives a COMWAKE Detected message in states SP0:OOB_COMINIT, SP1:OOB_AwaitCOMX, SP3:OOB_AwaitCOMINIT_Sent, or SP4:OOB_COMSAS if the ATTACHED SATA PORT SELECTOR bit is set to zero in the SMP DISCOVER response (see 10.4.3.10) prior to receiving the COMWAKE detected message (see 6.8.3 and table 272 in 10.4.3.10).
- e) after an expander phy's SP state machine transitions from the SP1:OOB_AwaitCOMX state to the SP0:OOB_COMINIT state if the ATTACHED SATA PORT SELECTOR bit was set to one in the SMP

Delete:

After power on or receiving Broadcast (Change) via an SMP initiator port, the management application client should scan the SAS domain using the discover process (see 4.7) to search for SAS initiator devices, SAS target devices, and expander devices.

Already covered by the SAS initiator device and expander device rules, which are being moved into 4.7. Section 7.11 should be about the generation of Broadcast (Change), not the reception of it.

Author: RElliott
Subject: Highlight
Date: 9/3/2008 2:21:19 PM -07'00'
TACCEPT - DONE
The expander device
s/n
An expander device

since no expander in particular is being referred to

Author: wdc-mevans
Subject: Highlight
Date: 58/25/2008 5:47:11 PM -07'00'

TACCEPT - DONE
each expander port
s/b

s/b each of its expander ports

Author: Isi-bday
Subject: Highlight
Date: 6/2/2008 7:13:34 AM -07'00'
PREJECT (transition to SP25 is not related to a phy being reset or disabled)

SP0:OOB_COMINIT state s/b SP0:OOB_COMINIT or SP25:SATA_PortSel state

Author: Isi-gpenokie
Subject: Highlight
Date: 5/30/2008 3:03:15 PM -07'00'
PREJECT (this helps avoid confusion with the previous "or" in the sentence)

Line in the desired contaction that the provided of all the contaction

This << phy operations (see 10.4.3.28) as well as when dword >> should be << phy operations (see 10.4.3.28) and when dword >>

Author: stx-ghoulder
Subject: Highlight
Subject: Hi

replace with "or".

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

s/b

If this state receives a HARD_RESET Received message after an Identify Received message is received, the HARD_RESET Received message shall be ignored.

7.9.4.5.3.2 Transition SL IR IRC2: Wait to SL IR IRC3: Completed

This transition shall occur after sending a HARD_RESET Received confirmation, Identify Timeout confirmation, or an Identification Sequence Complete and an Phy Enabled confirmation.

7.9.4.5.4 SL IR IRC3:Completed state

This state waits for a Phy Layer Not Ready confirmation.

7.10 Power management

342

SATA interface power management is not supported in STP.

STP initiator ports shall not generate SATA_PMREQ_P, SATA_PMREQ_S, or SATA_PMACK. If an STP initiator port receives SATA_PMREQ_P or SATA_PMREQ_S, it shall reply with SATA_PMNAK.

If an expander device receives SATA_PMREQ_P or SATA_PMREQ_S from a SATA device while an STP connection is not open, it shall not forward it to any STP initiator port and shall reply with SATA_PMNAK. If one of these primitives arrives while an STP connection is open, it may forward the primitive to the STP initiator port

SCSI idle and standby power conditions, implemented with the START STOP UNIT command (see SBC-3) and the Power Condition mode page (see SPC-4), may be supported by SSP initiator ports and SSP target ports as described in 10.2.10.

ATA idle and standby power modes, implemented with the IDLE, IDLE IMMEDIATE, STANDBY, STANDBY IMMEDIATE, and CHECK POWER MODE commands (see ATA8-ACS), may be supported by STP initiated ports. The ATA sleep power mode, implemented with the SLEEP command, shall not be used.

7.11 SAS domain changes (Broadcast (Change) usage)

After power on or receiving Broadcast (Change) via an SMP initiator port, the management application client should scan the SAS domain using the discover process (see 4.7) to search for SAS initiator devices, SAS target devices, and expander devices.

The expander device shall originate Broadcast (Change) from at least one phy in each expander port other than the expander port that is the cause for originating Broadcast (Change).

Expander devices shall originate Broadcast (Change) for the following expander phyliciated reasons

a) after an expansion phy's SP state machine transitions from the SP15:SAS PHY_Ready or SP22:SATA_PHY_Ready state to the SP2:OOB_COMINIT state (see 6.5);

NOTE 60 - his occurs when the expander phy is reset or disabled with the SM/PHY CONTROL function DISABLE, LINK RESET, HARD RESET, or TRANSMIT SATA PORT SELECTION SIGNAL phy operations (see 14.4.3.28) as well as when word synchronization is unexpectedly lost

- b) after a virtual phy has been disabled with the SMP PHY CONTROL function DISABLE my operation or started processing a reset requested by the LINK RESET or HARD RESET phy operations (see 10.4.3.28)
- c) after an expander phy's SP state machine reaches the ST/26; SATA_SpinupHold state and sends a SMA Spinup Hold confirmation as defined in 6.8.7 and 6.11;
- d) after an expander phy's SP state machine receives a COMWAKE Detected message in states SP0:OOB_COMINIT, SP1:OOB_AwaitCOMX, SP3:OOB_AwaitCOMINIT_Sent, or SP4:OOB_COMSAS if the ATTACHED SATA PORT SELECTOR bit is set to zero in the SMP DISCOVER response (see 10.4.3.10) prior to receiving the COMWAKE detected message (see 6.8.3 and table 272 in 10.4.3.10).
- after an expander phy's SP state machine transitions from the SP1:OOB_AwaitCOMX state to the SP0:OOB_COMINIT state if the ATTACHED SATA PORT SELECTOR bit was set to one in the SMP

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: stx-ghoulder
Subject: Highlight
Date: 6/28/2008 2:12:09 PM -07'00'
ACCEPT - DONE (Per other comments, we're now treating virtual phys as having some variation on the standard state machines. So, a virtual phy has an SP state machine that conceptually transitions from SP15 to SP0. So, item b) can be deleted without losing anything.) b) This item seems redundant with Note 60. Can note 60 be reduced to a reference to "dword synchronization unexpectedly lost"? Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE theSP26 the SP26 Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
PACCEPT - DONE "and" s/b " and" Author: Isi-bday Subject: Highlight Date: 5/21/2008 7:25:02 PM -07'00' ACCEPT - DONE (agree. The Broadcast also occurs on transitions from SP1 to SP4, SP4 to SP5, and SP4 to SP6, and SP7 to SP6, none of which are mentioned by e). This change will pick up all of them. It is harder to understand why that confirmation is sent, though...) d) and e) Suggest simplifying language to just: d) after an expander phy's SP state machine sends a SATA Port Selector Change confirmation (see 6.8.3); Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' REJECT (moot as the item was totally reworded)

COMWAKE detected

COMWAKE Detected

DISCOVER response upon entry to SP1:OOB_AwaitCOMX, and if no COMWAKE detected message was received while in SP1:OOB_AwaitCOMX before the transition to SP0:OOB_COMINIT (see 6.8.3.3.2):

- f) after an expander phy completes the link reset sequence (see 7.9);
- after a virtual phy has been enabled or completed processing a reset requested by the SMP PHY CONTROL function LINK RESET or HARD RESET phy operations (see 10.4.3.28); and
- h) after an STP/SATA bridge receives an initial Register Device to host FIS (see 9.3.1).

In zoning expander devices with zoning enabled, forwarding Broadcasts is subject to restrictions defined in 4.9.5.

In zoning expander devices with zoning enabled, a Broadcast (Change) for an expander phy-related reason shall be originated from the source zone group of the expander phy causing the Broadcast (Change) or from

Expander devices shall originate Broadcast (Change) for the following expander device-related reasons:

- a) after a self-configuring expander device has changed its <u>CONFIGURING bit</u> from one to zero in the SMP REPORT GENERAL response (see 10.4.3.4) as described in 4.7.2. In zoning expander devices with zoning enabled, the source zone group shall be 01h;
- b) after a locked expander device is unlocked (see 4.9.6.5 and 10.4.3.23), with the source zone group a specified in 4.9.6.5 and 10.4.3.23.

Expander devices shall forward Broadsast (Change) for the following reasons:

a) after an expander phy receives Broadcast (Change).

For a virtual phy, if there is any time after a reset is originated during which connection requests to the attached SAS address result in connection responses of OPEN_REJECT (NO DESTINATION), the expander device shall originate the Broadcast (Change) twice, once at the start of the gest (i.e., when the SAS address becomes unavailable) and once at its completion (i.e., when the SAS address becomes available). If there is no such time window, the expander device shall originate the Broadcast (Change) once.

SAS initiator ports may originate Broadcast (Change) to force other SAS initiator ports and expander ports to re-run the discover process, but should not be sent by SAS target ports.

A SAS initiator port that receives Broadcast (Change) shall follow the SAS initiator device rules (see 7:9.2) to discover and configure the topology.

An expander device that receives Broadcast (Change) shall follow the expander device rules (see 7.9.3) to discover and configure the topology.

See 10.4.3.4 for details on counting Broadcast (Change) origination in an expander device.

7.12 Connections

7.12.1 Connections overview

A connection is opened between a SAS initiator port and a SAS target port before communication begins. A connection is established between one SAS initiator phy in the SAS initiator port and one SAS target phy in the SAS target port.

SSP initiator ports open SSP connections to transmit SCSI commands, task management functions, or transfer write data. SSP target ports open SSP connections to transfer read data or transmit status.

SMP initiator ports open SMP connections to transmit SMP requests and receive SMP responses.

STP initiator ports and STP target ports open STP connections to transmit SATA frames. An STP target port in an expander device opens STP connections on behalf of SATA devices.

The OPEN address frame is used to request that a connection be opened (see 7.12.2.1). AIP, OPEN_ACCEPT and OPEN_REJECT are the responses to an OPEN address frame (see 7.12.2.2). BREAK is used to abort connection requests (see 7.12.6) and to unilaterally break a connection (see 7.12.8). CLOSE is used for orderly closing a connection (see 7.12.7).

Working Draft Serial Attached SCSI - 2 (SAS-2)

343

Page: 343 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' REJECT (moot as the item was totally reworded and combined with d)) COMWAKE detected COMWAKE Detected Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE CONFIGURING bit SELF CONFIGURING bit to match Isi-bbesmer comment on first page Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE This << be 01h: >> should be << be 01h: and>> Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' see 4.9.6.5 see 4.9.6.5, 4.9.6.6 since zone lock inactivity timer expiration also causes Broadcast (Change) Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' in 4.9.6.5 in 4.9.6.5, 4.9.6.6 since zone lock inactivity timer expiration also causes Broadcast (Change) Author: Isi-gpenokie Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE This << the following reasons: >> should be << the following reason: >> Subject: Highlight Date: 5/21/2008 7:26:39 PM -07'00'

DISCOVER response upon entry to SP1:00B AwaitCOMX, and if no COMWAKE detected message was received while in SP1:OOB AwaitCOMX before the transition to SP0:OOB COMINIT (see 6.8.3.3.2):

- after an expander phy completes the link reset sequence (see 7.9);
- g) after a virtual phy has been enabled or completed processing a reset requested by the SMP PHY CONTROL function LINK RESET or HARD RESET phy operations (see 10.4.3.28); and
- h) after an STP/SATA bridge receives an initial Register Device to host FIS (see 9.3.1).

In zoning expander devices with zoning enabled, forwarding Broadcasts is subject to restrictions defined in 4.9.5.

In zoning expander devices with zoning enabled, a Broadcast (Change) for an expander phy-related reason shall be originated from the source zone group of the expander phy causing the Broadcast (Change) or from

Expander devices shall originate Broadcast (Change) for the following expander device-related reasons:

- a) after a self-configuring expander device has changed its CONFIGURING bit from one to zero in the SM REPORT GENERAL response (see 10.4.3.4) as described in 4.7.2. In zoning expander devices with zoning enabled, the source zone group shall be 01h;
- b) after a locked expander device is unlocked (see 4.9.6% and 10.4.3.23), with the source zone group as specified in 4.9.6.5 and 10.4.3.23.

Expander devices shall forward Broadcast (Change) for the following reasons:

a) after an expander phy receives Broadcast (Change).

For a virtual phy, if there is any time after a reset is originated during which connection requests to the attached SAS address result in connection responses of OPEN REJECT (NO DESTINATION), the expander device shall originate the Broadcast (Change) twice, once at the start of the reset (i.e., when the SAS address becomes unavailable) and opce at its completion (i.e., when the SKS address becomes available). If there is no such time window, the expander device shall originate the Broadcast (Change) once.

SAS initiator ports may originate Broadcast (Change) to force other SAS initiator ports and expander ports to re-run the discover process, but should not be sent by SAS target ports.

A SAS initiator port that receives Broadcast (Change) shall follow the SAS initiater device rules (see 7.9.2) to discover and configure the topology.

An expander device that receives Broadcast (Change) shall-follow the expander device rules (see 7.9.3) to discover and configure the topology.

See 10.4.3.4 for details on counting Breadcast (Change) origination in an expander device.

7.12 Connections

7.12.1 Connections overview

A connection is opened between a SAS initiator port and a SAS target port before communication begins. A connection is established between one SAS initiator phy in the SAS initiator port and one SAS target phyri the SAS target port.

SSP initiator ports open SSP connections to transmit SCSI commands, task management functions, of transfer write data. SSP target ports open SSP connections to transfer read data or transmit status

SMP initiator ports open SMP connections to transmit SMP requests and receive SMP responses.

STP initiator ports and STP target ports open STP connections to transmit SATA frames. An STP target port in an expander device opens STP connections on behalf of SATA devices

The OPEN address frame is used to request that a connection be covered (see 7.12.2.1). AIP, OPEN ACCEPT and OPEN REJECT are the responses to an OPEN address frame (see 7.12.2.2). BREAK is used to abort connection requests (see 7.12.6) and to unilaterally break a connection (see 7.12.8). CLOSE is used for orderly closing a connection (see 7.12.7).

TACCEPT - DONE

This << (NO DESTINATION), the expander >> should be << (NO DESTINATION), then the expander >>

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE the then the

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

ACCEPT - DONE ("SAS target ports not originate Broadcast (Change).")

This << process, but should not be sent by >> should be << process, but a Broadcast (Change) should not be sent by >>

Author: RElliott Subject: Cross-Out Date: 9/3/2008 2:22:45 PM -07'00' ACCEPT - DONE

A SAS initiator port that receives Broadcast (Change) shall follow the SAS initiator device rules (see 7.9.2) to discover and

An expander device that receives Broadcast (Change) shall follow the expander device rules (see 7.9.3) to discover and configure the topology

This section is for generation only, not reception. 7.9.2 and 7.9.3 are being moved into 4.7 to collect all app client responsibilities in

Author: Isi-bday Subject: Highlight Date: 9/1/2008 12:18:10 PM -07'00' ACCEPT - DONE (comments added next to each change.)

This section should indicate logical phys.

Author: ibm-steve-wallace Subject: Highlight Date: 5/21/2008 7:30:31 PM -07'00'

ACCEPT - DONE (as "transfer read data, request write data, and transmit service responses". Also changed "or" to "and" in the previous sentence.)

SSP target ports also open a connection to transfer an XFER_RDY (request write data).

Author: elx-bmartin Subject: Highlight Date: 5/25/2008 5:48:07 PM -07'00' ACCEPT - DONE s.b.

Author: wdc-mevans

of a

343

Date: 5/25/2008 5:48:18 PM -07'00' REJECT

for orderly closing a connection

to close a connection in a normal manner.

Comments from page 343 continued on next page

DISCOVER response upon entry to SP1:OOB_AwaitCOMX, and if no COMWAKE detected message was received while in SP1:OOB_AwaitCOMX before the transition to SP0:OOB_COMINIT (see 6.8.3.3.2):

- f) after an expander phy completes the link reset sequence (see 7.9);
- after a virtual phy has been enabled or completed processing a reset requested by the SMP PHY CONTROL function LINK RESET or HARD RESET phy operations (see 10.4.3.28); and
- h) after an STP/SATA bridge receives an initial Register Device to host FIS (see 9.3.1).

In zoning expander devices with zoning enabled, forwarding Broadcasts is subject to restrictions defined in 4.9.5.

In zoning expander devices with zoning enabled, a Broadcast (Change) for an expander phy-related reason shall be originated from the source zone group of the expander phy causing the Broadcast (Change) or from zone group 1.

Expander devices shall originate Broadcast (Change) for the following expander device-related reasons:

- a) after a self-configuring expander device has changed its CONFIGURING bit from one to zero in the SMP REPORT GENERAL response (see 10.4.3.4) as described in 4.7.2. In zoning expander devices with zoning enabled, the source zone group shall be 01h;
- b) after a locked expander device is unlocked (see 4.9.6.5 and 10.4.3.23), with the source zone group as specified in 4.9.6.5 and 10.4.3.23.

Expander devices shall forward Broadcast (Change) for the following reasons:

a) after an expander phy receives Broadcast (Change).

For a virtual phy, if there is any time after a reset is originated during which connection requests to the attached SAS address result in connection responses of OPEN_REJECT_(NO DESTINATION), the expander device shall originate the Broadcast (Change) twice, once at the start of the reset (i.e., when the SAS address becomes unavailable) and once at its completion (i.e., when the SAS address becomes available). If there is no such time window, the expander device shall originate the Broadcast (Change) once.

SAS initiator ports may originate Broadcast (Change) to force other SAS initiator ports and expander ports to re-run the discover process, but should not be sent by SAS target ports.

A-SAS initiator port that receives Broadcast (Change) shall follow the SAS initiator device rules (see 7.9.2) to discover and configure the topology.

An expander device that receives Broadcast (Change) shall follow the expander device rules (see 7.9.3) to discover and configure the topology:

See 10.4.3.4 for details on counting Broadcast (Change) origination in an expander device.

7.12 Connections

7.12.1 Connections overview

A connection is opened between a SAS initiator port and a SAS target port before communication begins. A connection is established between one SAS initiator phy in the SAS initiator port and one SAS target phy in the SAS target port.

SSP initiator ports open SSP connections to transmit SCSI commands, task management functions, or transfer write data. SSP target ports open SSP connections to transfer read data or transmit status.

SMP initiator ports open SMP connections to transmit SMP requests and receive SMP responses.

STP initiator ports and STP target ports open STP connections to transmit SATA frames. An STP target port in an expander device opens STP connections on behalf of SATA devices.

The OPEN address frame is used to request that a connection be opened (see 7.12.2.1). AIP, OPEN_ACCEPT and OPEN_REJECT are the responses to an OPEN address frame (see 7.12.2.2). BREAK is used to abort connection requests (see 7.12.6) and to unilaterally break a connection (see 7.12.8). CLOSE is used for orderly closing a connection (see 7.12.7).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Connections use a single pathway from the SAS initiator phy to the SAS target phy. While a connection is open, only one pathway shall be used for that connection.

For STP connections, connections may be between the STP initiator port and an STP target port of an STP/ SATA bridge in an expander device. The SATA device behind the STP/SATA bridge is not aware of SATA connection management

A wide port may have separate connections on each of its phys.

7.12.2 Opening a connection

7.12.2.1 Connection request

The OPEN address frame (see 7.8.3) is used to open a connection from a source port to a destination por using one source phy and one destination phy.

To make a connection request, the source port shall transmit an OPEN address frame through an available phy. The source phy shall transmit idle dwords after the OPEN address frame until it seceives a response or aborts the connection request with BREAK.

After transmitting an OPEN address frame, the source phy shall initialize and start a 1 ms Open Timeout timer. Whenever an AIP is received, the source phy shall reinitialize and restart the Open Timeout timer. Source phys are not required to enforce a limit on the number of AIPs received before aborting the connection request. When any connection response is received, the source phy shall reinitialize the Open Timeout timer. If the Open Timeout timer expires before a connection response is received, the source phy shall transmit BREAK to about the connection request (see 7.12.6).

The OPEN address frame flows through expander devices onto intermediate physical links, it/physical links, it/physical links, it/physical links. It/physical links intermediate physical links. The physical links in the pathway with higher arbitration priority (see 7.12.3). Rate matching shall be used on any physical links in the pathway with negotiated physical link rates that are faster than the requested connection rate (see 7.13).

A wide port should not attempt to establish more connections to a destination port than the destination port width or the width of the narrowest physical link on the pathway to the destination port. A wide port should not attempt to establish more connections than the width of the narrowest common physical link on the pathways to the destination ports of those connections. Additional requirements for STP connection requests are defined in 7.17.5. Additional requirements for SMP connection requests are defined in 7.18.3.

```
Page: 344
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
    phys
    s/b
    logical phys
    (per Isi-bday comment on this section)
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
    one source phy and one destination phy
    one source phy (i.e., one logical phy in the source port) and one destination phy (i.e., one logical phy in the destination port)
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
    available phy
    available logical phy
    (per Isi-bday comment on this section)
Author: wdc-mevans
Subject: Highlight
Date: 5/30/2008 3:03:37 PM -07'00'
REJECT (first noun/subject convention)
   it
    the phy
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    the
    s/b
    then the
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
    physical links
```

Comments from page 344 continued on next page

logical links

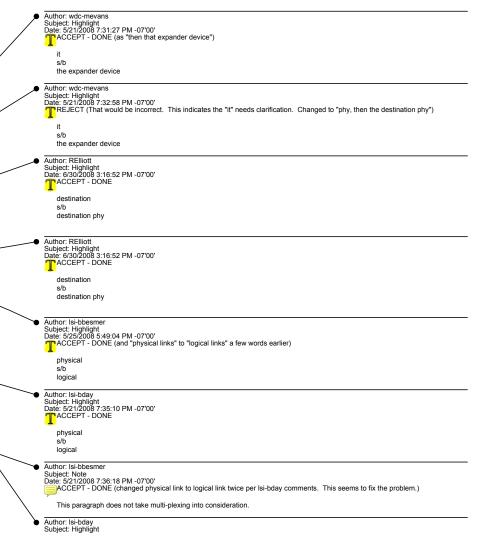
Connections use a single pathway from the SAS initiator phy to the SAS target phy. While a connection is open, only one pathway shall be used for that connection.

For STP connections, connections may be between the STP initiator port and an STP target port of an STP/ SATA bridge in an expander device. The SATA device behind the STP/SATA bridge is not aware of SAS connection management.

A wide port may have separate connections on each of its phys.

7.12.2 Opening a connection

7.12.2.1 Connection request


The OPEN address frame (see 7.8.3) is used to open a connection from a source port to a destination port using one source phy and one destination phy.

To make a connection request, the source port shall transmit an OPEN address frame through a vavailable phy. The source phy shall transmit idle dwords after the OPEN address frame until it receives a response or aborts the connection request with BREAK.

After transmitting an OPEN address frame, the source phy shall initialize and start at this Open Timeout times. Whenever an AIP is received, the source phy shall reinitialize and restart the Open Timeout time. Source phys are not required to enforce a limit on the number of AIPs received before aborting the connection request. When any connection response is received, the source phys shall reinitialize the Open Timeout timer. If the Open Timeout timer expires before a connection response is received the source phy shall transmit BREAK to abort the connection request (see 7.12.6).

The OPEN address frame flows through expander devices the intermediate physical links. If an expander device on the pathway is unable to forward the connection request, it feturns OPEN_REJECT (see 7.12.4). If the OPEN address frame reaches the destination, it feturns either OPEN_ACCEPT or OPEN_REJECT unless the OPEN address frame passed an OPEN address frame from the destination with higher arbitration priority (see 7.12.3). Rate matching shall be used on any physical links in the pathway with negotiated physical links rates that are faster than the requested connection rate (see 7.13).

A wide port should not attempt to establish more connections to a destination port than the destination port width or the width of the narrowest physical is the pathway to the destination port. A wide port should not attempt to establish more connections than the width of the narrowest common physical link on the pathways to the destination ports of those connections. Additional requirements for STP connection requests are defined in 7.17.5. Additional requirements for SMP connection requests are defined in 7.17.5.

Connections use a single pathway from the SAS initiator phy to the SAS target phy. While a connection is open, only one pathway shall be used for that connection.

For STP connections, connections may be between the STP initiator port and an STP target port of an STP/ SATA bridge in an expander device. The SATA device behind the STP/SATA bridge is not aware of SAS connection management.

A wide port may have separate connections on each of its phys.

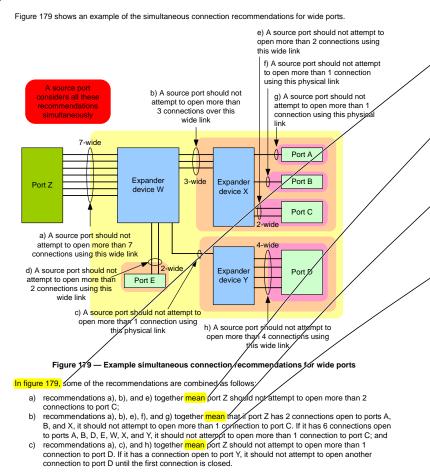
7.12.2 Opening a connection

7.12.2.1 Connection request

The OPEN address frame (see 7.8.3) is used to open a connection from a source port to a destination port using one source phy and one destination phy.

To make a connection request, the source port shall transmit an OPEN address frame through an available phy. The source phy shall transmit idle dwords after the OPEN address frame until it receives a response or aborts the connection request with BREAK.

After transmitting an OPEN address frame, the source phy shall initialize and start a 1 ms Open Timeout timer. Whenever an AIP is received, the source phy shall reinitialize and restart the Open Timeout timer. Source phys are not required to enforce a limit on the number of AIPs received before aborting the connection request. When any connection response is received, the source phy shall reinitialize the Open Timeout timer. If the Open Timeout timer expires before a connection response is received, the source phy shall transmit BREAK to abort the connection request (see 7.12.6).


The OPEN address frame flows through expander devices onto intermediate physical links. If an expander device on the pathway is unable to forward the connection request, it returns OPEN_REJECT (see 7.12.4). If the OPEN address frame reaches the destination, it returns either OPEN_ACCEPT or OPEN_REJECT unless the OPEN address frame passed an OPEN address frame from the destination with higher arbitration priority (see 7.12.3). Rate matching shall be used on any physical links in the pathway with negotiated physical link rates that are faster than the requested connection rate (see 7.13).

A wide port should not attempt to establish more connections to a destination port than the destination port width or the width of the narrowest physical link on the pathway to the destination port. A wide port should not attempt to establish more connections than the width of the narrowest common physical link on the pathways to the destination ports of those connections. Additional requirements for STP connection requests are defined in 7.17.5. Additional requirements for SMP connection requests are defined in 7.18.3.

344 Working Draft Serial Attached SCSI - 2 (SAS-2)

Date: 5/21/2008 7:35:20 PM -07'00'

CACCEPT - DONE
physical
s/b
logical

Page: 345 Author: Isi-bday Subject: Highlight Date: 6/28/2008 3:06:16 PM -07'00' ACCEPT - DONE (added " Multiplexing is disabled in this example.") This needs statement somewhere saying no multiplexxing in this example. Author: RElliott Subject: Highlight
Date: 8/27/2008 4:01:15 PM -07'00'
PACCEPT - DONE mean s/h specify that Author: RElliott Subject: Highlight Date: 8/27/2008 4:01:20 PM -07'00' ACCEPT - DONE mean s/b specify that Author: RElliott Subject: Highlight Date: 8/27/2008 4:01:27 PM -07'00' TACCEPT - DONE mean specify that

7.12.2.2 Results of a connection request

After a phy transmits an OPEN address frame, it shall expect one or more of the results listed in table 141.

Table 141 — Connection Results of a connection request

Result	Description
Receive AIP	Arbitration in progress. When so expander device is trying to open a consection to the selected destination port, it returns an AIP to the source phy. The source phy shall reinitialize and restart its Open Timesut timer each time it receives an AIP. AIP is sent by an expander device while it is internally arbitrating for access to an expander port.
Receive OPEN_ACCEPT	Connection request accepted. OPEN_ACCEPT's transmitted by the destination phy.
Receive OPEN_REJECT	Connection request rejected. OPEN_REJECT is transmitted by the destination phy or by an expander device in the partial pathway. The different versions are described in 7.2.6.10. See 4.5 for I_T nexus loss handling. See X8.3 for handling of OPEN_REJECT (CONNECTION RATE NOT SUPPORTED) for connection rates greater than 1.5 Gbps.
Receive OPEN	If AIP has been previously received, this indicates an overriding connection request.
address frame	If AIP has not yet been received, this indicates two connection requests crossing on the physical link. Arbitration fairness determines which one wins (see 7.12.3).
Receive BREAK	The destination phy or an expander device in the partial pathway may reply with BREAK indicating the connection is not being established.
Open Timeout timer request by transmitting BREAK (7.12.6). See 4.5 for I_T nexus loss handling.	

7.12.3 Arbitration fairness

SAS supports least-recently used arbitration fairness for connection requests.

Each SAS port and expander port shall include an Arbitration Wait Time timer which counts the time from the moment when the port makes a connection request until the request is accepted or rejected. The Arbitration Wait Time timer is in the port layer state machine (see 8.2.2). The Arbitration Wait Time timer shall count in microseconds from 0 μ s to 32 767 μ s and in milliseconds from 32 768 μ s to 32 767 μ s. The Arbitration Wait Time timer shall stop incrementing when its value reaches 32 767 μ s + 32 768 μ s.

A SAS port (i.e., <u>SAS initiator ports and SAS target ports</u>) shall start the Arbitration Wait Time timer when it transmits the first OPEN address frame (see 7.8.3) for the connection request. When the SAS port retransmits the OPEN address frame (e.g., after losing arbitration and handling an inbound OPEN address frame), it shall set the ARBITRATION WAIT TIME field to the current value of the Arbitration Wait Time timer.

A SAS port should set the Arbitration Wait Time timer to zero when it transmits the first OPEN address frame for the connection request. A SAS initiator port or SAS target port may be unfair by setting the ARBITRATION WAIT TIME field in the OPEN address frame (see 7.8.3) to a higher value than its Arbitration Wait Time timer indicates. However, an unfair SAS port shall not set the ARBITRATION WAIT TIME field to a value greater than or equal to 8000h; this limits the amount of unfairness and helps prevent livelocks.

The expander port that receives an OPEN address frame shall set the Arbitration Wait Time timer to the value of the incoming Arbitration WAIT TIME field and start the Arbitration Wait Time timer as it arbitrates for internal access to the outgoing expander port. When the expander device transmits the OPEN address frame out another expander port, it shall set the outgoing Arbitration WAIT TIME field to the current value of the Arbitration Wait Time timer maintained by the incoming expander port.

Page: 346 Author: wdc-mevans Subject: Highlight Date: 5/22/2008 7:04:45 AM -07'00' REJECT (first noun/subject convention) s/b the phy Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE phy s/b logical phy (per Isi-bday comment on this section) Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE When While Author: wdc-mevans Subject: Highlight Date: 5/21/2008 7:40:28 PM -07'00' REJECT ("expander device" is the first noun and the subject of the sentence, the two normal clues about what "it" is) the expander device Author: wdc-mevans Subject: Highlight Date: 5/21/2008 7:40:48 PM -07'00' REJECT (first noun/subject convention) the source phy Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE ("While an expander device is trying to open a connection to the selected destination port (e.g., while it is internally arbitrating for access to an expander part). It is internally arbitrating for access to an expander port), it...") Delete "AIP is sent by an expander device while it is internally arbitrating for access to an expander port."

and make it into an e.g. in the second sentence. This avoids the ambiguous "it"

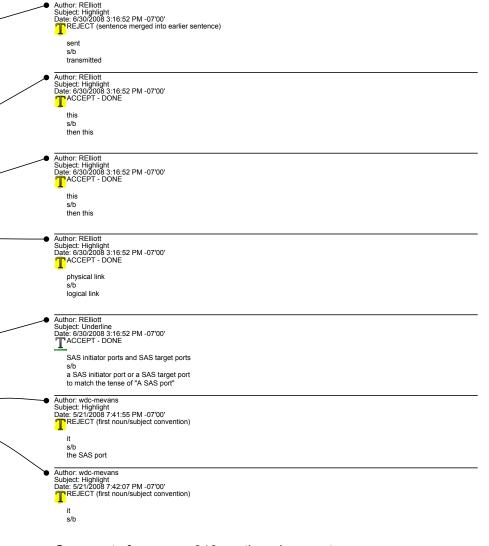
7.12.2.2 Results of a connection request

After a phy transmits an OPEN address frame, it shall expect one or more of the results listed in table

Table 141 — Connection Results of a connection request

Result	Description	
Receive AIP	Arbitration in progress. When an expander device is trying to open a connection to the selected destination port, it returns an AIP to the source phy. The source phy shall reinitialize and restart its Open Timeout timer each time it receives an AIP. AIP is sent by an expander device while it is internally arbitrating for access to an expander port.	
Receive OPEN_ACCEPT	Connection request accepted. OPEN_ACCEPT is transmitted by the destination phy.	
Receive OPEN_REJECT	Connection request rejected. OPEN_REJECT is transmitted by the destination phy or by an expander device in the partial pathway. The different versions are described in 7.2.6.10. See 4.5 for I_T nexus loss handling. See 7.8.3 for handling of OPEN_REJECT (CONNECTION RATE NOT SUPPORTED) for connection rates greater than 1.5 Gbps.	
Receive OPEN	If AIP has been previously received, this indicates an overriding connection request.	
address frame	If AIP has not yet been received, this inflicates two connection requests crossing on the physical link, Arbitration fairness determines which one wins (see 7.12.3).	
Receive BREAK	The destination phy or an expander device in the partial pathway may reply with BREAK indicating the connection is not being established.	
Open Timeout timer expires The source phy shall abort the connection request by transmitting BREAK (97.12.6). See 4.5 for I_T nexus loss handling.		

7.12.3 Arbitration fairness


SAS supports least-recently used arbitration fairness for connection requests.

Each SAS port and expander port shall include an Arbitration Wait Time timer which counts the timer from the moment when the port makes a connection request until the request is accepted or rejected. The Arbitration Wait Time timer is in the port layer state machine (see 8.2.2). The Arbitration Wait—Time timer shall count in microseconds from 0 μs to 32 767 μs and in milliseconds from 32 768 μs. The Arbitration Wait Time timer shall stop incrementing when its value peaches 32 767 ms + 32 768 μs.

A SAS port (i.e., <u>SAS initiator ports and SAS target ports</u>) shall start the Arbitration Wait Time timer when it ransmits the first OPEN address frame (see 7.8.3) for the connection request. When the SAS port retransmits the OPEN address frame (e.g., after losing arbitration and handling an inbound OPEN address frame), it shall set the ARBITRATION WAIT TIME field to the current value of the Arbitration Wait Time timer.

A SAS port should set the Arbitration Wait Time timer to zero when it transmits the first OPEN address frame for the connection request. A SAS initiator port or SAS target port may be unfair by setting the ARBITRATION WAIT TIME field in the OPEN address frame (see 7.8.3) to a higher value that schittration Wait Time timer indicates. However, an unfair SAS port shall not set the ARBITRATION WAIT TIME field to a value greater than or equal to 8000h; this limits the amount of unfairness and helps prevent livelocks.

The expander port that receives an OPEN address frame shall set the Arbitration Wait Time timer to the value of the incoming ArbITRATION WAIT TIME field and start the Arbitration Wait Time timer as it arbitrates for internal access to the outgoing expander port. When the expander device transmits the OPEN address frame out another expander port, it shall set the outgoing ArbITRATION WAIT TIME field to the current value of the Arbitration Wait Time timer maintained by the incoming expander port.

Comments from page 346 continued on next page

T10/1760-D Revision 14

7.12.2.2 Results of a connection request

After a phy transmits an OPEN address frame, it shall expect one or more of the results listed in table 141.

Table 141 — Connection Results of a connection request

28 January 2008

s/b the expander port

Result	Description	
Receive AIP	Arbitration in progress. When an expander device is trying to open a connection to the selected destination port, it returns an AIP to the source phy. The source phy shall reinitialize and restart its Open Timeout timer each time it receives an AIP. AIP is sent by an expander device while it is internally arbitrating for access to an expander port.	
Receive OPEN_ACCEPT	Connection request accepted. OPEN_ACCEPT is transmitted by the destination phy.	
Receive OPEN_REJECT	Connection request rejected. OPEN_REJECT is transmitted by the destination phy or by an expander device in the partial pathway. The different versions are described in 7.2.6.10. See 4.5 for I_T nexus loss handling. See 7.8.3 for handl of OPEN_REJECT (CONNECTION RATE NOT SUPPORTED) for connection rates greater than 1.5 Gbps.	
Receive OPEN address frame	If AIP has been previously received, this indicates an overriding connection request. If AIP has not yet been received, this indicates two connection requests crossing on the physical link. Arbitration fairness determines which one wins (%e 7.12.3).	
Receive BREAK	The destination phy or an expander device in the partial pathway may reply with BREAK indicating the connection is not being established.	
Open Timeout timer expires	The source phy shall abort the connection request by transmitting BREAK (see 7.12.6). See 4.5 for I_T nexus loss handling.	

7.12.3 Arbitration fairness

346

SAS supports least-recently used arbitration fairness for connection requests.

Each SAS port and expander port shall include an Arbitration Wait Time timer which counts the time from the moment when the port makes a connection request until the request is accepted or rejected. The Arbitration Wait Time timer is in the port layer state machine (see 8.2.2). The Arbitration Wait Time timer shall count time rises conds from 0 μ s to 32 767 μ s and in milliseconds from 32 768 μ s. 37 767 ms + 32 768 μ s. The Arbitration Wait Time timer shall stop incrementing when its value regarders 37 767 ms + 32 768 μ s.

A SAS port (i.e., <u>SAS initiator ports and SAS target ports</u>) shall start the Art/litration Wait Time timer when it transmits the first OPEN address frame (see 7.8.3) for the conpection request. When the SAS port retransmits the OPEN address frame (e.g., after losing arbitration and benching an in-bound OPEN address frame), it shall set the ARBITRATION WAIT TIME field to the current value of the Arbitration Wait Time timer.

A SAS port should set the Arbitration Wait Time timer to zero when it transmits the first OPEN address frame for the connection request. A SAS initiator port of SAS target port may be unfair by setting the ARBITRATION WAIT TIME field in the OPEN address frame (see 7.8.3) to a higher value than its Arbitration Wait Time timer indicates. However, an unfair SAS port shall not set the ARBITRATION WAIT TIME field to a value greater than or equal to 8000h; this limits the amount of unfairness and helps prevent livelocks.

The expander port that receives an OPEN address frame shall set the Arbitration Wait Time timer to the value of the incoming ARBITRATION WAIT TIME field and start the Arbitration Wait Time timer as it arbitrates for internal access to the outgoing expander port. When the expander device transmits the OPEN address frame out another expander port, it shall set the outgoing ARBITRATION WAIT TIME field to the current value of the Arbitration Wait Time timer maintained by the incoming expander port.

Working Draft Serial Attached SCSI - 2 (SAS-2)

the SAS port Author: wdc-mevans Subject: Highlight Date: 5/21/2008 7:42:42 PM -07'00' REJECT (first noun/subject convention) the SAS port Author: Isi-apenokie Subject: Highlight Date: 5/25/2008 5:49:48 PM -07'00' ACCEPT - DONE This << equal to 8000h; this limits the amount of unfairness and helps >> should be << equal to 8000h to limit the amount of unfairness and help>> Author: wdc-mevans Subject: Highlight Date: 5/21/2008 7:42:17 PM -07'00' REJECT (first noun/subject convention) the expander port Author: wdc-mevans Subject: Highlight Date: 5/21/2008 7:42:28 PM -07'00' REJECT (first noun/subject convention)

A SAS port shall stop the Arbitration Wait Time timer and set it to zero when it has no more frames to send.

A SAS port shall stop the Arbitration Wait Time timer and set it to zero when t seceives one of the following connection responses:

- a) OPEN ACCEPT;
- b) OPEN_REJECT (PROTOCOL NOT SUPPORTED);
- OPEN REJECT (RESERVED ABANDON 1);
- d) OPEN_REJECT (RESERVED ABANDON 2);
- e) OPEN REJECT (RESERVED ABANDON 3);
- f) OPEN REJECT (STP RESOURCES BUSY); or
- g) OPEN_REJECT (WRONG DESTINATION).

NOTE 61 - Connection responses that are conclusively from the destination phy (see table 122 and table 123 in 7.2.6.10) are included in the list. Except for OPEN_REJECT (RETRY), connection responses that are only from or may be from expandes phys are not included.

When an OPEN REJECT (RETRY) is received:

- a) if the CONTINUE AWT bit is set to one in the Protocol Specific Port mode page (see 10.2.7.4), then a
 connection response of OPEN_REJECT (RETRY) shall not stop the Arbitration Wait Time timer and
 shall not set if to zero; or
- b) If the CONTINUE AWT bit is set to zero, then a SAS port shall stop the Arbitration Wait Time timer and set if to zero.

A SAS port should not stop the Arbitration Wait Time timer and set it to zero when the ceives an incoming OPEN address frame that has priority over the outgoing OPEN address frame according to table 142, regardless of whether it replies with an OPEN_ACCEPT or an OPEN_REJECT.

If two connection requests pass on a physical link, the phy shall determine the winner by comparing OREN address frame field contents using the arbitration priority described in table 142.

Table 142 — Arbitration priority for OPEN address frames passing on a physical link

Bits 79-64 (79 is MSB)	Bits 63-0 (0 is LSB)
ARBITRATION WAIT TIME field value	SOURCE SAS ADDRESS field value

See 7.8.3 for details on the OPEN address frame and the ARBITRATION WAIT TIME field.

7.12.4 Arbitration inside an expander device

7.12.4.1 Expander phy arbitration requirements

An expander phy shall set its Request Path request Retry Priority Status argument to IGNORE AWT when it requests a path after:

- a) it has forwarded an OPEN address frame to the physical link;
- b) an OPEN address frame is received with higher arbitration priority (see 7.12.3); and
- the destination SAS address and connection rate of the received OPEN address frame are not equal
 to the source SAS address and connection rate of the transmitted OPEN address frame (see 7.15.4
 and 7.15.9).

Otherwise, the expander phy shall set the Retry Priority Status argument to NORMAL.

See the XL state machine (see 7.15) for detailed expander phy requirements.

Page: 347 Author: wdc-mevans Subject: Highlight Date: 5/21/2008 7:45:03 PM -07'00' REJECT (first noun/subject convention) s/b the SAS port Author: wdc-mevans Subject: Highlight Date: 5/21/2008 7:43:52 PM -07'00' TACCEPT - DONE (as "the Arbitration Wait Time timer") s/b the timer Author: wdc-mevans Subject: Highlight Date: 5/21/2008 7:45:08 PM -07'00' REJECT (first noun/subject convention) the SAS port Author: wdc-mevans Subject: Highlight Date: 5/21/2008 7:43:48 PM -07'00' ACCEPT - DONE (as "the Arbitration Wait Time timer") s/b the timer Author: RElliott Subject: Note Date: 9/3/2008 3:52:09 PM -07'00' ACCEPT - DONE OPEN_REJECT (ZONE VIOLATION) belongs here Author: wdc-mevans Subject: Cross-Out Date: 5/25/2008 5:50:05 PM -07'00' TREJECT (this is important; several connection responses may or may not be from the destination phy. The list only includes the ones that are definitely from the destination phy.) conclusively s/b [Delete the unnecessary word.] Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 5:50:17 PM -07'00'

This note<< NOTE 61 - Connection >> should be modified be deleting the 1st sentence and change << receives one of the

TREJECT (the SAS port doesn't know if it receives them from the destination phy or not, so that cannot be normative text. It's informative that we know some of them must be from the destination phy and others are questionable.)

A SAS port shall stop the Arbitration Wait Time timer and set it to zero when it has no more frames to send.

A SAS port shall stop the Arbitration Wait Time timer and set it to zero when it receives one of the following connection responses:

- a) OPEN ACCEPT;
- b) OPEN_REJECT (PROTOCOL NOT SUPPORTED);
- c) OPEN_REJECT (RESERVED ABANDON 1);
 - d) OPEN_REJECT (RESERVED ABANDON 2);
 - e) OPEN REJECT (RESERVED ABANDON 3);
 - f) OPEN REJECT (STP RESOURCES BUSY); or
 - g) OPEN_REJECT (WRONG DESTINATION).

NOTE 61 - Connection responses that are conclusively from the destination phy (see table 122 and table 123 in 7.2.6.10) are included in the list. Except for OPEN REJECT (RETRY), connection responses that are only from or may be from expander phys are not is cluded.

When an OPEN REJECT (RETRY) is received:

- a) if the CONTINUE AWT bit is set to one in the Protocol-Specifie Fort mode page (see 10.2.7.4), then a
 connection response of OPEN_REJECT (RETRY) shall not stop the Arbitration Wait Time timer and
 shall not set if te serie; er
- b) If the CONTINUE AWT bit is set to zero, then a SAS port shall stop the Arbitration Weit Time timer and set if to zero.

A SAS port should not stop the Arbitration Weit Time timer and set it to zero when it receives an incoming OPEN address frame that has priority over the outgoing OPEN address frame according to table 142, regardless of whether it replies with an OPEN_ACCEPT or an OPEN_REJECT.

When arbitrating for access to so outgoing expander port, the expander device shall select the connection request based on the rules described in 7.12.4.

If two connection requests pass on a physical link, the phy shall determine the winner by comparing OPEN address frame field contents using the arbitration priority described in table 142.

Table 142 — Arbitration priority for OPEN address frames passing on a physical link

Bits 79-64 (79 is MSB)	Bits 63-0 (0 is LSB)
ARBITRATION WAIT TIME field value	SOURCE SAS ADDRESS field value

See 7.8.3 for details on the OPEN address frame and the ARBITRATION WAIT TIME field.

7.12.4 Arbitration inside an expander device

7.12.4.1 Expander phy arbitration requirements

An expander phy shall set its Request Path request Retry Priority Status argument to IGNORE AWT when it requests a path after:

- a) it has forwarded an OPEN address frame to the physical link;
- b) an OPEN address frame is received with higher arbitration priority (see 7.12.3); and
- the destination SAS address and connection rate of the received OPEN address frame are not equal
 to the source SAS address and connection rate of the transmitted OPEN address frame (see 7.15.4
 and 7.15.9).

Otherwise, the expander phy shall set the Retry Priority Status argument to NORMAL.

See the XL state machine (see 7.15) for detailed expander phy requirements.

following connection responses >> to << receives one of the following connection responses from a destination phy (see ...):>>. Author: RElliott Subject: Highlight
Date: 11/5/2008 10:31:59 PM
TACCEPT - DONE OPEN_REJECT (RETRY) OPEN_REJECT (RESERVED CONTINUE 0), or OPEN_REJECT (RESERVED CONTINUE 1) since this deals with reception, not transmission, the convention is to mention the aliases Author: RElliott Subject: Highlight Date: 11/5/2008 10:31:44 PM TACCEPT - DONE OPEN_REJECT (RETRY) OPEN_REJECT (RESERVED CONTINUE 0), or OPEN_REJECT (RESERVED CONTINUE 1) since this deals with reception, not transmission, the convention is to mention the aliases Author: wdc-mevans Subject: Highlight
Date: 5/22/2008 1:31:07 PM -07'00'

ACCEPT - DONE (as "the Arbitration Wait Time timer") the timer Author: wdc-mevans Subject: Highlight Date: 5/22/2008 1:31:02 PM -07'00' ACCEPT - DONE (as "the Arbitration Wait Time timer") s/b the timer Author: wdc-mevans Subject: Highlight
Date: 5/21/2008 7:45:15 PM -07'00'

REJECT (first noun/subject convention) s/b the SAS port Author: wdc-mevans Subject: Highlight Date: 5/22/2008 1:31:31 PM -07'00' ACCEPT - DONE (as "the Arbitration Wait Time timer") s/b

Comments from page 347 continued on next page

the timer

Author: wdc-mevans

Subject: Highlight Date: 5/21/2008 7:45:32 PM -07'00'

A SAS port shall stop the Arbitration Wait Time timer and set it to zero when it has no more frames to send.

A SAS port shall stop the Arbitration Wait Time timer and set it to zero when it receives one of the following connection responses:

- a) OPEN ACCEPT;
- b) OPEN_REJECT (PROTOCOL NOT SUPPORTED);
- c) OPEN_REJECT (RESERVED ABANDON 1);
 - d) OPEN_REJECT (RESERVED ABANDON 2);
 - e) OPEN REJECT (RESERVED ABANDON 3);
 - f) OPEN REJECT (STP RESOURCES BUSY); or
 - g) OPEN_REJECT (WRONG DESTINATION).

NOTE 61 - Connection responses that are cenelusively from the destination phy (see table 122 and table 123 in 7.2.6.10) are included in the list. Except for OPEN_REJECT (RETRY), connection responses that are only from or may be from expander phys are not included.

When an OPEN REJECT (RETRY) is received:

- if the CONTINUE AWT bit is set to one in the Protocol-Specific Port mode page (see 10.2.7.4), then a
 connection response of OPEN_REJECT (RETRY) shall not stop the Arbitration Wait Time timer and
 shall not set if to zero; or
- b) If the CONTINUE AWT bit is set to zero, then a SAS port shall stop the Arbitration Wait Time timer and set if to zero.

A SAS port should not stop the Arbitration Wait Time timer and set it to zero when it receives an incoming OPEN address frame that has priority over the outgoing OPEN address frame according to table 142, regardless of whether it replies with an OPEN_ACCEPT or an OPEN_REJECT.

When arbitrating for access to an outgoing expander port, the expander device shall select the connection request based on the rules described in 7.12.4.

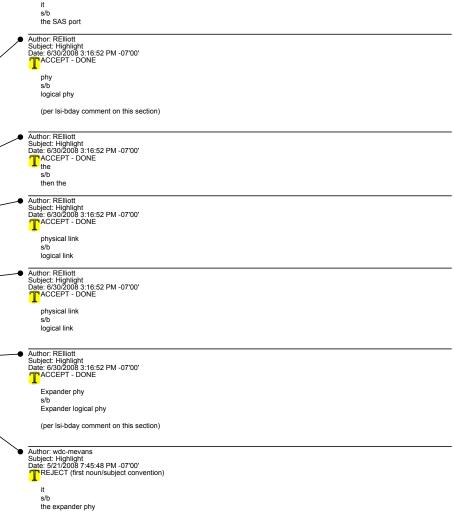
If two connection requests pass on a physical link, the rny shall determine the winner by comparing OPEN address frame field contents using the arbitration priority described in table 142.

Table 142 — Arbitration priority for OPEN address frames passing on a physical link

Bits 79-64 (79 is MSB)	Bits 63-0 (0 is LSB)	
ARBITRATION WAIT TIME field value	SOURCE SAS ADDRESS field value	

See 7.8.3 for details on the OPEN address frame and the ARBITRATION WAIT TIME field.

7.12.4 Arbitration inside an expander device


7.12.4.1 Expander phy arbitration requirements

An expander phy shall set its Request Path request Retry Priority Status argument to IGNORE AWT when it requests a path after:

- a) it has forwarded an OPEN address frame to the physical link;
- b) an OPEN address frame is received with higher arbitration priority (see 7.12.3); and
- c) the destination SAS address and connection rate of the received OPEN address frame are not equal to the source SAS address and connection rate of the transmitted OPEN address frame (see 7.15.4 and 7.15.9).

Otherwise, the expander phy shall set the Retry Priority Status argument to NORMAL.

See the XL state machine (see 7.15) for detailed expander phy requirements.

REJECT (first noun/subject convention)

A SAS port shall stop the Arbitration Wait Time timer and set it to zero when it has no more frames to send.

A SAS port shall stop the Arbitration Wait Time timer and set it to zero when it receives one of the following connection responses:

- a) OPEN ACCEPT;
- b) OPEN_REJECT (PROTOCOL NOT SUPPORTED);
- c) OPEN_REJECT (RESERVED ABANDON 1);
 - d) OPEN_REJECT (RESERVED ABANDON 2);
 - e) OPEN REJECT (RESERVED ABANDON 3);
 - f) OPEN REJECT (STP RESOURCES BUSY); or
 - g) OPEN_REJECT (WRONG DESTINATION).

NOTE 61 - Connection responses that are cenelusively from the destination phy (see table 122 and table 123 in 7.2.6.10) are included in the list. Except for OPEN_REJECT (RETRY), connection responses that are only from or may be from expander phys are not included.

When an OPEN_REJECT (RETRY) is received:

- a) if the CONTINUE AWT bit is set to one in the Protocol-Specific Port mode page (see 10.2.7.4), then a
 connection response of OPEN_REJECT (RETRY) shall not stop the Assitration Wait Time timer and
 shall not set if to zero; or
- b) If the CONTINUE AWT bit is set to zero, then a SAS port shall stop the Arbitration Wait Time timer and set if to zero.

A SAS port should not stop the Arbitration Wait Time timer and set to zero when it receives an incoming OPEN address frame that has priority over the outgoing OPEN address frame according to table 142, regardless of whether it replies with an OPEN_ACCEPT or an OPEN_REJECT.

When arbitrating for access to an outgoing expander port, the expander device shall select the connection request based on the rules described in 7.12.4.

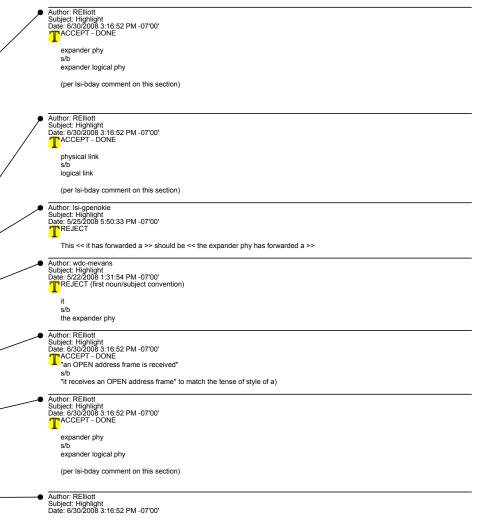
If two connection requests pass on a physical link, the phy shall determine the winner by comparing OPEN address frame field contents using the arbitration priority described in table 142.

Table 142 — Arbitration priority for OPEN address frames passing on a physical limit

Bits 79-64 (7/9 is MSB)	Bits 63-0 (0 is J.5B)	
ARBITRATION WAIT TIME field value	SOURCE SAS ABURESS	

See 7.8.3 for details on the OPEN address frame and ## ARBITRATION WAIT TIME field.

7.12.4 Arbitration inside an expander device


7.12.4.1 Expander p/y arbitration requirements

An expander phy shall set its Request Path request Retry Priority Status of gument to IGNORE AWT when it requests a path after:

- a) it has forwarded ar OPEN address frame to the physical link
- b) an OPEN address frame is received with higher arbitration priority (see 7.12.3); and
- c) the destination SAS address and connection rate of the received OPEN address frame are not equal to the source SAS address and connection rate of the transmitted OPEN address frame (see 7.15.4 and 7.15.9).

Otherwise, the expander phy snall set the Retry Priority Status argument to NORMAL.

See the XL state machine (see 7.15) for detailed expander phy requirements.

Comments from page 347 continued on next page

A SAS port shall stop the Arbitration Wait Time timer and set it to zero when it has no more frames to send.

A SAS port shall stop the Arbitration Wait Time timer and set it to zero when it receives one of the following connection responses:

- a) OPEN ACCEPT;
- b) OPEN_REJECT (PROTOCOL NOT SUPPORTED);
- c) OPEN_REJECT (RESERVED ABANDON 1);
 - d) OPEN_REJECT (RESERVED ABANDON 2);
 - e) OPEN REJECT (RESERVED ABANDON 3);
 - f) OPEN REJECT (STP RESOURCES BUSY); or
 - g) OPEN_REJECT (WRONG DESTINATION).

NOTE 61 - Connection responses that are conclusively from the destination phy (see table 122 and table 123 in 7.2.6.10) are included in the list. Except for OPEN_REJECT (RETRY), connection responses that are only from or may be from expander phys are not included.

When an OPEN_REJECT (RETRY) is received:

- a) if the CONTINUE AWT bit is set to one in the Protocol-Specific Port mode page (see 10.2.7.4), then a
 connection response of OPEN_REJECT (RETRY) shall not stop the Arbitration Wait Time timer and
 shall not set if to zero; or
- b) If the CONTINUE AWT bit is set to zero, then a SAS port shall stop the Arbitration Wait Time timer and set if to zero.

A SAS port should not stop the Arbitration Wait Time timer and set it to zero when it receives an incoming OPEN address frame that has priority over the outgoing OPEN address frame according to table 142, regardless of whether it replies with an OPEN_ACCEPT or an OPEN_REJECT.

When arbitrating for access to an outgoing expander port, the expander device shall select the connection request based on the rules described in 7.12.4.

If two connection requests pass on a physical link, the phy shall determine the winner by comparing OPEN address frame field contents using the arbitration priority described in table 142.

Table 142 — Arbitration priority for OPEN address frames passing on a physical link

Bits 79-64 (79 is MSB)	Bits 63-0 (0 is LSB)	
ARBITRATION WAIT TIME field value	SOURCE SAS ADDRESS field value	

See 7.8.3 for details on the OPEN address frame and the ARBITRATION WAIT TIME field.

7.12.4 Arbitration inside an expander device

7.12.4.1 Expander phy arbitration requirements

An expander phy shall set its Request Path request Retry Priority Status argument to IGNORE AWT when it requests a path after:

- a) it has forwarded an OPEN address frame to the physical link;
- b) an OPEN address frame is received with higher arbitration priority (see 7.12.3); and
- c) the destination SAS address and connection rate of the received OPEN address frame are not equal to the source SAS address and connection rate of the transmitted OPEN address frame (see 7.15.4 and 7.15.9).

Otherwise, the expander phy shall set the Retry Priority Status argument to NORMAL.

See the XL state machine (see 7.15) for detailed expander phy requirements.

Working Draft Serial Attached SCSI - 2 (SAS-2)

347

(per Isi-bday comment on this section)

7.12.4.2 ECM arbitration requirements

7.12.4.2.1 ECM arbitration requirements overview

The ECM shall arbitrate and assign or deny path resources for Request Path requests (see 4.6.6.3) from each expander phy.

Arbitration includes adherence to the SAS arbitration fairness algorithm and path recovery. Path recovery is used to avoid potential deadlock scenarios within the SAS topology by deterministically choosing which partial pathway(s) to tear down to allow at least one connection to complete.

Several of the Request Path arguments are used for arbitration. The Arbitratics Wait Time, Source SAS Address, and Connection Rate arguments are filled in from the received OPEN address frame and are used to by the ECM to compare Request Path requests. The Retry Priority Status argument is used to prevent the Arbitration Wait Time argument from being considered during an arbitration which occurs after a Backoff Retry response is sent by an expander phy (see 7.15.4).

When the ECM in an expander device receives a connection request:

- if the destination SAS address is that of the expander device itself, the ECM shall arbitrate for access to its SMP target port;
- if the destination SAS address matches the SAS address attached to one or more of the expander phys, the ECM shall arbitrate for access to those expander phys;
- 3) if the destination SAS address matches an enabled SAS address in the expander route table for one or more expander phys that is using the table routing method, the ESM shall arbitrate for access to those expander phys; and
- if at least one expander phy is using the subtractive routing method, and the request did not come from one of those expander phys, the ECM shall arbitrate for access to one of those expander phys.

The ECM shall respond to each Request Path request by returning the following confirmations to requesting expander logical phy while processing the Request Path request:

- a) Arbitrating (Normal) (see 7.12.4.2.2);
- b) Arbitrating (Waiting On Partial) (see 7.12.4.2.2);
- c) Arbitrating (Blocked On Partial) (see 7.12.4.2.2);
- d) Arbitrating (Waiting On Connection) (see 7.12.4.2.2).

The ECM shall complete responding to each Request Path request by returning one of the following confirmations to the requesting expander logical phy:

- a) Arb Won (see 7.12.4.2.3);
- b) Arb Lost (see 7.12.4.2.4); or
- c) Arb Reject (see 7.12.4.2.5).

7.12.4.2.2 Arbitrating confirmations

The ECM shall send an Arbitrating (Normal) confirmation after it has received a Request Path request.

The ECM shall send an Arbitrating (Waiting On Partial) confirmation if it is waiting on a partial pathway (see 4.1.11). The ECM is waiting on a partial pathway if:

- a) there is a destination port capable of routing to the requested destination SAS address;
- b) at least one phy within the destination port supports the requested connection rate;
- c) each of the phys within the destination port is returning a Phy Status (Partial Pathway) or Phy Status (Blocked Partial Pathway) response; and
- at least one of the phys within the destination port is returning a Phy Status (Partial Pathway) response.

The ECM shall send an Arbitrating (Blocked On Partial) confirmation if it is waiting on a blocked partial pathway (see 4.1.11). The ECM is waiting on a blocked partial pathway if:

- a) there is a destination port capable of routing to the requested destination SAS address;
- b) at least one phy within the destination port supports the requested connection rate; and

Page: 348 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section) Author: stx-ghoulder Subject: Highlight Date: 6/28/2008 3:09:39 PM -07'00' REJECT (This wording is fine and rather unique. Other terms like "release" have other meanings that could cause confusion. 5/5 release seems to work) Is there a better term for this? "release" perhaps? At the very least there should be a glossary entry for this if it stays Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 5:51:33 PM -07'00' TACCEPT - DONE This << The Arbitration Wait Time, Source SAS Address, and Connection Rate arguments are filled >> should be << The Arbitration Wait Time argument, Source SAS Address argument, and Connection Rate argument are filled >> Subject: Cross-Out Date: 5/25/2008 5:51:44 PM -07'00' ACCEPT - DONE Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section) Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' the

Comments from page 348 continued on next page

then the

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

7.12.4.2 ECM arbitration requirements

7.12.4.2.1 ECM arbitration requirements overview

The ECM shall arbitrate and assign or deny path resources for Request Path requests (see 4.6.6.3) from each expander phy.

Arbitration includes adherence to the SAS arbitration fairness algorithm and path recovery. Path recovery is used to avoid potential deadlock scenarios within the SAS topology by deterministically choosing which partial pathway(s) to fear down to allow at least one connection to complete.

Several of the Request Path arguments are used for arbitration. The Arbitration Wait Time, Source SAS Address, and Connection Rate arguments are filled in from the received OPEN address frame and are used to by the ECM to compare Request Path requests. The Retry Priority Status argument is used to prevent the Arbitration Wait Time argument from being considered during an arbitration which occurs after a Backoff Retry response is sent by an expander phy (see 7.15.4).

When the ECM in an expander device receives a consection request:

- if the destination SAS address is that of the expander device itself, the ECM shall arbitrate for access to its SMP target port;
- if the destination SAS address matches the SAS address attached to one or more of the expander phys, the ECM shall arbitrate for access to those expander phys;
- if the destination SAS address matches an enabled SAS address in the expander route table for one
 or more expander phys; that is using the table routing method, the ECM shall erbitrate for access to
 those expander phys; end
- 4) if at least one expander phy is using the subtractive routing method, and the request did not come from one of those expander phys. the ECM shall arbitrate for access to one of those expander phys.

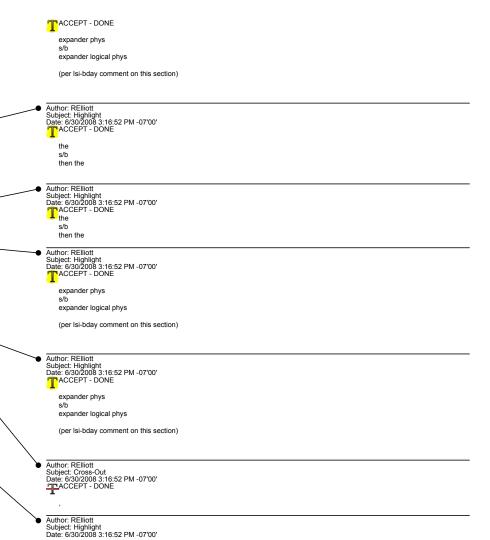
The ECM shall respond to each Request Path request by returning the following confirmations to the requesting expander logical phy while processing the Request Path request:

- a) Arbitrating (Normal) (see 7.12.4.2.2);
- b) Arbitrating (Waiting On Partial) (see 7.12.4.2.2);
- c) Arbitrating (Blocked On Partial) (see 7.12.4.2.2);
- d) Arbitrating (Waiting On Connection) (see 7.12.4.2.2).

The ECM shall complete responding to each Request Path request by seturning one of the following confirmations to the requesting expander logical phy:

- a) Arb Won (see 7.12.4.2.3);
- b) Arb Lost (see 7.12.4.2.4); or
- c) Arb Reject (see 7.12.4.2.5).

7.12.4.2.2 Arbitrating confirmations


The ECM shall send an Arbitrating (Normal) confirmation after it has received a Request Path request.

The ECM shall send an Arbitrating (Waiting On Partial) confirmation if it is waiting on a partial pathway (see 4.1.11). The ECM is waiting on a partial pathway if:

- a) there is a destination port capable of routing to the requested destination SAS address;
- b) at least one phy within the destination port supports the requested connection rate;
- c) each of the phys within the destination port is returning a Phy Status (Partial Pathway) or Phy Status (Blocked Partial Pathway) response; and
- at least one of the phys within the destination port is returning a Phy Status (Partial Pathway) response.

The ECM shall send an Arbitrating (Blocked On Partial) confirmation if it is waiting on a blocked partial pathway (see 4.1.11). The ECM is waiting on a blocked partial pathway if:

- a) there is a destination port capable of routing to the requested destination SAS address;
- b) at least one phy within the destination port supports the requested connection rate; and

Comments from page 348 continued on next page

7.12.4.2 ECM arbitration requirements

7.12.4.2.1 ECM arbitration requirements overview

The ECM shall arbitrate and assign or deny path resources for Request Path requests (see 4.6.6.3) from each expander phy.

Arbitration includes adherence to the SAS arbitration fairness algorithm and path recovery. Path recovery is used to avoid potential deadlock scenarios within the SAS topology by deterministically choosing which partial pathway(s) to fear down to allow at least one connection to complete.

Several of the Request Path arguments are used for arbitration. The Arbitration Wait Time, Source SAS Address, and Connection Rate arguments are filled in from the received OPEN address frame and are used to by the ECM to compare Request Path requests. The Retry Priority Status argument is used to prevent the Arbitration Wait Time argument from being considered during an arbitration which occurs after a Backoff Retry response is sent by an expander phy (see 7.15.4).

When the ECM in an expander device receives a connection request:

- if the destination SAS address is that of the expander device itself, the ECM shall arbitrate for access to its SMP target port;
- if the destination SAS address matches the SAS address attached to one or more of the expander phys, the ECM shall arbitrate for access to those expander phys;
- if the destination SAS address matches an enabled SAS address in the expander route table for one
 or more expander phys, that is using the table routing method, the ECM shall arbitrate for access to
 those expander phys; and
- 4) if at least one expander phy is using the subtractive routing method, and the request did not come from one of those expander phys, the ECM shall arbitrate for access to one of those expander phys.

The ECM shall respond to each Request Path request by returning the following confirmations to the requesting expander logical phy while processing the Request Path request:

- a) Arbitrating (Normal) (see 7.12.4.2.2);
- b) Arbitrating (Waiting On Partial) (see 7.12.4.2.2);
- c) Arbitrating (Blocked On Partial) (see 7.12.4.2.2);
- d) Arbitrating (Waiting On Connection) (see 7.12.4.2.2).

The ECM shall complete responding to each Request Path request by returning one of the following confirmations to the requesting expander logical phy:

- a) Arb Won (see 7.12.4.2.3);
- b) Arb Lost (see 7.12.4.2.4); or
- c) Arb Reject (see 7.12.4.2.5).

7.12.4.2.2 Arbitrating confirmations

The ECM shall send an Arbitrating (Normal) confirmation after it has received a Request Path request.

The ECM shall send an Arbitrating (Waiting On Partial) confirmation if it is waiting on a partial pathway (see 4.1.11). The ECM is waiting on a partial pathway if:

- a) there is a destination port capable of routing to the requested destination SAS address
- b) at least one phy within the destination port supports the requested connection rate;
- each of the phys within the destination port is returning a Phy Status (Partial Pathway) or Phy Status (Blocked Partial Pathway) response; and
- at least one of the phys within the destination port is returning a Phy Status (Partial Pathway) response.

The ECM shall send an Arbitrating (Blocked On Partial) confirmation if it is waiting on a blocked partial pathway (see 4.1.11). The ECM is waiting on a blocked partial pathway if:

- a) there is a destination port capable of routing to the requested destination SAS address;
- b) at least one phy within the destination port supports the requested connection rate; and

```
TACCEPT - DONE
   expander phy
    expander logical phy
    (per Isi-bday comment on this section)
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
   expander phys
    expander logical phys
    (per Isi-bday comment on this section)
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
   the
    s/b
   then the
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
    ACCEPT - DONE
    expander phys
   expander logical phys
    (per Isi-bday comment on this section)
Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 5:52:19 PM -07'00'
ACCEPT - DONE
   This << (Blocked On Partial) (see 7.12.4.2.2); >> should be << (Blocked On Partial) (see 7.12.4.2.2); and >>
Author: wdc-mevans
Subject: Highlight
Date: 5/21/2008 7:46:13 PM -07'00'
 TREJECT (first noun/subject convention)
   it
    s/b
   the ECM
Author: wdc-mevans
```

Comments from page 348 continued on next page

Subject: Highlight Date: 5/22/2008 6:59:57 AM -07'00'

REJECT (first noun/subject convention)

T10/1760-D Revision 14

7.12.4.2 ECM arbitration requirements

7.12.4.2.1 ECM arbitration requirements overview

The ECM shall arbitrate and assign or deny path resources for Request Path requests (see 4.6.6.3) from each expander phy.

Arbitration includes adherence to the SAS arbitration fairness algorithm and path recovery. Path recovery is used to avoid potential deadlock scenarios within the SAS topology by deterministically choosing which partial pathway(s) to tear down to allow at least one connection to complete.

Several of the Request Path arguments are used for arbitration. The Arbitration Wait Time, Source SAS Address, and Connection Rate arguments are filled in from the received OPEN address frame and are used to by the ECM to compare Request Path requests. The Retry Priority Status argument is used to prevent the Arbitration Wait Time argument from being considered during an arbitration which occurs after a Backoff Petry response is sent by an expander phy (see 7.15.4).

When the ECM in an expander device receives a connection request:

- if the destination SAS address is that of the expander device itself, the ECM shall arbitrate for access to its SMP target port;
- if the destination SAS address matches the SAS address attached to one or more of the expande phys, the ECM shall arbitrate for access to those expander phys;
- if the destination SAS address matches an enabled SAS address in the expander route table for one
 or more expander phys that is using the table routing method, the ECM shall arbitrate for access to
 those expander phys; and
- 4) if at least one expander phy is using the subtractive routing method, and the request did not come from one of those expander phys, the ECM shall arbitrate for access to one of those expander phys.

The ECM shall respond to each Request Path request by returning the following confirmations to the requesting expander logical phy while processing the Request Path request:

- a) Arbitrating (Normal) (see 7.12.4.2.2);
- b) Arbitrating (Waiting On Partial) (see 7.12.4.2.2);
- c) Arbitrating (Blocked On Partial) (see 7.12.4.2.2);
- d) Arbitrating (Waiting On Connection) (see 7.12.4.2/2).

The ECM shall complete responding to each Request shart regreest by returning one of the following confirmations to the requesting expander logical phy.

- a) Arb Won (see 7.12.4.2.3);
- b) Arb Lost (see 7.12.4.2.4); or
- c) Arb Reject (see 7.12.4.2.5).

7.12.4.2.2 Arbitrating confirmations

The ECM shall send an Arbitrating (Normal) confirmation after it has received a Request Parn request.

The ECM shall send an Arbitrating (Waiting On Partial) confirmation if it is waiting on a partial pathway (see 4.1.11). The ECM is waiting on a partial pathway if:

- a) there is a destination port capable of routing to the requested destination SAS/address;
- b) at least one phy within the destination port supports the requested connection rate;
- c) each of the phys within the destination port is returning a Phy Status (Part/al Pathway) or Phy Status (Blocked Partial Pathway) esponse; and
- at least one of the phys within the destination port is returning a Phy status (Partial Pathway) response.

The ECM shall send an Arbitrating (Blocked On Partial) confirmation if it is waiting on a blocked partial pathway (see 4.1.11). The ECM is waiting on a blocked partial pathway if:

- a) there is a destination port capable of routing to the requested destination SAS address;
- b) at least one phy within the destination port supports the requested connection rate; and

s/h the ECM Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE expander logical phy Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE expander logical phys Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE phys s/b expander logical phys Author: wdc-mevans Subject: Highlight Date: 5/21/2008 7:46:21 PM -07'00' REJECT (first noun/subject convention) the ECM Author: RElliott Date: 6/30/2008 3:16:52 PM -07'00'

28 January 2008

it

expander logical phy

T10/1760-D Revision 14

Page: 349
Author: RElliott

ACCEPT - DONE

phys

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

 each of the phys within the destination port is returning a Phy Status (Blocked Partial Pathway) response.

The ECM shall send an Arbitrating (Waiting On Connection) confirmation if it is waiting on a connection to complete (see 4.1.12). The ECM is waiting on a connection to complete if:

- a) the connection request is blocked by an active connection; or
- b) there are insufficient routing resources within the expander to complete the connection request

A connection request shall be considered blocked by an active connection when:

- a) there is a destination port capable of routing to the requested destination SAS address;
- b) at least one phy within the destination port supports the requested connection rate;
- c) each of the phys within the destination port is returning a Phy Status (Partial Pathway), Phy Status (Blocked Partial Pathway), or Phy Status (Connection) response; and
- d) at least one of the phys within the destination port is returning a Phy Status (Connection) response.

7.12.4.2.3 Arb Won confirmation

The ECM shall generate the Arb Won confirmation when all of the following conditions are met:

- a) the Request Path request maps to a destination expander phy that:
 - A) supports the connection rate; and
 - B) is not reporting a Phy Status (Partial Pathway), Phy Status (Blooked Partial Pathway), or Phy Status (Connection) response, unless that expander phy is arbitrating for the requesting expander phy;
- b) there are sufficient routing resources to complete the connection equest;
- no higher priority Request Path requests are present with the requesting expansivoly as the destination; and
- d) the Request Path request is the highest priority Request Path request \(\) see table 143 and \(\) sble 144\(\) mapping to the destination expander phy (i.e., only send one Arb Won confirmation for Request Path requests to the same destination phy).

If two or more Request Path requests contend and all of the Request Path requests include a Retry Priority Status argument set to NORMAL, the ECM shall select the winner by comparing the OPEN address frame contents described in table 143.

Table 143 — Arbitration priority for contending Request Path requests in the ECM when all requests have Retry Priority Status arguments of NORMAL

Bits 83-68 (83 is MSB)	Bits 67-4	Bits 3-0 (0 is LSB)
ARBITRATION WAIT TIME field value	SOURCE SAS ADDRESS field value	CONNECTION RATE field value

If two or more Request Path requests contend and one or more of the Request Path requests include a Retry Priority Status argument set to IGNORE AWT, the ECM shall select the winner from the set of Request Path requests with Retry Priority Status arguments set to IGNORE AWT by comparing the OPEN address frame contents described in table 144.

Table 144 — Arbitration priority for contending Request Path requests in the ECM among requests with Retry Priority Status arguments of IGNORE AWT

I	Bits 67-4 (67 is MSB)	Bits 3-0 (0 is LSB)	
	SOURCE SAS ADDRESS field value	CONNECTION RATE field value	

7.12.4.2.4 Arb Lost confirmation

The ECM shall generate the Arb Lost confirmation when all of the following conditions are met:

a) the Request Path request maps to a destination expander logical phy that:

s/b expander logical phys Author: wdc-mevans Subject: Highlight
Date: 5/21/2008 7:46:28 PM -07'00' REJECT (first noun/subject convention) s/b the ECM Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE phy s/b expander logical phy Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE phys s/b expander logical phys Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE phys expander logical phys Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section) Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

each of the phys within the destination port is returning a Phy Status (Blocked Partial Pathway)
response.

The ECM shall send an Arbitrating (Waiting On Connection) confirmation if it is waiting on a connection to complete (see 4.1.12). The ECM is waiting on a connection to complete if:

- a) the connection request is blocked by an active connection; or
- b) there are insufficient routing resources within the expander to complete the connection request.

A connection request shall be considered blocked by an active connection when:

- a) there is a destination port capable of routing to the requested destination SAS address;
- b) at least one phy within the destination port supports the requested connection rate;
- c) each of the phys within the destination port is returning a Phy Status (Partial Pathway), Phy Status (Blocked Partial Pathway), or Phy Status (Connection) response; and
- d) at least one of the phys within the destination port is returning a Phy Status (Connection) response.

7.12.4.2.3 Arb Won confirmation

The ECM shall generate the Arb Won confirmation when all of the following conditions are met:

- a) the Request Path request maps to a destination expander phy that:
 - A) supports the connection rate; and
 - B) is not reporting a Phy Status (Partial Pathway), Phy Status (Blocked Partial Pathway), or Phy Status (Connection) response, unless that expander phy is arbitrating for the requesting expander phy:
- b) there are sufficient routing resources to complete the connection request;
- no higher priority Request Path requests are present with the requesting expander phy as the destination; and
- d) the Request Path request is the highest priority Request Path request (see table 143 and table 144) mapping to the destination expander phy (i.e., only send one Arb Won confirmation for Request Path requests to the same destination phy).

If two or more Request Path requests contend and stof the Request Path requests include a Retry Priority Status argument set to NORMAL, the SCM shall select the winger by comparing the OPEN address frame contents described in table 143.

Table 143 — Arbitration priority for contending Request Path requests in the ECM when all requests have Retry Priority Status arguments of NORMAL

Bits 83-68 (83 is MSB)	Bits 67-4	Bits 3-0 (0 is LSB)
ARBITRATION WAIT TIME field value	SOURCE SAS ADDRESS field value	CONNECTION RATE field value

If two or more Request Path requests contend and one or more of the Request Path requests include a Retry Priority Status argument set to IGNORE AWT, the ECM shall select the winner from the set of Request Path requests with Retry Priority Status arguments set to IGNORE AWT by comparing the OPEN address frame contents described in table 144.

Table 144 — Arbitration priority for contending Request Path requests in the ECM among requests with Retry Priority Status arguments of IGNORE AWT

Bits 67-4 (67 is MSB)	Bits 3-0 (0 is LSB)
SOURCE SAS ADDRESS field value	CONNECTION RATE field value

7.12.4.2.4 Arb Lost confirmation

The ECM shall generate the Arb Lost confirmation when all of the following conditions are met:

a) the Request Path request maps to a destination expander logical phy that:

expander phy expander logical phy (per Isi-bday comment on this section) Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section) Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section) Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section) Author: wdc-mevans Subject: Highlight
Date: 5/21/2008 7:48:28 PM -07'00' REJECT (two conditions ANDed together) contend and s/h contend, and Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the

TACCEPT - DONE

Comments from page 349 continued on next page

each of the phys within the destination port is returning a Phy Status (Blocked Partial Pathway)
response.

The ECM shall send an Arbitrating (Waiting On Connection) confirmation if it is waiting on a connection to complete (see 4.1.12). The ECM is waiting on a connection to complete if:

- a) the connection request is blocked by an active connection; or
- b) there are insufficient routing resources within the expander to complete the connection request.

A connection request shall be considered blocked by an active connection when:

- a) there is a destination port capable of routing to the requested destination SAS address;
- b) at least one phy within the destination port supports the requested connection rate;
- c) each of the phys within the destination port is returning a Phy Status (Partial Pathway), Phy Status (Blocked Partial Pathway), or Phy Status (Connection) response; and
- d) at least one of the phys within the destination port is returning a Phy Status (Connection) response.

7.12.4.2.3 Arb Won confirmation

The ECM shall generate the Arb Won confirmation when all of the following conditions are meg

- a) the Request Path request maps to a destination expander phy that:
 - A) supports the connection rate; and
 - B) is not reporting a Phy Status (Partial Pathway), Phy Status (Blocked Partial Pathway) or Phy Status (Connection) response, unless that expander phy is arbitrating for the requesting expander phy;
- b) there are sufficient routing resources to complete the connection request;
- no higher priority Request Path requests are present with the requesting expander phy as the destination; and
- d) the Request Path request is the highest priority Request Path request (see lable 143 and table 144) mapping to the destination expander phy (i.e., only send one Arb Won confirmation for Request Path requests to the same destination phy).

If two or more Request Path requests contend and all of the Request Path requests include a Retry Priority Status argument set to NORMAL, the ECM shall select the winner by comparing the OPEN address frame contents described in table 143.

Table 143 — Arbitration priority for contending Request Path requests in the ECM when all requests have Retry Priority Status arguments of NORMAL

Bits 83-68 (83 is MSB)	Bits 67-4	Bits 3-0 (0 is LSB)
ARBITRATION WAIT TIME field value	SOURCE SAS ADDRESS field value	CONNECTION RATE field value

If two or more Request Path requests contend and for or more of the Request Path requests include a Retry Priority Status argument set to IGNORE AWT, the ECM shall select the winner from the set of Request Path requests with Retry Priority Status arguments set to IGNORE AWT by comparing the OPEN address frame contents described in table 144.

Table 144 — Arbitration priority for contending Request Path requests in the ECM among requests with Retry Priority Status arguments of IGNORE AWT

Bits 67-4 (67 is MSB)	Bits 3-0 (0 is LSB)
SOURCE SAS ADDRESS field value	CONNECTION RATE field value

7.12.4.2.4 Arb Lost confirmation

The ECM shall generate the Arb Lost confirmation when all of the following conditions are met:

a) the Request Path request maps to a destination expander logical phy that:

Working Draft Serial Attached SCSI - 2 (SAS-2)

349

```
Author: wdc-mevans
Subject: Highlight
Date: 5/21/2008 7:48:39 PM -07'00'
TREJECT (two conditions ANDed together)

contend and
s/b
contend, and

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

the
s/b
then the
```

- A) supports the connection rate; and
- B) is not reporting a Phy Status (Partial Pathway), Phy Status (Blocked Partial Pathway), or Phy
 Status (Connection) response unless that expander logical phy is arbitrating for the requesting expander logical phy;
- b) there are sufficient routing resources to complete the connection request; and
- c) one of the following conditions are met:
 - A) the destination expander logical phy is making a Request Path request with the requesting expander logical phy as its destination (i.e., when two expander logical phys both receive an OPEN address frame destined for each other, the ECM provides the Arb Lost confirmation to the expander logical phy that received the lowest priority OPEN address frame); or
 - B) the ECM is sending an Arb Won confirmation to another expander logical phy that is using the requesting expander logical phy as the destination.

7.12.4.2.5 Arb Reject confirmation

The ECM shall generate the following Arb Reject confirmation when any of the following conditions are met and all the Arb Won conditions (see 7.12.4.2.3) are not met:

- Arb Reject (Bad Destination) if the source expander logical phy and destination expander logical phy(s) are in the same expander port and are using the direct routing method;
- Arb Reject (Retry) if the expander device is unable to process the connection request because it has reduced functionality (see 4.6.8):
- 3) if the source expander logical phy and destination expander logical phy(s) are in the same expander port and are using the table routing method or the subtractive routing method:
 - A) Arb Reject (No Destination) if the expander device is not configuring; sec
 - B) Arb Reject (Retry) if the expander device is configuring;
- 4) *there are no destination expander logical phys (i.e., there is no direct routing or table couting match and there is no subtractive phy):
 - A) Arb Reject (No Destination) if the expander device is not configuring; and
- B) Arb Reject (Retry) if the expander device is configuring;
- 5) if access to the destination expander logical phy(s) is prohibited by zoning (see 4.93):
 - A) Arb Reject (Zone Violation) if the zoning expander device is unlocked; and
 - B) Arb Reject (Retry) if the zoning expander device is locked;
- Arb Reject (Connection Rate Not Supported) if none of the destination expander logical phys supports the connection rate; and
- 7) Arb Reject (Pathway Blocked) if all the destination expander logical phys That support the confliction rate contain blocked partial pathways (i.e., are all returning Phy Status (Blocked Partial Pathway)) and pathway recovery rules require this Request Path request be rejected to release path resources (see 7.12.4.5).

7.12.4.3 Arbitration status

Arbitration status shall be conveyed between expander devices and by expander devices to SAS endpoints' using AIP (see 7.2.6.1). This status is used to monitor the progress of connection attempts and to facilitate pathway recovery as part of deadlock recovery.

The arbitration status of an expander phy is set to the last type of AIP received.

Before an expander device transmits AIP, it may have transmitted an OPEN address frame on the same physical link. Arbitration fairness dictates which OPEN address frame wins (see 7.12.3).

After an expander device transmits an AIP, it shall not transmit an OPEN address frame unless it has higher arbitration priority than the incoming connection request.

After transmitting an AIP primitive sequence, and expander device shall transmit at least one other dword (e.g., an idle dword) before transmitting another AIP primitive sequence.

Expander devices shall transmit at least one AIP every 128 dwords while originating AIP (NORMAL), AIP (WAITING ON PARTIAL), or AIP (WAITING ON CONNECTION).

Page: 350

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 5:58:50 PM -07'00'

This << a Phy Status (Partial Pathway), Phy Status (Blocked Partial Pathway), or Phy Status (Connection) response unless >> should be << a Phy Status (Partial Pathway) response, Phy Status (Blocked Partial Pathway) response, or Phy Status (Connection) response unless >>

Author: wdc-mevans Subject: Highlight Date: 5/30/2008 3:04:48 PM -07'00'

the following Arb Reject confirmation s/b

one of the following Arb Reject confirmations

Author: wdc-mevans
Subject: Highligher
Date: 5/21/2008 7:47:29 PM -07'00'
REJECT (two conditions ANDed together)
met and

s/b met, and

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 5:53:13 PM -07'00'

This << and >> should be an << or >> as only one of the two conditions exist as any time.

Author: stx-ghoulder
Subject: Highlight
Date: 6/2/2008 7:20:01 AM -07'00'
ACCEPT - DONE (added "(see 4.7.2)". Not adding a glossary entry)

not configuring;

Does this mean "not performing the configuration process"? Or does it mean the configuration process is complete but isn't possible to find a route between these two endpoints? I think this use of "configuring" (or not) needs a glossary entry.

Author: Isi-gpenokie Subject: Sticky Note Date: 5/30/2008 3:06:49 PM -07'00' ACCEPT - DONE (with "an " too)

All the << Arb Reject (...) >> should be << Arb Reject (...) confirmation >>

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 5:53:17 PM -07'00'

This << and >> should be an << or >> as only one of the two conditions exist as any time.

Author: Isi-gpenokie Subject: Highlight

- A) supports the connection rate; and
- B) is not reporting a Phy Status (Partial Pathway), Phy Status (Blocked Partial Pathway), or Phy Status (Connection) response unless that expander logical phy is arbitrating for the requesting expander logical phy;
- b) there are sufficient routing resources to complete the connection request; and
- c) one of the following conditions are met:
 - A) the destination expander logical phy is making a Request Path request with the requesting expander logical phy as its destination (i.e., when two expander logical phys both receive an OPEN address frame destined for each other, the ECM provides the Arb Lost confirmation to the expander logical phy that received the lowest priority OPEN address frame); or
 - B) the ECM is sending an Arb Won confirmation to another expander logical phy that is using the requesting expander logical phy as the destination.

7.12.4.2.5 Arb Reject confirmation

The ECM shall generate the following Arb Reject confirmation when any of the following conditions are met and all the Arb Won conditions (see 7.12.4.2.3) are not met:

- Arb Reject (Bad Destination) if the source expander logical phy and destination expander logical phy(s) are in the same expander port and are using the direct routing method;
 Arb Reject (Retry) if the expander device is unable to process the connection request because it has
- Arb Reject (Retry) if the expander device is unable to process the connection request because it bases reduced functionality (see 4.6.8);
- 3) if the source expander logical phy and destination expander logical phy(s) are in the same expander port and are using the table routing method or the subtractive routing method:
 - A) Arb Reject (No Destination) if the expander device is not configuring; and
 - B) Arb Reject (Retry) if the expander device is configuring;
- if there are no destination expander logical phys (i.e., there is no direct routing or able routing match and there is no subtractive phy):
 - A) Arb Reject (No Destination) if the expander device is not configuring; and
- B) Arb Reject (Retry) if the expander device is configuring;
- 5) if access to the destination expander logical phy(s) is prohibited by zorving (see 4.9.3):
 - A) Arb Reject (Zone Violation) if the zoning expander device is unlocked; and
 - B) Arb Reject (Retry) if the zoning expander device is locked;
- 6) Arb Reject (Connection Rate Not Supported) if none of the destination expander logical phys supports the connection rate; and
- 7) Arb Reject (Pathway Blocked) if all the destination expander logical phys that support the connection rate contain blocked partial pathways (i.e., are all returning Phy Status (Blocked Partial Pathway)) and pathway recovery rules require this Request Path regulest be rejected to release path resources (see 7.12.4.5).

7.12.4.3 Arbitration status

350

Arbitration status shall be conveyed between expender devices and by expender devices to SAS endpoints using AIP (see 7.2.6.1). This status is used to monitor the progress of connection attempts and to acilitate pathway recovery as part of deadlock recovery.

The arbitration status of an expander phy is set to the last type of AIP received.

Before an expander device transmits AIP, it may have transmitted an OPEN address frame on the same physical link. Arbitration fairness dictates which OPEN address frame mis (see 7.12.3).

After an expander device transmits an AIP, it shall not transmit an OPEN address frame unless it has higher arbitration priority than the incoming connection request

After transmitting an AIP primitive sequence, and expander device shall transmit at least one other dword (e.g., an idle dword) before transmitting another AIP primitive sequence.

Expander devices shall transmit at least one AIP every 128 dwords while originating AIP (NORMAL), AIP (WAITING ON PARTIAL), or AIP (WAITING ON CONNECTION).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Date: 5/25/2008 5:53:23 PM -07'00' ACCEPT - DONE This << and >> should be an << or >> as only one of the two conditions exist as any time. Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE Pathway) Pathway) confirmations Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section) Author: wdc-mevans Subject: Highlight Date: 5/21/2008 7:46:41 PM -07'00' REJECT (first noun/subject convention) s/h the expander device Author: wdc-mevans Subject: Highlight Date: 5/21/2008 7:48:03 PM -07'00' REJECT (first noun/subject convention) the expander device Author: wdc-mevans Subject: Highlight Date: 5/25/2008 5:54:02 PM -07'00'

ACCEPT - DONE

and s/b

an

NOTE 62 - Expander devices compliant with previous versions of this standard were not required to transmit three consecutive AIP primitives, as AIP was defined as a single primitive sequence (see 7.2.4.2) rather than as an extended primitive sequence (see 7.2.4.5).

Expander devices shall transmit an AIP (e.g., an AIP (NORMAL)) within 128 dwords of receiving an OPEN address frame.

7.12.4.4 Partial Pathway Timeout time

Each expander phy shall maintain a Partial Pathway Timeout timer. This timer is used to identify potential deadlock conditions and to request resolution by the ECM. An expander phy shall initialize the Partial Pathway Timeout timer to the time it exports in the Partial Pathway TimeOUT VALUE field in the SMP DISCOVER resonnse (see 10.4.3.10) and ton the Partial Pathway Timeout timer whenever the ECM provides confirmation to the expander phy that all expander phys within the requested destination port are blocked waiting on partial pathways.

NOTE 63 - The partial pathway timeout value allows flexibility in specifying how long an expander device waits before attempting pathway recovery. The recommended default value see 10.35 10) was chosen to cover a wide range of topologies. Selecting small sartial pathway timeout value values within 3-large topology may compromise performance because of the time a device waits after receiving OREN_REJECT (PATHWAY BLOCKED) before it etries the connection request. Similarly, selecting large partial pathway timeout value values within a small apology may compromise performance due to waiting longer than necessary to detect pathway blockage.

When the Partial Pathway Timeout timer is no cunning, an expander shy shall initialize and start the Partial Pathway Timeout timer when all expander phys within the requested destination port contain a blocked partial pathway (i.e., are returning Phy Status (Blocked Partial Pathway)).

NOTE 64 - The Partial Pathway Timeout timer is not initialized and started if one or more of the expander phys within a requested destination port are being used for a connection.

When one of the conditions above is not met, the expander phy shall stop the Partial Pathway Timeout timer. If the timer expires, pathway recovery shall occur (see 7.12.4.5).

7.12.4.5 Pathway recovery

Pathway recovery provides a means to abort connection requests in order to prevent deadlock using pathway recovery priority comparisons. Pathway recovery priority comparisons compare the PATHWAY BLOCKED COUNTIELED SOURCE SAS ADDRESS fields of the OPEN address frames of the blocked connection requests as described in table 145.

Table 145 — Pathway recovery priority

Bits 71-64 (71 is MSB)	Bits 63-0 (0 is LSB)
PATHWAY BLOCKED COUNT field value	SOURCE SAS ADDRESS field value

When the Partial Pathway Timeout timer for an arbitrating expander phylexpires (i.e., reaches a value of zero), the ECM shall determine whether to continue the connection request or to abort the connection request.

The ECM shall reply to a connection request with Arb Reject (Pathway Blocked) when:

- a) the Partial Pathway Timeout timer expires; and
- b) the pathway recovery priority of the arbitrating expander phy (i.e., the expander phy requesting the connection) is less than or equal to the pathway recovery priority of any of the expander phys within the destination port that are sending Phy Status (Blocked Partial Pathway) responses to the ECM.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section) Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section) Author: wdc-mevans Subject: Highlight Date: 5/22/2008 1:23:14 PM -07'00' REJECT (but changed "it reports" to "reported" which sidesteps the issue) s/b the expander device Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE expander phys expander logical phys (per Isi-bday comment on this section) Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section)

Page: 351

Author: wdc-mevans

Comments from page 351 continued on next page

NOTE 62 - Expander devices compliant with previous versions of this standard were not required to transmit three consecutive AIP primitives, as AIP was defined as a single primitive sequence (see 7.2.4.2) rather than as an extended primitive sequence (see 7.2.4.5).

Expander devices shall transmit an AIP (e.g., an AIP (NORMAL)) within 128 dwords of receiving an OPEN address frame.

7.12.4.4 Partial Pathway Timeout timer

Each expander phy shall maintain a Partial Pathway Timeout timer. This timer is used to identify potential deadlock conditions and to request resolution by the ECM. An expander phy shall initialize the Partial Pathway Timeout timer to the time it reports in the Partial Pathway TimeOUT VALUE field in the SMP DISCOVER response (see 10.4.3.10) and run the Partial Pathway Timeout timer whenever the ECM provides confirmation to the expander phy that all expander phys within the requested destination port are blocked waiting on partial pathways.

NOTE 63 - The partial pathway timeout value allows flexibility in specifying how long an expander device waits before attempting pathway recovery. The recommended default value (see 10.4.3.10) was chosen to cover a wide range of topologies. Selecting small partial pathway timeout value values within a rarge topology may compromise performance because of the time a device waits after receiving OPEN BEJECT (PATHWAY BLOCKED) before it retries the connection request. Similarly, selecting large partial pathway timeout value values within a small topology may compromise performance due to realing longer than necessary to detert attivatives blockage.

When the Partial Pathway Timeout timer is not running. art expander phy shall initialize and start the Partial Pathway Timeout timer when all expander phys within the requested destination port contain a blocked partial pathway (i.e., are returning Phy Status (Blocked Partial Pathway)).

NOTE 64 - The Partial Pathway Transport timer is not initialized and started if one or more of the expander phys within a requested destination port are being used for a connection.

When one of the conditions above is not met, the expander physical stop the Partial Pathway Timeout timer. If the timer expires, pathway recovery shall occur (see 7.12.4.5).

7.12.4.5 Pathway recovery

Pathway recovery provides a means to abort connection requests in order to prevent deathock using pathway recovery priority comparisons. Pathway recovery priority comparisons compare the PATHWAY BECKED COUNT fields and SOURCE SAS ADDRESS fields of the OPEN address frames of the blocked connection requests as described in table 145.

Table 145 — Pathway recovery priority


Bits 71-64 (71 is MSB)	Bits 63-0 (0 is L&B)
PATHWAY BLOCKED COUNT field value	SOURCE SAS ADDRESS field value

When the Partial Pathway Timeout timer for an arbitrating expander phy expires (i.e., reaches a value of zero), the ECM shall determine whether to continue the connection request or to abort the connection request.

The ECM shall reply to a connection request with Arb Reject (Pathway Blocked) when:

- a) the Partial Pathway Timeout timer expires; and
- b) the pathway recovery priority of the arbitrating expander phy (i.e., the expander phy requesting the connection) is less than or equal to the pathway recovery priority of any of the expander phys within the destination port that are sending Phy Status (Blocked Partial Pathway) responses to the ECM.

The pathway blocked count and source SAS address values used to form the pathway recovery priority of a destination phy are those of the Request Path request if the physent a Request Path request to the ECM or those of the Forward Open indication if the physent a Request Path request to the ECM or those of the Forward Open indication if the physent a Request Path request to the ECM or those of the Forward Open indication if the physent a Request Path request to the ECM or those of the Forward Open indication if the physent a Request Path request to the ECM or those of the Forward Open indication if the physent a Request Path request Pat

Comments from page 351 continued on next page

NOTE 62 - Expander devices compliant with previous versions of this standard were not required to transmit three consecutive AIP primitives, as AIP was defined as a single primitive sequence (see 7.2.4.2) rather than as an extended primitive sequence (see 7.2.4.5).

Expander devices shall transmit an AIP (e.g., an AIP (NORMAL)) within 128 dwords of receiving an OPEN address frame.

7.12.4.4 Partial Pathway Timeout timer

Each expander phy shall maintain a Partial Pathway Timeout timer. This timer is used to identify potential deadlock conditions and to request resolution by the ECM. An expander phy shall initialize the Partial Pathway Timeout timer to the time it reports in the Partial Pathway Timeout VALUE field in the SMP DISCOVER response (see 10.4.3.10) and run the Partial Pathway Timeout timer whenever the ECM provides confirmation to the expander phy that all expander phys within the requested destination port are blocked waiting on partial pathways.

NOTE 63 - The partial pathway timeout value allows flexibility in specifying how long an expander device waits before attempting pathway recovery. The recommended default value (see 10.4.3.10) was chosen to cover a wide range of topologies. Selecting small partial pathway timeout value values within a large topology may compromise performance because of the time a device waits after receiving OPEN_REJECT (PATHWAY BLOCKED) before it retries the connection request. Similarly, selecting large partial pathway timeout value values within a small topology may compromise performance due to waiting longer than necessary to detect pathway blockage.

When the Partial Pathway Timeout timer is not running, an expander phy shall initialize and start the Partial Pathway Timeout timer when all expander phys within the requested destination port contain a blocked partial pathway (i.e., are returning Phy Status (Blocked Partial Pathway)).

NOTE 64 - The Partial Pathway Timeout timer is not initialized and started if one or more of the expander phys within a requested destination port are being used for a connection.

When one of the conditions above is not met, the expander phy shall stop the Partial Pathway Timeout timer. If the timer expires, pathway recovery shall occur (see 7.12.4.5).

7.12.4.5 Pathway recovery

Pathway recovery provides a means to abort connection requests in order to prevent deadlock using pathway recovery priority comparisons. Pathway recovery priority comparisons compare the PATHWAY BLOCKED COLVITIENDED AND STATEMENT OF THE PATHWAY B

Table 145 — Pathway recovery priority

Bits 71-64 (71 is MSB)	Bits 63-0 (0 is LSB)
PATHWAY BLOCKED COUNT field value	SOURCE SAS ADDRESS field value

When the Partial Pathway Timeout timer for an arbitrating expander phy expires the, reaches a value of zero), the ECM shall determine whether to continue the connection request or to abort the connection request.

The ECM shall reply to a connection request with Arb Reject (Pathway Blooked) when:

- a) the Partial Pathway Timeout timer expires; and
- b) the pathway recovery priority of the arbitrating expander phy fie., the expander phy fequestine fie connection) is less than or equal to the pathway recovery priority of any of the expander phys within the destination port that are sending Phy Status (Blocked Partial Pathway) exponses to the ECM.

The pathway blocked count and source SAS address values used to form the pathway recovery priority of a destination phy are those of the Request Path request if the phy sent a Request Path request to the ECM or those of the Forward Open indication if the phy received a Forward Open indication from the ECR.

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE then pathway Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section) Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section) Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE expander phy expander logical phy (per Isi-bday comment on this section) Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE expander phys expander logical phys (per Isi-bday comment on this section) Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE s/b

Comments from page 351 continued on next page

expander logical phy

28 January 2008 T10/1760-D Revision 14

NOTE 62 - Expander devices compliant with previous versions of this standard were not required to transmit three consecutive AIP primitives, as AIP was defined as a single primitive sequence (see 7.2.4.2) rather than as an extended primitive sequence (see 7.2.4.5).

Expander devices shall transmit an AIP (e.g., an AIP (NORMAL)) within 128 dwords of receiving an OPEN address frame.

7.12.4.4 Partial Pathway Timeout timer

Each expander phy shall maintain a Partial Pathway Timeout timer. This timer is used to identify potential deadlock conditions and to request resolution by the ECM. An expander phy shall initialize the Partial Pathway Timeout timer to the time it reports in the Partial Pathway TimeOUT VALUE field in the SMP DISCOVER response (see 10.4.3.10) and run the Partial Pathway Timeout timer whenever the ECM provides confirmation to the expander phy that all expander phys within the requested destination port are blocked waiting on partial pathways.

NOTE 63 - The partial pathway timeout value allows flexibility in specifying how long an expander device waits before attempting pathway recovery. The recommended default value (see 10.4.3.10) was chosen to cover a wide range of topologies. Selecting small partial pathway timeout value values within a large topology may compromise performance because of the time a device waits after receiving OPEN_REJECT (PATHWAY BLOCKED) before it retries the connection request. Similarly, selecting large partial pathway timeout value values within a small topology may compromise performance due to waiting longer than necessary to detect pathway blockage.

When the Partial Pathway Timeout timer is not running, an expander phy shall initialize and start the Partial Pathway Timeout timer when all expander phys within the requested destination port contain a blocked partial pathway (i.e., are returning Phy Status (Blocked Partial Pathway)).

NOTE 64 - The Partial Pathway Timeout timer is not initialized and started if one or more of the expander phys within a requested destination port are being used for a connection.

When one of the conditions above is not met, the expander phy shall stop the Partial Pathway Timeout timer. If the timer expires, pathway recovery shall occur (see 7.12.4.5).

7.12.4.5 Pathway recovery

Pathway recovery provides a means to abort connection requests in order to prevent deadlock using pathway recovery priority comparisons. Pathway recovery priority comparisons compare the PATHWAY BLOCKED COUNT fields and SOURCE SAS ADDRESS fields of the OPEN address frames of the blocked connection requests as described in table 145.

Table 145 — Pathway recovery priority

Bits 71-64 (71 is MSB)	Bits 63-0 (0 is LSB)
PATHWAY BLOCKED COUNT field value	SOURCE SAS ADDRESS

When the Partial Pathway Timeout timer for an arbitrating expander phy expires (i.e., reaches a value of zero), the ECM shall determine whether to continue the connection request or to abort the connection request.

The ECM shall reply to a connection request with Arb Reje/ct (Pathway Blocked) when:

- a) the Partial Pathway Timeout timer expires; and
- b) the pathway recovery priority of the arbitrating "xpander phy" (i.e., the expander phy requesting the connection) is less than or equal to the pathway recovery priority of any of the expander phys within the destination port that are sending Phy Status (Blocked Partial Pathway) responses to the ECM.

The pathway blocked count and source SAS address values used to form the pathway recovery priority of a destination phy are those of the Request Path request if the phy sent a Request Path request to the ECM or those of the Forward Open indication if the phy received a Forward Open indication from the ECR.

351

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

phy s/h

expander logical phy

T10/1760-D Revision 14

7.12.5 BREAK handling

A phy aborts a connection request (see 7.12.6) and breaks a connection (see 7.12.8) by transmitting a BREAK primitive sequence.

Phys shall enable the BREAK_REPLY method of responding to received BREAK primitive sequences when:

a) the BREAK_REPLY CAPABLE bit transmitted by the pky is the outgoing IDENTIFY address frame is set to one; and

28 January 2008

 b) the BREAK_REPLY CAPABLE bit received by the phy in the incoming IDENTIFY address frame is set to one.

Phys shall disable the BREAK_REPLY method of responding to received BREAK primitive sequences if the BREAK_REPLY CAPABLE bit received by the phy in the incoming IDENTIFY address frame is set to zero.

Phys contained within SAS devices or expander devices that are compliant with this standard shall set the BREAK_REPLY CAPABLE DISEQ one in their outgoing IDENTIFY address frame.

If the BREAK_REPLY method of responding to received REAK primitive sequences is exabled, then the phy shall transmit a BREAK_REPLY primitive sequence in response to a received BREAK primitive sequence.

If the BREAK_REPLY method of responding to received BREAK primitive sequences is disabled, then the phy shall transmit a BREAK primitive sequence in response to a received BREAK primitive sequence.

NOTE 65 - Phys compliant with earlier versions of this standard do not set the BREAK_REPLY CAPABLE bit in their outgoing IDENTIFY address frame.

7.12.6 Aborting a connection request

BREAK may be used to abort a connection request. The source phy shall transmit a BREAK after the Open Timeout timer expires or if it chooses to abort its request for any other reason before a connection is established.

After transmitting BREAK, the source phy shall initialize a Break Timeout timer to 1 ms and start the Break Timeout timer.

After a phy transmits a BREAK to abort a connection request, it shall expect one of the results listed in table 146.

Table 146 — Results of aborting a connection request

BREAK_REPLY method of responding to received BREAK primitive sequences	Result	Description
Disabled	Receive BREAK	This confirms that the connection request has been aborted.
Receive BREAK_REPLY		Ignore.
Receive BREAK Enabled Receive BREAK_REPLY		The originating phy shall transmit BREAK_REPLY and wait to receive BREAK_REPLY or for the BREAK Timeout timer to expire.
		This confirms that the connection request has been aborted.
Enabled or disabled	Break Timeout timer expires	The originating phy shall assume the connection request has been aborted.

Page: 352 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE phy s/b logical phy Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE Phys s/b Logical phy Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE phy s/b logical phy Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE phy s/b logical phy Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' Phys Logical phy Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

Comments from page 352 continued on next page

phy s/b logical phy T10/1760-D Revision 14

7.12.5 BREAK handling

A phy aborts a connection request (see 7.12.6) and breaks a connection (see 7.12.8) by transmitting a BREAK primitive sequence.

Phys shall enable the BREAK REPLY method of responding to received PREAK primitive sequences when:

a) the BREAK_REPLY CAPABLE bit transmitted by the physical fire outgoing IDENTIFY address frame is set to one; and

28 January 2008

b) the BREAK_REPLY CAPABLE bit received by the phy.in the incoming IDENTIFY address frame is set to one.

Phys shall disable the BREAK_REPLY method of responding to received BREAK primitive sequences if the BREAK_REPLY CAPAGLE bit received by the phy in the incoming IDENTIFY address frame is set to zero.

Phys contained within SAS devices or expander devices that are compliant with this standard shall set the BREAK_REPLY CAPABLE bit to one in their outgoing IDENTIFY address frame.

If the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled, then the phy shall transmit a BREAK_REPLY primitive sequence in response to a received BREAK primitive sequence.

If the BREAK_REPLY method of responding to received BREAK primitive sequences is disabled, then the physiol/ shall transmit a BREAK primitive sequence in response to a received BREAK primitive sequence.

NOTE 65 - Phys compliant with earlier versions of this standard do not set the BREAK_REPLY CAPABLE bit in their outgoing IDENTIFY address frame.

7.12.6 Aborting a connection request

BREAK may be used to abort a connection request. The source phy small transmit a BREAK after the Open Timeout timer expires or if it chooses to abort its request for any other reason before a connection is established.

After transmitting BREAK, the source phy shall initialize a Break meout timer to 1 ms and start the Break Timeout timer.

After a phy transmits a BREAK to abort a connection request, it shall expest one of the results listed in table 146.

Table 146 — Results of aborting a connection request

BREAK_REPLY method of responding to received BREAK primitive sequences	Result	Description
Disabled	Receive BREAK	This confirms that the connection request has been aborted.
	Receive BREAK_REPLY	Ignore.
Enabled	Receive BREAK	The originating phy shall transmit BREAK_REPLY and wait to receive BREAK_REPLY or for the BREAK Timeout timer to expire.
	Receive BREAK_REPLY	This confirms that the connection request has been aborted.
Enabled or disabled	Break Timeout timer expires	The originating phy shall assume the connection request has been aborted.

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE Phys s/h Logical phy Author: ibm-steve-wallace Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' REJECT (correct, a SAS-1.1 phy does not automatically get to claim it is a SAS-2 phy. A SAS-2 phy will interoperate with it as well as a SAS-1.1 phy would - the BREAK problems are present) This cannot be supported on some older devices which do not have the capability to send BREAK REPLY. So, some older devices may never be able to support this level of SAS. Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE s/b logical phy Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE phy s/h logical phy Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE frame s/b frames Author: wdc-mevans Subject: Highlight Date: 5/30/2008 3:07:55 PM -07'00' TREJECT. it chooses to abort its the phy aborts the Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 3:08:07 PM -07'00'

Comments from page 352 continued on next page

This << or if it chooses to abort its request >> should be << or if the source phy chooses to abort its request >>

REJECT (first noun/subject convention)

7.12.5 BREAK handling

A phy aborts a connection request (see 7.12.6) and breaks a connection (see 7.12.8) by transmitting a BREAK primitive sequence.

Phys shall enable the BREAK REPLY method of responding to received BREAK primitive sequences when:

- a) the BREAK_REPLY CAPABLE bit transmitted by the phy.in the outgoing IDENTIFY address frame is set to one; and
- b) the BREAK_REPLY CAPABLE bit received by the phy in the incoming IDENTIFY address frame is set to

Phys shall disable the BREAK_REPLY method of responding to received BREAK primitive sequences if the BREAK_REPLY CAPABLE bit received by the phy in the incoming IDENTIFY address frame is set to zero.

Physicontained within SAS devices or expander devices that are compliant with this standard shall fet the BREAK_REPLY CAPABLE bit to one in their outgoing IDENTIFY address frame.

If the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled, then the phy shall transmit a BREAK_REPLY primitive sequence in response to a received BREAK primitive sequence.

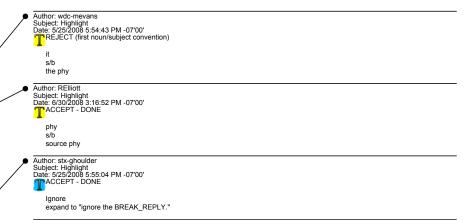
If the BREAK_REPLY method of responding to received BREAK primitive sequences is divabled, then the phy shall transmit a BREAK primitive sequence in response to a received BREAK primitive sequence.

NOTE 65 - Phys compliant with earlier versions of this standard do not set the BREAK_KEPLY CAPABLE bit in their outgoing IDENTIFY address frame.

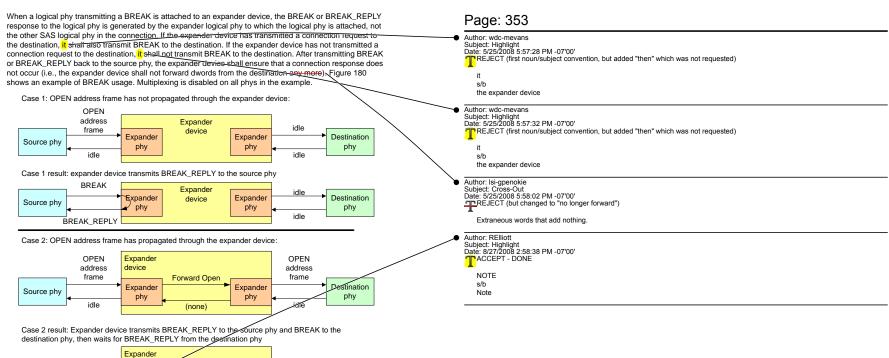
7.12.6 Aborting a connection request

352

BREAK may be used to abort a connection request. The source phy shall transmit a BREAK after the Oven Timeout timer expires or if it chooses to abort its request for any other reason before a connection is established.


After transmitting BREAK, the source phy shall initialize a Break Timeout timer to 1 ms and start the Break Timeout timer.

After a phy transmits a BREAK to abort a connection request, it shall expect one of the results listed in table 146.


Table 146 — Results of aborting a connection request/

BREAK_REPLY method of responding to received BREAK primitive sequences	Result	Description
Disabled	Receive BREAK	This confirms that the connection request has been aborted.
	Receive BREAK_REPLY	Ignore.
Enabled	Receive BREAK	The originating phy shall transmit BREAK_REPLY and wait to receive BREAK_REPLY or for the BREAK Timeout timer to expire.
	Receive BREAK_REPLY	This confirms that the connection request has been aborted.
Enabled or disabled	Break Timeout timer expires	The originating phy shall assume the connection request has been aborted.

Working Draft Serial Attached SCSI - 2 (SAS-2)

28 January 2008 T10/1760-D Revision 14

NOTE: if the BREAK_REPLY method of responding to BREAK primitive sequences is disabled, phys transmit BREAK rather than BREAK_REPLY in response to BREAK.

device

Expander

✓ phy

Figure 180 — Aborting a connection request with BREAK

Forward Break

(none)

BREAK

BREAK REPL

Source phy

BREAK

BREAK REPLY

Expander

phy

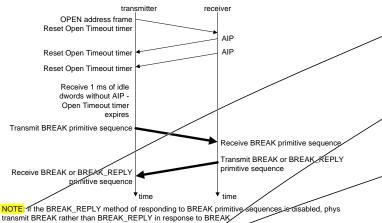
Destination

phy

28 January 2008

Page: 354

s/b


phy s/b logical phy

the phy

Author: RElliott

Autior: REIllott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Figure 181 shows the sequence for a connection request where the Open Timeout timer expires.

transmit BREAK rather than BREAK REPLY in response to BREAK

Figure 181 — Connection request inneout example

7.12.7 Closing a connection

CLOSE is used to close a connection of approtocol. See 7.16.7 for details on closing SSP connections, 7.17.6 for details on closing STP cornections, and 7.18.4 for details on closing SMP connections.

After transmitting CLOSE, He source phy shall initialize a Close Timeout timer to 1 ms and start the Close Timeout timer.

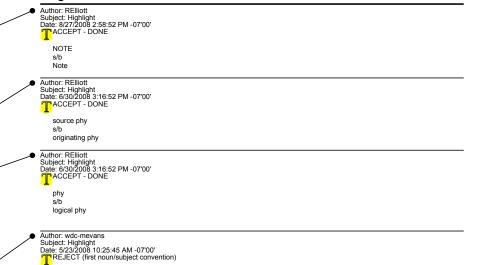
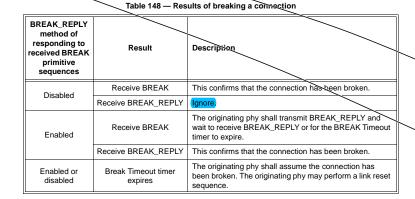

After a phy transmits CLOSE to close a connection, it shall expect one of the results listed in table 47.

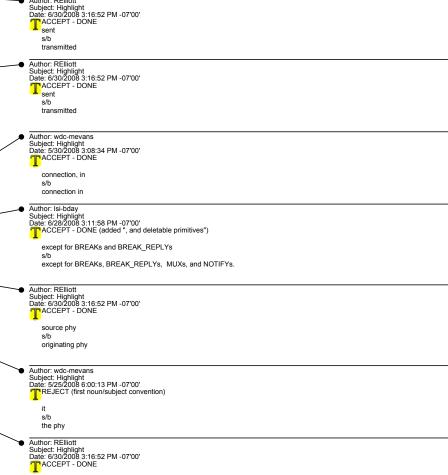
Table 147 — Results of closing a connection

Result	Description	
Receive CLOSE	This confirms that the connection has been closed.	
Close Timeout timer expires	The originating piny shall attempt to break the connection (see 7.12.8).	

No additional dwords for the correction shall follow the CLOSE. Expander devices shall close the full-duplex connection upon forwarding a CLOSE in each direction.

When a phy has both transmitted and received CLOSE, it shall consider the connection closed.




7.12.8 Breaking a connection

In addition to aborting a connection request, BREAK may also be used to break a connection, in cases where CLOSE is not available. After transmitting BREAK, the originating phy shall ignore all incoming dwords except for BREAKs and BREAK_REPLYs.

After transmitting BREAK, the source phy shall initialize a Break Timeout timer to 1 ms and start the Break Timeout timer.

After a phy transmits a BREAK to break a connection, it shall expect one of the results listed in table 148.

Comments from page 355 continued on next page

28 January 2008 T10/1760-D Revision 14

Figure 182 shows example sequences for closing a connection.

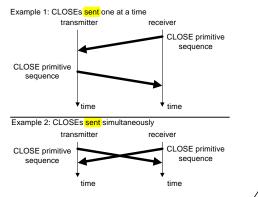


Figure 182 — Closing a connection example

7.12.8 Breaking a connection

In addition to aborting a connection request, BREAK may also be used to break a connection, in cases where CLOSE is not available. After transmitting BREAK, the originating phy shall ignore all incoming dwords except for BREAKs and BREAK_REPLYs.

After transmitting BREAK, the source phy shall initialize a Break Timeout timer to 1 ms and start the Break Timeout timer.

After a phy transmits a BREAK to break a connection, it shall expect one of the results listed in table 148.

Table 148 — Results of breaking a connection

/////		
BREAK_REPLY method of responding to received BREAK primitive sequences	Result	Description
Disabled	Receive BREAK	This confirms that the connection has been broken.
Disabled	Receive BREAK_REPLY	Ignore.
Enabled	Receive BREAK	The originating phy shall transmit BREAK_REPLY and wait to receive BREAK_REPLY or for the BREAK Timeout timer to expire.
	Receive BREAK_REPLY	This confirms that the connection has been broken.
Enabled or disabled	Break Timeout timer expires	The originating phy shall assume the connection has been broken. The originating phy may perform a link reset sequence.

s/b logical phy

Author: stx-ghoulder Subject: Highlight Date: 5/25/2008 6:01:23 PM -07'00'

replace with "ignore the BREAK_REPLY."

In addition to a BREAK, a connection is considered broken if a link reset sequence starts (i.e., the SP state machine transitions from SP15:SAS_PHY_Ready or SP22:SATA_PHY_Ready to SP0:OOB_COMINIT (see 81)

See 7.16.6 for additional rules on breaking an SSP connection.

7.13 Rate matching

Each successful connection request contains the connection rate (see 4.1.12) of the pathway.

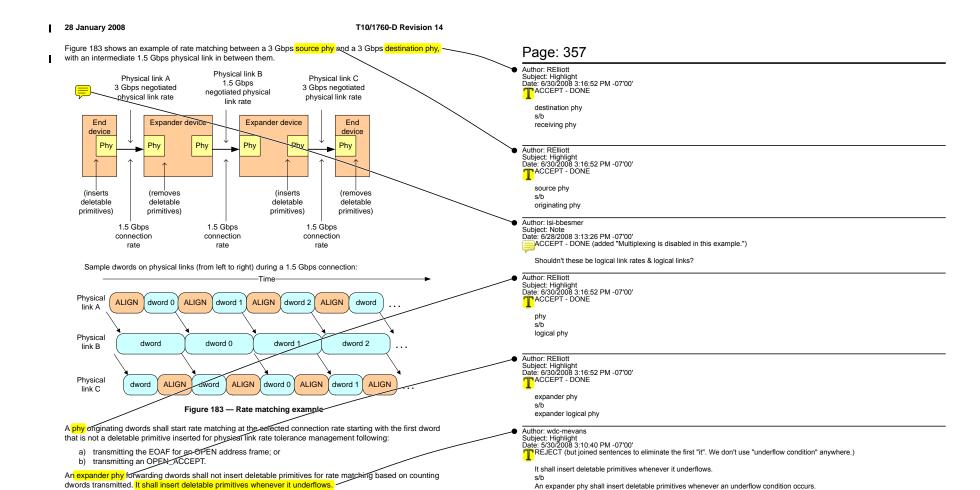

Each logical phy in the pathway shall insert deletable primitives between dwords if its logical link rate is faster than the connection rate as described in table 149.

Table 149 — Rate matching deletable primitive insertion requirements

Logical link rate	Connection rate	Requirement	
1.5 Gbps	1.5 Gbps	None	
3 Gbps	1.5 Gbps	One deletable primitive within every 2 dwords that are not physical link rate tolerance management deletable primitives (i.e., every overlapping window of 2 dwords)(e.g., a repeating pattern of a deletable primitive followed by a dword, or a repeating pattern of a dword followed by an deletable primitive)	
	3 Gbps	None	
	1.5 Gbps	Three deletable primitives within every 4 dwords that are not physical link rate tolerance management deletable primitives (i.e., 3 in every overlapping window of 4 dwords)	
6 Gbps	3 Gbps	One deletable primitive within every 2 dwords that are not physical link rate tolerance management deletable primitives (i.e., every overlapping window of 2 dwords)(e.g., a repeating pattern of a deletable primitive followed by a dword, or a repeating pattern of a dword followed by an deletable primitive)	
	6 Gbps	None	

Deletable primitives inserted for rate matching are in addition to deletable primitives inserted for physical link rate tolerance management (see 7.3). See Annex H for a summary of their combined requirements.

This page contains no comments

Author: RElliott

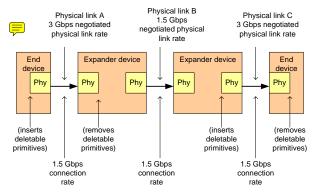
phy s/b

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

Comments from page 357 continued on next page

a) transmitting the first dword in a CLOSE; b) transmitting the first dword in a BREAK; c) transmitting the first dword in a BREAK_REPLY; d) receiving an OPEN_REJECT for a connection request; or


source phy to the destination phy after forwarding an OPEN_ACCEPT. A phy strail stop inserting deletable primitives for rate matching after:

The source phy transmits idle dwords including deletable primitives at the selected connection rate while

waiting for the connection response. This enables each expander device to start forwarding dwords from the

28 January 2008 T10/1760-D Revision 14

Figure 183 shows an example of rate matching between a 3 Gbps source phy and a 3 Gbps destination phy, with an intermediate 1.5 Gbps physical link in between them.

Sample dwords on physical links (from left to right) during a 1.5 Gbps connection:

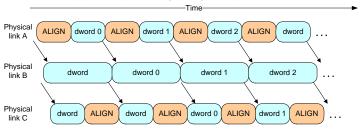


Figure 183 — Rate matching example

A phy originating dwords shall start rate matching at the selected connection rate starting with the first dword that is not a deletable primitive inserted for physical link rate tolerance management following:

- a) transmitting the EOAF for an OPEN address frame; or
- b) transmitting an OPEN_ACCEPT.

An expander phy forwarding dwords shall not insert deletable primitives for rate matching based on counting dwords transmitted. It shall insert deletable primitives whenever it underflows.

The source phy transmits idle dwords including deletable primitives at the selected connection rate while waiting for the connection response. This enables each expander device to start forwarding dwords from the source phy to the destination phy after forwarding an OPEN_ACCEPT.

357

A phy shall stop inserting deletable primitives for rate matching after:

- a) transmitting the first dword in a CLOSE;
- b) transmitting the first dword in a BREAK;
- c) transmitting the first dword in a BREAK_REPLY;
- d) receiving an OPEN_REJECT for a connection request; or

Working Draft Serial Attached SCSI - 2 (SAS-2)

logical phy

e) losing arbitration to a received OPEN address frame.

7.14 SL (link layer for SAS logical phys) state machines

7.14.1 SL state machines overview

The SL (link layer for SAS logical phys) state machines controls connections, handling both connection requests (OPEN address frames), CLOSEs, and BREAKs. The SL state machines are as follows:

- a) SL_RA (receive OPEN address frame) state machine (see 7.14.3); and
- b) SL_CC (connection control) state machine (see 7.14.4).

All the SL state machines shall begin after receiving an Enable Disable SAS Link (Enable) message from the SL_IR state machines.

If a state machine consists of multiple states the initial state is as indicated in the state machine description.

Page: 358

28 January 2008

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

Controls
s/b
control

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

the s/b

, then the

Figure 184 shows the SL state machines.

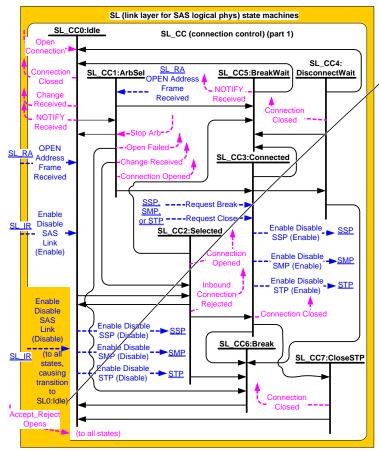


Figure 184 — SL (link layer for SAS logical phys) state machines (part 1)

Page: 359

Author: RElliott
Subject: Highlight
Date: 9/18/2008 12:24:24 PM -07'00'
TACCEPT - DONE
SL0:Idle
s/b
SL_CC0:Idle

Figure 185 shows the messages sent to the SL transmitter and received from the SL receiver.

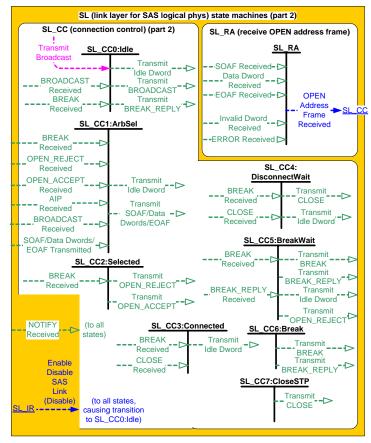


Figure 185 — SL (link layer for SAS logical phys) state machines (part 2)

7.14.2 SL transmitter and receiver

The SL transmitter receives the following messages from the SL state machines specifying primitive sequences, frames, and dwords to transmit:

- a) Transmit Idle Dword;
- b) Transmit SOAF/Data Dwords/EOAF;

This page contains no comments

- c) Transmit OPEN ACCEPT:
- d) Transmit OPEN_REJECT with an argument indicating the specific type (e.g., Transmit OPEN REJECT (Retry)
- Transmit BREAK;
- Transmit BREAK REPLY; f)
- g) Transmit BROADCAST; and
- h) Transmit CLOSE with an argument indicating the specific type (e.g., Transmit CLOSE (Normal)).

When the SL transmitter is requested to transmit a dword from any state within any of the SL state machines, it shall transmit that dword. If there are multiple requests to transmit, the fellowing priority should be followed when selecting the dword to transmit:

- 1) BREAK REPLY;
- 2) BREAK;
- 3) CLOSE:
- OPEN_ACCEPT or OPEN_REJECT;
- 5) SOAF or data dword or EOAF; then
- idle dword.

When there is no outstanding message specifying a dword to transmit, the SL transmitter shall transmit idle dwords

The SL transmitter sends the following messages to the SL state machines based on dwords that have been

a) SOAF/Data Dwords/EOAF Transmitted.

The SL receiver sends the following messages to the SL state machines indicating primitive sequences and dwords received from the SP_DWS receiver (see 6.9.2):

- a) SOAF Received;
- b) Data Dword Received;
- c) EOAF Received;
- d) BROADCAST Received with an argument indicating the specific type (e.g., BROADCAST Received (Change));
- e) BREAK Received:
- BREAK_REPLY Received;
- g) OPEN ACCEPT Received;
- h) OPEN_REJECT Received with an argument indicating the specific type (e.g., OPEN_REJECT Received (No Destination));
- AIP Received;
- CLOSE Received with an argument indicating the specific type (e.g., CLOSE Received (Normal));
- k) NOTIFY Received (Power Loss Expected);
- ERROR Received; and
- m) Invalid Dword Received.

The SL receiver shall ignore all other dwords.

The SL transmitter relationship to other transmitters is defined in 4.3.2. The SL receiver relationship to other receivers is defined in 4.3.3.

7.14.3 SL_RA (receive OPEN address frame) state machine

The SL_RA state machine's function is to receive address frames and determine if the received address frame is an OPEN address frame and whether or not it was received successfully. This state machine consists of one state

This state machine receives SOAFs, dwords of an OPEN address frames, and EOAFs.

This state machine shall ignore all messages except SOAF Received, Data Dword Received, and EOAF Received.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 361

Author: stx-ghoulder

Subject: Highlight Date: 9/8/2008 12:45:51 PM -07'00'

REJECT (the format is "Transmit ALL CAPS PRIMITIVE NAME (Mixed Case Argument)"

9/8 additional reason: if the argument were also in all-caps, then arguably each Transmit OPEN_REJECT (A), ... (B), ... etc would have to be included in the state machine diagrams)

Retry

Should be all CAPs.

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

> the s/b

then the

Author: wdc-mevans Subject: Highlight
Date: 5/22/2008 7:10:47 AM -07'00'

REJECT (first noun/subject convention)

it

s/b

the SL transmitter

Author: Isi-gpenokie

Subject: Highlight Date: 5/30/2008 3:13:56 PM -07'00'

ACCEPT - DONE

This << EOAF; then >> should be << EOAF; and >>

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07-49 PM -07'00'
ACCEPT - DONE
This << following messages to the SL >> should be << following message to the SL >>

Author: wdc-mevans

Subject: Highlight Date: 5/30/2008 3:15:51 PM -07'00'

ACCEPT - DONE (shortened to "receive address frames and determine if each received address frame is a valid OPEN address frame")

frames and determine if the received address frame is an OPEN address frame and whether or not it was received successfully.

frames, determine if the received address frame is an OPEN address frame, and determine whether or not the frame was received without error

If this state machine receives a subsequent SOAF Received message after receiving an SOAF Received message but before receiving an EOAF Received message, the Data toword Received messages received before the subsequent SOAF Received message.

If this state machine receives more than eight Data Dword Received messages after an SOAF Received message and before an EOAF Received message, then this state machine shall discard the address frame.

If this state machine receives an Invalid Dword Received message or an ERROR Received message after an SOAF Received message and before an EOAF Received message, then this state machine shall.

- a) ignore the invalid dword or ERROR; or
- b) discard the address frame.

After receiving an EOAF Received message, this state machine shall check if the address frame is a valid OPEN address frame.

This state machine shall accept an address frame if:

- a) the ADDRESS FRAME TYPE field is set to 1h (i.e., OPEN):
- b) the number of data dwords between the SOAF and EOAF is 8; and
- c) the CRC field contains a good CRC.

Otherwise, this state machine shall discard the address frame. If the frame is not discarded then this state machine shall send a OPEN Address Frame Received message to the SL_CCO:Idle state and the SL_CC1:ArbSel state with an argument that contains all the data dwords received in the OPEN address frame.

7.14.4 SL_CC (connection control) state machine

7.14.4.1 SL_CC state machine overview

The state machine consists of the following states:

- a) SL_CC0:Idle (see 7.14.4.2)(initial state);
- b) SL CC1:ArbSel (see 7.14.4.3);
- c) SL_CC2:Selected (see 7.14.4.4);
- d) SL CC3:Connected (see 7.14.4.5);
- e) SL_CC4:DisconnectWait (see 7.14.4.6);
- f) SL_CC4.Disconnectivalit (see 7.14.4.7)
- g) SL_CC6:Break (see 7.14.4.6); and
- h) SL_CC7;CloseSTP (see 7.14.4.9).

The state machine shall start in the SL_CC0:Idle state. The state machine shall transition to the SL_CC0:Idle state from any other state after receiving an Enable Disable SAS Link (Disable) message from the SL_IR state machines (see 7.9.4).

The SL_CC state machine receives the following messages from the SSP link layer state machine (see 7.16.8), the STP link layer state machine, and SMP link layer state machine (see 7.18.5):

- a) Request Break; and
- b) Request Close.

The SL_CC state machine sends the following messages to the SSP link layer state machine, the STP link layer state machine, and SMP link layer state machine:

- a) Enable Disable SSP (Enable):
- b) Enable Disable SSP (Disable);
- c) Enable Disable STP (Enable);
- d) Enable Disable STP (Disable);
- e) Enable Disable SMP (Enable); andf) Enable Disable SMP (Disable).

The SL_CC state machine receives the following messages from the SL_IR state machines (see 7.9.4):

a) Enable Disable SAS Link (Enable); and

Page: 362 Author: RElliott Subject: Note Date: 9/3/2008 1:50:49 PM -07'00' ACCEPT - DONE (globally, change to these forms: discard the address frame in progress (for new SOAF) discard the address frame discard the frame in progress (for new SOF) discard the frame See stx-ghoulder comment on SSP_RF about discarding SOF too look for others like this - SMP_IP, SMP_TP Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE more than eight Data Dword Received messages (i.e., 32 bytes) Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE (added "either" - see earlier comment) It seems like this << or >> should be << and >> but that would be a different requirement in that the state would do both a and b rather that have to pick either a or b. I'm not sure which was intended Author: RElliott Date: 8/30/2008 12:21:31 PM -07'00' ACCEPT - DONE The state machine receives the following requests from the management application layer: a) Transmit Broadcast. prompted by 08-343 Author: RElliott Subject: Highlight Date: 8/30/2008 12:27:29 PM -07'00' ACCEPT - DONE The SL_CC state machine s/b This state machine Author: RElliott

Comments from page 362 continued on next page

Date: 8/30/2008 12:27:34 PM -07'00'

The SL_CC state machine

ACCEPT - DONE

This state machine

If this state machine receives a subsequent SOAF Received message after receiving an SOAF Received message but before receiving an EOAF Received message, then this state machine shall discard the Data Dword Received messages received before the subsequent SOAF Received message.

If this state machine receives <u>more than eight Data Dword Received messages</u> after an SOAF Received message and before an EOAF Received message, then this state machine shall discard the address frame.

If this state machine receives an Invalid Dword Received message or an ERROR Received message after an SOAF Received message and before an EOAF Received message, then this state machine shall:

- a) ignore the invalid dword or ERROR; or
- b) discard the address frame.

After receiving an EOAF Received message, this state machine shall check if the address frame is a valid OPEN address frame.

This state machine shall accept an address frame if:

- a) the ADDRESS FRAME TYPE field is set to 1h (i.e., OPEN);
- b) the number of data dwords between the SOAF and EOAF is 8; and
- c) the CRC field contains a good CRC.

Otherwise, this state machine shall discard the address frame. If the frame is not discarded then this state machine shall send a OPEN Address Frame Received message to the SL_CC0:Idle state and the SL_CC1:ArbSel state with an argument that contains all the data dwords received in the OPEN address frame.

7.14.4 SL_CC (connection control) state machine

7.14.4.1 SL_CC state machine overview

The state machine consists of the following states:

- a) SL_CC0:Idle (see 7.14.4.2)(initial state);
- b) SL_CC1:ArbSel (see 7.14.4.3);
- c) SL_CC2:Selected (see 7.14.4.4);
- d) SL CC3:Connected (see 7.14.4.5);
- e) SL_CC4:DisconnectWait (see 7.14.4.6);
- f) SL CC5:BreakWait (see 7.14.4.7);
- g) SL_CC6:Break (see 7.14.4.8); and
- h) SL_CC7:CloseSTP (see 7.14.4.9).

The state machine shall start in the SL_CC0:Idle state. The state machine shall transition to the SL_CC0:Idle state from any other state after receiving an Enable Disable SAS Link (Disable) message from the SL_IR state machines (see 7.9.4).

The SL_CC state machine receives the following messages from the SSP link layer state machine (see 7.16.8), the STP link layer state machine, and SMP link layer state machine (see 7.18.5):

- a) Request Break; and
- b) Request Close.

362

The SL_CC state machine sends the folloy/ing messages to the SSP link layer state machine, the STP link layer state machine, and SMP link layer state machine:

- a) Enable Disable SSP (Enable);
- b) Enable Disable SSP (Disable);
- c) Enable Disable STP (Enable);
- d) Enable Disable STP (Disable);
- e) Enable Disable SMP (Enable); and
- f) Enable Disable SMP Disable).

The SL_CC state machine receives the following messages from the SL_IR state machines (see 7.9.4):

a) Enable Disable SAS Link (Enable); and

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott Subject: Highlight Date: 8/30/2008 12:27:38 PM -07'00'

The SL_CC state machine s/b
This state machine

b) Enable Disable SAS Link (Disable).

Any message received by a state that is not referred to in the description of that state or in this subclause shall be ignored.

If this state machine receives an Accept_Reject Opens (Accept SSP) request, then this state machine shall set the Reject SSP Opens state machine variable to NO. If this state machine receives an Accept_Reject Opens (Reject SSP) request, then this state machine shall set the Reject SSP Opens state machine variable to YES.

If this state machine receives an Accept_Reject Opens (Accept SMP) request, then this state machine shall set the Reject SMP Opens state machine variable to NO. If this state machine receives an Accept_Reject Opens (Reject SMP) request, then this state machine shall set the Reject_SMP Opens state machine variable to YES.

If this state machine receives an Accept Reject Opens (Accept STP) request, then this state machine shall set the Reject STP Opens state machine variable to NO. It has state machine receives an Accept Reject Opens (Reject STP) request, then this state machine shall set the Reject STP Opens state machine variable to YES.

Any detection of an internal error shall cause the SL_CC state machine to transition to the SL_CC5:BreakWall state.

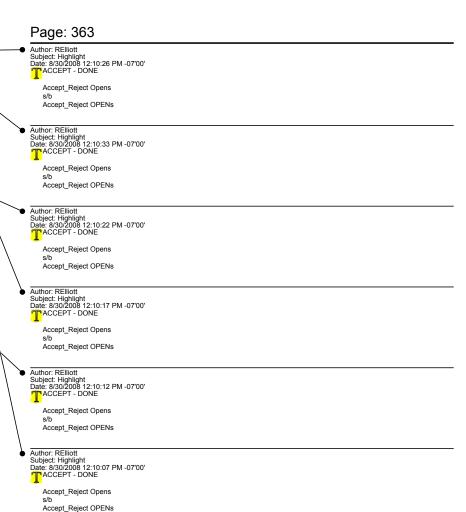
The SL CC state machine shall maintain the timers listed in table 150.

Table 150 — SL_CC timers

Timer	Initial value
Open Timeout timer	1 ms
Close Timeout timer	1 ms
Break Timeout timer	1 ms

The SL CC state machine shall maintain the state machine variables listed in table 151.

Table 151 — SL_CC state machine variables


State machine variable	Description
Reject SSP Opens Used to determine if the SCSI application layer is permitting SSP connection requests to be accepted on this phy.	
Reject SMP Opens Used to determine if the management application layer is permitti connection requests to be accepted on this phy.	
Reject STP Opens	Used to determine if the ATA application layer is permitting STP connection requests to be accepted on this phy.

7.14.4.2 SL CC0:Idle state

7.14.4.2.1 State description

This state is the initial state and is the state that is used when there is no connection pending or established. Upon entry into this state, this state shall send:

- a) an Enable Disable SSP (Disable) message to the SSP link layer state machines;
- b) an Enable Disable SMP (Disable) message to the SMP link layer state machines;
- c) an Enable Disable STP (Disable) message to the STP link layer state machines; and
- d) a Connection Closed (Transition to Idle) confirmation to the port layer.

Comments from page 363 continued on next page

28 January 2008

T10/1760-D Revision 14

b) Enable Disable SAS Link (Disable).

Any message received by a state that is not referred to in the description of that state or in this subclause shall be ignored.

If this state machine receives an Accept_Reject Opens (Accept SSP) request, then this state machine shall set the Reject SSP Opens state machine variable to NO. If this state machine receives an Accept_Reject Opens (Reject SSP) request, then this state machine shall set the Reject SSP Opens state machine variable to YFS

If this state machine receives an Accept_Reject Opens (Accept SMP) request, men this state machine shall set the Reject SMP Opens state machine variable to NO. If this state machine receives an Accept_Reject Opens (Reject SMP) request, then this state machine shall set the Reject SMP Opens state machine variable to YES.

If this state machine receives an Accept_Reject Opens (Mccept STP) request, then this state machine skall set the Reject STP Opens state machine variable to MO. If this state machine receives an Accept_Reject Opens (Reject STP) request, then this state machine shall set the Reject STP Opens state machine variable to YFS

Any detection of an internal error shall cause the SL_CC state machine to transition to the SL_CC5:BreakWait state.

The SL_CC state machine snall maintain the timers listed in table 150.

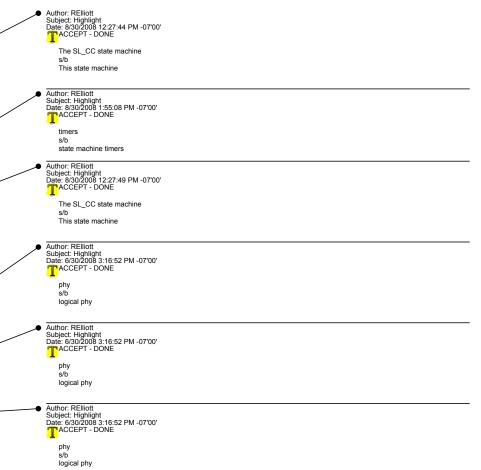
Table 150 — SL_CC timers

Timer	Initial value
Open Timeout timer	1 ms
Close Timeout timer	1 ms
Break Timeout timer	1 ms

The SL_CC state machine snall maintain the state machine variables listed in table 151.

Table 151 — SL_CC state machine variables

State machine variable	Description
Reject SSP Opens	Used to determine if the SCSI application layer is permitting SSP connection requests to be accepted on this phy.
Reject SMP Opens	Used to determine if the management application lave is permitting SMP connection requests to be accepted on this phy.
Reject STP Opens	Used to determine if the ATA application layer is permitting STP connection requests to be accepted on this phy.


7.14.4.2 SL CC0:Idle state

7.14.4.2.1 State description

This state is the initial state and is the state that is used when there is no connection pending or established.

Upon entry into this state, this state shall send:

- a) an Enable Disable SSP (Disable) message to the SSP link layer state machines;
- b) an Enable Disable SMP (Disable) message to the SMP link layer state machines;
- c) an Enable Disable STP (Disable) message to the STP link layer state machines; and
- d) a Connection Closed (Transition to Idle) confirmation to the port layer.

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SL transmitter (see 7.4).

If a BROADCAST Received (Change) message, BROADCAST Received (Reserved <u>Change P</u>) message, or BROADCAST Received (Reserved Change 1) message is received, this state shall send a Change Received confirmation to the management layer.

If a Transmit Broadcast request is received with any argument, this state shall send a Transmit BROADCAST message with the same argument to the SL transmitter.

If a BREAK Received message is received and the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5), then this state shall send a Transmit BREAK_REPLY message to the SL transmitter.

After this state receives an Enable Disable SAS Link (Enable) confirmation, this state shall:

- a) set the Reject SSP Opens state machine variable to a vendor-specific default value (i.e., YES or NQ;
- set the Reject SMP Opens state machine variable to a vendor-specific default value (i.e., YES or NO); and
- c) set the Reject STP Opens state machine variable to a vendor-specific default value (i.e., YES or NO).

If this state receives a NOTIFY Received (Power Loss Expected) message and the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP target port), then this state shall send a Notify Received (Power Loss Expected) confirmation to the port layer.

7.14.4.2.2 Transition SL CC0:Idle to SL CC1:ArbSel

This transition shall occur after receiving both an Enable Disable SAS Link (Enable) confirmation and an Open Connection request. The Open Connection request includes these arguments:

- a) initiator port bit;
- b) protocol;
- c) connection rate;
- d) initiator connection tag.
- e) destination SAS address;
- f) source SAS address;
- g) pathway blocked count; and
- h) arbitration wait time.

7.14.4.2.3 Transition SL_CC0:Idle to SL_CC2:Selected

This transition shall occur after receiving both an Enable Disable SAS Link (Enable) confirmation and an OPEN Address Frame Received message.

7.14.4.3 SL_CC1:ArbSel state

7.14.4.3.1 State description

This state is used to make a connection request.

Upon entry into this state, this state shall:

- 1) request an OPEN address frame be transmitted by sending a Transmit SOAF/Data Dwords/EOAF message to the SL transmitter with the dwords containing the OPEN address frame with its fields set to the arguments received with the Open Connection request;
- 2) initialize and start the Open Timeout timer; and
- 3) request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SL

This state shall ignore OPEN_REJECT Received and OPEN_ACCEPT Received messages from the time a Transmit SOAF/Data Dwords/EOAF message is sent to the SL transmitter until an SOAF/Data Dwords/EOAF Transmitted message is received from the SL transmitter.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 364

then this

 Author: Relliott Subject: Hightlight Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE this s/b

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

> management layer s/b

management application layer

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

s/b then this

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

a SSP s/b

an SSP

Author: Isi-bday

Subject: Highlight
Date: 8/27/2008 3:00:25 PM -07'00'

ACCEPT - DONE (7/14 just add that hand-waving solution. Defer to SAS-2.1 adding any kind of message to the transmitter to turn on Rate Matching)

transmitter.

Suggest adding the following sentence:

See 7.13 for details on rate matching when opening a connection.

28 January 2008 T10/1760-D Revision 14

If a BROADCAST Received (Change) message, BROADCAST Received (Reserved Change 0) message, or BROADCAST Received (Reserved Change 1) message is received this state shall send a Change Received confirmation to the management layer.

If an AIP Received message is received after requesting the OPEN address frame be transmitted, this state shall reinitialize and restart the Open Timeout timer. The state machine strath of enforce a limit on the number of AIPs received

If this state receives an OPEN_REJECT Received message listed in table 152 after transmitting the OPEN address frame, this state shall send the corresponding Open Failed confirmation listed in table 152 to the port layer.

Table 152 — OPEN_REJECT Received message to Open Failed confirmation mapping

OPEN_REJECT Received message	Open Failed confirmation
OPEN_REJECT Received (Bad Destination)	Open Failed (Bad Destination)
OPEN_REJECT Received (Connection Rate Not Supported)	Open Failed (Connection Rate Not Supported)
OPEN_REJECT Received (Protocol Not Supported)	Open Failed (Protoco-Not Supported)
OPEN_REJECT Received (Reserved Abandon 1)	Open Failed (Reserved Abandon 1)
OPEN_REJECT Received (Reserved Abandon 2)	Open Failed (Reserved Abandon 2)
OPEN_REJECT Received (Reserved Abandon 3)	Open Failed (Reserved Abandon 3)
OPEN_REJECT Received (STP Resources Busy)	Open Failed (STP Resources Busy)
OPEN_REJECT Received (Wrong Destination)	Open Failed (Wrong Destination)
OPEN_REJECT Received (Zone Violation)	Open Failed (Zone Violation)
OPEN_REJECT Received (No Destination)	Open Failed (No Destination)
OPEN_REJECT Received (Pathway Blocked)	Open Failed (Pathway Blocked)
OPEN_REJECT Received (Reserved Continue 0)	Open Failed (Reserved Continue 0)
OPEN_REJECT Received (Reserved Continue 1)	Open Failed (Reserved Continue 1)
OPEN_REJECT Received (Reserved Initialize 0)	Open Failed (Reserved Initialize 0)
OPEN_REJECT Received (Reserved Initialize 1)	Open Failed (Reserved Initialize 1)
OPEN_REJECT Received (Reserved Stop 0)	Open Failed (Reserved Stop 0)
OPEN_REJECT Received (Reserved Stop 1)	Open Failed (Reserved Stop 1)
OPEN_REJECT Received (Retry)	Open Failed (Retry)

7.14.4.3.2 Transition SL_CC1:ArbSel to SL_CC0:Idle

This transition shall occur after sending an Open Failed confirmation.

7.14.4.3.3 Transition SL_CC1:ArbSel to SL_CC2:Selected

 $This \ transition \ shall \ occur \ after \ receiving \ a \ SOAF/Data \ Dwords/EOAF \ Transmitted \ message \ if:$

- a) one or more AIP Received messages have been received before an OPEN Address Frame Received message is received (i.e., the incoming OPEN address frame) or
- no AIP Received messages have been received before an OPEN Address Frame Received message is received, and the arbitration fairness rules (see 7.12.3) indicate the received OPEN address frame overrides the outgoing OPEN address frame.

Subject: Highlight Date: 5/25/2008 6:03:39 PM -07'00' ACCEPT - DONE received this s/b received, then this Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE management layer management application layer Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' this s/b then this Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE this s/b then this

Page: 365

Author: wdc-mevans

The arbitration fairness comparison shall compare:

- a) the value of the arbitration wait time argument in the Open Connection request for the outgoing OPEN address frame; and
- b) the value of the ARBITRATION WAIT TIME field received in the incoming OPEN address frame.

7.14.4.3.4 Transition SL CC1:ArbSel to SL CC3:Connected

This transition shall occur if this state receives an SOAF/Data Dwords/EOAF Transmitted message followed by an OPEN ACCEPT Received message.

If the PROTOCOL field in the transmitted OPEN address frame was set to STP, then this state shall send a Connection Opened (STP, Source Opened) confirmation to the port layer before the transition. This transition shall include an Open STP Connection argument. At this point an STP connection has been opened between the source phy and the destination phy.

If the PROTOCOL field in the transmitted OPEN address frame was set to SSP, then this state shall send a Connection Opened (SSP, Source Opened) confirmation to the port layer before the transition. This transition shall include an Open SSP Connection argument. At this point an SSP connection has been opened between the source phy and the destination phy.

If the PROTOCOL field in the transmitted OPEN address frame was set to SMP, then this state shall send a Connection Opened (SMP, Source Opened) confirmation to the port layer before the transition. This transition shall include an Open SMP Connection argument. At this point an SMP connection has been opened between the source phy and the destination phy.

7.14.4.3.5 Transition SL_CC1:ArbSel to SL_CC5:BreakWait

This transition shall occur after receiving a SOAF/Data Dwords/EOAF Transmitted message if a BREA Received message has not been received and after:

- a) a Stop Arb request is received and after sending an Open Failed (Port Layer Request) confirmation to the port layer;
- there is no response to the OPEN address frame before the Open Timeout timer expires and after sending an Open Failed (Open Timeout Occurred) confirmation to the post layer; or
- c) a NOTIFY Received (Power Loss Expected) message is received.

If a NOTIFY Received (Power Loss Expected) message was received and the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP (arget port), then this transition shall include a Power Loss Expected argument.

7.14.4.3.6 Transition SL CC1:ArbSel to SL CC6:Break

This transition shall occur after:

- a) receiving a SOAF/Data Dwords/EOAF Transmitted message;
- b) receiving a BREAK Received message; and
- c) sending an Open Failed (Break Received) confirmation to the port layer.

7.14.4.4 SL CC2:Selected state

7.14.4.4.1 State description

This state completes the establishment of an SSP, SMP, or STP connection when an incoming connection request has won arbitration by sending a Transmit OPEN_ACCEPT message, or rejects opening a connection by sending a Transmit OPEN_REJECT message to the SL transmitter.

This state shall respond to an incoming OPEN address frame using the following rules:

If the OPEN address frame DESTINATION SAS ADDRESS field does not match the SAS address of this
port, this state shall send a Transmit OPEN_REJECT (Wrong Destination) message to the SL
transmitter (see 7.14.4.4.2):

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 366

Author: RElliott
Subject: Highlight
Date: 8/30/2008 9:00:03 AM -07'00'
ACCEPT - DONE

Open Failed (Port Layer Request) s/b Open Failed (Arb Stopped)

per 08-343

Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'
TACCEPT - DONE
a SSP

s/b an SSP

Author: Isi-bday Subject: Highlight Date: 6/30/2008 6:30:07 AM -07'00'

Daté: 6/30/2008 6:30:07 AM -07'00 PACCEPT - DONE (5/5 yes)

Transition SL_CC1:ArbSel to SL_CC6:Break

This transition also needs to include a Power Loss Expected argument to the SL_CC6:Break state. Use same wording as the transition to the SL_CC5 state above.

This is to handle case where it receives BREAK, then immediately followed by the NOTIFY, while this state is still sending the OPEN address frame.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

this s/b

then this

366

28 January 2008 T10/1760-D Revision 14

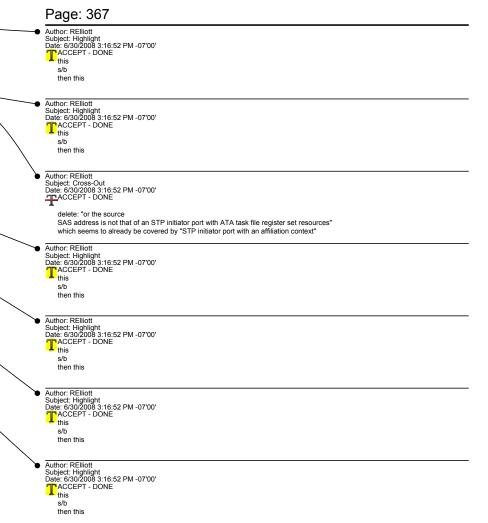
2) If the OPEN address frame INITIATOR PORT bit, PROTOCOL field, FEATURES field, and/or INITIATOR CONNECTION TAG field are set to values that are not supported (e.g., a connection request from an SMP target port), this state shail send a Transmit OPEN_REJECT (Protocol Not Supported) message to the SL transmitter (see 7.14.4.4.2);

- If the OPEN address frame CONNECTION RATE field is set to a connection rate that is not supported, this state shall send a Transmit OPEN_REJECT (Connection Rate Not Supported) message to the SL transmitter (see 7.14.4.4.2):
- 4) If the OPEN address frame PROTOCOL field is set to STP, the STP target pert supports affiliations, and the source SAS address is not that of an STP initiator port with an affiliation established on the course SAS address is not that of an STP initiator port with ATA task file register set resources (see 7.17.4), this state shall send a Transmit OPEN_REJECT (STP Resources Busy) message to the SL transmitter (see 7.14.4.4.2);
- 5) If the OPEN address-same PROTOCOL field is set to SSP and the Reject SSP Opens state machine variable is set to YES, this state shall send a Transmit OPEN_REJECT (Retry) message to the SL transmitter (see 7.14.4.4.2);
- 6) If the OPEN address frame PROTOCOL field is set to SMP and the Reject SMP Opens state machine variable is set to YES, this state shall send a Transmit OPEN_REJECT (Retry) message to the SL transmitter (see 7.14.4.4.2);
- If the OPEN address frame PROTOSQL field is set to SIP and the Reject-SIP Opens state machine variable is set to YES, this state shall seed a Transmit OPEN_REJECT (Reity)-dessage to the SL transmitter (see 7.14.4.4.2):
- 8) If the OPEN address frame PROTOCOL field is set to SSP and the Reject SSP Opens state mechine variable is set to NO, this state shall send a Transmit OPEN_ACCEPT message to the SL transmitted and send a Connection Opened (SSP, Destination Opened) confirmation to the port layer (see 7.14.4.4.3).
- 9) If the OPEN address frame PROTOCOL field is set to SMP and the Reject SMP Opens state machine variable is set to NO, this state shall send a Transmit OPEN_ACCEPT message to the SL transmitter and send a Connection Opened (SMP, Destination Opened) confirmation to the port layer (see 7.14.4.4.3): or
- 10) If the OPEN address frame PROTOCOL field is set to STP and the Reject STP Opens state machine variable is set to NO, this state shall send a Transmit OPEN_ACCEPT message to the SL transmitter and send a Connection Opened (STP, Destination Opened) confirmation to the port layer (see 7.14.4.4.3).

If this state sends a Transmit OPEN_REJECT message to the SL transmitter, it shall also send an Inbound Connection Rejected confirmation to the port layer.

NOTE 66 - Possible livelock scenarios occur if the BREAK_REPLY method of responding to BREAK primitive sequences is disabled and a SAS logical phy transmits BREAK to abort a connection request (e.g., if its Open Timeout timer expires). SAS logical phys should respond to OPEN Address frames faster than 1 ms to reduce susceptibility to this problem.

7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle


This transition shall occur after this state sends a Transmit OPEN_REJECT message to the SL transmitter.

7.14.4.4.3 Transition SL CC2:Selected to SL CC3:Connected

This transition shall occur after sending a Connection Opened confirmation.

This transition shall include:

- a) an Open SSP Connection, Open STP Connection, or Open SMP Connection argument based on the requested protocol; and
- b) the received OPEN address frame.

Comments from page 367 continued on next page

- 2) If the OPEN address frame INITIATOR PORT bit, PROTOCOL field, FEATURES field, and/or INITIATOR CONNECTION TAG field are set to values that are not supported (e.g., a connection request from an SMP target port), this state shall send a Transmit OPEN_REJECT (Protocol Not Supported) message to the SL transmitter (see 7.14.4.4.2);
- If the OPEN address frame CONNECTION RATE field is set to a connection rate that is not supported, this state shall send a Transmit OPEN_REJECT (Connection Rate Not Supported) message to the SL transmitter (see 7.14.4.4.2):
- 4) If the OPEN address frame PROTOCOL field is set to STP, the STP target port supports affiliations, and the source SAS address is not that of an STP initiator port with an affiliation established or the source SAS address is not that of an STP initiator port with ATA task file register set recources (see 7.17.4), this state shall send a Transmit OPEN_REJECT (STP Resources Busy) message to the SL transmitter (see 7.14.4.4.2):
- If the OPEN address frame PROTOCOL field is set to SSP and the Reject SSP Opens state machine variable is set to YES, this state shall send a Transmit OPEN REJECT (Retry) message to the SL transmitter (see 7.14.4.4.2);
- 6) If the OPEN address frame PROTOCOL field is set to SMP and the Reject SMP opens state machine variable is set to YES, this state shall send a Transmit OPEN_REJECT (Petry) message to the SL transmitter (see 7.14.4.4.2);
- 7) If the OPEN address frame PROTOCOL field is set to STP and the Reject STP Opens state machine variable is set to YES, this state shall send a Transmit OPEN_REJECT (Retry) message to the SL transmitter (see 7.14.4.4.2):
- 8) If the OPEN address frame PROTOCOL field is set of SSP and the Reject SSP Opens state machine variable is set to NO, this date shall send a Transmit OPEN_ACCEPT pressage to the SL transmitter and send a Connection Opened (SSP, Destination Opened) confirmation to the port layer (see 7.14.4.4.3):
- 9) If the OPEN address frame PPOTOCOL field is set to SMP and the Reject SMP Opens state machine variable is set to NO, this state shall send a Trapenit OPEN_ACCEPT message to the SL transmitter and send a Connection Opened (SMP, Destination Opened) confirmation to the port layer (see 7.14.4.4.3): or
- 10) If the OPEN address frame PBOTOCOL field is set to STP and the Reject STP Opens state machine variable is set to NO, this state shall send a Transmit OPEN_ACCEPT message to the SL transmitter and send a Connection Opened (STP, Destination Opened) confirmation to the port layer (see 7.14.4.4.3)

If this state sends a Transmit OPEN_REJECT message to the SL transmitter, it shall also send an Inbound Connection Rejected confirmation to the port layer.

NOTE 66 - Possible livelock scenarios occur if the BREAK_REPLY method of responding to BREAK primitive sequences is disabled and a SAS logical phy transmits BREAK to abort a connection request (e.g., if its Open Timeout timer expires). SAS logical phys should respond to OPEN Address ames faster than 1 ms to reduce susceptibility to this problem.

7.14.4.4.2 Transition SL_CC2:Selected to SL_CC0:Idle

This transition shall occur after this state sends a Transmit OPEN_REJECT message to the SL transmitter.

7.14.4.4.3 Transition SL CC2:Selected to SL CC3:Connected

This transition shall occur after sending a Connection Opened confirmation.

This transition shall include:

- a) an Open SSP Connection, Open STP Connection, or Open SMP Connection argument based on the requested protocol; and
- b) the received OPEN address frame.

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE this s/b then this Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE this s/b then this Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE s/b then this Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:04:53 PM -07'00' REJECT (first noun/subject convention, but added "then") transmitter, it transmitter, then this state Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TRACCEPT - DONE after this state sends after sending Author: RElliott Subject: Highlight Date: 8/30/2008 9:04:32 AM -07'00' ACCEPT - DONE confirmation confirmation to the port layer

Author: RElliott

(per 08-343)

7.14.4.4.4 Transition SL_CC2:Selected to SL_CC5:BreakWait

If the SAS port that contains this <u>state machine supports NOTIFY (Power Loss Expected)</u> (e.g., the <u>SAS port</u> is a <u>SSP</u> target port), then this transition shall occur after receiving a NOTIFY Received (Power Loss Expected) message and shall include a Power Loss Expected argument.

7.14.4.4.5 Transition SL CC2:Selected to SL CC6:Break

This transition shall occur after a BREAK Received message is received.

7.14.4.5 SL CC3:Connected state

7.14.4.5.1 State description

This state enables the SSP, STP, or SMP link layer state machine to transmit dwords during a connection. See 7.13 for details on rate matching during the connection.

If this state is entered from SL_CC+AroSel state or the SL_CC2:Selected state with an argument of Open SMP Connection then this state shall send an Enable Disable SMP (Enable) message to the SMP link layer state machines (see 7.18.5).

If this state is entered from SL_CC1:ArbSel state of the SL_CC2:Selected state with an argument of Open SSP Connection then this state shall send an Enable Disable SSP (Enable) message to the SSP link layer state machines (see 7.16.8).

If this state is entered from SL_CC1:ArbSel state or the SL_CC2:Selected state with an argument of Open STP Connection then this state sirail send an Enable Disable STP (Enable) message to the STP link layer state machines (see 7.17.8).

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SL transmitter until the SSP, SMP, or STP link layer state machine starts transmitting.

A CLOSE Received message may be received at any time while in this state, but shall be ignored during SSP and SMP connections. If a CLOSE Received (Clear Affiliation) is received during an STP connection this state shall clear any affiliation (see 7.17.4).

7.14.4.5.2 Transition SL_CC3:Connected to SL_CC4:DisconnectWait

This transition shall occur if a Request Close message is received.

7.14.4.5.3 Transition SL_CC3:Connected to SL_CC5:BreakWait

This transition shall occur <u>after sending a Connection Closed (Break Requested)</u> confirmation to the port layer if:

- a) a Request Break message is received and a BREAK Received message has not been received; or
- b) a NOTIFY Received (Power Loss Expected) message is received.

If a NOTIFY Received (Power Loss Expected) message was received and the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP target port), then this state shall include a Power Loss Expected argument.

7.14.4.5.4 Transition SL_CC3:Connected to SL_CC6:Break

This transition shall occur if a BREAK Received message is received and <u>after sending a Connection Closed</u> (Break Received) confirmation to the port layer.

7.14.4.5.5 Transition SL CC3:Connected to SL CC7:CloseSTP

This transition shall occur if a CLOSE Received message is received during an STP connection.

Page: 368

Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'
TACCEPT - DONE
a SSP
s/b
an SSP

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:05:10 PM -07'00'

Connection then s/b
Connection, then

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:05:13 PM -07'00'

Connection then s/b
Connection, then

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:05:17 PM -07'00'

Connection then s/b
Connection, then

Author: wdc-mevans Subject: Highlight Date: 5/22/2008 2:21:43 PM -07'00'

state, but s/b state but

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

this s/b then this

Author: RElliott
Subject: Highlight
Date: 8/30/2008 9:07:12 AM -07'00'
TACCEPT - DONE

CLOSE Received (Clear Affiliation)

add "message"

Comments from page 368 continued on next page

7.14.4.4.4 Transition SL_CC2:Selected to SL_CC5:BreakWait

If the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP) target port), then this transition shall occur after receiving a NOTIFY Received (Power Loss Expected) message and shall include a Power Loss Expected argument.

7.14.4.4.5 Transition SL_CC2:Selected to SL_CC6:Break

This transition shall occur after a BREAK Received message is received.

7.14.4.5 SL CC3:Connected state

7.14.4.5.1 State description

This state enables the SSP, STP, or SMP link layer state machine to transmit dwords during a connection. See 7.13 for details on rate matching during the connection.

If this state is entered from SL_CC1:ArbSel state or the SL_CC2:Selected state with an argument of Open SMP Connection then this state shall send an Enable Disable SMP (Enable) message to the SMP link layer state machines (see 7.18.5).

If this state is entered from SL_CC1:ArbSel state or the SL_CC2:Selected state with an argument of Oylen SSP Connection then this state shall send an Enable Disable SSP (Enable) message to the SSP link ayer state machines (see 7.16.8).

If this state is entered from SL_CC1:ArbSel state or the SL_CC2:Selected state with an argument of Open STP Connection then this state shall send an Enable Disable STP (Enable) message to the STP ink layer state machines (see 7.17.8).

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SL transmitter until the SSP, SMP, or STP link layer state machine starts transmitting.

A CLOSE Received message may be received at any time while in this state, but shall be ignored during SSP and SMP connections. If a CLOSE Received (Clear Affiliation) is received during an STP connection, this state shall clear any affiliation (see 7.17.4).

7.14.4.5.2 Transition SL_CC3:Connected to SL_CC4:DisconnectWait

This transition shall occur if a Bequest Close message is received.

7.14.4.5.3 Transition SL_CC3:Connected to SL_CC5:BreakWait

This transition shall occur after sending a Connection Closed (Break Requested) confirmation to the port layer if:

- a) a Request Break message is received and a BREAK Received message has not been received; or
- b) a NOTIFY Received (Power Loss Expected) message is received.

If a NOTIFY Received (Power Loss Expected) message was received and the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP target port), then this state shall include a Power Loss Expected argument.

7.14.4.5.4 Transition SL_CC3:Connected to SL_CC6:Break

This transition shall occur if a BREAK Received message is received and <u>after sending a Connection Closed</u> (Break Received) confirmation to the port layer.

7.14.4.5.5 Transition SL CC3:Connected to SL CC7:CloseSTP

This transition shall occur if a CLOSE Received message is received during an STP connection.

Author: RElliott Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE (changed to: state description: If a Request Break message is received and a BREAK Received message has not been received, then this state shall send a Connection Closed (Break Requested) confirmation to the port layer. transition: This transition shall occur: after sending a Connection Closed (Break Requested) confirmation to the port layer; or after a NOTIFY Received (Power Loss Expected) message is received, if the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is an SSP target port) "after sending a Connection Closed (Break Requested)" Implicit sending of messages in the transitions is unclear. Move the if/then clause causing the message to be sent into the state description, then based the transition solely upon sending the message (not the cause for the message). Author: RElliott Date: 7/14/2008 2:23:44 PM -07'00' REJECT (7/9 Request Break only originates at SSP and SMP link layers; it's not a request from the higher layer. So, Connection Closed (Break Requested) isn't really responding to a particular request; it's unsolicited and is thus OK to be used for this purpose.) It is not really sensible to send a Connection Closed (Break Requested) confirmation because of an incoming NOTIFY (Power Loss Expected). That was not requested by this phy, and it is possible the upper layer would miss that (e.g. if it were only looking for it after sending Request Break). The upper layer does need to be notified to stop sending new frames down, Either a new message should be added: Connection Closed (Power Loss Expected Received) the existing Notify Received (Power Loss Expected) confirmation (sent by SL_CC0) should be used in the other states.

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

ACCEPT - DONE

a SSP s/b an SSP

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE (changed to:

state description:

If a BREAK Received message is received, then this state shall send a Connection Closed (Break Received) confirmation to the port layer.

transition section:

This transition shall occur after sending a Connection Closed (Break Received) confirmation to the port layer.

after sending a Connection Closed (Break Received) confirmation

7.14.4.4.4 Transition SL CC2:Selected to SL CC5:BreakWait

If the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP target port), then this transition shall occur after receiving a NOTIFY Received (Power Loss Expected) message and shall include a Power Loss Expected argument.

7.14.4.4.5 Transition SL_CC2:Selected to SL_CC6:Break

This transition shall occur after a BREAK Received message is received.

7.14.4.5 SL CC3:Connected state

7.14.4.5.1 State description

This state enables the SSP, STP, or SMP link layer state machine to transmit dwords during a connection. See 7.13 for details on rate matching during the connection.

If this state is entered from SL_CC1:ArbSel state or the SL_CC2:Selected state with an argument of Open SMP Connection then this state shall send an Enable Disable SMP (Enable) message to the SMP link layer state machines (see 7.18.5).

If this state is entered from SL_CC1:ArbSel state or the SL_CC2:Selected state with an argument of Open SSP Connection then this state shall send an Enable Disable SSP (Enable) message to the SSP link layer state machines (see 7.16.8).

If this state is entered from SL_CC1:ArbSel state or the SL_CC2:Selected state with an argument of Open STP Connection then this state shall send an Enable Disable STP (Enable) message to the STP link layer state machines (see 7.17.8).

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SL transmitter until the SSP, SMP, or STP link layer state machine starts transmitting.

A CLOSE Received message may be received at any time while in this state, but shall be ignored during SSP and SMP connections. If a CLOSE Received (Clear Affiliation) is received during an STP connection, this state shall clear any affiliation (see 7.17.4).

7.14.4.5.2 Transition SL_CC3:Connected to SL_CC4:DisconnectWait

This transition shall occur if a Request Close message is received.

7.14.4.5.3 Transition SL_CC3:Connected to SL_CC5:BreakWait

This transition shall occur <u>after sending a Connection Closed (Break Requested)</u> confirmation to the port layer if:

368

- a) a Request Break message is received and a BREAK Received message has not been received; or
- b) a NOTIFY Received (Power Loss Expected) message is received.

If a NOTIFY Received (Power Loss Expected) message was received and the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP target port), then this state shall include a Power Loss Expected argument.

7.14.4.5.4 Transition SL_CC3:Connected to SL_CC6:Break

This transition shall occur if a BREAK Received message is received and <u>after sending a Connection Closed</u> (Break Received) confirmation to the port layer.

7.14.4.5.5 Transition SL_CC3:Connected to SL_CC7:CloseSTP

This transition shall occur if a CLOSE Received message is received during an STP connection.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Implicit sending of messages in the transitions is unclear. Move the if/then clause causing the message to be sent into the state description, then based the transition solely upon sending the message (not the cause for the message).

T10/1760-D Revision 14

7.14.4.6 SL CC4:DisconnectWait state

7.14.4.6.1 State description

This state closes the connection and releases all resources associated with the connection.

Upon entry into this state, this state shall

- send a Transmit CLOSE (Normal) message or Transmit CLOSE (Clear Affiliation) message to the SL transmitter (see 7.17.6); and
- 2) initialize and start the Close Timeout timer.

A CLOSE Received message may be received at any time while in this state. If a CLOSE Received (Clear Affiliation) is received during an STP connection, this state shall clear any affiliation (see 7.17.4).

NOTE 67 - Possible livelock scenarios occur if the BREAK_REPLY method of responding to received BREAK primitive sequences is disabled and a SAS logical phy transmits BREAK to break a connection (e.g., if its Close Timeout timer expires). SAS logical phys should respond to CLOSE faster than 1 ms to reduce susceptibility to this problem.

7.14.4.6.2 Transition SL CC4:DisconnectWait to SL CC0:Idle

This transition shall occur after:

- a) sending a Transmit CLOSE message to the SL transmitter;
- b) receiving a CLOSE Received message; and
- c) sending a Connection Closed (Normal) confirmation to the port layer.

7.14.4.6.3 Transition SL_CC4:DisconnectWait to SL_CC5:BreakWait

This transition shall occur if a NOTIFY Received (Power Loss Expected) message is received or if:

- a) a BREAK Received message has not been received;
- no CLOSE Received message is received in response to a Transmit CLOSE message before the Close Timeout timer expires; and
- c) after sending a Connection Closed (Close Timeout) confirmation to the port layer.

If a NOTIFY Received (Power Loss Expected) message was received and the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP target port), then this state shall include a Power Loss Expected argument.

7.14.4.6.4 Transition SL_CC4:DisconnectWait to SL_CC6:Break

This transition shall occur after receiving a BREAK Received message and after sending a Connection Closed (Break Received) confirmation to the port layer.

7.14.4.7 SL CC5:BreakWait state

7.14.4.7.1 State description

This state closes the connection if one is established and releases all resources associated with the connection.

Upon entry into this state, this state shall:

- 1) send a Transmit BREAK message to the SL transmitter; and
- 2) initialize and start the Break Timeout timer.

If this state is entered with a Power Loss Expected message or this state receives a NOTIFY Received (Power Loss Expected) message and the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP target port), then this state shall send a Notify Received (Power Loss Expected) confirmation to the port layer.

Page: 369 Author: RElliott Subject: Highlight Date: 8/30/2008 9:08:13 AM -07'00' ACCEPT - DONE CLOSE Received (Clear Affiliation) add "message' Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE this s/b then this Author: RElliott Subject: Underline Date: 8/27/2008 3:40:00 PM -07'00'
TACCEPT - DONE (7/14 incorp 08-293r0 by George Penokie, which reviewed 15 "sending"s) sending a Connection Closed (Normal) confirmation Implicit sending of messages in the transitions is unclear. Move the if/then clause causing the message to be sent into the state description, then based the transition solely upon sending the message (not the cause for the message). Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE a SSP s/b an SSP Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE If this state is entered with a Power Loss Expected message or this state receives a NOTIFY Received (Power Loss Expected) message and the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP target port), If this state: a) is entered with a Power Loss Expected message; or b) receives a NOTIFY Received (Power Loss Expected) message and the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is an SSP target port), Author: wdc-mevans Subject: Highlight Date: 5/30/2008 3:17:48 PM -07'00'

Comments from page 369 continued on next page

REJECT (converted to a)b) list)

message or

7.14.4.6 SL CC4:DisconnectWait state

7.14.4.6.1 State description

This state closes the connection and releases all resources associated with the connection.

Upon entry into this state, this state shall:

- 1) send a Transmit CLOSE (Normal) message or Transmit CLOSE (Clear Affiliation) message to the SL transmitter (see 7.17.6); and
- 2) initialize and start the Close Timeout timer.

A CLOSE Received message may be received at any time while in this state. If a CLOSE Received (Cl Affiliation) is received during an STP connection, this state shall clear any affiliation (see 7.17.4).

NOTE 67 - Possible livelock scenarios occur if the BREAK_REPLY method of responding to received REAK primitive sequences is disabled and a SAS logical phy transmits BREAK to break a connection (e.g., if its Close Timeout timer expires). SAS logical phys should respond to CLOSE faster than 1 ms to reduce susceptibility to this problem.

7.14.4.6.2 Transition SL CC4:DisconnectWait to SL CC0:Idle

This transition shall occur after:

- a) sending a Transmit CLOSE message to the SL transmitter;
- b) receiving a CLOSE Received message; and
- c) sending a Connection Closed (Normal) confirmation to the port layer.

7.14.4.6.3 Transition SL_CC4:DisconnectWait to SL_CC5:B/eakWait

This transition shall occur if a NOTIFY Received (Power Loss Expected) message is received or if:

- a) a BREAK Received message has not been received;
- b) no CLOSE Received message is received in response to a Transmit CLOSE message before the Close Timeout timer expires; and
- c) after sending a Connection Closed (Close Timeout) confirmation to the port layer.

If a NOTIFY Received (Power Loss Expected) message was received and the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP ta/get port), then this state shall include a Power Loss Expected argument.

7.14.4.6.4 Transition SL CC4:DisconnectWait to SL CC6:Break

This transition shall occur after receiving a BREAK Received mess/age and after sending a Connection Closed (Break Received) confirmation to the port layer.

7.14.4.7 SL_CC5:BrezkWait state

7.14.4.7.1 State description

This state closes the connection if one is established and releases all resources associated with the connection

Upon entry into this state, this state shall:

- send a Transmit BREAK message to the SL transmitter; and
- 2) initialize and start the Break Timeout timer.

(Power Loss Expected) message and the SAS fort that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP (arget port), then this state shall send a Notify Received (Power Loss Expected) confirmation to the port layer.

If this state is entered with a Power Loss Expected message or this state receives a NOTIFY Received

message, or

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE Power Loss Expected message

Power Loss Expected argument

Author: wdc-mevans Subject: Highlight Date: 5/30/2008 3:17:58 PM -07'00' REJECT (converted to a)b) list)

message and

message, and

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' TACCEPT - DONE a SSP

an SSP

If a BREAK Received message is received and the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5), then this state shall send a Transmit BREAK_REPLY message to the SL transmitter.

NOTE 68 - Some SAS logical phys compliant with previous versions of this standard send a Transmit OPEN_REJECT (Retry) message to the SL transmitter in response to each OPEN Address Frame Received message received while in this state.

7.14.4.7.2 Transition SL_CC5:BreakWait to SL_CC0:Idle

This transition shall occur after:

- a) receiving a RREAK_REPLY Received message if the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5);
- receiving a BREAK Received message if the BREAK_REPLY method of responding to received BREAK primitive sequences is disabled (see 7.12.5); or
- c) the Break Timeout timer expires.

7.14.4.8 SL_CC6:Break state

7.14.4.8.1 State description

This state closes any connection and releases all resources associated with this connection.

Upon entry into this state:

- a) if the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5),
 this state shall send a Transmit BREAK_REPLY message to the SL transmitter (see 7.14.4.8.2); and
- b) if the BREAK_REPLY methed of responding to received BREAK primitive sequences is disabled (see 7.12.5), this state shall send a Transmit BREAK message to the SL transmitter.

If this state receives a NOTIFY Received (Power Loss Expected) message sed the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port aget port), then this state shall send a Notify Received (Power Loss Expected) confirmation to the port layer.

7.14.4.8.2 Transition SL_CC6:Break to SL_CC0:Idle

This transition shall occur after sending a Transmit BREAK message or a Transmit BREAK_REPLY message to the SL transmitter.

7.14.4.9 SL CC7:CloseSTP state

7.14.4.9.1 State description

This state closes an STP connection and releases all resources associated with the connection.

Upon entry into this state, this state shall:

- send a Transmit CLOSE (Normal) message or Transmit CLOSE (Clear Affiliation) message to the SL transmitter (see 7.17.6); and
- 2) send a Connection Closed (Normal) confirmation to the port layer (see 7.14.4.9.2).

NOTE 69 - Possible livelock scenarios occur if the BREAK_REPLY method of responding to received BREAK primitive sequences is disabled and a SAS logical phy transmits BREAK to break a connection (e.g., if its Close Timeout timer expires). SAS logical phys should respond to CLOSE faster than 1 ms to reduce susceptibility to this problem.

7.14.4.9.2 Transition SL_CC7:CloseSTP to SL_CC0:Idle

This transition shall occur after sending a Connection Closed (Normal) confirmation to the port layer.

Page: 370 Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:05:53 PM -07'00' REJECT (2 things ANDed) received and s/b received, and Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE fix font in a)b)c) Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' this s/b then this Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE this s/b then this Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:06:11 PM -07'00' REJECT (2 things ANDed) message and s/b message, and Author: Isi-bday Subject: Highlight Date: 6/30/2008 6:31:20 AM -07'00' ACCEPT - DONE (added: If this state: is entered with a Power Loss Expected argument; or receives a NOTIFY Received (Power Loss Expected) message and the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is an SSP target port), then this state shall send a Notify Received (Power Loss Expected) confirmation to the port layer. If this state receives a NOTIFY Received (Power Loss Expected) message Dependent on earlier comment. Change beginning of sentence to:

If this state is entered with a Power Loss Expected arguement, or if this state receives..

If a BREAK Received message is received and the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5), then this state shall send a Transmit BREAK_REPLY message to the SL transmitter.

NOTE 68 - Some SAS logical phys compliant with previous versions of this standard send a Transmit OPEN_REJECT (Retry) message to the SL transmitter in response to each OPEN Address Frame Received message received while in this state.

7.14.4.7.2 Transition SL_CC5:BreakWait to SL_CC0:Idle

This transition shall occur after:

- a) receiving a BREAK_REPLY Received message if the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5);
- receiving a BREAK Received message if the BREAK_REPLY method of responding to received BREAK primitive sequences is disabled (see 7.12.5); or
- c) the Break Timeout timer expires.

7.14.4.8 SL_CC6:Break state

7.14.4.8.1 State description

This state closes any connection and releases all resources associated with this connection.

Upon entry into this state:

- a) if the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5),
 this state shall send a Transmit BREAK_REPLY message to the SL transmitter (see 7.14.4.8.2); and
- b) if the BREAK_REPLY method of responding to received BREAK primitive sequences is disabled (see 7.12.5), this state shall send a Transmit BREAK message to the SL transmitter.

If this state receives a NOTIFY Received (Power Loss Expected) message and the SAS/port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP (arget port), then this state shall send a Notify Received (Power Loss Expected) confirmation to the port layer.

7.14.4.8.2 Transition SL_CC6:Break to SL_CC0:Idle

This transition shall occur after sending a Transmit BREAK message or a Transmit BREAK_REPLY message to the SL transmitter.

7.14.4.9 SL CC7:CloseSTP state

7.14.4.9.1 State description

370

This state closes an STP connection and releases all resources associated with the connection.

Upon entry into this state, this state shall:

- send a Transmit CLOSE (Normal) message or Transmit CLOSE (Clear Affiliation) message to the SL transmitter (see 7.17.6); and
- 2) send a Connection Closed (Normal) confirmation to the port layer (see 7.14.4.9.2).

NOTE 69 - Possible livelock scenarios occur if the BREAK_REPLY method of responding to received BREAK primitive sequences is disabled and a SAS logical phy transmits BREAK to break a connection (e.g., if its Close Timeout timer expires). SAS logical phys should respond to CLOSE faster than 1 ms to reduce susceptibility to this problem.

7.14.4.9.2 Transition SL_CC7:CloseSTP to SL_CC0:Idle

This transition shall occur after sending a Connection Closed (Normal) confirmation to the port layer.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' TACCEPT - DONE a SSP s/b an SSP

T10/1760-D Revision 14

7.15 XL (link layer for expander logical phys) state machine

7.15.1 XL state machine overview

The XL state machine controls the flow of dwords on the logical link and establishes and maintains connections with another XL state machine as facilitated by the expander function (e.g., the ECM and ECR).

This state machine consists of the following states:

- a) XL0:Idle (see 7.15.3)(initial state);
- b) XL1:Request_Path (see 7.15.4);
- c) XL2:Request_Open (see 7.15.5);
- d) XL3:Open_Confirm_Wait (see 7.15.6);
- e) XL4:Open_Reject (see 7.15.7);
- f) XL5:Forward_Open (see 7.15.8);
- g) XL6:Open_Response_Wait (see 7.15.9);
- h) XL7:Connected (see 7.15.10);
- XL8:Close_Wait (see 7.15.11); XL9:Break (see 7.15.12); apa
- k) XL10:Break_Wait (see 7.15.13).

The XL state machine snall start in the XL0:Idle state. The XL state machine shall transition to the XL0:Idle state from any other state after receiving an Enable Disable SAS Link (Disable) message from the SL_IR state machines (see 7.9.4).

The XL state machine receives the following messages from the SL_IR state machines:

- a) Enable Disable SAS Link (Enable); and
- b) Enable Disable SAS Link (Disable).

Any message received by a state that is not referred to in the description of that state shall be ignored.

The XL state machine shall maintain the timers listed in table 153.

Table 153 — XL timers

Timer	Initial value
Partial Pathway Timeout timer	Partial pathway timeout value (see 7.12.4.4)
Break Timeout timer	1 ms

Page: 371

Author: RElliott Subject: Highlight
Date: 8/30/2008 12:28:12 PM -07'00'

> The XL state machine s/b

This state machine

Author: RElliott Subject: Highlight
Date: 8/30/2008 12:28:16 PM -07'00'

The XL state machine

This state machine

Author: RElliott Subject: Highlight Date: 8/30/2008 12:28:20 PM -07'00' ACCEPT - DONE

The XL state machine

s/b

This state machine

Author: RElliott Subject: Highlight Date: 8/30/2008 1:55:16 PM -07'00' ACCEPT - DONE

timers

s/b

state machine timers

Figure 186 shows several states in the XL state machine.

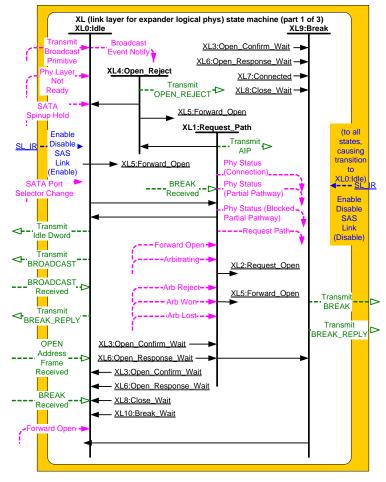


Figure 186 — XL (link layer for expander logical phys) state machine (part 1)

This page contains no comments

372

28 January 2008 T10/1760-D Revision 14

Figure 187 shows additional states in the XL state machine.

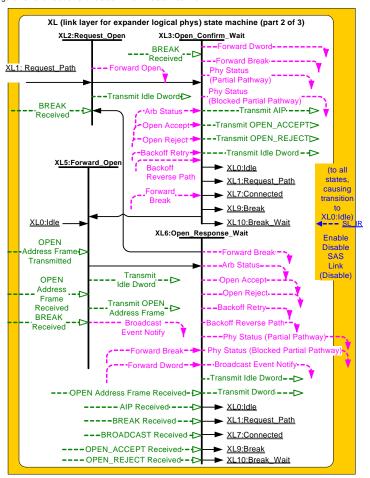


Figure 187 — XL (link layer for expander logical phys) state machine (part 2)

This page contains no comments

Figure 188 shows additional states in the XL state machine.

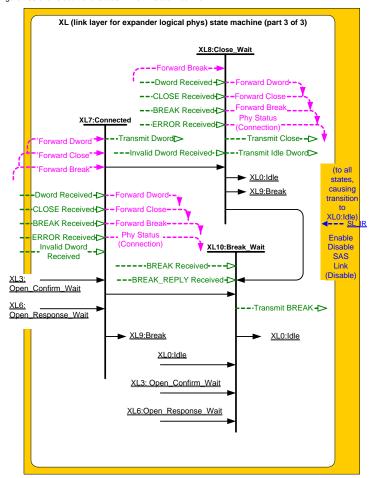


Figure 188 — XL (link layer for expander logical phys) state machine (part 3)

This page contains no comments

T10/1760-D Revision 14

Page: 375

7.15.2 XL transmitter and receiver

The XL transmitter receives the following messages from the XL state machine specifying primitive sequences, frames, and dwords to transmit:

- a) Transmit Idle Dword
- b) Transmit AIP with an argument indicating the specific type (e.g., Transmit AIP (Normal
- c) Transmit BREAK;~
- d) Transmit BREAK_REPLY
- e) Transmit BROADCAST with an significant indicating the specific type (e.g., Transmit BROADCAST
- f) Transmit CLOSE with an argument indicating the specific type (e.g., Transmit CLOSE (Normal
- g) Transmit OPEN ACCEPT
- h) Transmit OPEN_REJECT, with an argument indicating the specific type (e.g., Transmit OPEN_REJECT (No Destination);
- i) Transmit OPEN Address Frame; and
- Transmit Dword.

The XL transmitter sends the following messages to the XL state machine based on dwards that have been transmitted:

a) OPEN Address Frame Transmitted.

The XL transmitter shall ensure physical link rate tolerance management requirements are met (see 7.3) while originating dwords.

The XL transmitter shall ensure physical link rate tolerance management requirements are met while forwarding dwords (i.e., during a connection) by inserting or deleting as many deletable princitives as required to match the transmit and receive connection rates (see 7.3.2).

The XL transmitter shall ensure physical link rate tolerance management requirements are met (see in during and after switching from forwarding dwords to originating dwords, including, for example:

- a) when transmitting BREAK;
- b) when transmitting BREAK REPLY;
- c) when transmitting CLOSE;
- d) when transmitting an idle dword after closing a connection (i.e., after receiving BREAK, BREAK REPLY, or CLOSE);
- e) while transmitting a SATA frame to a SAS logical link during an STP connection, when transmitting the first SATA_HOLDA in response to detection of SATA_HOLD; and
- while receiving dwords of a SATA frame from a SAS logical link during an STP connection, when transmitting SATA HOLD.

NOTE 70 - The XL transmitter may always insert a deletable primitive before transmitting a BREAK, BREAK_REPLY, CLOSE, or SATA_HOLDA to meet physical link rate tolerance management requirements.

The XL transmitter shall insert a deletable primitive before switching from originating dwords to forwarding dwords, including, for example:

- a) when transmitting OPEN_ACCEPT;
- b) when transmitting the last idle dword before a connection is established (i.e., after receiving OPEN_ACCEPT):
- while transmitting a SATA frame to a SAS logical link during an STP connection, when transmitting the last dword from the STP flow control buffer in response to release of SATA HOLD;
- while transmitting a SATA frame to a SAS logical link during an STP connection, when transmitting the last SATA_HOLDA in response to release of SATA_HOLD (e.g., if the STP flow control buffer is empty); and
- e) while receiving dwords of a SATA frame from a SAS logical link during an STP connection, when transmitting the last SATA HOLD.

NOTE 71 - This ensures that physical link rate tolerance management requirements are met, even if the forwarded dword stream does not include a deletable primitive until the last possible dword.

Author: stx-ghoulder Subject: Highlight Date: 5/30/2008 3:22:55 PM -07'00' REJECT (that convention is not used in any of the other "transmitter and receiver" sections) add the word "message" after this phrase. Author: stx-ghoulder Subject: Highlight
Date: 5/30/2008 3:23:03 PM -07'00' TREJECT (that convention is not used in any of the other "transmitter and receiver" sections) Normal) add the word "message" after this phrase. Author: stx-ghoulder Subject: Highlight Date: 5/30/2008 3:23:18 PM -07'00' REJECT (that convention is not used in any of the other "transmitter and receiver" sections) add the word "message" after this phrase Author: stx-ghoulder Subject: Highlight Date: 5/30/2008 3:23:09 PM -07'00' TREJECT (that convention is not used in any of the other "transmitter and receiver" sections) BREAK_REPLY add the word "message" after this phrase. Author: stx-ahoulder Subject: Highlight
Date: 5/30/2008 3:23:54 PM -07'00' TREJECT (that convention is not used in any of the other "transmitter and receiver" sections) (Change) Add "message" after this phrase. Author: stx-ghoulder Subject: Highlight Date: 5/30/2008 3:23:24 PM -07'00' TREJECT (that convention is not used in any of the other "transmitter and receiver" sections) Add "message" after this phrase. Author: stx-ahoulder Daté: 5/30/2008 3:23:48 PM -07'00' REJECT (that convention is not used in any of the other "transmitter and receiver" sections) OPEN ACCEPT Add "message" after this phrase.

7.15.2 XL transmitter and receiver

The XL transmitter receives the following messages from the XL state machine specifying primitive sequences, frames, and dwords to transmit:

- Transmit Idle Dword
- Transmit AIP with an argument indicating the specific type (e.g., Transmit AIP (Normal) b)
- c) Transmit BREAK;
- Transmit BREAK_REPLY
- Transmit BROADCAST with an argument indicating the specific type (e.g., Transmit BROADCAST
- Transmit CLOSE with an argument indicating the specific type (e.g., Transmit CLOSE (Normal)
- g) Transmit OPEN ACCEP
- Transmit OPEN_REJECT, with an argument indicating the specific type (e.g., Transmit OPEN REJECT (No Destination
- Transmit OPEN Address Frame; and
- Transmit Dword

The XL transmitter sends the following messages to the XL state machine based on dwords that have been transmitted:

a) OPEN Address Frame Transmitted.

The XL transmitter shall ensure physical link rate tolerance management requirements are met (see 7.3) while originating dwords.

The XL transmitter shall ensure physical link rate tolerance management requirements are met while forwarding dwords (i.e., during a connection) by inserting or deleting as many deletable primitives as required to match the transmit and receive connection rates (see 7.3.2).

The XL transmitter shall ensure physical link rate tolerance management requirements are met (see 7.3) during and after switching from forwarding dwords to originating dwords, including, for example:

- a) when transmitting BREAK;
- b) when transmitting BREAK REPLY;
- c) when transmitting CLOSE;
- d) when transmitting an idle dword after closing a connection (i.e., after receiving BREAK, BREAK REPLY, or CLOSE);
- e) while transmitting a SATA frame to a SAS logical link during an STP connection, when transmitting the first SATA HOLDA in response to detection of SATA HOLD; and
- f) while receiving dwords of a SATA frame from a SAS logical link during an STP connection, when transmitting SATA HOLD.

NOTE 70 - The XL transmitter may always insert a deletable primitive before transmitting a BREAK, BREAK REPLY, CLOSE, or SATA HOLDA to meet physical link rate tolerance management requirements.

The XL transmitter shall insert a deletable primitive before switching from originating dwords to forwarding dwords, including, for example

- a) when transmitting OPEN ACCEPT;
- b) when transmitting the last idle dword before a connection is established (i.e., after receiving
- c) while transmitting a SATA frame to a SAS logical link during an STP connection, when transmitting the last dword from the STP flow control buffer in response to release of SATA HOLD;
- d) while transmitting a SATA frame to a SAS logical link during an STP connection, when transmitting the last SATA_HOLDA in response to release of SATA_HOLD (e.g., if the STP flow control buffer is
- e) while receiving dwords of a SATA frame from a SAS logical link during an STP connection, when transmitting the last SATA HOLD.

NOTE 71 - This ensures that physical link rate tolerance management requirements are met, even if the forwarded dword stream does not include a deletable primitive until the last possible dword.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: stx-ghoulder

Subject: Highlight Date: 5/30/2008 3:23:42 PM -07'00'

REJECT (that convention is not used in any of the other "transmitter and receiver" sections)

(No Destination)

add the word "message" after this phrase.

Author: stx-ghoulder

Subject: Highlight Date: 5/30/2008 3:23:33 PM -07'00'

REJECT (that convention is not used in any of the other "transmitter and receiver" sections)

Frame

Add "message" after this phrase.

Author: stx-ahoulder

Subject: Highlight Date: 5/30/2008 3:23:29 PM -07'00'

REJECT (that convention is not used in any of the other "transmitter and receiver" sections)

Add "message" after this phrase.

Author: Isi-gpenokie

375

Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

TACCEPT - DONE

This << following messages to the XL state machine >> should be << following message to the XL state machine >>

The XL transmitter shall ensure rate matching requirements are met during a connection (see 7.13).

When there is no outstanding message specifying a dword to transmit, the XL transmitter shall transmit idle

The XL receiver sends the following messages to the XL state machine indicating primitive sequences, frames, and dwords received from the SP_DWS receiver (see 6.9.2):

- a) AIP Received with an argument indicating the specific type (e.g., AIP Received (Normal)
- b) BREAK Received;
- c) BREAK_REPLY Received;
- d) BROADCAST Received;
- e) CLOSE Received;
- OPEN ACCEPT Received;
- g) OPEN REJECT Received;
- h) OPEN Address Frame Received;
- Dword Received with an argument indicating the data dword or primitive received: and
- Invalid Dword Received.

The XL receiver shall ignore all other dwords.

While receiving an address frame, if the XL receiver receives ar invalid dword or ERROR, then the XL receiver shall:

- a) ignore the invalid dword or ERROR; or
- discard the address frame

The XL transmitter relationship to other transmitters is defined in 4.3.2. The XL receiver relationship to other receivers is defined in 4.3.3.

7.15.3 XL0:Idle state

7.15.3.1 State description

This state is the initial state and is the state that is used when there is no connection pending or established.

If a Phy Layer Not Ready confirmation is received, this state shall send a Broadcast Event Notify (Phy Not Ready) request to the BPP.

If a SATA Spinup Hold confirmation is received, this state shall send a Broadcast Event Notify (SATA Spinup Hold) request to the BPP.

If an Enable Disable SAS Link (Enable) message is received, this state shall send a Breadcast Event Notify (Identification Sequence Complete) request to the BPP.

If a SATA Port Selector Change confirmation is received, this state shall send a Boadcast Event Notify (SATA Port Selector Change) request to the BPP.

If a BROADCAST Received message is received, this state shall send a Broadcast Event Notify equest to the BPP with the argument indicating the specific BROADCAST primitive received (e.g., Change Received

If a Transmit Broadcast indication is received, this state shall send a Transmit BROADCAST message to the XL transmitter with an argument specifying the specific type from the Transmit Broadcast indication. Otherwise, this state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the XL transmitter.

If a BREAK Received message is received and the BREAK REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5), then this state shall send a Transmit BREAK_REPLY

7.15.3.2 Transition XL0:Idle to XL1:Request Path

This transition shall occur if:

a) an Enable Disable SAS Link (Enable) message has been received;

Page: 376

Author: stx-ghoulder Subject: Highlight Date: 5/30/2008 3:24:20 PM -07'00' REJECT (see earlier reply about format)

Shouldn't this be all CAPs (i.e., NORMAL)?

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

ACCEPT - DONE (added "either" - see earlier comment)

It seems like this << or >> should be << and >> but that would be a different requirement in that the state would do both a and b

rather that have to pick either a or b. I'm not sure which was intended

Author: elx-bmartin

Subject: Sticky Note Date: 9/1/2008 1:23:20 PM -07'00'

ACCEPT - DONE (In XL0, added "This state shall repeatedly send Idle requests to the ECM." Added Idle to the list of ECM requests in chapter 4 (including in the figure). In ch7 ECM arbitration requirements overview, added "If the ECM receives an Idle request from a phy that is involved in a connection before it has received a Forward Close request from that phy and sent a

Forward Close indication to that phy, then the ECR shall send a Forward Break indication to the destination phy."

7/14 Describe that the ECM/ECR does this.

7/9 the Enable Disable SAS Link message from SL_IR is already in the diagrams and described in the state machine overview, the same as in SL_CC. However, we do need to get a BREAK to occur on the other end. Should XL of the disabled phy do that, or can the ECR do that on its own? 7/9 call prefers having the ECM/ECR do it, rather than asking XL to do something as it is basically

As in the SL state machines, there should be a global transition to the XL0 state if a Phy Layer Not Ready confirmation is received; however, if the XL state machine has a connection, it should send a Forward Break request to the ECM. This affects a number of states

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE this

s/b then this

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

this s/b then this

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

Comments from page 376 continued on next page

The XL transmitter shall ensure rate matching requirements are met during a connection (see 7.13).

When there is no outstanding message specifying a dword to transmit, the XL transmitter shall transmit idle dwords

The XL receiver sends the following messages to the XL state machine indicating primitive sequences, frames, and dwords received from the SP_DWS receiver (see 6.9.2):

- a) AIP Received with an argument indicating the specific type (e.g., AIP Received (Normal));
- b) BREAK Received;
- c) BREAK_REPLY Received;
- d) BROADCAST Received;
- e) CLOSE Received;
- f) OPEN_ACCEPT Received;
- g) OPEN REJECT Received;
- h) OPEN Address Frame Received;
- i) Dword Received with an argument indicating the data dword or primitive received; and
- j) Invalid Dword Received.

The XL receiver shall ignore all other dwords.

While receiving an address frame, if the XL receiver receives an invalid dword or ERROR, then the XL receiver shall:

- a) ignore the invalid dword or ERROR; or
- b) discard the address frame.

The XL transmitter relationship to other transmitters is defined in 4.3.2. The XL receiver relationship to other receivers is defined in 4.3.3.

7.15.3 XL0:Idle state

7.15.3.1 State description

This state is the initial state and is the state that is used when there is no connection peruing or established

If a Phy Layer Not Ready confirmation is received, this state shall send a sycadcast Event Notify (Phy Not Ready) request to the BPP.

If a SATA Spinup Hold confirmation is received, this state shall send a groad ast Event Notify (SATA Spinup Hold) request to the BPP.

If an Enable Disable SAS Link (Enable) message is received, this state shall send a Broadcast Event Notify (Identification Sequence Complete) request to the BPP.

If a SATA Port Selector Change confirmation is received, this state shall send a Broadcast Event Notify (SATA Port Selector Change) request to the BPP.

If a BROADCAST Received message is received, this state shall send a Broadcast Event Notify request to the BPP with the argument indicating the specific BROAD(AST primitive received (e.g., Change Received).

If a Transmit Broadcast indication is received, this state shall send a Transmit BROADCAST message to the XL transmitter with an argument specifying the specific type from the Transmit Broadcast indication. Otherwise, this state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the XL transmitter.

If a BREAK Received message is received and the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5), then this state shall send a Transmit BREAK_REPLY message to the XL transmitter.

7.15.3.2 Transition XL0:Idle to XL1:Request_Path

This transition shall occur if:

a) an Enable Disable SAS Link (Enable) message has been received;

then this

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
this
s/b
then this

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
s/b
this
s/b
then this

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
this
s/b
then this

Author: wdc-mevans
Subject: Highlight
Date: 5/23/2008 10:27:03 AM -07'00'
TREJECT (2 things ANDed)
received and

received, and

28 January 2008

b) a Forward Open indication is not being received; and

an OPEN Address Frame Received message is received.
 This state shall include an OPEN Address Frame Received argument with the transition.

7.15.3.3 Transition XL0:Idle to XL5:Forward_Open

This transition shall occur if:

- a) an Enable Disable SAS Link (Enable) message has been received; and
- b) a Forward Open indication is received.

This transition shall include a set of arguments containing the arguments received in the Forward Open indication

If an OPEN Address Frame Received message is received, this state shall include an OPEN Address Frame Received argument with the transition.

7.15.4 XL1:Request_Path state

7.15.4.1 State description

This state is used to arbitrate for connection resources and to specify the destination of the connection.

If an Arbitrating (Normal) confirmation is received, this state shall repeatedly send Transmit AIP (Normal) and Transmit Idle Dword messages to the XL transmitter in accordance with AIP transmission rules (see 7.12.4.3).

If an Arbitrating (Waiting On Partial) or Arbitrating (Blocked On Partial) confirmation is received, this state shall repeatedly send Transmit AIP (Waiting On Partial) and Transmit Idle Dword messages to the XL transmitter in accordance with AIP transmission rules (see 7.12.4.3).

If an Arbitrating (Waiting On Partial) confirmation is received, its state shall repeatedly send a Phy Status (Partial Pathway) response to the ECM.

If an Arbitrating (Blocked On Partial) confirmation is received, this state shall repeatedly send a Phy Status (Blocked Partial Pathway) response to the ECM.

If an Arbitrating (Waiting On Connection) confirmation is received, this state shall repeatedly send Transmit AIP (Waiting On Connection) and Transmit Idle Dword messages to the XL transmitter in accordance with AIP transmission rules (see 7.12.4.3).

If an Arbitrating (Waiting On Connection) confirmation is received, this state shall repeatedly send a Phy Status (Connection) response to the ECM.

If this state is entered from the XL6:Open_Response_Wait state, the Retry Priority Status argument shall be set to IGNORE AWT. If this state is entered from any other state, the Retry Priority Status argument shall be set to NORMAI

Upon entry into this state, this state shall send a Request Path request to the ECM with the following arguments:

- a) initiator port bit;
- b) protocol;
- c) connection rate;
- d) initiator connection tag;
- e) destination SAS address;
- f) source SAS address;
- g) pathway blocked count;
- h) arbitration wait time; and
- i) retry priority status.

This state maintains the Partial Pathway Timeout timer.

If the Partial Pathway Timeout timer is not already running, the Partial Pathway Timeout timer shall be initialized and started when an Arbitrating (Blocked On Partial) confirmation is received.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 377

then this

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE this s/b

Author: stx-ghoulder Subject: Highlight Date: 5/30/2008 3:25:07 PM -07'00'

Normal add the word "message" after this phrase.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
this
s/b
then this

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
s/b
this
s/b
then this

Author: Isi-gpenokie
Subject: Highlight
Date: 57:25/2008 6:07:53 PM -07'00'
ACCEPT - DONE (including an extra "an")

This << Arbitrating (Waiting On Partial) or Arbitrating (Blocked On Partial) confirmation is received >> should be << Arbitrating (Waiting On Partial) confirmation or Arbitrating (Blocked On Partial) confirmation is received >>

Author: stx-ghoulder
Subject: Highlight
Date: 5/25/2008 6:08:16 PM -07'00'
TACCEPT - DONE (as "messages")

Waiting On Partial
add the word "message" after this phrase.

Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 6:08:33 PM -07'00'
PREJECT (see stx-ghoulder reply instead)

This << send Transmit AIP (Waiting On Partial) and Transmit Idle Dword messages to >> should be << send Transmit AIP (Waiting On Partial) message and Transmit Idle Dword message to >>

Comments from page 377 continued on next page

T10/1760-D Revision 14

b) a Forward Open indication is not being received; and

c) an OPEN Address Frame Received message is received.

This state shall include an OPEN Address Frame Received argument with the transition.

7.15.3.3 Transition XL0:Idle to XL5:Forward_Open

This transition shall occur if:

- a) an Enable Disable SAS Link (Enable) message has been received; and
- b) a Forward Open indication is received.

This transition shall include a set of arguments containing the arguments received in the Forward Oper

If an OPEN Address Frame Received message is received, this state shall include an OPEN Address Frame Received argument with the transition.

7.15.4 XL1:Request_Path state

7.15.4.1 State description

This state is used to arbitrate for connection resources and to specify the destination of the connection.

If an Arbitrating (Normal) confirmation is received, this state shall repeatedly send Transmit AIP (Normal) and Transmit Idle Dword messages to the XL transmitter in accordance with AIP */ansmission rules (see 7.12.4.3).

If an Arbitrating (Waiting On Partial) or Arbitrating (Blocked On Partial) confirmation is received, this state shall repeatedly send Transmit AIP (Waiting On Partial) and Transmit Idle Dword messages to the XL transmitter in accordance with AIP transmission rules (see 7.12.4.3).

If an Arbitrating (Waiting On Partial) confirmation is received, this state shall repeatedly sand a Phy Status (Partial Pathway) response to the ECM.

If an Arbitrating (Blocked On Partial) confirmation is received, this state shall repeatedly send a Phy Status (Blocked Partial Pathway) response to the ECM.

If an Arbitrating (Waiting On Connection) confirmation is received the ng On Connection) <mark>and Transmit Idle Dword messages</mark> to the XL transmitter in accordance with AIP transmission rules (see 7.12.4.3).

If an Arbitrating (Waiting On Connection) confirmation is received, this state shall repeatedly send a Phy Status (Connection) response to the ECM.

If this state is entered from the XL6:Open_Response_Wait state, the Retry Priority Status argument shall be set to IGNORE AWT. If this state is entered from any other state, the Retry Rejority Status argument shall be

Upon entry into this state, this state shall send a Request Path request to the ECM with the following arguments:

- a) initiator port bit;
- b) protocol;
- c) connection rate;
- d) initiator connection tag;
- e) destination SAS address:
- source SAS address;
- g) pathway blocked count; h) arbitration wait time; and
- i) retry priority status.

This state maintains the Partial Pathway Timeout timer. If the Partial Pathway Timeout timer is not already running, the Partial Pathway Timeout timer shall be initialized and started when an Arbitrating (Blocked On Partial) confirmation is received.

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE
this
    s/b
    then this
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
   this
    then this
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
     this
    s/h
    then this
Author: Isi-apenokie
Subject: Highlight
Date: 5/25/2008 6:09:08 PM -07'00'
 REJECT (see stx-ghoulder reply instead)
    This << send Transmit AIP (Waiting On Connection) and Transmit Idle Dword messages >> should be << send Transmit AIP
    (Waiting On Connection) message and Transmit Idle Dword message >>
Author: stx-ghoulder
Subject: Highlight
Date: 5/25/2008 6:08:53 PM -07'00'
  TACCEPT - DONE (as "messages")
    Waiting On Connection)
    add the word "message" after this phrase.
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
    s/b
    then this
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
 the
```

Comments from page 377 continued on next page

then the

28 January 2008 T10/1760-D Revision 14

- b) a Forward Open indication is not being received; and
- c) an OPEN Address Frame Received message is received.

This state shall include an OPEN Address Frame Received argument with the transition.

7.15.3.3 Transition XL0:Idle to XL5:Forward_Open

This transition shall occur if:

- a) an Enable Disable SAS Link (Enable) message has been received; and
- b) a Forward Open indication is received.

This transition shall include a set of arguments containing the arguments received in the Forward Open indication.

If an OPEN Address Frame Received message is received, this state shall include an OPEN Address Frame Received argument with the transition.

7.15.4 XL1:Request_Path state

7.15.4.1 State description

This state is used to arbitrate for connection resources and to specify the destination of the connection.

If an Arbitrating (Normal) confirmation is received, this state shall repeatedly send Transmit AIP/(Normal) and Transmit Idle Dword messages to the XL transmitter in accordance with AIP transmission rule/ (see 7.12.4.3/).

If an Arbitrating (Waiting On Partial) or Arbitrating (Blocked On Partial) confirmation is received, this state shall repeatedly send Transmit AIP (Waiting On Partial) and Transmit Idle Dword messages to the XL transmitter in accordance with AIP transmission rules (see 7.12.4.3).

If an Arbitrating (Waiting On Partial) confirmation is received, this state shall repeatedly send a Phy Status (Partial Pathway) response to the ECM.

If an Arbitrating (Blocked On Partial) confirmation is received, this state shall repeatedly send a Phy Status (Blocked Partial Pathway) response to the ECM.

If an Arbitrating (Waiting On Connection) confirmation is received, this state shall repeatedly send Transmit AIP (Waiting On Connection) and Transmit Idle Dword messages to the XL transmitter in accordance with AIP transmission rules (see 7.12.4.3).

If an Arbitrating (Waiting On Connection) confirmation is received, this state shall repeatedly send a Phy Status (Connection) response to the ECM.

If this state is entered from the XL6:Open_Response_Wait state, the Petry Priority Status argument shall be set to IGNORE AWT. If this state is entered from any other state, the Retry Priority Status argument shall be set to NORMAI

Upon entry into this state, this state shall send a Request Path request to the ECM with the following arguments:

- a) initiator port bit;
- b) protocol;
- c) connection rate;
- d) initiator connection tag;
- e) destination SAS address;
- f) source SAS address;
- g) pathway blocked count;
- h) arbitration wait time; and
- i) retry priority status.

This state maintains the Partial Pathway Timeout timer.

If the Partial Pathway Timeout timer is not already running, the Partial Pathway Timeout timer shall be initialized and started when an Arbitrating (Blocked On Partial) confirmation is received.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: Rellicit Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
s/b
then the

If the Partial Pathway Timeout timer is already running, the Partial Pathway Timeout timer shall continue to run if an Arbitrating (Blocked On Partial) confirmation is received.

The Partial Pathway Timeout timer shall be stopped when one of the following confirmations is received:

- a) Arbitrating (Waiting On Partial); or
- b) Arbitrating (Waiting On Connection).

If the Partial Pathway Timeout timer expires, this state shall send a Partial Pathway Timeout Timer Expired request to the ECM.

7.15.4.2 Transition XL1:Request Path to XL0:Idle

This transition shall occur if:

- a) a BREAK Received message has not been received; and
- b) an Arb Lost confirmation is received.

7.15.4.3 Transition XL1:Request_Path to XL2:Request_Open

This transition shall occur if:

- a) a BREAK Received message has not been received; and
- b) an Arb Won confirmation is received.

7.15.4.4 Transition XL1:Request_Path to XL4:Open_Reject

This transition shall occur if:

- a) a BREAK Received message has not been received; and
- b) an Arb Reject confirmation is received.

This transition shall include an Arb Reject argument corresponding to the Arb Reject confirmation.

7.15.4.5 Transition XL1:Request_Path to XL5:Forward_Open

This transition shall occur if a Forward Open indication is received and none of the following confirmations have been received:

- a) Arbitrating (Normal);
- b) Arbitrating (Waiting On Partial);
- c) Arbitrating (Blocked On Partial);
- d) Arbitrating (Waiting On Connection);
- e) Arb Won;
- f) Arb Lost;
- g) Arb Reject (No Destination);
- h) Arb Reject (Bad Destination);
- i) Arb Reject (Connection Rate Not Supported);
- i) Arb Reject (Zone Violation);
- k) Arb Reject (Pathway Blocked); or
- I) Arb Reject (Retry).

This transition shall include:

- a) an OPEN Address Frame Received argument containing the arguments received in the Forward Open indication; and
- b) a BREAK Received argument if a BREAK Received message was received.

7.15.4.6 Transition XL1:Request_Path to XL9:Break

This transition shall occur after receiving a BREAK Received message if a Forward Open indication has not been received.

Page: 378

then the

then this

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE this s/b

7.15.5 XL2:Request_Open state Page: 379 7.15.5.1 State description Author: stx-ghoulder Subject: Highlight Date: 5/30/2008 3:25:18 PM -07'00' This state is used to forward an OPEN address frame through the ECR to a destination phy. REJECT (see previous reply about formatting) This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to Shouldn't this be all CAPs (i.e., NORMAL)? Upon entry into this state, this state shall send a Forward Open request to the ECR, received by the destination phy as a Forward Open indication (see 7.15.5.2). The arguments to the Forward Open request Author: stx-ghoulder Subject: Highlight Date: 5/30/2008 3:26:45 PM -07'00' a) initiator port bit; PACCEPT - DONE b) protocol; c) features: Waiting On Partial) add the word "message" after this phrase. d) connection rate; e) initiator connection tag: Author: stx-ghoulder Subject: Highlight Date: 5/30/2008 3:26:48 PM -07'00' f) destination SAS address; g) source SAS address; h) source zone group; ACCEPT - DONE pathway blocked count; Waiting On Connection arbitration wait time: and add the word "message" after this phrase. k) more compatible features. 7.15.5.2 Transition XL2:Request_Open to XL3:Open_Confirm_Wait Author: stx-ghoulder Subject: Highlight Date: 5/30/2008 3:26:51 PM -07'00' This transition shall occur after sending a Forward Open request to the ECR. If a BREAK Received message is received, this state shall include a BREAK Received argument with the transition. (Waiting On Device) add the word "message" after this phrase. 7.15.6 XL3:Open_Confirm_Wait state 7.15.6.1 State description Author: stx-ghoulder Subject: Highlight Date: 5/30/2008 3:26:56 PM -07'00' This state waits for confirmation for an OPEN address frame sent on a destination phy. ACCEPT - DONE This state shall send the following nessages to the XL transmitter: OPEN_ACCEPT a) Transmit AIP (Normal) when an Arb Status (Normal) confirmation is received; add the word "message" after this phrase. b) Transmit AIP (Waiting On Partial) when an Arb Status (Waiting On Partial) confirmation is received; Transmit AIP (Waiting On Connection) when an Arb Status (Waiting On Connection) confirmation is received; Author: Isi-gpenokie Subject: Sticky Note Date: 5/30/2008 3:26:35 PM -07'00' d) Transmit AIP (Waiting On Device) which an Arb Status (Waiting On Device) confirmation is received; Transmit OPEN_ACCEPT when an Open Accept confirmation is received (see 7.15.6.5); ACCEPT - DONE Transmit OPEN_REJECT when an Open Reject confirmation is received with the argument from the Open Reject confirmation, after releasing path resources (see 7.15.6.2), or All the << Transmit AIP (...) >> should be << Transmit AIP (...) message >> g) request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages when nor of the previous conditions are present. Author: stx-ghoulder Subject: Highlight Date: 6/30/2008 7:42:17 AM -07'00' If a Backoff Retry confirmation is received, this state shall release path resources. PACCEPT - DONE If a BREAK Received message is received or a BREAK Received argument is included in the transition into this state, this state shall send a Forward Break request to the ECR (see 7.15.6.6). OPEN_REJECT add the word "message" after this phrase. This state shall repeatedly send a Phy Status (Partial Pathway) response to the ECM until an Arb Status (Waiting On Partial) confirmation is received. After an Arb Status (Waiting on Partial) confirmation is received

Author: wdc-meyans

Comments from page 379 continued on next page

send a Forward Dword request to the ECR containing that dword.

this state shall repeatedly send a Phy Status (Blocked Partial Pathway) response to the ECM.

If a Dword Received message is received containing a valid dword except a BREAK primitive, this state shall

7.15.5 XL2:Request_Open state

7.15.5.1 State description

This state is used to forward an OPEN address frame through the ECR to a destination phy.

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to

Upon entry into this state, this state shall send a Forward Open request to the ECR, received by the destination phy as a Forward Open indication (see 7.15.5.2). The arguments to the Forward Open request

- a) initiator port bit;
- b) protocol;
- c) features:
- d) connection rate;
- e) initiator connection tag:
- f) destination SAS address;
- g) source SAS address;
- h) source zone group:
- pathway blocked count;
- arbitration wait time; and
- k) more compatible features.

7.15.5.2 Transition XL2:Request_Open to XL3:Open_Confirm_Wait

This transition shall occur after sending a Forward Open request to the ECR.

If a BREAK Received message is received, this state shall include a BREAK Received argument with the transition.

7.15.6 XL3:Open_Confirm_Wait state

7.15.6.1 State description

This state waits for confirmation for an OPEN address frame sent on a destination phy.

This state shall send the following messages to the XL transmitter:

- a) Transmit AIP (Normal) when an Arb Status (Normal) confirmation is received;
- b) Transmit AIP (Waiting On Partial) when an Arb Status (Waiting On Partial) confirmation is received;
- Transmit AIP (Waiting On Connection) when an Arb Status (Waiting On Connection) confirmation is received;
- d) Transmit AIP (Waiting On Device) when an Arb Status (Waiting On Device) confirmation is received
- e) Transmit OPEN ACCEPT when an Open Accept confirmation is received (see 7.15.6.5);
 f) Transmit OPEN REJECT when an Open Reject confirmation is received with the argument from the Open Reject confirmation, after releasing path resources (see 7.15.6.2); or
- g) request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages when none of the previous conditions are present.

If a Backoff Retry confirmation is received, this state shall release path resources.

If a BREAK Received message is received or a BREAK Received argument is included in the transition into this state, this state shall send a Forward Break request to the ECR (see 7.15.6.6).

This state shall repeatedly send a Phy Status (Partial Pathway) response to the EC/M until an Arb Status (Waiting On Partial) confirmation is received. After an Arb Status (Waiting on Partial) confirmation is received, this state shall repeatedly send a Phy Status (Blocked Partial Pathway) response to the ECM.

If a Dword Received message is received containing a valid dword except a BREAK primitive, this state shall send a Forward Dword request to the ECR containing that dword.

Working Draft Serial Attached SCSI - 2 (SAS-2)

379

Date: 5/25/2008 6:09:23 PM -07'00'

received or received, or

Author: elx-bmartin

Subject: Comment on Text Date: 7/17/2008 5:04:19 PM -07'00'

REJECT (7/17 Bill agrees to reject.

5/5 if XL3 is not forwarding, the transmitting expander phy's XL6 -> XL7 transition will leave XL7 without a clue about what to send until XL3 receives the OPEN_ACCEPT notification. It is easier if XL3 always forwards. XL6 already has an option to either generate idle dwords or forward dwords, so is not obligated to forward them.)

shall s/h

may

There should not be any dwords except idle or BREAK received while in this state, so a receiver should be allowed to delete dwords that are should not be here. Additionally in XL6, when a dword is forwarded it may send that dword or just send idles.

Subject: Highlight Date: 9/1/2008 1:28:28 PM -07'00'

TACCEPT - DONE (
9/1 This is already qualified by being dwords in the Dword Received message. In the XL receiver defintion of Dword Received, added " Deletable primitives are not included." to delete them at the source.

7/9 use "or deletable primitive" which also covers ALIGNs)

BREAK

BREAK, MUX, or NOTIFY

or deletable primitive?

Author: wdc-mevans

Subject: Highlight Date: 5/30/2008 3:27:24 PM -07'00'

REJECT (that's a critical phrase)

dword except

dword, except

If:

- a) an Invalid Dword Received message is received; and
- b) the expander logical phy is forwarding to an expander logical phy attached to a SAS logical link,

then the expander logical phy shall:

- a) send an ERROR primitive with the Forward Dword request instead of the invalid dword; or
- b) delete the invalid dword.

If:

380

- a) an ERROR primitive is received with the Dword Received message or an Invalid Dword Received message is received; and
- b) the expander logical phy is forwarding to an expander phy attached to a SATA physical link,

then the expander logical phy shall:

- a) send a SATA_ERROR with the Forward Dword request instead of the invalid dword or ERROR primitive; or
- b) delete the ERROR primitive or invalid dword.

7.15.6.2 Transition XL3:Open_Confirm_Wait to XL0:Idle

This transition shall occur after sending a Transmit OPEN_REJECT message to the XL transmitter if:

- a) a BREAK Received message has not been received; and
- b) a BREAK Received argument was not included in the transition into this state.

7.15.6.3 Transition XL3:Open_Confirm_Wait to XL1:Request_Path

This transition shall occur after receiving a Backoff Retry confirmation, after releasing path resources if:

- a) a BREAK Received message has not been received; and
- b) a BREAK Received argument was not included in the transition into this state.

7.15.6.4 Transition XL3:Open_Confirm_Wait to XL5:Forward_Open

This transition shall occur after receiving a Backoff Reverse Path confirmation if:

- a) a BREAK Received message has not been received; and
- b) a BREAK Received argument was not included in the transition into this state.

The transition shall include the Backoff Reverse Path arguments (i.e., the OPEN address frame).

7.15.6.5 Transition XL3:Open_Confirm_Wait to XL7:Connected

This transition shall occur after sending a Transmit OPEN_ACCEPT message to the XL transmitter if:

- a) a BREAK Received message has not been received; and
- b) a BREAK Received argument was not included in the transition into this state.

7.15.6.6 Transition XL3:Open_Confirm_Wait to XL9:Break

This transition shall occur after sending a Forward Break request to the ECR.

7.15.6.7 Transition XL3:Open_Confirm_Wait to XL10:Break_Wait

This transition shall occur after receiving a Forward Break indication if:

- a) a BREAK Received message has not been received; and
- b) a BREAK Received argument was not included in the transition into this state.

Page: 380

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 6:10:07 PM -07'00'

It seems like this << or >> should be << and >> but that would be a different requirement in that the state would do both a and b rather that have to pick either a or b. I'm not sure which was intended.

Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 6:10:21 PM -07'00'
REJECT (written as intended)

It seems like this << or >> should be << and >> but that would be a different requirement in that the state would do both a and b rather that have to pick either a or b. I'm not sure which was intended.

7.15.7 XL4:Open_Reject state

7.15.7.1 State description

This state is used to reject a connection request.

This state shall send one of the following messages to the XL transmitter (see 7.15.7.2):

- a) a Transmit OPEN_REJECT (No Destination) message when an Arb Reject (No Destination) argument is received with the transition into this state;
- b) a Transmit OPEN_REJECT (Bad Destination) message when an Arb Keject (Bad Destination) argument is received with the transition into this state;
- c) a Transmit OPEN_REJECT (Connection Rate Not Supported) message when an Arb Reject (Connection Rate Not Supported) argument is received with the transition into this state;
- d) a Transmit OPEN_REJECT (Zone Violation) message whien an Arb Reject (Zone Violation) argument is received with the transition into this state;
- e) a Transmit OPEN_REJECT (Pathway Blocked) message when an Arb Reject (Pathway Blocked) argument is received with the transition into this state; or
- a Transmit OFEN_REJECT (Retry) message when an Arb Reject (Retry) argument is received with the transition into this state.

7.15.7.2 Transition XL4:Open Reject to XL0:Idle

This transition shall occur after sending a Transmit OPEN REJECT message to the XL transmitter.

7.15.7.3 Transition XL4:Open Reject to XL5:Forward Open

This transition shall occur if a Forward Open indication is received. This transition shall include an OPEN Address Frame Received argument containing the arguments received in the Forward Open indication.

7.15.8 XL5:Forward_Open state

7.15.8.1 State description

This state is used to transmit an OPEN address frame passed with the transition into this state.

If a BROADCAST Received message is received, this state shall send a Broadcast Event Notify request to the BPP with the argument indicating the specific BROADCAST primitive received (e.g., Change Received).

Upon entry into this state, this state shall send a Transmit OPEN Address Frame message to the XL transmitter with the fields set to the values specified with the transition into this state.

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to

7.15.8.2 Transition XL5:Forward_Open to XL6:Open_Response_Wait

This transition shall occur after receiving an OPEN Address Frame Transmitted message.

If an OPEN Address Frame Received message or argument is received, this state shall include an OPEN Address Frame Received argument with the transition.

If a BREAK Received message or argument is received, this state shall include a BREAK Received argument with the transition.

7.15.9 XL6:Open Response Wait state

7.15.9.1 State description

This state waits for a response to a transmitted OPEN address frame and determines the appropriate action to take based on the response.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 381

Author: elx-bmartin Subject: Cross-Out Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE

Author: Isi-gpenokie Subject: Cross-Out Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE

Extra item

Author: wdc-mevans Subject: Cross-Out
Date: 5/6/2008 1:07:49 PM -07'00'

ACCEPT - DONE [Delete the extra list item designator.)

Author: stx-ghoulder Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE Delete the empty item g).

T10/1760-D Revision 14

This state shall either:

 request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the XL transmitter, honoring ALIGN insertion rules for rate matching and physical link rate tolerance management: or

b) send Transmit Dword messages to the XL transmitter to transmit all dwords received with Forward Dword indications

If a BROADCAST Received message is received before an AIP Received message is received this state shall send a Broadcast Event Notify request to the BPP with the argument indicating the specific BROADCAST primitive received (e.g., Broadcasts).

This state shall send the following responses to the ECR, which are received by the source phy as confirmations:

- a) an Open Accept response when an OPEN_ACCEPT Received message is received (see 7.15.9.5);
- an Open Reject response when an OPEN_REJECT Received message is received, after releasing any path resources (see 7.15.9.2);
- c) a Backoff Retry response, after releasing path resources (see 7.15.9.3), when:
 - A) an AIP Received message has not been received;
 - B) an OPEN Address Frame Received message is received or an OPEN Address Frame Received argument is included in the transition into this state containing a higher priority OPEN address frame according to the arbitration fairness comparison (see 7.12.3); and
- C) the destination SAS address and connection rate of the received OPEN address frame are not equal to the source SAS address and connection rate of the transmitted OPEN address frame;
- d) a Backoff Retry response, after releasing path resources (see 7.15.9.3), when:
 - A) an AIP Received message has been received;
 - B) an OPEN Address Frame Received message is received or an OPEN Address Frame Received argument is included in the transition into this state; and
 - C) the destination SAS address and connection rate of the received OPEN address frame are not equal to the source SAS address and connection rate of the transmitted OPEN address frame;
- e) a Backoff Reverse Path response (see 7.15.9.4) when:
 - A) an AIP Received message has not been received,
 - B) an OPEN Address Frame Received message is received or an OPEN Address Frame Received argument is included in the transition into this state containing a higher priority OPEN address frame according to the arbitration fairness comparison (see 7.12.3); and
 - C) the destination SAS address and connection rate of the received OPEN address frame are equal to the source SAS address and connection rate of the transmitted OPEN address frame;

and

- f) a Backoff Reverse Path response (see 7.15.9.4) when:
 - A) an AIP Received message has been received:
 - B) an OPEN Address Frame Received message is received or an OPEN Address Frame Received argument is included in the transition into this state; and
 - C) the destination SAS address and connection rate of the received OPEN address frame are equa to the source SAS address and connection rate of the transmitted OPEN address frame.

A Backoff Reverse Path response shall include the contents of the OPEN Address Frame Received message or argument.

This state shall send the following responses to the ECR, which are received by the source phy as confirmations:

- a) an Arb Status (Waiting On Device) response upon entry into this state;
- b) an Arb Status (Normal) response when an AIP Received (Normal) message is received;
- c) an Arb Status (Waiting On Partial) response when an AIP Received (Waiting On Partial) message is received:
- an Arb Status (Waiting On Connection) response when an AIP Received (Waiting On Connection) message is received; and

Page: 382

Author: wdc-mevans

28 January 2008

Subject: Highlight
Date: 5/25/2008 6:10:48 PM -07'00'

received this s/b

received, then this

Author: RElliott
Subject: Highlight
Date: 8/30/2008 10:42:00 AM -07'00'

Broadcast Event Notify request to the BPP with the argument indicating the specific BROADCAST primitive received (e.g., Broadcasts)

c/h

Broadcast Event Notify request to the BPP with the argument indicating the specific BROADCAST primitive received (e.g., Broadcast Event Notify (Change Received)

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 6:11:12 PM -07'00'

received or s/b received, or

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:11:18 PM -07'00'

received or

s/b received, or

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:11:25 PM -07'00'

received or s/b received, or

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:11:30 PM -07'00'

received or s/b received or

e) an Arb Status (Waiting On Device) response when an AIP Received (Waiting On Device) message is

If a BREAK Received message is received or a BREAK Received argument is included in the transition into this state, this state shall send a Forward Break request to the ECR (see 7.15.9.6).

This state shall repeatedly send a Phy Status (Partial Pathway) response to the ECM until an AIP Received (Waiting On Partial) message is received. After an AIP Received (Waiting On Partial) message is received, this state shall repeatedly send a Phy Status (Blocked Partial Pathway) response to the ECM.

7.15.9.2 Transition XL6:Open Response Wait to XL0:Idle

This transition shall occur after sending an Open Reject response to the ECR.

7.15.9.3 Transition XL6:Open Response Wait to XL1:Request Path

This transition shall occur after sending a Backoff Retry response to the ECR.

7.15.9.4 Transition XL6:Open_Response_Wait to XL2:Request_Open

This transition shall occur after sending a Backoff Reverse Path response to the ECR.

7.15.9.5 Transition XL6:Open Response Wait to XL7:Connected

This transition shall occur after sending an Open Accept response to the ECP

7.15.9.6 Transition XL6:Open_Response_Wait to XL9:Break

This transition shall occur after sending a Forward Break response to the ECR.

7.15.9.7 Transition XL6:Open Response Wait to XL10:Break Wait

This transition shall occur after receiving a Forward Break indication if:

- a) a BREAK Received message has not been received; and
- b) a BREAK Received argument was not included in the transition into this state.

7.15.10 XL7:Connected state

7.15.10.1 State description

This state provides a full-duplex circuit between two phys within an expander device.

This state shall send Transmit Dword messages to the XL transmitter to transmit all dwords received with Forward Dword indications. During an STP connection, the expander device may expand or contract a repeated or continued primitive sequence (see 7.2.4).

If this state has not sent a Forward Close request to the ECR, this state shall send Forward Dword requests to the ECR containing each valid dword except BREAK and CLOSE primitives received with Dword Received messages. During an STP connection, the expander device may expand or contract a repeated or continued primitive sequence (see 7.2.4).

If:

- a) an Invalid Dword Received message is received; and
- b) the expander phy is forwarding to an expander logical phy attached to a SAS logical link,

the expander logical phy shall:

- a) send an ERROR primitive with the Forward Dword request instead of the invalid dword; or
- b) delete the invalid dword.

If:

a) an ERROR primitive is received with the Dword Received message or an Invalid Dword Received message is received; and

Working Draft Serial Attached SCSI - 2 (SAS-2)

383

Page: 383

Author: Isi-gpenokie

Subject: Highlight Date: 8/27/2008 3:41:05 PM -07'00'

ACCEPT - DONE (7/17 change to "path"

"logical link" is a term for what's on the wire, not what's inside an expander.)

This << circuit >> should be << logical link >> as circuit is not defined, and logical link is.

Author: Isi-bday

Subject: Highlight Date: 9/1/2008 1:29:41 PM -07'00'

ACCEPT - DONE (

- 9/1 "received with Dword Received" is already a qualification, so just added " Deletable primitives are not included" in the XL receiver section defining that message.

7/9 use "or deletable primitive" which also covers ALIGNs)

BREAK

BREAK, MUX, NOTIFY.

or deletable primitive?

Author: Isi-gpenokie

Subject: Highlight Date: 5/25/2008 6:12:30 PM -07'00'

REJECT (written as intended)

It seems like this << or >> should be << and >> but that would be a different requirement in that the state would do both a and b rather that have to pick either a or b. I'm not sure which was intended

b) the expander phy is forwarding to an expander logical phy attached to a SATA phy,

the expander logical phy shall:

- a) send a SATA_ERROR with the Forward Dword request instead of the invalid dword or ERROR primitive; or -
- b) delete the ERROR primitive or invalid dword.

If a CLOSE Received message is received, this state shall send a Forward Close request to the ECR with the argument from the CLOSE Received message.

If a BREAK Received message is received, this state shall send a Forward Break request to the ECR (see

This state shall repeatedly send a Phy Status (Connection) response to the ECM.

7.15.10.2 Transition XL7:Connected to XL8:Close_Wait

This transition shall occur after receiving a Forward Close indication if a BREAK Received message has lot been received.

7.15.10.3 Transition XL7:Connected to XL9:Break

This transition shall occur after sending a Forward Break request to the ECR.

7.15.10.4 Transition XL7:Connected to XL10:Break Wait

This transition shall occur after receiving a Forward Break indication if a MREAK Received message has not been received

7.15.11 XL8:Close Wait state

7.15.11.1 State description

This state closes a connection and releases path resources.

Upon entry into this state, this state shall send a Transmit CLOSE message to the XL transmitter with the argument from the Forward Close indication, then shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the XL transmitter.

NOTE 72 - Possible livelock scenarios occur if the BREAK_REPLY method of responding to received BREAK primitive sequences is disabled and a phy transmits BREAK to break a connection (e.g., if its Close Timeout timer expires). Phys should respond to CLOSE faster than 1 ms to reduce susceptibility to this

If a Dword Received message is received containing a valid dword except a BREAK or CLOSE primitive, this state shall send a Forward Dword request to the ECR containing that dword. During an STP connection, the expander device may expand or contract a repeated or continued primitive sequence (see 7.2.4).

If:

- a) an Invalid Dword Received message is received; and
- b) the expander logical phy is forwarding to an expander logical phy attached to a SAS logical link,

the expander logical phy shall:

- a) send an ERROR primitive with the Forward Dword request instead of the invalid dword; or
- delete the invalid dword b)

If:

- a) an ERROR primitive is received with the Dword Received message or an Invalid Dword Received message is received: and
- b) the expander logical phy is forwarding to an expander phy attached to a SATA physical link,

Page: 384

Author: Isi-gpenokie

Subject: Highlight Date: 5/25/2008 6:12:45 PM -07'00' REJECT (written as intended)

It seems like this << or >> should be << and >> but that would be a different requirement in that the state would do both a and b rather that have to pick either a or b. I'm not sure which was intended

Author: Isi-gpenokie Subject: Cross-Out

Date: 6/30/2008 7:06:34 AM -07'00'

REJECT (it's used many times, and is introduced in the ECM arbitration requirements overview)

The term << path >> is not defined and could be deleted without loosing anything.

Author: Isi-bday Subject: Highlight

Date: 9/1/2008 1:30:13 PM -07'00'

ACCEPT - DONE (

9/1 added " Deletable primitives are not included" in XL receiver section (see other comments)

7/9 use "or deletable primitive" which also covers ALIGNs)

BREAK

BREAK, MUX, NOTIFY,

or deletable primitive?

Author: Isi-gpenokie

Subject: Highlight Date: 5/25/2008 6:13:04 PM -07'00'

REJECT (written as intended)

It seems like this << or >> should be << and >> but that would be a different requirement in that the state would do both a and b rather that have to pick either a or b. I'm not sure which was intended

T10/1760-D Revision 14

the expander logical phy shall:

- a) send a SATA_ERROR with the Forward <u>Dword request instead of the invalid dword or FRROR</u>
 primitive: or
- b) delete the ERROR primitive or invalid dword.

If a CLOSE Received message is received, this state shall release path resources and send a Forward Close request to the ECR with the argument from the CLOSE Received message (see 7.15.11.2).

If a BREAK Received message is received, this state shall send a Forward Break request to the ECR (see 7.15.11.3).

This state shall repeatedly send a Phy Status (Connection) response to the ECM.

7.15.11.2 Transition XL8:Close_Wait to XL0:Idle

This transition shall occur after sending a Forward Close request to the ECR.

7.15.11.3 Transition XL8:Close Wait to XL9:Break

This transition shall occur after sending a Forward Break request to the ECR.

7.15.11.4 Transition XL8:Close_Wait to XL10:Break_Wait

This transition shall occur after receiving a Forward Break indication if a BREAK Received message has not been received.

7.15.12 XL9:Break state

7.15.12.1 State description

This state closes the connection if there is one and releases all path resources associated with the

This state shall send a Transmit BREAK message to the XL transmitter (see 7.15.12.2).

This state shall:

- a) send a Transmit BREAK_REPLY message to the XL transmitter if the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5); and
- send a Transmit BREAK message to the XL transmitter if the BREAK_REPLY method of responding to received BREAK primitive sequences is disabled (see 7.12.5).

7.15.12.2 Transition XL9:Break to XL0:Idle

This transition shall occur after sending a Transmit BREAK message or a fransmit BREAK_REPLY message to the XL transmitter.

7.15.13 XL10:Break Wait state

7.15.13.1 State description

This state closes the connection if there is one and releases path resources associated with the connection

Upon entry into this state, this state shall:

- 1) send a Transmit BREAK message to the XL transmitter; and
- initialize and start the Break Timeout timer.

If a BREAK Received message is received and the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5), then this state shall send a Transmit BREAK_REPLY message to the XL transmitter.

Page: 385

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 6:13:20 PM -07'00'

It seems like this << or >> should be << and >> but that would be a different requirement in that the state would do both a and b rather that have to pick either a or b. I'm not sure which was intended.

Author: wdc-mevans Subject: Highlight Date: 5/30/2008 3:27:57 PM -07'00'

connection if there is one and s/b connection, if there is one, and

Author: elx-bmartin Subject: Cross-Out Date: 5/6/2008 1:07:49 PM -07'00'

This state shall send a Transmit BREAK message to the XL transmitter (see 7.15.12.2).

This sentence should be deleted as it was replaced by the a-b list below.

Author: wdc-mevans
Subject: Highlight
Date: 5/2/2008 1:34:06 PM -07'00'

TACCEPT - DONE
connection if there is one and
s/b
connection, if there is one, and

Author: elx-bmartin

Subject: Comment on Text Date: 9/1/2008 4:02:47 PM -07'00'

ACCEPT - DONE (7/15 although the crossbar resources can be released, cannot tell the ECM that the phy itself is free yet, so must continue sending Phy Status indicating that the phy is occupied. Add a new Phy Status (Breaking Connection) and ensure the ECM text uses it everywhere it uses the other Phy Statuses.

6/18 this state doesn't forward anymore starting on entry... so resources can be released immediately)

This state cannot release all resources until a BREAK or BREAK_REPLY has been received. This requirement should be moved into the transition XL10:XL0

Additionally,

This state shall repeatedly send:

- a) Phy Status (Connection) response to the ECM if this state was entered from XL8 or XL7;
- b) Phy Status (Partial Pathway) response to the ECM if this state was entered from XL3 or XL6 and an AIP Received (Waiting On Partial) message was not received; or
- c) Phy Status (Blocked Partial Pathway) response to the ECM if this state was entered from XL3 or XL6 and an AIP Received (Waiting On Partial) message was received.

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:14:04 PM -07'00'

received an

Comments from page 385 continued on next page

28 January 2008 T10/1760-D Revision 14

the expander logical phy shall:

 a) send a SATA_ERROR with the Forward Dword request instead of the invalid dword or ERROR primitive: or

b) delete the ERROR primitive or invalid dword.

If a CLOSE Received message is received, this state shall release path resources and send a Forward Close request to the ECR with the argument from the CLOSE Received message (see 7.15.11.2).

If a BREAK Received message is received, this state shall send a Forward Break request to the ECR (see 7.15.11.3).

This state shall repeatedly send a Phy Status (Connection) response to the ECM.

7.15.11.2 Transition XL8:Close_Wait to XL0:Idle

This transition shall occur after sending a Forward Close request to the ECR.

7.15.11.3 Transition XL8:Close_Wait to XL9:Break

This transition shall occur after sending a Forward Break request to the ECR.

7.15.11.4 Transition XL8:Close_Wait to XL10:Break_Wait

This transition shall occur after receiving a Forward Break indication if a BREAK Received message has not been received.

7.15.12 XL9:Break state

7.15.12.1 State description

This state closes the connection if there is one and releases all path resources associated with the connection.

This state shall send a Transmit BREAK message to the XL transmitter (see 7.15.12.2).

This state shall:

- a) send a Transmit BREAK_REPLY message to the XL transmitter if the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5); and
- send a Transmit BREAK message to the XL transmitter if the BREAK_REPLY method of responding to received BREAK primitive sequences is disabled (see 7.12.5).

7.15.12.2 Transition XL9:Break to XL0:Idle

This transition shall occur after sending a Transmit BREAK message or a Transmit BREAK_REPLY message to the XL transmitter.

7.15.13 XL10:Break Wait state

7.15.13.1 State description

This state closes the connection if there is one and releases path resources associated with the connection.

Upon entry into this state, this state shall:

- 1) send a Transmit BREAK message to the XL transmitter; and
- 2) initialize and start the Break Timeout timer.

If a BREAK Received message is received and the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5), then this state shall send a Transmit BREAK_REPLY message to the XL transmitter.

Working Draft Serial Attached SCSI - 2 (SAS-2)

385

s/b received, and

7.15.13.2 Transition XL10:Break_Wait to XL0:Idle

This transition shall occur after:

- a) a BREAK_REPLY Received message is received if the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5);
- a BREAK Received message is received if the BREAK REPLY method of responding to received BREAK primitive sequences is disabled (see 7.12.5); or
- c) the Break Timeout timer expires.

7.16 SSP link layer

7.16.1 Opening an SSP connection

An SSP phy that accepts a connection request (i.e., an OPEN address frame) shall transmit at least one RRDY in that connection within 1 ms of transmitting an OPEN_ACCEPT. If the SSP phy is not able to grant credit, it shall respond with OPEN_REJECT (RETRY) and not accept the connection request.

To prevent livelocks (e.g., where ports are waiting on each other to accept a connection request):

- a) a SAS phy shall not reject an incoming connection request to an SSP initiator port with OPEN_REJECT (RETRY) because the SAS port containing that SAS phy needs an outgoing connection request to be accepted (e.g., if the SAS phy is used by an SSP initiator poin and an SSP target port, they share a buffer, that buffer is being used by the SSP target port, and the SSP target port needs to transmit a frame to another SSP initiator port before it is able to free that buffer);
- a SAS phy may reject an incoming connection request to an SSP initiator port with OPEN_REJECT (RETRY) for any reason that is not dependent on the SAS port containing that SAS phy having an outgoing connection request accepted (e.g., a temporary buffer full condition); and
- c) a SAS phy may reject an incoming connection request to an SSP target port with OPEN_REJECT (RETRY) for any reason, including because the SAS port containing that SAS phy needs so outgoing connection request to be accepted (e.g., to transmit a frame and empty subuffer).

7.16.2 Full duplex

SSP is a full duplex protocol. An SSP phy may receive an SSP frame or primitive in a connection while it is transmitting an SSP frame or primitive in the same connection. A wide SSP port may send and/or receive SSP frames or primitives concurrently on different connections (i.e., on different phys).

When a connection is open and an SSP phy has no more SSP frames to transmit on that connection, it transmits a DONE to start closing the connection (see 8.2.2.3.5). The other direction may still be active, so the DONE may be followed by one or more of the following primitives: CREDIT_BLOCKED, RRDY, ACK, or NAK

7.16.3 SSP frame transmission and reception

During an SSP connection, SSP frames are preceded by SOF and followed by EOF as shown in figure 189.

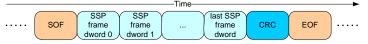


Figure 189 - SSP frame transmission

The last data dword after the SOF prior to the EOF always contains a CRC (see 7.5). The SSP link layer state machine checks that the frame is not too short and that the CRC is valid (see 7.16.8.7).

receiving SSP phys shall acknowledge SSP frames within 1 ms, if not discarded as described in 7.16.8.7, with either:

 a) ACK (i.e., positive acknowledgement) if the SSP frame was received into a frame buffer without errors; or

Page: 386 Author: elx-bmartin Subject: Highlight

Subject: Highlight Date: 5/25/2008 6:14:18 PM -07'00'

REJECT (if BREAKs are having trouble, give up on the phy altogether. I think that is mentioned elsewhere)

c) the Break Timeout timer expires.

If the Break Timeout timer expires, should another BREAK be sent. If another BREAK is not sent, and what was lost was the BREAK, then you still have part of the path tied up in a connection.

```
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 6:14:44 PM-07'00'

REJECT (first noun/subject convention, but added "then" even though not requested)

it
s/b
the SSP phy

Author: stx-ghoulder
Subject: Highlight
Date: 5/25/2008 6:15:15 PM-07'00'
```

TREJECT (5/5 fine as is)
shall not reject

This "shall not" case is OK, but there doesn't seem to be any recommendation of what should be done in this situation. Shouldn't such a recommendation be added?

Author: wdc-mevans
 Subject: Highlight
 Date: 5/25/2008 6:15:30 PM -07'00'
 REJECT (Isi-gpenokle would then complain)
 needs

requires

Author: wdc-mevans
Subject: Highlight
Date: 5/125/2008 6:15:38 PM -07'00'
PREJECT (Isi-gpenokie would then complain)

needs s/b requires

s/b

Author: Isi-gpenokie Subject: Highlight Date: 6/2/2008 7:23:11 AM -07'00'

This << including because the SAS port containing >> should be << including the case were the SAS port containing >>

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:16:26 PM -07'00' TACCEPT - DONE it s/b the SSP phy

Comments from page 386 continued on next page

7.15.13.2 Transition XL10:Break_Wait to XL0:Idle

This transition shall occur after:

- a) a BREAK_REPLY Received message is received if the BREAK_REPLY method of responding to received BREAK primitive sequences is enabled (see 7.12.5);
- a BREAK Received message is received if the BREAK_REPLY method of responding to received BREAK primitive sequences is disabled (see 7.12.5); or
- c) the Break Timeout timer expires.

7.16 SSP link layer

7.16.1 Opening an SSP connection

An SSP phy that accepts a connection request (i.e., an OPEN address frame) shall transmit at least one RRDY in that connection within 1 ms of transmitting an OPEN_ACCEPT. If the SSP physis not able to grant credit, it shall respond with OPEN_REJECT (RETRY) and not accept the connection request.

To prevent livelocks (e.g., where ports are waiting on each other to accept a convection request):

- a) a SAS phy shall not reject an incoming connection request to an SSD initiator port with OPEN_REJECT (RETRY) because the SAS port containing that SAS phy needs an outgoing connection request to be accepted (e.g., if the SAS phy is user by an SSP initiator port and an SSP target port, they share a buffer, that buffer is being used by the SSP target port, and the SSP target port needs to transmit a frame to another SSP initiator pox before it is able to free that buffer);
- a SAS phy may reject an incoming connection request to an SSP initiator port with OPEN_REJECT (RETRY) for any reason that is not dependent on the SAS port containing that SAS phy having an outgoing connection request accepted (e.g., a temporary buffer full condition); and
- c) a SAS phy may reject an incoming connection squest to an SSP target port with OPEN_REJECT (RETRY) for any reason, including because the SAS port containing that SAS phy needs in outgoing connection request to be accepted (e.g., to transmit a frame and empty a buffer).

7.16.2 Full duplex

386

SSP is a full duplex protocol. An SSP phy may receive an SSP frame or primitive in a funnection while it is transmitting an SSP frame or primitive in the same connection. A wide SSP port may send and/or receive SSP frames or primitives concurrently on different connections (i.e., on different phys).

When a connection is open and an SSP phy has no more SSP frames to transmit on that connection, it transmits a DONE to start closing the connection (see 8.2.2.3.5). The other direction may still be active, so the DONE may be followed by one or more of the following primitives: CREDIT/BLOCKED, RRDY, ACK, or NAK.

7.16.3 SSP frame transmission and reception

During an SSP connection, SSP frames are preceded by SOF and followed by EOF as shown in figure 189.

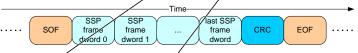


Figure 189 — SSP frame transmission

The last data dword after the SOF prior to the EO always contains a CRC (see 7.5). The SSP link layer state machine checks that the frame is not too short and that the CRC is valid (see 7.16.8.7).

hereiving SSP phys shall acknowledge SSP frames within 1 ms, if not discarded as described in 7.16.8.7, with either:

 a) ACK (i.e., positive acknowledgement) if the SSP frame was received into a frame buffer without errors; or

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2/08 6:15:52 PM -07'00'
TREJECT (2 things ANDed)
open and
s/b
open, and

Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2/08 6:16:01 PM -07'00'

This << following primitives: CREDIT_BLOCKED, RRDY, ACK, or NAK. >> should be made into an a,b,c list.

Author: Isi-bday
Subject: Highlight
Date: 5/30/2008 3:30:12 PM -07'00'

TACCEPT - DONE (although this may cause some confusion that the link layer needs to parse the frame type... all it check is the gross length boundaries)

not too short suggest: a valid length

ACCEPT - DONE

a valid length

Author: stx-ghoulder

Subject: Note Date: 6/30/2008 7:10:48 AM -07'00' ACCEPT - DONE (added:

Other primitives (e.g., CREDIT_BLOCKED, RRDY, ACK, and NAK) may be interspersed between the SOF, data dwords, and EOF.

Since I don't see this rule anywhere else, we should insert this sentence here: "Other primitives may be interspersed during the connection."

28 January 2008 T10/1760-D Revision 14

 NAK (CRC ERROR) (i.e., negative acknowledgement) if the SSP frame was received with a CRC error (i.e., a bad CRC), an invalid dword, or an ERROR primitive.

NOTE 73 - It is not required that frame recipients generate NAK (CRC ERROR) from invalid dwords and ERRORs (see 7.16.8.2).

Either the transport layer (see 9.2.4) retries sending SSP frames that encounter a link layer error (e.g., are NAKed or create an ACK/NAK timeout), or the application layer abouts the SCSI semimand associated with the SSP frame that encountered a link layer error.

7.16.4 SSP flow control

An SSP phy uses RRDY to grant credit for permission for the other SSP phy in the connection to transmit frames. Each RRDY increments credit by one frame. Frame transmission decrements credit by one frame. Credit of zero frames is established at the beginning of each connection.

SSP phys shall not increment credit past 255 frames.

To prevent deadlocks where an SSP initiator port and SSP target port are both waiting on each other to provide credit, an SSP initiator port shall not refuse to provide credit by withholding RRDY because it needs to transmit a frame itself. It may refuse to provide credit for other reasons (e.g., temporary buffer full conditions).

An SSP target port may refuse to provide credit for any reason, including Decause it needs to transmit a frame itself.

If credit is zero, SSP phys that are going to be unable to provide credit for 1 ms may send CREDIT_BLOCKED. The other phy may use this to avoid waiting 1 ms to transmit DONE (CREDIT TIMEOUT) (see 7.16.8).

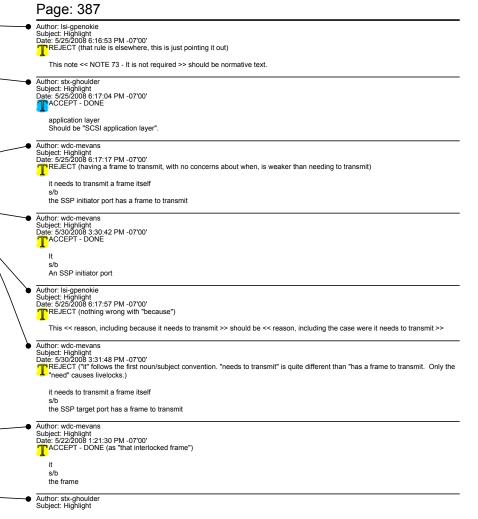
If credit is nonzero, SSP phys that are going to be unable to provide additional credit for 1 ms, even if they receive frames per the existing credit, may transmit CREDIT_BLOCKED.

After sending CREDIT_BLOCKED, an SSP phy shall not transmit any additional RRDYs in the connection.

7.16.5 Interlocked frames

Table 154 shows which SSP frames shall be interlocked and which are non-interlocked.

Table 154 — SSP frame interlock requirements


SSP frame type	Interlock requirement	
COMMAND	Interlocked	
TASK	Interlocked	
XFER_RDY	Interlocked	
DATA	Non-interlocked	
RESPONSE	Interlocked	
See 9.2 for SSP frame type definitions.		

Before transmitting an interlocked frame, an SSP phy shall wait for all SSP frames to be acknowledged with ACK or NAK, even if credit is available. After transmitting an interlocked frame, an SSP phy shall not transmit another SSP frame until it has been acknowledged with ACK or NAK, even if credit is available.

Before transmitting a non-interlocked frame, an SSP phy shall wait for:

- a) all non-interlocked frames with different tags; and
- b) all interlocked frames;

to be acknowledged with ACK or NAK, even if credit is available.

28 January 2008 T10/1760-D Revision 14

b) NAK (CRC ERROR) (i.e., negative acknowledgement) if the SSP frame was received with a CRC error (i.e., a bad CRC), an invalid dword, or an ERROR primitive.

NOTE 73 - It is not required that frame recipients generate NAK (CRC ERROR) from invalid dwords and ERRORs (see 7.16.8.2).

Either the transport layer (see 9.2.4) retries sending SSP frames that encounter a link layer error (e.g., are NAKed or create an ACK/NAK timeout), or the application layer aborts the SCSI command associated with the SSP frame that encountered a link layer error.

7.16.4 SSP flow control

An SSP phy uses RRDY to grant credit for permission for the other SSP phy in the connection to transmit frames. Each RRDY increments credit by one frame. Frame transmission decrements credit by one frame. Credit of zero frames is established at the beginning of each connection.

SSP phys shall not increment credit past 255 frames.

To prevent deadlocks where an SSP initiator port and SSP target port are both waiting on each other tox provide credit, an SSP initiator port shall not refuse to provide credit by withholding RRDY because it reeds to transmit a frame itself. It may refuse to provide credit for other reasons (e.g., temporary buffer full conditions).

An SSP target port may refuse to provide credit for any reason, including because it needs to tray smit a frame

If credit is zero, SSP phys that are going to be unable to provide credit for 1 ms may send, CREDIT_BLOCKED. The other phy may use this to avoid waiting 1 ms to transmit DONE (CREDIT TIMEOUT) (see 7.16.8).

If credit is nonzero, SSP phys that are going to be unable to provide additional credit for 1 ms, even if they receive frames per the existing credit, may transmit CREDIT_BLOCKED.

After sending CREDIT_BLOCKED, an SSP phy shall not transmit any additional RRDYs in the connection.

7.16.5 Interlocked frames

Table 154 shows which SSP frames shall be interlocked and which are non-interlocked.

Table 154 — SSP frame interlock requirements

SSP frame type	Interlock requirement	
COMMAND	Interlocked	
TASK	Inter/ocked	
XFER_RDY	Interlocked	
DATA	Non-interlocked	
RESPONSE	Interlocked	
See 9.2 for SSP frame type definitions.		

Before transmitting an interlocked frame, on SSP phy shall wait for all SSP frames to be acknowledged with ACK or NAK, even if credit is available. After transmitting an interlocked frame, an SSP phy shall not transmit another SSP frame until it has been an knowledged with ACK or NAK, even if credit is available.

387

Before transmitting a non-interlocked frame, an SSP phy shall wait for:

- a) all non-interlocked frame's with different tags; and

to be acknowledged with ACK or NAK, even if credit is available.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Date: 5/25/2008 6:18:19 PM -07'00'
ACCEPT - DONE (initiator port transfer tags)

This is an ambiguous tag reference.

Author: Isi-gpenokie Subject: Highlight Date: 5/22/2008 1:21:49 PM -07'00'

This << interlocked frame; >> should be << interlocked frame, >>. The semicolon should be a comma.

After transmitting a non-interlocked frame, an SSP phy may transmit another non-interlocked frame with the same tag if credit is available. The pny shall not transmit:

- a) a non-interlocked frame with a different tag; ex
- b) an interlocked frame; -

until all SSP frames have been acknowledged with ACK or NAK, even it credit is available.

Interlocking does not prevent transmitting and recessing interlocked frames simultaneously (e.g., an SSP initiator phy could be transmitting a COMMAND frame winste receiving XFER_RDY, DATA, or RESPONSE frames for a different command).

An SSP phy may transmit primitives responding to traffic it is receiving (e.g., an ACK or NAK to acknowledge an SSP frame, an RRDY to grant more receive credit, or a CRSDIT_BLOCKED is specify that no more RRDYs are going to be transmitted in the connection) while waiting for an interlocked is one it transmitted to be acknowledged. These primitives may also be interspersed within as SSP frame.

Figure 190 shows an example of interlocked frame transmission.

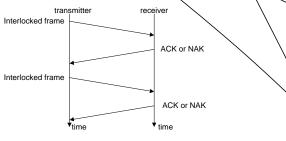


Figure 190 — Interlocked frames

Figure 191 shows an example of non-interlocked frame transmission with the same tags.

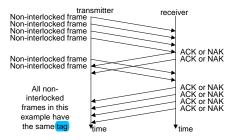
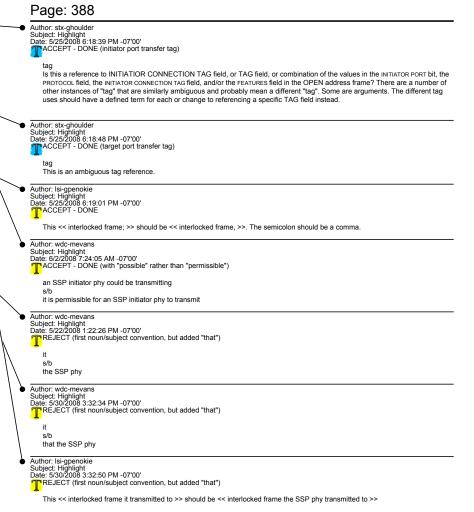



Figure 191 — Non-interlocked frames with the same tag

Comments from page 388 continued on next page

After transmitting a non-interlocked frame, an SSP phy may transmit another non-interlocked frame with the same tag if credit is available. The phy shall not transmit:

- a) a non-interlocked frame with a different tag; or
- b) an interlocked frame;

until all SSP frames have been acknowledged with ACK or NAK, even if credit is available.

Interlocking does not prevent transmitting and receiving interlocked frames simultaneously (e.g., an SSP initiator phy could be transmitting a COMMAND frame while receiving XFER_RDY, DATA, or RESPONSE frames for a different command).

An SSP phy may transmit primitives responding to traffic it is receiving (e.g., an ACK or NAK to acknowledge an SSP frame, an RRDY to grant more receive credit, or a CREDIT_BLOCKED to specify that no more RRDYs are going to be transmitted in the connection) while waiting for an interlocked frame it transmitted to be acknowledged. These primitives may also be interspersed within an SSP frame.

Figure 190 shows an example of interlocked frame transmission.

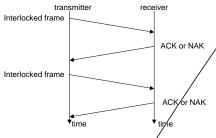


Figure 190 — Interlocked frames

Figure 191 shows an example of non-interlocked frame transmission with the same tags.

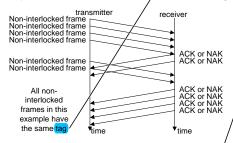


Figure 191 — Non-interlocked frames with the same tag

Author: stx-ghoulder
Subject: Highlight
Date: 5/25/2008 6:19:33 PM -07'00'

tag
This is an ambiguous tag reference.

Author: stx-ghoulder
Subject: Highlight
Date: 5/25/2008 6:19:37 PM -07'00'

ACCEPT - DONE (initiator port transfer tag)

tag
This is an ambiguous tag reference.

Figure 192 shows an example of non-interlocked frame transmission with different tag

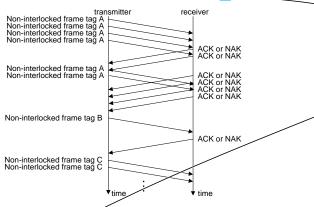


Figure 192 — Non-interlocked frames with different tags

7.16.6 Breaking an SSP connection

In addition to the actions described in 7.12.8, the following shall be the responses by an SSP phy to a broken

- a) Received frames having no CRC error may be considered valid regardless of whether an ACK has been transmitted in response to the frame prior to the broken connection;
- Transmitted frames for which an ACK has been received prior to a broken connection shall be considered successfully transmitted; and
- c) Transmitted frames for which an ACK or NAK has not been received prior to a broken connection shall be considered not successfully transmitted.

7.16.7 Closing an SSP connection

DONE shall be exchanged prior to closing an SSP connection (see 8.2,2,3,5). There are several versions of the DONE primitive indicating additional information about why the SSP connection is being closed:

- a) DONE (NORMAL) specifies normal completion; the transmitter has no more SSP frames to transm
- b) DONE (CREDIT TIMEOUT) specifies that the transmitter still has SSP frames to transmit but did not receive an RRDY granting frame credit within 1 ms, or the transmitter has received a CREDIT_BLOCKED and has consumed all RRDYs received; and
- c) DONE (ACK/NAK TIMEOUT) specifies that the transmitter transmitted an SSP frame but did not receive the corresponding ACK or NAK within 1 ms. As a result, the ACK/NAK count is not believed and the transmitter is going to transmit a BREAK in 1 ms unless the recipient replies المنظن NE and the connection is closed.

If the transmitter has no more SSP frames to transmit and receives a CREDIT BLOCKED, it roay transmit either DONE (NORMAL) or DONE (CREDIT TIMEOUT).

After transmitting DONE, the transmitting phy initializes and starts a 1 ms DONE Timeout timer (see 7.16.8.5).

After transmitting DONE, the transmitting phy shall partransmit any more SSP frames during this connection. However, the phy may transmit ACK, NAK, RBDY, and CREDIT_BLOCKED as needed after transmitting DONE if the other phy is still transmitting SSP frames in the reverse direction. Once an SSP phy has both transmitted and received DONE, it shall close the connection by transmitting CLOSE (NORMAL) (see 7.12.7).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 389

Author: stx-ghoulder Subject: Highlight Date: 5/25/2008 6:19:51 PM -07'00'

ACCEPT - DONE (initiator port transfer tag)

This is an ambiguous tag reference.

Author: Isi-gpenokie Subject: Sticky Note

Date: 6/30/2008 11:32:48 AM -07'00'

ACCEPT - DONE (Created .txt version of standard and did regexp search for [a-z]) [A-Z] in gvim. Added comments by all other instances found.)

This standard uses the convention that a.b.c lists should not have the first word capitalized unless it would capitalized to other reasons. This list does not comply to that convention and should be fixed.

Author: Isi-apenokie

Subject: Highlight Date: 8/30/2008 9:09:28 AM -07'00'

ACCEPT - DONE (as "The type of DONE indicates additional information about why the SSP connection is being closed as

follows: 08-343 asked to remove "primitive." 7/17 work in the "the following")

This << There are several versions of the DONE primitive indicating >> should be << The follow is a list of versions of the DONE primitive that indicate >>

Author: Isi-gpenokie

Subject: Highlight Date: 5/30/2008 3:34:21 PM -07'00'

ACCEPT - DONE (but swapped the i.e. like this: "that the transmitter has no more SSP frames to transmit (i.e., normal

This << completion; the transmitter has no more SSP frames to transmit >> should be << completion (i.e., the transmitter has no more SSP frames to transmit) >>

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 6:20:38 PM -07'00'

REJECT (first noun/subject convention, but added "then" which was not requested)

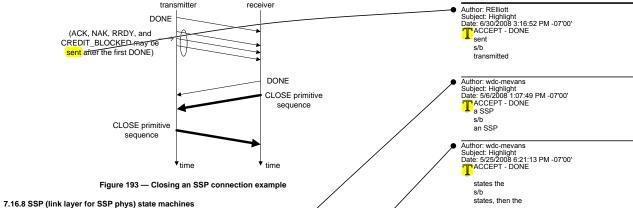
s/h

the transmitter

Author: wdc-mevans

Subject: Highlight Date: 5/25/2008 6:20:54 PM -07'00'

REJECT (first noun/subject convention)


it

s/b

the phy

T10/1760-D Revision 14

Figure 193 shows the sequence for a closing an SSP connection.

28 January 2008

Page: 390

7.16.8.1 SSP state machines overview

The SSP link layer contains several state machines that run in parallel to control the flow of dwords on the physical link during an SSP connection. The SSP state machines are as follows

- a) SSP TIM (transmit interlocked frame monitor) state machine (see 1.16.8.3);
- b) SSP_TCM (transmit frame credit monitor) state machine (see 7/6.8.4);
- c) SSP D (DONE control) state machine (see 7.16.8.5);
- d) SSP_TF (transmit frame control) state machine (see 7.16.26);
- e) SSP RF (receive frame control) state machine (see 7.1%.8.7);
- SSP_RCM (receive frame credit monitor) state machine (see 7.16.8.8);
- g) SSP_RIM (receive interlocked frame monitor) state machine (see 7.16.8.9);
- h) SSP_TC (transmit credit control) state machine (see 7.16.8.10); and
- SSP_TAN (transmit ACK/NAK control) state machine (see 7.16.8.11).

All the SSP state machines shall start after receiving an Enable Disable SSP (Enable) message from the SL state machines (see 7.14).

All the SSP state machines shall terminate after:

- a) receiving an Enable Disable SS/2 (Disable) message from the SL state machines;
- b) receiving a Request Close message from the SSP_D state machine indicating that the connection has been closed;
- c) receiving a Request Break message from the SSP_D state machine indicating that a BREAK has been transmitted; or
- d) receiving a NOTIFY Received (Power Loss Expected) message from the SP_DWS receiver if the SAS port that contains this state machine supports NOTIFY (Power Loss Expected) (e.g., the SAS port is a SSP rarget port).

If a state machine consists of multiple states the initial state is as indicated in the state machine description in this subclause.

The SSP state machines shall maintain the timers listed in table 155.

Table 155 — SSP link layer timers

Timer	Initial value	State machine	Reference	
ACK/NAK Timeout timer	1 ms	SSP_TIM	7.16.8.3	
DONE Timeout timer	1 ms	SSP_D	7.16.8.5	
Credit Timeout timer	1 ms	SSP_TF	7.16.8.6	

Page: 391

Author: Relliott
Subject: Highlight
Date: 8/30/2008 1:56:28 PM -07'00'
TACCEPT - DONE

SSP link layer timers s/b SSP state machines timers

Figure 194 shows the SSP state machines and states related to frame transmission.

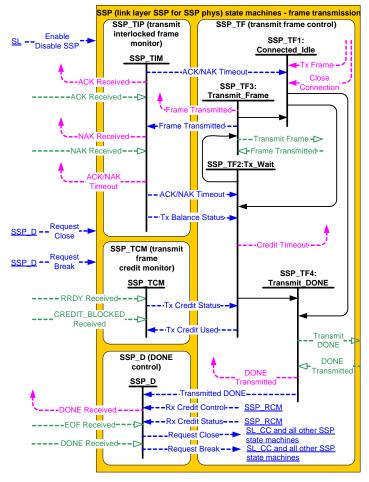
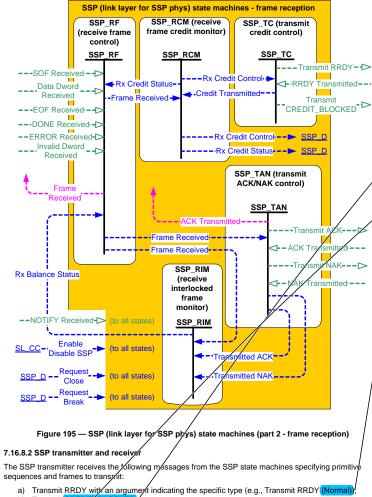
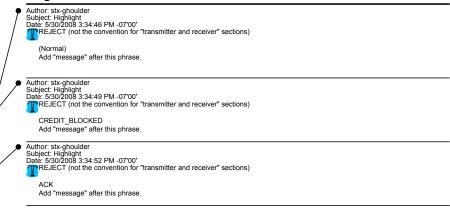



Figure 194 — SSP (link layer for SSP phys) state machines (part 1 - frame transmission)

This page contains no comments


Figure 195 shows the SSP state machines and states related to frame reception.

- b) Transmit CREDIT BLOCKED:
- c) Transmit ACK;

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 393

d) Transmit NAK with an argument indicating the specific type (e.g., Transmit NAK (CRC Error

- e) Transmit Frame with an argument containing the frame contents; and
- f) Transmit DONE with an argument indicating the specific type (e.g., Transmit DONE (Normal

In response to the Transmit Frame message, the SSP transmitter transmits:

- 1) SOF:
- 2) the frame contents;
- 3) CRC; and
- 4) EOF.

The SSP transmitter sends the following messages to the SSP state machines based on dwords that have been transmitted:

- a) DONE Transmitted;
- b) RRDY Transmitted:
- CREDIT_BLOCKED Transmitted;
- ACK Transmitted:
- e) NAK Transmitted; and
- f) Frame Transmitted.

When there is no outstanding message specifying a dword to transmit, the SSP transmitter shall transmit idle

The SSP receiver sends the following messages to the SSP state machines indicating primitive sequences and dwords received from the SP DWS receiver (see 6.9.2):

- a) ACK Received;
- b) NAK Received;
- c) RRDY Received;
- CREDIT BLOCKED Received;
- e) DONE Received with an argument indicating the specific type (e.g., DONE Received (Nermal));
- f) SOF Received;
- g) Data Dword Received:
- h) EOF Received;
- i) NOTIFY Received (Power Loss Expected);
- ERROR Received; and
- k) Invalid Dword Received.

The SSP receiver shall ignore all other dwords.

The SSP transmitter relationship to other transmitters is defined in 4.3.2. The SSP receiver relationship to other receivers is defined in 4.3.3.

7.16.8.3 SSP_TIM (transmit interlocked frame monitor) state machine

The SSP_TIM state machine's function is to ensure that ACKs or NAKs are received for each transmitted frame before the ACK/NAK timeout. This state machine consists of one state.

This state machine monitors the number of frames transmitted with a Number Of Frames Transmitted counter and monitors the number of ACKs and NAKs received with a Number Of ACKs/NAKs Received counter. This state machine ensures that an ACK or NAK is received for each frame transmitted and reports an ACK/NAK timeout if they are not.

When the Number Of Frames Transmitted counter equals the Number Of ACKs/NAKs Received counter, the ACK/NAK count is balanced and this state machine shall send the Tx Balance Status (Balanced) message to the SSP TF2:Tx Wait state. When the Number Of Frames Transmitted counter does not equal the Number Of ACKs/NAKs Received counter, the ACK/NAK count is not balanced and this state machine shall send the Tx Balance Status (Not Balanced) message to the SSP TF2:Tx Wait state.

Each time a Frame Transmitted message is received, this state machine shall increment the Number Of Frames Transmitted counter

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 394

Author: stx-ghoulder

Subject: Highlight Date: 5/30/2008 3:34:56 PM -07'00'

REJECT (not the convention for "transmitter and receiver" sections)

(CRC Error)

Add "message" after this phrase.

Author: stx-ghoulder

Subject: Highlight Date: 5/30/2008 3:34:59 PM -07'00'

REJECT (not the convention for "transmitter and receiver" sections)

(Normal)

Add "message" after this phrase.

Author: wdc-mevans

Subject: Highlight Date: 5/30/2008 3:37:16 PM -07'00'

REJECT (that would not match the 8 other similar paragraphs. "relationship" is the noun here, not "receiver", and there is not a

multiplicity of relationships between state machine types)

The SSP receiver

An SSP receiver's

Author: wdc-mevans

Subject: Highlight
Date: 5/30/2008 3:37:07 PM -07'00'
Date: 5/30/2008 3:37:07 PM -07'00'
PREJECT (that would not match the 8 other similar paragraphs. "relationship" is the noun here, not "transmitter", and there is not a

The SSP transmitter

An SSP transmitter's

If the ACK/NAK count is not balanced, each time an ACK Received message is received, this state machine shall:

- a) increment the Number Of ACKs/NAKs Received counter; and
- b) send an ACK Received confirmation to the port layer.

If the ACK/NAK count is not balanced, each time a NAK Received message is received, this state machine shall:

- a) increment the Number Of ACKs/NAKs Received counter; and
- b) send an NAK Received confirmation to the port layer.

If the ACK/NAK count is balanced, the ACK Received message and NAK Received message shall be ignored and the ACK/NAK Timeout timer shall be stopped.

Each time the ACK/NAK count is not balanced, the ACK/NAK Timeout timer snail be initialized and started. The ACK/NAK Timeout timer shall be re-initialized each time the Number Of ACKs/NAKs Received counter is incremented. If the ACK/NAK Timeout timer expires, this state machine shall send the ACK/NAK Timeout confirmation to the port layer and to the following states:

- a) SSP_TF1:Connected_Idle; and
- b) SSP_TF2:Tx_Wait state.

When this state machine receives an Enable Disable SSP (Enable) message, Request Close message, or Request Break message, the Number Of Frames Transmitted counter shall be set to zero and the Number Of ACKs/NAKs Received counter shall be set to zero.

7.16.8.4 SSP_TCM (transmit frame credit monitor) state machine

The SSP_TCM state machine's function is to ensure that transmit frame credit is available before a frame is transmitted. This state machine consists of one state.

This state machine shall keep track of the number of transmit frame credits available. This state machine shall add one transmit frame credit for each RRDY Received message received and subtract one transmit frame credit for each Tx Credit Used message received.

The CREDIT_BLOCKED Received message indicates that transmit frame credit is blocked. After receiving a CREDIT_BLOCKED Received message, this state machine may ignore additional RRDY Received messages until it receives a Request Close message or a Request Break message.

When transmit frame credit is available, this state machine shall send the Tx Credit Status (Available) message to the SSP_TF2:Tx_Wait state.

When transmit frame credit is not available and transmit frame credit is not blocked, this state machine shall send the Tx Credit Status (Not Available) message to the SSP TF2:Tx Wait state.

When transmit frame credit is not available and transmit frame credit is blocked, this state machine shall send the Tx Credit Status (Blocked) message to the SSP TF2:Tx Wait state.

When this state machine receives an Enable Disable SSP (Enable) message, a Request Close message, or a Request Break message, this state shall set transmit frame credit to not available and transmit frame credit shall be set to not blocked.

7.16.8.5 SSP_D (DONE control) state machine

The SSP_D state machine's function is to ensure a DONE has been received and transmitted before the SL CC state machine disables the SSP state machines. This state machine consists of one state.

This state machine ensures that a DONE is received and transmitted before the connection is closed. The DONE may be transmitted and received in any order.

If the DONE Received message has been received before the Transmitted DONE message is received, this state machine shall send the Request Close message to the SL_CC state machine (see 7.14) and all the SSP state machines after receiving the Transmitted DONE message.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

each s/b

then each

Author: RElliott

Page: 395

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

each s/b

then each

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

the

s/b

then the

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

this

then this

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

this s/b

then this

If a DONE Received message, the **Fansmitted DONE (Normal) message, or the **Fansmitted DONE (Credit Timeout) message has not been received and the Rx Credit Status (Extended) message or the Rx Credit Control (Blocked) message has been received, then the status shall initialize and start the DONE Timeout timer after receiving the Transmitted DONE (Normal) message or the **Transmitted DONE (Credit Timeout) message.

If the DONE Received message has not been received and the Transmitted DONE (Normal) message or the Transmitted DONE (Credit Timeout) message has been received, this state machine shall initialize and start the DONE Timeout timer each time:

- a) the Rx Credit Status (Extended) message is received; or
- b) the Rx Credit Control (Blocked) message is received.

If the Transmitted DONE (Normal) message or the Transmitted DONE (Credit Time of the received, the QONE Timeout timer shall be reinitialized each time the EOF Received message is received.

If the Transmitted DONE (Normal) message or the Transmitted DONE (Credit Timeout) message has been received, the QONE Timeout timer shall be stopped after:

- a) the Rx Credit Status (Exhausted) message is received; and
- b) the Rx Credit Control (Blocked) message has not been received.

NOTE 74 - Stopping the times ensures that, it credit remains exhausted long enough that the Credit Timeoutimer of the other phy in the consection expires, we other phy is able to transmit a DONE (CREDIT TIMEOUT).

If the DONE Received message has not been received and the Transmitted DONE (ACK/NAK Timeout) message has been received:

- a) this state machine shall initialize and start the DONE Timeout timer; and
- b) this state shall not reinitialize the DONE Timeout isner if an EOF Received message is received.

If the DONE Received message is received before the DONE Threeout timer expires, this state machine shall send the Request Close message to the SL_CC state machine and sell the SSP state machines.

If the DONE Received message is not received before the DONE Timeous timer expires, this state machine shall send a Request Break message to the SL_CC state machine and all the SSP state machines.

Any time a DONE Received message is received this state machine shall send a DONE Received confirmation to the port layer. A DONE Received (ACK/NAK Timeout) confirmation informs the port layer that the SSP transmitter is going to close the connection within 1 ms; other DONE Received confirmations (e.g., DONE Received (Close Connection) and DONE Received (Credit Timeout)) may be used by the application layer to decide when to reuse tags.

NOTE 75 - The DONE Timeout timer in one phy (e.g., phy A) may expire concurrently with the ACK/NAK Timeout timer in the other phy (e.g., phy B) in a connection.

For example, if phy A receives DONE (NORMAL) indicating phy B has no more frames to transmit, and phy A then transmits a series of non-interlocked frames where one or more of the SOFs is corrupted, then phy A waits to receive all the ACKs and/or NAKs after transmitting the series of non-interlocked frames. However, since phy B did not receive the full number of SOFs, it does not transmit as many ACKs and/or NAKs as phy A is expecting. The ACK/NAK Timeout timer in phy A expires and phy A transmits DONE (AKNAK TIMEOUT). Meanwhile, despite having transmitted DONE, phy B stops receiving frames while phy A is waiting for the final ACKs and/or NAKs. Since phy B does not receive DONE or any more frames, its DONE Timeout timer expires and phy B transmits BREAK.

Since the timers may expire at slightly different times (e.g., due to timer resolution differences), the DONE (ACK/NAK TIMEOUT) may be transmitted before, concurrently with, or after the BREAK. Nevertheless, the phys handle the link layer error (i.e., the ACK/NAK timeout or the DONE timeout) the same way (see 9.2.4.5).

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:22:22 PM -07'00' TACCEPT - DONE the s/b Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:22:14 PM -07'00' TACCEPT - DONE (and many more times in this section; wherever message names appear, "the" was changed to "a" or "an) the s/b а Author: wdc-mevans Subject: Highlight Date: 5/22/2008 7:04:37 AM -07'00' REJECT (2 things being ANDed) received and s/b received and Author: wdc-mevans Subject: Highlight Date: 5/30/2008 3:38:17 PM -07'00' REJECT (2 things ANDed together) received and received, and Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE this s/b then this Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' the s/b then the

Page: 396

If a DONE Received message, the Transmitted DONE (Normal) message, or the Transmitted DONE (Credit Timeout) message has not been received and the Rx Credit Status (Extended) message or the Rx Credit Control (Blocked) message has been received, then this state shall initialize and start the DONE Timeout timer after receiving the Transmitted DONE (Normal) message or the Transmitted DONE (Credit Timeout) message.

If the DONE Received message has not been received and the Transmitted DONE (Normal) message or the Transmitted DONE (Credit Timeout) message has been received, this state machine shall initialize and star/ the DONE Timeout time each time:

- a) the Rx Credit Status (Extended) message is received; or
- b) the Rx Credit Control (Blocked) message is received.

If the Transmitted DONE (Normal) message or the Transmitted DONE (Credit Timeout) message has been received, the DONE Timeout timer shall be reinitialized each time the EOF Received message is received.

If the Transmitted DONE (Normal) message or the Transmitted DONE (Credit Timeout message has been received, the DONE Timeout timer shall be stopped after:

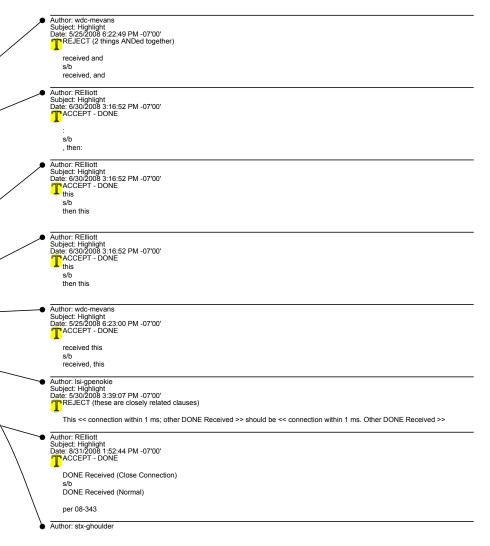
- a) the Rx Credit Status (Exhausted) message is received; and
- b) the Rx Credit Control (Blocked) message has not been received.

NOTE 74 - Stopping the timer ensures that, if credit rewains exhausted ong enough that the Credit Timeout timer of the other phy in the connection expires. We other phy is able to transmit a DONE (CREDIT TIMEOUT).

If the DONE Received message has not been received and the Transmitted DONE (ACK/NAK Timeout) message has been received:

- a) this state machine shall initialize and start the DONE Timeout timer; and
- b) this state shall not reinitialize the DONE Timeout timer if an EOF Received message is received.

If the DONE Received message is received before the DONE Timeout timer expires, this state machine shall send the Request Close message to the SL_CC state machine and all the SSP state machines.


If the DONE Received message is not received before the DONE Timeout timer expires, this state machine shall send a Request Break message to the SL_CC state machine and all the SSP state machines.

Any time a DONE Received message is received this state machine shall send a DONE Received confirmation to the port layer. A DONE Received (ACK/NAK Timeout) confirmation informs the port layer that the SSP transmitter is going to close the connection within 1 ms; other DONE Received sentimations (e.g., DONE Received (Close Connection) and DONE Received (Credit Timeout)) may be used by the applicational layer to decide when to reuse tags.

NOTE 75 - The DONE Timeout timer in one phy (e.g., phy A) may expire concurred with the ACK/NAK Timeout timer in the other phy (e.g., phy B) in a connection.

For example, if phy A receives DONE (NORMAL) indicating phy B has no more frames to transmit, and phy A then transmits a series of non-interlocked frames where one or more of the SOFs is corrupted, then phy A waits to receive all the ACKs and/or NAKs after transmitting the series of non-interlocked frames. However, since phy B did not receive the full number of SOFs, it does not transmit as many ACKs and/or NAKs as phy A is expecting. The ACK/NAK Timeout timer in phy A expires and phy A transmits DONE (AKNAK TIMEOUT). Meanwhile, despite having transmitted DONE, phy B stops receiving frames while phy A is waiting for the final ACKs and/or NAKs. Since phy B does not receive DONE or any more frames, its DONE Timeout timer expires and phy B transmits BREAK.

Since the timers may expire at slightly different times (e.g., due to timer resolution differences), the DONE (ACK/NAK TIMEOUT) may be transmitted before, concurrently with, or after the BREAK. Nevertheless, the phys handle the link layer error (i.e., the ACK/NAK timeout or the DONE timeout) the same way (see 9.2.4.5).

Comments from page 396 continued on next page

If a DONE Received message, the Transmitted DONE (Normal) message, or the Transmitted DONE (Credit Timeout) message has not been received and the Rx Credit Status (Extended) message or the Rx Credit Control (Blocked) message has been received, then this state shall initialize and start the DONE Timeout timer after receiving the Transmitted DONE (Normal) message or the Transmitted DONE (Credit Timeout) message

If the DONE Received message has not been received and the Transmitted DONE (Normal) message or the Transmitted DONE (Credit Timeout) message has been received, this state machine shall initialize and start the DONE Timeout timer each time:

- a) the Rx Credit Status (Extended) message is received; or
- b) the Rx Credit Control (Blocked) message is received.

If the Transmitted DONE (Normal) message or the Transmitted DONE (Credit Timeout) message has been received, the DONE Timeout timer shall be reinitialized each time the EOF Received message is received.

If the Transmitted DONE (Normal) message or the Transmitted DONE (Credit Timeout) message has been received, the DONE Timeout timer shall be stopped after:

a) the Rx Credit Status (Exhausted) message is received; and

396

b) the Rx Credit Control (Blocked) message has not been received.

NOTE 74 - Stopping the timer ensures that, if credit remains exhausted long enough that the Credit Timeout timer of the other phy in the connection expires, the other phy is able to transmit a DONE (CREDIT TIMEOUT).

If the DONE Received message has not been received and the Transmitted DONE (ACK/NAK Timeout) message has been received:

- a) this state machine shall initialize and start the DONE Time out timer; and
- b) this state shall not reinitialize the DONE Timeout timer it an EOF Received message is received.

If the DONE Received message is received before the DONE Timeout timer expires, this state machine shall send the Request Close message to the SL_CC state machine and all the SSP state machines.

If the DONE Received message is not received before the DONE Timeout timer expires, this state machine shall send a Request Break message to the SL_CK state machine and all the SSP state machines.

Any time a DONE Received message is received this state machine shall send a DONE Received confirmation to the port layer. A DONE Received (ACK/NAK Timeout) confirmation informs the port layer has the SSP transmitter is going to close the connection within 1 ms; other DONE Received confirmations (e/g., DONE Received (Close Connection) and DONE Received (Credit Timeout)) may be used by the application layer to decide when to reuse tags.

NOTE 75 - The DONE Timeout timer in one phy (e.g., phy A) may expire concurrently with the ACK/NAK Timeout timer in the other phy (e.g., phy B) in a connection.

For example, if phy A receives DONE (NORMAL) indicating phy B bes no more frames to transmit, and phy A then transmits a series of non-interlocked frames where one or lone of the SOFs is corrupted, then phy A waits to receive all the ACKs and/or NAKs after transmitting life series of non-interlocked frames. However, since phy B did not receive the full number of SOFs, it does not transmit as many ACKs and/or NAKs as phy A is expecting. The ACK/NAK Timeout timer in phy 4 pripres and phy A transmits DONE (ACK/NAK TIMEOUT). Meanwhile, despite having transmitted DONE, phy B stops receiving frames while phy A is waiting for the final ACKs and/or NAKs. Since phy B does not receive DONE or any more frames, its DONE Timeout timer expires and phy B transmits BXEAK.

Since the timers may expire at slightly different times (e.g., due to timer resolution differences), the DONE (ACK/NAK TIMEOUT) may be transmitted before, concurrently with, or after the BREAK. Nevertheless-phys handle the link layer error (i.e., the ACK/NAK timeout or the DONE timeout) the same way (see 9.2.4.5).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Subject: Highlight
Date: 5/25/2008 6:23:10 PM -07'00'

ACCEPT - DONE

application layer
Should be "SCSI application layer".

Author: RElliott
Subject: Highlight

Subject: Highlight Date: 8/30/2008 9:12:23 AM -07'00'

after: reuse tags

add:

add: (see 10.2.2)

Author: stx-ghoulder

Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

TREJECT (they are linked by the phrase "in a connection". If connections could be established between phys in a wide port, then this would apply. Chapter 4 discusses that loopback case)

NOTE 75 - The DONE Timeout timer in one phy (e.g., phy A) may expire concurrently with the ACK/NAK Timeout timer in the other phy (e.g., phy B) in a connection.

For this note, should the reader assume "phy A" is at one end of a link (e.g., target) and "phy B" is at the other end of the link (e.g., initiator), or can both phys be at the same end of a link (e.g., target phys that are part of a wide link). This needs to be clarified.

Author: wdc-mevans

Subject: Cross-Out Date: 5/23/2008 10:27:56 AM -07'00'

TREJECT (an unsuspecting reader might expect them to epire at the same time; this points out that they are slightly different)

slightly

[Delete the unnecessary word.]

T10/1760-D Revision 14

7.16.8.6 SSP TF (transmit frame control) state machine

7.16.8.6.1 SSP TF state machine overview

The SSP_TF state machine's function is to control when the SSP transmitter transmits SOF, frame dwords, EOF, and DONE. This state machine consists of the following states:

- a) SSP TF1:Connected Idle (see 7.16.8.6.2)(initial state);
- b) SSP_TF2:Tx_Wait (see 7.16.8.6.3);
- c) SSP TF3:Transmit Frame (see 7.16.8.6.4); and
- d) SSP_TF4:Transmit_DONE (see 7.16.8.6.5).

This state machine shall start in the SSP_TF1:Connected_Idle state.

7.16.8.6.2 SSP TF1:Connected Idle state

7.16.8.6.2.1 State description

This state waits for a request to transmit a frame or to close the connection.

7.16.8.6.2.2 Transition SSP_TF1:Connected_Idle to SSP_TF2:Tx_y/vait

This transition shall occur after a Tx Frame request is received or a Close Connection request is received.

If a Tx Frame (Balance Required) request was received this fransition shall include a Transmit Frame Balance Required argument.

If a Tx Frame (Balance Not Required) request was received this transition shall include a Transmit Frame Balance Not Required argument.

If a Close Connection request was received this transition shall include a Close Connection argument.

7.16.8.6.2.3 Transition SSP TF1:Connected Idle to SSP TF4:Transmit DONE

This transition shall occur if an ACK/NAK Timeout message is received. This transition shall include an ACK/ NAK Timeout argument.

7.16.8.6.3 SSP_TF2:Tx_Wait state

7.16.8.6.3.1 State description

This state monitors the Tx Balance Status message and the Tx Credit Status message to ensure that frames are transmitted and connections are closed at the proper time.

If this state is entered from the SSP_TF1:Connected_Idle state with a Transmit Frame Balance Required argument or a Transmit Frame Balance Not Required argument, and:

- a) if the last Tx Credit Status message received had an argument of Not Available, this state anall initialize and start the Credit Timeout timer; or
- b) if the last Tx Credit Status message had an argument other than Not Available, this state shall stop the Credit Timeout timer.

7.16.8.6.3.2 Transition SSP_TF2:Tx_Wait to SSP_TF3:Transmit_Frame

This transition shall occur if this state was entered from the SSP_TF1:Connected_Idle state with an argument of Transmit Frame Balance Required if:

- a) the last Tx Balance Status message received had an argument of Balanced; and
- b) the last Tx Credit Status message received had an argument of Available.

This transition shall occur if this state was entered from the SSP_TF1:Connected_Idle state with an argument of Transmit Frame Balance Not Required and if the last Tx Credit Status message received had an argument of Available.

This transition shall occur after sending a Tx Credit Used message to the SSP_TCM state machine.

Working Draft Serial Attached SCSI - 2 (SAS-2)

s/b then this

Page: 397 Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:23:48 PM -07'00' ACCEPT - DONE received this s/b received, then this Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:23:51 PM -07'00' TACCEPT - DONE received this received, then this Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:23:58 PM -07'00' ACCEPT - DONE received this s/b received, then this Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE this s/b then this Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

7.16.8.6.3.3 Transition SSP TF2:Tx Wait to SSP TF4:Transmit DONE

This transition shall occur and include an ACK/NAK Timeout argument if an ACK/NAK Timeout message is received.

This transition shall occur and include a Close Connection argument if:

- a) this state was entered from the SSP_TF1:Connected_Idle state with an argument of Close Connection; and
- b) the last Tx Balance Status message received had an argument of Balanced.

This transition shall occur after sending a Credit Timeout confirmation and include a Credit Timeout argument if:

- a) this state was entered from the SSP_TF1:Connected_Idle state with a Transmit Frame Balance Required argument or a Transmit Frame Balance Not Required argument;
- the Credit Timeout timer expired before a Tx Credit Status message was received with an aygument of Available, or the last Tx Credit Status message received had an argument of Blocked;
- c) a Tx Balance Status message was received with an argument of Balanced (i.e., the Credit Timeout argument shall not be included in this transition for this reason unless the ACK/NAX count is balanced); and
- d) an ACK/NAK Timeout message was not received.

7.16.8.6.4 SSP TF3:Transmit Frame state

7.16.8.6.4.1 State description

This state shall request a frame transmission by sending a Transmit Frame message to the SSP transmitter with an argument containing the frame contents. Each time a Transmit Frame message is sent to the SSP transmitter, one SSP frame (i.e., SOF, frame contents, CRC, and COF) is transmitted.

In this state receiving a Frame Transmitted message indicates that the frame has been transmitted.

7.16.8.6.4.2 Transition SSP_TF3:Transmit_Frame to \$\(SP_TF1:Connected_Idle \)

This transition shall occur after:

398

- a) receiving a Frame Transmitted message;
- b) sending an Frame Transmitted message to the SSP_TIM state machine; and
- c) sending a Frame Transmitted confirmation to the port layer.

7.16.8.6.5 SSP TF4:Transmit DONE state

This state shall send one of the following messages to an SSP transmitter:

- a) a Transmit DONE (Normal) message if this state was entered from the SSP_TF2:Tx_Wait state with an argument of Close Connection:
- a Transmit DONE (*CK/NAK Timeout) message if this state vas entered from the SSP_TF2:Tx_Wait state or the SSP_TF1:Connected_Idle state with an argum*nt of ACK/NAK Timeout; or
- c) a Transmit DOXIE (Credit Timeout) message if this state was entered from the SSP_TF2:Tx_Wait state with an argument of Credit Timeout.

NOTE 76 Possible livelock scenarios occur if the BREAK REPLY method of responding to received BREAK primitive sequences is disabled and a SAS logical phy transmits BREAK to break a connection (e.g., if its Done Timeout timer expires). SAS logical phys chould respond to DONE faster than 1 ms to reduce susceptibility to this problem.

After a DONE Transmitted message is received this state shall send the DONE Transmitted confirmation to the port layer and send one of the following messages to the SSP_D state machine:

 a) a Transmitted DONE (Normal) message if this state was entered from the SSP_TF2:Tx_Wait state with an argument of Close Connection;

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 398

Author: wdc-mevans
Subject: Highlight
Date: 5/23/2008 10:25:17 AM -07'00'
ACCEPT - DONE

NOTE 76 -

[All of the font in this note should be changed to the proper size.]

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:24:09 PM -07'00'

received this s/b

received, this

28 January 2008 T10/1760-D Revision 14

 a Transmitted DONE (ACK/NAK Timeout) message if this state was entered from the SSP_TF2:Tx_Wait state or the SSP_TF1:Connected_Idle state with an argument of ACK/NAK Timeout; or

 a Transmitted DONE (Credit Timeout) message if this state was entered from the SSP_TF2:Tx_Wait state with an argument of Credit Timeout.

7.16.8.7 SSP RF (receive frame control) state machine

The SSP_RF state machine's function is to receive frames and determine whether or not those frames were received successfully. This state machine consists of one state.

This state machine:

- a) checks the frame to determine if the frame should be accepted or discarded;
- b) checks the frame to determine if an ACK or NAK should be transmitted; and
- c) sends a Frame Received confirmation to the port layer.

If this state receives a subsequent SOF Received message after receiving an SOF Received message but before receiving an EOF Received message (i.e., SOF, data dwords, SOF, data dwords, and EOF instead of SOF, data dwords, EOF, SOF, data dwords, and EOF), then this state shall discard the Data Dward Received messages received before the subsequent SOF Received message.

This state shall discard the frame if:

- a) this state receives more than <u>263 Data Dword Received messages</u> after an SOF Received message and before an EOF Received message;
- b) this state receives fewer than 7 <u>Data Dword Received messages</u> after an SOF Received message and before an EOF Received message,
- c) this state receives an Rx Credit Status (Credit Exhausted) message; or
- d) this state receives a DONE Received message.

If this state receives an Invalid Dword Received message or an ERROR Received message after receiving an SOF Received message and before receiving an EOF Received message. then this state machine shall:

- a) ignore the invalid dword or ERROR; or
- b) discard the frame, send a Frame Received message to the SSP_RCM state machine, send a Frame Received message to the SSP_RIM state machine, and send a Frame Received (Unsuccessful) message to the SSP_TAN state machine.

If the frame is not discarded and the frame CRC is bad, this state machine shall:

- a) send a Frame Received message to the SSP_RCM state machine;
- b) send a Frame Received message to the SSP_RIM state machine; and
- c) send a Frame Received (Unsuccessful) message to the SSP_TAN state machine.

If the frame is not discarded and the frame CRC is good, this state machine shall send a Frame Received (Successful) message to the SSP_TAN state machine and:

- a) send a Frame Received message to the SSP RCM state machine;
- b) send a Frame Received message to the SSP RIM state machine; and
- c) send a Frame Received (Successful) message to the SSP_TAN state machine, and:
 - A) if the last Rx Balance Status message received had an argument of Balanced, send Received (ACK/NAK Balanced) confirmation to the port layer; or
 - B) if the last Rx Balance Status message received had an argument of Not Balanced, send a Fram Received (ACK/NAK Not Balanced) confirmation to the port layer.

7.16.8.8 SSP RCM (receive frame credit monitor) state machine

The SSP_RCM state machine's function is to ensure that there was credit given to the originator for every frame that is received. This state machine consists of one state.

This state machine monitors the receiver's resources and keeps track of the number of RRDYs transmitted versus the number of frames received.

Author: stx-ghoulder Subject: Highlight Date: 9/3/2008 2:02:14 PM -07'00' ACCEPT - DONE (yes. Changed to "discard the frame in progress 7/9 yes. Check for other uses) this state shall discard the Data Dword Received messages received before the subsequent SOF Received message. Should this state also discard the first SOF Received message? Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE 263 Data Dword Received messages (i.e., 1052 bytes) Author: RElliott Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE 7 Data Dword Received messages (i.e., 28 bytes) Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE (added "either" - see earlier comment) It seems like this << or >> should be << and >> but that would be a different requirement in that the state would do both a and b rather that have to pick either a or b. I'm not sure which was intended. Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE this s/b then this Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' this s/h then this Author: RElliott

Page: 399

Comments from page 399 continued on next page

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' 28 January 2008 T10/1760-D Revision 14

 a Transmitted DONE (ACK/NAK Timeout) message if this state was entered from the SSP_TF2:Tx_Wait state or the SSP_TF1:Connected_Idle state with an argument of ACK/NAK Timeout or

 a Transmitted DONE (Credit Timeout) message if this state was entered from the SSP_TF2:Tx_Wait state with an argument of Credit Timeout.

7.16.8.7 SSP RF (receive frame control) state machine

The SSP_RF state machine's function is to receive frames and determine whether or not those frames were received successfully. This state machine consists of one state.

This state machine:

- a) checks the frame to determine if the frame should be accepted or discarded;
- b) checks the frame to determine if an ACK or NAK should be transmitted; and
- c) sends a Frame Received confirmation to the port layer.

If this state receives a subsequent SOF Received message after receiving an SOF Received message but before receiving an EOF Received message (i.e., SOF, data dwords, SOF, data dwords, and EOF instead of SOF, data dwords, EOF, SOF, data dwords, and EOF), then this state shall discard the Data Dword Received messages received before the subsequent SOF Received message.

This state shall discard the frame if:

- a) this state receives more than <u>263 Data Dword Received messages</u> after an SOF Received message and before an EOF Received message;
- b) this state receives fewer than 7 <u>Data Dword Received messages</u> after an SOF Received message and before an EOF Received message,
- c) this state receives an Rx Credit Status (Credit Exhausted) message; or
- d) this state receives a DONE Received message.

If this state receives an Invalid Dword Received message or an ERROR Received message after receiving an SOF Received message and before receiving an EOF Received message, then this state machine shall:

- a) ignore the invalid dword or ERROR; or
- b) discard the frame, send a Frame Received message to the SSP_RCM state machine, send a Frame Received message to the SSP_RIM state machine, and send a Frame Received (Unsuccessful) message to the SSP_TAN state machine.

If the frame is not discarded and the frame CRC is bad, this state machine shall:

- a) send a Frame Received message to the SSP_RCM state machine;
- b) send a Frame Received message to the SSP_RIM state machine; and
- c) send a Frame Received (Unsuccessful) message to the SSP_TAN state machine.

If the frame is not discarded and the frame CRC is good, this state machine shall send a Frame Received (Successful) message to the SSP_TAN state machine and:

- a) send a Frame Received message to the SSP_RCM state machine;
- b) send a Frame Received message to the SSP RIM state machine; and
- c) send a Frame Received (Successful) message to the SSP_TAN state machine, and:
 - A) if the last Rx Balance Status message received had an argument of Balanced, send a Frame Received (ACK/NAK Balanced) confirmation to the port layer; or
 - B) if the last Rx Balance Status message received had an argument of Not Balanced, send a Frame Received (ACK/NAK Not Balanced) confirmation to the port layer.

7.16.8.8 SSP RCM (receive frame credit monitor) state machine

The SSP_RCM state machine's function is to ensure that there was credit given to the originator for every frame that is received. This state machine consists of one state.

This state machine monitors the receiver's resources and keeps track of the number of RRDYs transmitted versus the number of frames received.

Working Draft Serial Attached SCSI - 2 (SAS-2)

399

then send

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

send
s/b

Any time resources are released or become available, if this state machine has not sent the Rx Credit Control (Blocked) message to the SSP_TC state machine and the SSP_D state machine, this state machine shall send the Rx Credit Control (Available) message to the SSP_TC state machine. This state machine shall only send the Rx Credit Control (Available) message to the SSP_TC state machine after frame receive resources become available. The specifications for when or how resources become available is outside the scope of this standard.

This state machine may send the Rx Credit Control (Blocked) message to the SSP_TC state machine and the SSP_D state machine when no further receive frame credit is going to become available within a credit timeout (i.e., less than 1 ms), even if frames are received per the existing receive frame credit. After sending the Rx Credit Control (Blocked) message to the SSP_TC state machine and the SSP_D state machine, this state machine is shall not send the Rx Credit Control (Available) message to the SSP_TC state machine or the SSP_D state machine for the duration of the current connection.

This state machine shall indicate through the Rx Credit Control message only the amount of resources available to handle received frames (e.g., if this state machine has resources for five frames the maximum number of Rx Credit Control requests with the Available argument outstanding is five).

This state machine shall use the Credit Transmitted message to keep track of the number of RRDYs transmitted. This state machine shall use the Frame Received message to keep a track of the number of transcribed.

Any time the number of Credit Transmitted messages received exceeds the number of Frame Received messages received this state machine shall send a Rx Credit Status (Extended) message to the SSP_State machine and the SSP D state machine.

Any time the number of Credit Transmitted messages received equals the number of Frame Received messages received this state machine shall send a Rx Credit Status (Exhausted) message to the SSP_RF state machine. SSP_D state machine.

If this state machine receives an Enable Disable SSP (Enable) message, Request Close plessage, or Request Break message, the frame receive resources shall be initialized to the no credit value for the current connection.

7.16.8.9 SSP_RIM (receive interlocked frame monitor) state machine

The SSP_RIM state machine's function is to inform the SSP_RF state machine when the number of ACKs and NAKs transmitted equals the number of the EOFs received. This state machine consists of one state.

This state machine monitors the number of frames received with a Number of Frames Received counter and monitors the number of ACKs and NAKs transmitted with a Number of ACKs/NAKs Transmitted counter.

Each time a Frame Received message is received, this state machine shall increment the Number Of Frames Received counter.

Each time an ACK Transmitted message or a NAK Transmitted of received, this state machine shall increment the Number Of ACKs/NAKs Transmitted counter.

When the Number Of Frames Received counter equals the Number Of ACKs/NAKs Transmitted counter, this state machine shall send an Rx Balance Status (Balanced) message to the SSP RF state machine.

When the Number Of Frames Received counter does not equal the Number Of ACKs/NAKs Transmitted counter, this state machine shall send an Rx Balance Status (Not Balanced) message to the SSP_RF state machine

When this state machine receives an Enable Disable SSP (Enable) message, Request Close message, or Request Break message, the Number Of Frames Received counter shall be set to zero and the Number Of ACKs/NAKs Transmitted counter shall be set to zero.

7.16.8.10 SSP_TC (transmit credit control) state machine

400

The SSP_TC state machine's function is to control the sending of requests to transmit an RRDY or CREDIT_BLOCKED. This state machine consists of one state.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 400

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
the

s/b

, then the

Author: stx-ghoulder Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' TACCEPT - DONE Transmitted Add "message" after this phrase.

Any time this state machine receives a Rx Credit Control (Available) message it shall send a number of Transmit RRDY (Normal) messages to the SSP transmitter as indicated by the amount of resources available to handle received frames (e.g., if the Available argument indicates five RRDYs are to be transmitted this state machine sends five Transmit RRDY (Normal) messages to the SSP transmitter).

Any time this state machine receives a RRDY Transmitted message it shall send a Credit Transmitted message to the SSP_RCM state machine.

Any time this state machine receives a Rx Credit Control (Blocked) message it shall send a Transmit CREDIT_BLOCKED message to the SSP transmitter.

7.16.8.11 SSP_TAN (transmit ACK/NAK control) state machine

The SSP_TAN state machine's function is to control the sending of requests to transmit an ACK or NAK to the SSP transmitter. This state machine consists of one state.

Any time this state machine receives a Frame Received (Successful) message it shall send a Transmitt ACK message to the SSP transmitter.

Any time this state machine receives a Frame Received (Unsuccessful) message it shall send a Transmit NAK (CRC Error) message to the SSP transmitter.

If multiple Frame Received (Unsuccessful) messages and Frame Received (Successful) messages are received, then the order in which the Transmit ACK messages and Transmit NAK messages are sent to the SSP transmitter shall be the same order as the Frame Received (Unsuccessful) messages and Frame Received (Successful) messages were received.

Any time this state machine receives an ACK Transmitted message it shall:

- a) send a Transmitted ACK message to the SSP_RIM state machine; and
- b) send an ACK Transmitted confirmation to the port layer.

Any time this state receives a NAK Transmitted argument it shall send a Transmitted NAK message to the SSP RIM state machine.

7.17 STP link layer

7.17.1 STP frame transmission and reception

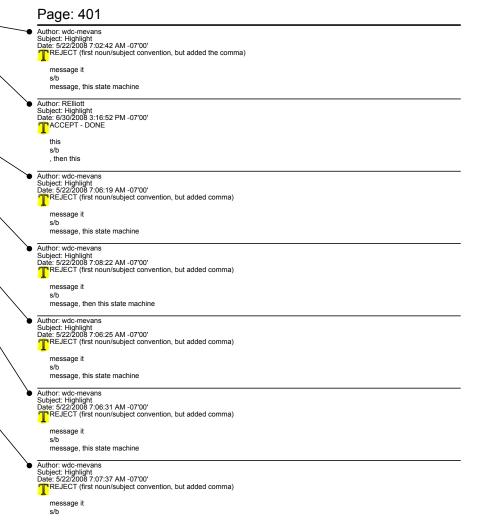

STP frame transmission is defined by SATA (see SATA-2). During an STP connection, frames are preceded by SATA_SOF and followed by SATA_EOF as shown in figure 196.

Figure 196 — STP frame transmission

The last data dword after the SOF prior to the EOF always contains a CRC (see 7.5).

Other primitives may be interspersed during the connection as defined by SATA

Any time this state machine receives a Rx Credit Control (Available) message it shall send a number of Transmit RRDY (Normal) messages to the SSP transmitter as indicated by the amount of resources available to handle received frames (e.g., if the Available argument indicates five RRDYs are to be transmitted this state machine sends five Transmit RRDY (Normal) messages to the SSP transmitter).

Any time this state machine receives a RRDY Transmitted message it shall send a Credit Transmitted message to the SSP RCM state machine.

Any time this state machine receives a Rx Credit Control (Blocked) message it shall send a Transmit CREDIT BLOCKED message to the SSP transmitter.

7.16.8.11 SSP_TAN (transmit ACK/NAK control) state machine

The SSP_TAN state machine's function is to control the sending of requests to transmit an ACK or NAK to the SSP transmitter. This state machine consists of one state.

Any time this state machine receives a Frame Received (Successful) message it shall send a fransmit ACK message to the SSP transmitter.

Any time this state machine receives a Frame Received (Unsuccessful) message it shall send a Transmit NAK (CRC Error) message to the SSP transmitter.

If multiple Frame Received (Unsuccessful) messages and Frame Received (Successful) messages are received, then the order in which the Transmit ACK messages and Transmit NAK messages are sent to the SSP transmitter shall be the same order as the Frame Received (Unsuccessful) messages and Frame Received (Successful) messages were received:

Any time this state machine receives an ACK Transmitted message it shall:

- a) send a Transmitted ACK message to the SSP_RIM state machine; and
- b) send an ACK Transmitted confirmation to the port layer,

Any time this state receives a NAK Transmitted argument it shall send a Transmitted NAK message to the SSP RIM state machine.

7.17 STP link laver

7.17.1 STP frame transmission and reception

STP frame transmission is defined by SATA (see SATA-2). During an STP connection, frames are preceded by SATA_SOF and followed by SATA_EOF as shown in figure 196.

Figure 196 — STP frame transmission

The last data dword after the SOF prior to the EOF always contains a CRC (see 7.5).

Other primitives may be interspersed during the connection as defined by SATA.

message, this state machine

Author: wdc-mevans Subject: Highlight Date: 5/22/2008 7:06:53 AM -07'00' REJECT (first noun/subject convention, but added comma) argument it argument, this state machine

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE state s/b

state machine

STP encapsulates SATA with connection management. Table 156 summarizes STP link layer differences from the SATA link layer (see SATA-2) that affect behavior during an STP connection.

Table 156 — STP link layer differences from SATA link layer during an STP connection

Feature	Description	Reference
Flow control through an STP connection is point-to-point, not end-to-end. Expander devices accept dwords in an STP flow control buffer after transmitting SATA_HOLD to avoid losing data en-route before the transmitting phy acknowledges the SATA_HOLD with SATA_HOLDA.		7.17.2
Continued primitive sequence	Sustain the continued primitive sequence if a SATA_CONT appears after the continued primitive sequence has begun.	7.17.3

7.17.2 STP flow control

Each STP phy (i.e., STP initiator phy and STP target phy) and expander logical phy through which the STP connection is routed shall implement the SATA flow control protocol on each logical link in the pathway. The flow control primitives are not forwarded through expander devices like other dwords.

When an STP phy or expander phy during an STP connection is receiving a SATA frame and its set flow control buffer begins to fill up, it shall transmit SATA_HOLD. After transmitting SATA_HOLD, it shall accept at least the following number of data dwords for the SATA frame into its STP flow-entrol buffer:

- a) 24 data dwords at the 1.5 Gbps connection rate;
- b) 28 data dwords at the 3 Gbps connection rate; and
- c) 36 data dwords at the 6 Gbps connection rate.

and shall expect to receive SATA_HOLDA within that number of data dwords. While receiving SATA_HOLDA, it desent place any data dwords into the STP flow control buffer. When the STP flow control buffer empties enough to hold at least that number of data dwords, it shall stop transmitting SATA_HOLD.

When an STP phy or expander phy during an STP cornection transmitting a SATA frame and receives SATA_HOLD, it shall transmit no more than 20 data dwords for the SATA frame and respond with SATA HOLDA.

NOTE 77 - The STP flow control buffer requirements are based on $(20 + (4 \times 2^0))$ where α is Δ for 1.5 Gbps, 1 for 3 Gbps, and 2 for 6 Gbps. The 20 portion of this equation is based on the frame transmitter requirements (see SATA-2). The (4×2^0) portion of this equation is based on:

- a) <u>One-way</u> propagation time on a 10 m cable = (5 ns/m propagation delay) × (10 m cable) = 50 ns/m propagation delay) × (10 m cable) = 50 ns/m propagation time on a 10 m cable = 100 ns (e.g., time to send SATA_HOLD and receive SATA HOLDA);
- c) Time to transmit a 1.5 Gbps dword = (0.6 ns/bit unit interval) × (40 bits/dword) = 26.6 ns; and
- d) Number of 1.5 Gbps dwords on the wire during round-trip propagation time = $(100 \text{ ns} / 26.\overline{6} \text{ ns}) = 3.75$. Receivers may support longer cables by providing larger STP flow control buffer sizes.

When a SATA host phy in an STP/SATA bridge is receiving a SATA frame from a SATA physical link, it shall transmit a SATA_HOLD when it is only capable of receiving 21 more data dwords. It shall stop transmitting SATA_HOLD (e.g., return to transmitting SATA_R_IP) when it is capable of receiving at least 21 more data dwords.

NOTE 78 - SATA requires that frame transmission cease and SATA_HOLDA be transmitted within 20 data dwords of receiving SATA_HOLD. Since the SATA physical link has non-zero propagation time, one dword of margin is included.

When a SATA host phy in an STP/SATA bridge is transmitting a SATA frame to a SATA physical link, it shall transmit no more than 19 data dwords after receiving SATA HOLD.

Page: 402

```
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 6:25:47 PM -07'00'
 REJECT (2 things ANDed, and using "the phy" as an abbreviation for "SAS phy or expander phy" is risky)
    frame and its STP flow control buffer begins to fill up, it
    frame, and the flow control buffer in the STP phy or expander phy begins to fill up, the phy
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 6:26:05 PM -07'00'
 REJECT (same "it" as the previous sentence)
    the STP phy or expander phy
Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 6:26:23 PM -07'00'
    ACCEPT - DONE
    This << and >> should be an << or >> as you can only have one connection rate at a time.
Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 6:27:02 PM -07'00'
 TACCEPT - DONE
    This << connection rate. >> should be << connection rate, >> That's a comma instead of a period.
Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 6:26:48 PM -07'00'
 REJECT ("it" still refers to "an STP phy or expander phy during an STP connection" from the beginning of the paragraph. Saying
 just "STP phy" would be wrong.)
    This << it does not place any data >> should be << The STP phy does not place any data >>
Author: wdc-meyans
Subject: Highlight
Date: 5/25/2008 6:27:25 PM -07'00'
 REJECT (same "it" as previous sentence)
    the STP phy or expander phy
Author: wdc-mevans
Subject: Highlight
Date: 5/22/2008 2:17:54 PM -07'00'
   REJECT (but moved the "it" clause to the beginning of the sentence, so it's clearly the same "it" used in the rest of the paragraph)
    the STP phy or expander phy
Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 6:26:37 PM -07'00'
```

STP encapsulates SATA with connection management. Table 156 summarizes STP link layer differences from the SATA link layer (see SATA-2) that affect behavior during an STP connection.

Table 156 — STP link layer differences from SATA link layer during an STP connection

Feature	Description	Reference
Flow control through an STP connection is point-to-point, not end-to-end. Expander devices accept dwords in an STP flow control buffer after transmitting SATA_HOLD to avoid losing data en-route before the transmitting phy acknowledges the SATA_HOLD with SATA_HOLDA.		7.17.2
Continued primitive sequence	Sustain the continued primitive sequence if a SATA_CONT appears after the continued primitive sequence has begun.	7.17.3

7.17.2 STP flow control

Each STP phy (i.e., STP initiator phy and STP target phy) and expander logical phy-through which the STP connection is routed shall implement the SATA flow control protocol on each logical link in the pathway. The flow control primitives are not forwarded through expander devices like other dwords.

When an STP phy or expander phy during an STP connection is receiving a SATA frame and its STP flow control buffer begins to fill up, it shall transmit SATA_VOLD. After transmitting SATA_HOLD, it shall accept at least the following number of data dwords for the SATA frame into its STP flow control buffer:

- a) 24 data dwords at the 1.5 Gbps connection rate;
- b) 28 data dwords at the 3 Gbps connection rate; and
- c) 36 data dwords at the 6 Gbps connection rate.

and shall expect to receive SATA_HOLDA within that number of data dwords. While receiving SATA_HOLDA, it does not place any data dwords into the STP flow control buffer. When the STP flow control buffer empties enough to hold at least that number of data dwords, it shall stop transmitting SATA_HOLD.

When an STP phy expander phy during an STD connection is transmitting a SATA frame and receives SATA_HOLD, it shall transmit no more than 26 data dwords for the SATA-frame and respond with SATA_HOLDA.

NOTE 77 - The STP flow coardol buffer requirements are based on $(20 + (4 \times 2^n))$ where n is 0 for 1.5 Gbps, 1 for 3 Gbps, and 2 for \$\infty\$-6ps. The 20 and on of this equation is based on the frame transmitter requirements (see SATA-2). The (4×2^n) portion of this equation is based on:

a) One-way propagation time on a 10 m cable = (5 ns/m propagation 4elay) \(\times (10 m cable) = 50 ns;\)

- a) One-way propagation time on a 10 m cable = (5 ns/m propagation delay) x (10 m cable) = 50 ns; b) Round-trip propagation time on a 10 m cable = 100 ns (e.g., time to send SATA_HOLD and receive
- SATA_HOLDA); c) Time to transmit a 1.5 Gbps dword = $(0.6 \text{ ns/bit unit interval}) \times (40 \text{ bits/dword}) = 26.6 \text{ ns; and}$
- d) Number of 1.5 Ghps dwords on the wire during round-trip propagation time = (100 ns / 26.6 ns) = 3.75. Receivers may support longer cables by providing larger STP flow control buffer sizes.

When a SATA host phy in an STP/SATA bridge is receiving a SATA frame from a SATA physical-liek_itshall transmit a SATA_HOLD when it is only capable of receiving 21 more data dwords. It shall stop transmitting SATA_HOLD (e.g., return to transmitting SATA_R_IP) when it is capable of receiving at least 21 more data dwords.

NOTE 78 - SATA requires that frame transmission cease and SATA_HOLDA be transmitted within 20 data dwords of receiving SATA_HOLD. Since the SATA physical link has non-zero propagation time, one dword of margin is included.

When a SATA host phy in an STP/SATA bridge is transmitting a SATA frame to a SATA physical link, it shall transmit no more than 19 data dwords after receiving SATA_HOLD.

This << dwords, it shall stop transmitting >> should be << dwords, the STAT phy shall stop transmitting >> Author: Isi-gpenokie Subject: Highlight Date: 5/8/2008 6:05:45 PM -07'00' REJECT This << it >> should be << the STP phy >>. Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:27:38 PM -07'00' REJECT (first noun/subject convention) the STP phy or expander phy Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' $\mathbf{T}^{\mathsf{ACCEPT}\, ext{-}\,\mathsf{DONE}}$ One-way s/b one-way (part of global change to lowercase a)b)c) entries) Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE Round-trip round-trip (part of global change to lowercase a)b)c) entries) Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE s/b time (part of global change to lowercase a)b)c) entries) Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' Number s/b

TREJECT (but moved the It clause to the beginning of the sentence)

number

STP encapsulates SATA with connection management. Table 156 summarizes STP link layer differences from the SATA link layer (see SATA-2) that affect behavior during an STP connection.

Table 156 — STP link layer differences from SATA link layer during an STP connection

Feature	Description	Reference
STP flow control	Flow control through an STP connection is point-to-point, not end-to-end. Expander devices accept dwords in an STP flow control buffer after transmitting SATA_HOLD to avoid losing data en-route before the transmitting phy acknowledges the SATA_HOLD with SATA_HOLDA.	7.17.2
Continued primitive sequence	Sustain the continued primitive sequence if a SATA_CONT appears after the continued primitive sequence has begun.	7.17.3

7.17.2 STP flow control

Each STP phy (i.e., STP initiator phy and STP target phy) and expander logical phy through which the STP connection is routed shall implement the SATA flow control protocol on each logical link in the pathway. The flow control primitives are not forwarded through expander devices like other dwords.

When an STP phy or expander phy during an STP connection is receiving a SATA frame and its STP flow control buffer begins to fill up, it shall transmit SATA_HOLD. After transmitting SATA_HOLD, it shall accept at least the following number of data dwords for the SATA frame into its STP flow control buffer:

- a) 24 data dwords at the 1.5 Gbps connection rate;
- b) 28 data dwords at the 3 Gbps connection rate; and
- c) 36 data dwords at the 6 Gbps connection rate.

and shall expect to receive SATA_HOLDA within that number of data dwords. While receiving SATA_HOLDA, it does not place any data dwords into the STP flow control buffer. When the STP flow control buffer empties enough to hold at least that number of data dwords. it shall stop transmitting SATA HOLD.

When an STP phy or expander phy during an STP connection is transmitting a SATA frame and receive SATA_HOLD, it shall transmit no more than 20 data dwords for the SATA frame and respond with SATA HOLDA.

NOTE 77 - The STP flow control buffer requirements are based on $(20 + (4 \times 2^{\Omega}))$ where n j = 0 for 1.5 Cbps. 1 for 3 Gbps, and 2 for 6 Gbps. The 20 portion of this equation is based on the frame transmitter requirements (see SATA-2). The $(4 \times 2^{\Omega})$ portion of this equation is based on:

- a) One-way propagation time on a 10 m cable = (5 ns/m propagation dollar) × (10 m cable) = 50 /s; b) Round-trip propagation time on a 10 m cable = 100 ns (e.g., time to send SATA_HOLD and so five SATA_HOLDA);
- c) Time to transmit a 1.5 Gbps dword = (0.6 ns/bit unit interval) × (40 bits/dword) = 26.6 ns; and
- d) Number of 1.5 Gbps dwords on the wire during found-trip propagation time = (100 ns / 3/5 ns) = 3.75 Receivers may support longer cables by proving larger STP flow control buffer sizes

When a SATA host phy in an STP/SATA bridge is receiving a SATA frame from a SATA physical link, it shall transmit a SATA_HOLD when it only capable of receiving 21 more data dwords. It shall stop transmitting SATA_HOLD (e.g., return to transmitting SATA_R_IP) when it is capable of receiving at least 21 more data dwords.

NOTE 78 - SATA requires that frame transmission cease and SATA_HOLDA be transmitted within 20 data dwords of receiving SATA_HOLD. Since the SATA physical link has non-zero propagation time, one dword of margin is included.

When a SATA host phy in an STP/SATA bridge is transmitting a SATA frame to a SATA physical link, it shall transmit no more than 19 data dwords after receiving SATA HOLD.

(part of global change to lowercase a)b)c) entries)

```
Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 6:27:53 PM -07'00'
 REJECT (first noun/subject convention)
    This << it >> should be << the STP phy >>.
Author: wdc-meyans
Subject: Highlight
Date: 5/25/2008 6:27:59 PM -07'00'
   REJECT (first noun/subject convention)
    the SATA host phy
Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 6:28:50 PM -07'00'
 REJECT (same "it" as previous sentence - the "SATA host phy in an STP/SATA bridge"; STP phy is wrong)
    This << It >> should be << The STP phy >>.
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 6:29:06 PM -07'00'
 REJECT (carryover from previous sentence)
    The SATA host phy
 Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 6:29:12 PM -07'00'
 REJECT
    the phy
 Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 6:29:16 PM -07'00'
    REJECT
    s/b
    the phy
Author: Isi-gpenokie
Subject: Highlight
Date: 5/52/2008 6:29:46 PM -07'00'

TREJECT (no, it's the "SATA host phy in an STP/SATA bridge" that "is transmitting...". Not STP)
    This << it >> should be << the STP phy >>.
 Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 6:29:58 PM -07'00'
   REJECT (first noun/subject convention)
    s/b
```

STP encapsulates SATA with connection management. Table 156 summarizes STP link layer differences from the SATA link layer (see SATA-2) that affect behavior during an STP connection.

Table 156 — STP link layer differences from SATA link layer during an STP connection

Feature	Description	Reference
Flow control through an STP connection is point-to-point, not end-to-end. Expander devices accept dwords in an STP flow control buffer after transmitting SATA_HOLD to avoid losing data en-route before the transmitting phy acknowledges the SATA_HOLD with SATA_HOLDA.		7.17.2
Continued primitive sequence	Sustain the continued primitive sequence if a SATA_CONT appears after the continued primitive sequence has begun.	7.17.3

7.17.2 STP flow control

402

Each STP phy (i.e., STP initiator phy and STP target phy) and expander logical phy through which the STP connection is routed shall implement the SATA flow control protocol on each logical link in the patyway. The flow control primitives are not forwarded through expander devices like other dwords.

When an STP phy or expander phy during an STP connection is receiving a SATA frame and its STP flow control buffer begins to fill up, it shall transmit SATA_HOLD. After transmitting SATA_HOLD, it shall accept at least the following number of data dwords for the SATA frame into its STP flow control but/er

- a) 24 data dwords at the 1.5 Gbps connection rate;
- b) 28 data dwords at the 3 Gbps connection rate; and
- c) 36 data dwords at the 6 Gbps connection rate.

and shall expect to receive SATA HOLDA within that number of data dwords. While receiving SATA HOLDA. it does not place any data dwords into the STP flow control buffer. When the STP flow control buffer empties enough to hold at least that number of data dwords, it shall stop transmitting \$ATA_HOLD.

When an STP phy or expander phy during an STP connection is transmitting a SATA frame and receives SATA HOLD, it shall transmit no more than 20 data dwords for the SATA/rame and respond with SATA HOLDA.

NOTE 77 - The STP flow control buffer requirements are based on $(20 + (4 \times 2^{n}))$ where n is 0 for 1.5 Gbps, 1 for 3 Gbps, and 2 for 6 Gbps. The 20 portion of this equation is based on the frame transmitter requirements (see SATA-2). The (4×2^n) portion of this equation is based on:

- a) One-way propagation time on a 10 m cable = (5 ns/m propagation delay) × (10 m cable) = 50 ns; b) Round-trip propagation time on a 10 m cable = 100 ns (e.g., time to send SATA_HOLD and receive
- SATA HOLDA);
- c) Time to transmit a 1.5 Gbps dword = $(0.6 \text{ ns/bit unit interval}) \times (40 \text{ bits/dword}) = 26.6 \text{ ns}$; and
- d) Number of 1.5 Gbps dwords on the wire during round/trip propagation time = (100 ns / 26.6 ns) = 3.75. Receivers may support longer cables by providing larger/STP flow control buffer sizes.

When a SATA host phy in an STP/SATA bridge is receiving a SATA frame from a SATA physical link, it shall transmit a SATA HOLD when it is only capable of receiving 21 more data dwords. It shall stop transmitting SATA_HOLD (e.g., return to transmitting SATA_R_/P) when it is capable of receiving at least 21 more data

NOTE 78 - SATA requires that frame transmission cease and SATA HOLDA be transmitted within 20 data dwords of receiving SATA_HOLD. Since the SATA physical link has non-zero propagation time, one dword of margin is included.

When a SATA host phy in an STP/SATA/oridge is transmitting a SATA frame to a SATA physical link, it shall transmit no more than 19 data dwords after receiving SATA HOLD.

Working Draft Serial Attached SCSI - 2 (SAS-2)

the SATA host phy

Author: RElliott Subject: Highlight
Date: 10/17/2008 6:54:18 PM -07'00'
ACCEPT - DONE

19 data dwords

19 dwords (e.g., including data dwords, deletable primitives, SATA_EOF, and SATA_HOLDs followed by data dwords)

from discussion the T10 reflector with Kishore K Karthikeyan (Intel). SATA 2.6 rules are 20 dwords, not 20 data dwords. SAS tries to tighten that 20 to 19 to avoid problems with the assumption that wires have zero delay (which is untrue for SATA 1 m cable equivalent channels, and is even more untrue for SAS channels, which tend to be longer than that). It is not trying to redefine what SATA counts in its "20" value

SATA 2.6 has two rules that are impossible to simultaneously meet. If the link layer state machine is transmitting a transmit HOLD, then when it detects a receive HOLD it does not start transmitting HOLDA until the receive HOLD goes away. That could occur much later than 20 dwords later - it's unbounded. So, a design cannot comply with the requirement to respond to an incoming HOLD by transmitting HOLDA within 20 dwords.

20 _data_ dwords is compatible with state machine behavior, but Kishore states that some SATA designs count ALIGNs, SATA EOF, etc. and overflow if they receive something like 20 data dwords + a few ALIGNs. It's not clear what they would do with incoming HOLDs.

It's not clear how or if SATA 3.0 will fix this, so for SAS-2.0, we'll just mention that "SATA_HOLD followed by data dwords" are included, hinting that SATA_HOLDs not followed by data dwords might not be included.

The best solution may be for SATA to obsolete transmit HOLDs altogether. The transmitter can send ALIGNs if it needs to briefly pause, and it shouldn't be taking long pauses inside frames.

28 January 2008

T10/1760-D Revision 14

NOTE 79 - SATA assumes that once a SATA_HOLD is transmitted, frame transmission ceases and SATA_HOLDA arrives within 20 dwords. Since the SATA physical link has non-zero propagation time, one dword of margin is included.

Figure 197 shows STP flow control between:

- a) an STP initiator phy receiving a frame;
- b) an expander device (the first expander device);
- c) an expander device with an STP/SATA bridge (the second expander device); and
- d) a SATA device phy transmitting a frame.

Page: 403

Author: RElliott

Subject: Note
Date: 9/3/2008 1:41:24 PM -07'00'

= ACCEPT - DONE (added: While transmitting SATA_HOLD or SATA_HOLDA, the expander device is considered to be originating (see 7.3.2) rather than forwarding (see 7.3.3) for purposes of deletable primitive insertion.

Also added similar, more general rules in the Repeated and Continued primitive sequence sections. SATA_HOLD and SATA_HOLDA are both Continued, so technically this extra paragraph is not needed in this section, but since HOLD is what prompted the discussion, it seems prudent to mention the rule here)

Need to more clearly define that, when an expander sends HOLD or HOLDA, it is originating it and is subject to deletable primitive rules in 7.3.2.

(from discussion with Jeff Gauvin, LSI)

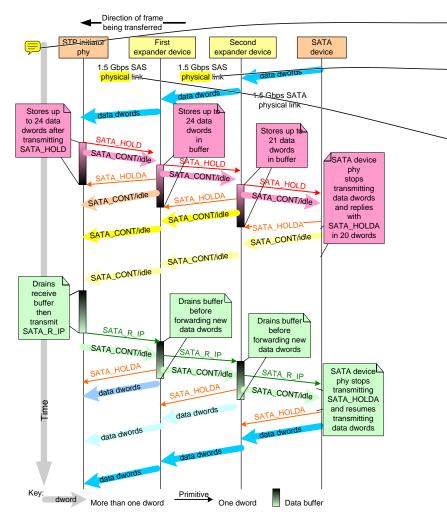
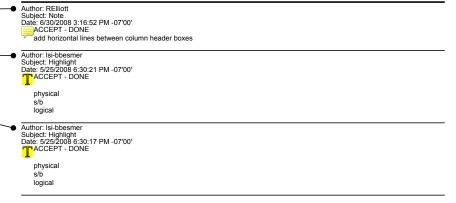



Figure 197 — STP flow control

Page: 404

After the STP initiator phy transmits SATA_HOLD, it receives a SATA_HOLDA reply from the first expander device within 24 dwords. The first expander device transmits SATA_HOLD to the second expander device exact receives SATA_HOLDA within 24 dwords, buffering data dwords in the STP flow control buffer that it is no longer able to forward to the STP initiator phy. The second expander device transmits SATA_HOLD to the SATA device phy and receives SATA_HOLDA within 21 dwords, buffering data dwords in the STP flow control buffer that it is no longer able to forward to the first expander device. When the SATA device phy stops transmitting data dwords are stored in the STP flow control buffers in both expander devices and the STP initiator phy

After the STP initiator phy drains its STP flow control buffer and transmits SATA_R_IP, it seceives data dwords from the first expander device's STP flow control buffer, followed by data dwords from the second expander device's STP flow control buffer, followed by data dwords from the SATA device sty

7.17.3 Continued primitive sequence

Primitives that form continued primitive sequences (e.g., SATA_HOLD) shall be:

- 1) transmitted two times;
- 2) be followed by SATA_CONT, if needed; and
- 3) be followed by vendor-specific scrambled data dwords, if needed.

Deletable primitives may be sent inside continued primitive sequences as described in 1/2.4.1.

After the SATA_CONT, during the vendor-specific scrambled data dwords:

- a) a SATA CONT continues the continued primitive sequence; and
- any other STP primitive, including the primitive that is being continued, ends the continued primitive sequence.

Figure 198 shows an example of transmitting a continued primitive sequence.

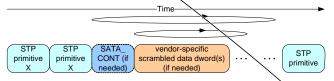


Figure 198 — Transmitting a continued primitive sequence

Receivers shall detect a continued primitive sequence after at least one primitive is received. The primitive may be followed by one or more of the same primitive. The primitive may be followed by one or move SATA_CONTs, each of which may be followed by vendor-specific data dwords. Receivers shall ignore valid dwords before, during, or after the SATA_CONT(s). Receivers do not count the number of times the continued primitive, the SATA_CONTs, or the vendor-specific data dwords are received (i.e., receivers are simply in the state of receiving the primitive).

Expanders forwarding dwords may or may not detect an incoming sequence of the same primitive and convert it into a continued primitive sequence.

Page: 405 Author: wdc-mevans Subject: Highlight Date: 5/22/2008 7:01:04 AM -07'00' REJECT (first noun/subject convention) s/b the STP initiator phy Author: Isi-gpenokie Subject: Highlight Date: 8/27/2008 3:56:05 PM -07'00' *TACCEPT - DONE (agree on this one, although the first noun/subject convention works fine - "The first expander device") I can't figure out what this << it >> is referring to, this needs to be fixed. Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 3:41:30 PM -07'00' REJECT (first noun/subject convention - "The second expander device") I can't figure out what this << it >> is referring to, this needs to be fixed Author: wdc-mevans Subject: Highlight Date: 5/30/2008 3:40:26 PM -07'00' REJECT (first noun/subject convention) the second expander device Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 3:41:00 PM -07'00' TREJECT (first noun/subject convention - "the SATA device phy") I can't figure out what this << its >> is referring to, this needs to be fixed. Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 3:41:53 PM -07'00' REJECT (first noun/subject convention. And, "thie" is not a word) This << it >> should be << thie STP initiator phy >> Author: wdc-mevans Subject: Highlight Date: 5/22/2008 7:10:55 AM -07'00' REJECT (first noun/subject convention) the STP initiator phy Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Comments from page 405 continued on next page

sent s/b

After the STP initiator phy transmits SATA_HOLD, it receives a SATA_HOLDA reply from the first expander device within 24 dwords. The first expander device transmits SATA_HOLD to the second expander device and receives SATA_HOLDA within 24 dwords, buffering data dwords in the STP flow control buffer that it is no longer able to forward to the STP initiator phy. The second expander device transmits SATA_HOLD to the SATA device phy and receives SATA_HOLDA within 21 dwords, buffering data dwords in the STP flow control buffer that it is no longer able to forward to the first expander device. When the SATA device phy stops transmitting data dwords, its previous data dwords are stored in the STP flow control buffers in both expander devices and the STP initiator phy.

After the STP initiator phy drains its STP flow control buffer and transmits SATA_R_IP, it receives data dwords from the first expander device's STP flow control buffer, followed by data dwords from the second expander device's STP flow control buffer, followed by data dwords from the SATA device phy.

7.17.3 Continued primitive sequence

Primitives that form continued primitive sequences (e.g., SATA_HOLD) shall be:

- 1) transmitted two times;
- 2) be followed by SATA CONT, if needed; and
- 3) be followed by vendor-specific scrambled data dwords, if needed.

Deletable primitives may be sent inside continued primitive sequences as described in 7.2.4.1.

After the SATA CONT, during the vendor-specific scrambled data dwords:

- a) a SATA CONT continues the continued primitive sequence; and
- any other STP primitive, including the primitive that is being continued, ends the continued primitive sequence.

Figure 198 shows an example of transmitting a continued primitive sequence.

Figure 138 — Transmitting a continued primitive sequence

Receivers shall detect a continued primitive sequence after at least one primitive is received. The primitive may be followed by one or more of the same primitive. The primitive may be followed by one or more SATA_CONTs, each of which may be followed by vendor-specific data dwords. Receivers shall ignore invalid dwords before, puring, or after the SATA_CONT(s). Receivers do not count the number of times the continued primitive, the SATA_CONTs, or the vendor-specific data dwords are received (i.e., receivers are simply in the state of receiving the primitive).

Expanders forwarding dwords may or may not detect an incoming sequence of the same primitive and convert it into a continued primitive sequence.

Working Draft Serial Attached SCSI - 2 (SAS-2)

405

transmitted

```
Author: wdc-mevans
Subject: Cross-Out
Date: 5/30/2008 3:42:35 PM -07'00'
PREJECT (this is an important concept; see reply elsewhere to similar comment on "simply")

(i.e., receivers are simply in the state of receiving the primitive)
[Delete the gratuitous editorial comment, including the "ly" adverb.]

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 6:31:32 PM -07'00'

ACCEPT - DONE

it
s/b
the incoming sequence
```

Figure 199 shows an example of receiving a continued primitive sequence.

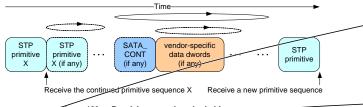


Figure 199 — Receiving a continued primitive sequence

An expander device forwarding a continued primitive sequence may transmit more dwords in the continued primitive sequence than it receives (i.e., expand) or transmit fewer dwords in the continued primitive sequence than it receives (i.e., contract).

7.17.4 Affiliations

The STP target port shall provide coherent access to an ATA task file register set for each STP initiator port from which it scoepts connections. It say use affiliations to limit the number of STP initiates ports that establish connections and for which it maintains an ATA task file register set. An affiliation is a state-entered by an STP target port which it register is to accept connection requests from STP initiator ports other than those that have established an affiliation.

STP target ports implement one of the affiliation policies defined in table 157.

Table 157 — Affiliation policies

Affiliation policy	Description
No affiliations	An unlimited number of STP initiates ports are allowed to access the STP target port concurrently. The STP target port is concurrently. The STP target port is concurrently address of the STP initiator port that sends each ATA command.
Multiple affiliations	The STP target port implements more than one affiliation, so a limited number of STP initiator ports are allowed to access the STP target port concurrently. The STP target port implements no more than one affiliation context per STP initiator port.
Single affiliation	The STP target port implements one affiliation, so one STP initiator port is allowed to access the STP target port at a time.

An STP/SATA bridge that supports multiple affiliations shall:

- a) ensure that the SATA NCQ tags in commands issued to the SATA device are unique across all affiliations;
- ensure that a non-queued command received in one affiliation context is not issued to the SATA device while another affiliation context has a queued command outstanding to the drive (e.g., the STP target port shall allow all queued commands in the SATA device to complete prior to issuing the non-queued command); and
- c) ensure that a queued command received in one affiliation context is not issued to the SATA device while another affiliation context has a non-queued command outstanding to the drive (e.g., the STP target port shall allow any non-queued command in the SATA device to complete prior to issuing the queued commands).

An STP/SATA bridge that supports multiple affiliations may modify the queue depth reported in the ATA IDENTIFY DEVICE data (see ATA8-ACS) to each STP initiator port to ensure that all the STP initiator ports with affiliations do not send more commands than the SATA device supports.

Author: RElliott Subject: Note Date: 9/3/2008 1:34:52 PM -07'00' ACCEPT - DONE (added: While transmitting a continued primitive sequence, the expander device is considered to be originating (see 7.3.2) rather than forwarding (see 7.3.3) for purposes of deletable primitive insertion.) Retransmitting a continued primitive sequence should be considered originating, not forwarding. Not every dword received is transmitted. During this time, the deletable primitive rules in 7.3.2 need to apply. (from discussion with Jeff Gauvin, LSI) Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:31:55 PM -07'00' REJECT (first noun/subject convention) the expander device Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 6:31:59 PM -07'00'

REJECT (first noun/subject convention) s/b the expander device Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE an ATA task file register set a set of registers called an affiliation context Author: wdc-meyans Subject: Highlight
Date: 5/25/2008 6:33:37 PM -07'00'
REJECT ("it" is subject of previous sentence) The STP target port Author: Isi-gpenokie Subject: Highlight Date: 5/16/2008 2:49:51 PM -07'00' REJECT (deleted the second sentence instead.) This << connections. It may use affiliations to limit >> should I think be << connections. The STP target port may use affiliations to limit >> Author: wdc-mevans Subject: Highlight
Date: 5/16/2008 2:48:34 PM -07'00' TACCEPT - DONE

Page: 406

Comments from page 406 continued on next page

Figure 199 shows an example of receiving a continued primitive sequence.

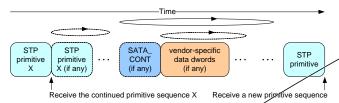


Figure 199 — Receiving a continued primitive sequence

An expander device forwarding a continued primitive sequence may ransmit more dwords in the continued primitive sequence than it receives (i.e., expand) or transmit fewer dwords in the continued primitive sequence than it receives (i.e, contract).

7.17.4 Affiliations

The STP target port shall provide coherent access to an ATA task file register set for each STP initiator port from which it accepts connections. It may use the file the number of STP initiator ports that establish connections and for which initiatians an ATA task file register set. An affiliation is a state entered by an STP target port where it refuses to accept connection requests from STP initiator ports other than those that have established an affiliation.

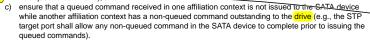

STP target ports implement one of the affiliation policies defined in table 157.

Table 157 — Affiliation policies

Affiliation policy	Description
No affiliations	An unlimited number of STP initiator ports are allowed to access the STP target port concurrently. The STP target port is cognizant of the SAS address of the STP initiator port that sends each ATA command.
Multiple affiliations	The STP target port implements more than one affiliation, so a limited number of STP initiator ports are allowed to access the STP target port concurrently. The STP target port implements no more than one affiliation context per STP initiator port.
Single affiliation	The STP target port implements one affiliation, so one STP initiator port is allowed to access the STP target port at a time.

An STP/SATA bridge that supports multiple affiliations stiall:

- a) ensure that the SATA NCQ tags in commands issued to the SATA device are unique across all affiliations:
- b) ensure that a non-queued command received in one affiliation context is not issued to the SATA
 device while another affiliation context has a queued command outstanding to the drive (c.g., the STP
 target port shall allow all queued commands in the SATA device to complete prior to issuing the
 non-queued commands: and

An STP/SATA bridge that supports multiple affiliations may modify the queue depth reported in the ATA IDENTIFY DEVICE data (see ATA8-ACS) to each STP initiator port to ensure that all the STP initiator ports with affiliations do not send more commands than the SATA device supports.

Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:32:47 PM -07'00' TREJECT. the STP target port Author: Isi-gpenokie Subject: Highlight Date: 5/16/2008 2:50:41 PM -07'00' ACCEPT - DONE This << which it maintains an ATA >> should I think be << which the STP target port maintains an ATA >> Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:33:21 PM -07'00' TACCEPT - DONE ("the STP target port") the STP target port Author: Isi-apenokie Subject: Highlight
Date: 5/16/2008 2:50:25 PM -07'00' ACCEPT - DONE ("the STP target port") Not sure what this << where it refuses >> is referring to. This needs to be fixed. Author: Isi-gpenokie Subject: Highlight Date: 5/16/2008 2:47:43 PM -07'00' TACCEPT - DONE This << STP target ports implement one of the affiliation >> should be << STP target ports shall implement one of the affiliation >> Author: Isi-bbesmer Subject: Highlight Date: 5/16/2008 2:47:56 PM -07'00' ACCEPT - DONE ("either no affiliations or multiple affiliations") multiple affiliations no or multiple affiliations Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' drive SATA device Author: Isi-bbesmer Date: 6/30/2008 7:30:27 AM -07'00' ACCEPT - DONE

the STP target port

Comments from page 406 continued on next page

Figure 199 shows an example of receiving a continued primitive sequence.

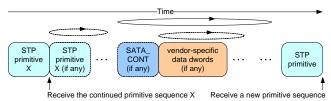


Figure 199 — Receiving a continued primitive sequence

An expander device forwarding a continued primitive sequence may transmit more dwords in the continued primitive sequence than it receives (i.e., expand) or transmit fewer dwords in the continued primitive sequence than it receives (i.e., contract).

7.17.4 Affiliations

406

The STP target port shall provide coherent access to an ATA task file register set for each STP initiator port from which it accepts connections. It may use affiliations to limit the number of STP initiator ports that establish connections and for which it maintains an ATA task file register set. An affiliation is a state entered by an STP target port where it refuses to accept connection requests from STP initiator ports other than those that have established an affiliation.

STP target ports implement one of the affiliation policies defined in table 157.

Table 157 — Affiliation policies

Affiliation policy	Description
No affiliations	An unlimited number of STP initiator ports are allowed to access the STP target port concurrently. The STP target port is cognizant of the SAS address of the STP initiator port that sends each ATA command.
Multiple affiliations	The STP target port implements more than one affiliation, so a limited number of STP initiator ports are allowed to access the STP target port concurrently. The STP target port implements no more than one affiliation context per STP initiator port.
Single affiliation	The STP target port implements one affiliation, so one STP initiator port is all pwed to access the STP target port at a time.

An STP/SATA bridge that supports multiple affiliations shall:

- a) ensure that the SATA NCQ tags in commands issued to the SATA device are unique across all affiliations;
- b) ensure that a non-queued command received in one affiliation context is not issued to the SATA device while another affiliation context has a queued command outstanding to the drive (g., the STP target port shall allow all queued commands in the SATA device to complete prior to issuing the non-queued command); and
- c) ensure that a queued command received in one affiliation context is not issued to the SATA device while another affiliation context has a non-queued command outstanding to the drive (e.g., the STP target port shall allow any non-queued command in the SATA device to complete prior to issuing the queued commands).

An STP/SATA bridge that supports multiple affiliations may modify the queue depth reported in the ATA IDENTIFY DEVICE data (see ATA8-ACS) to each STP initiator port to ensure that all the STP initiator ports with affiliations do not send more commands than the SATA device supports.

Working Draft Serial Attached SCSI - 2 (SAS-2)

need another rule:

ensure that a non-queued command received in one affiliation context is not issued to the SATA device while another affiliation context has a non-queued command outstanding to the drive (e.g., the STP target port shall allow the non-queued command in the SATA device to complete prior to issuing the non-queued command);

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 6:34:03 PM -07'00'

ACCEPT - DONE

drive
s/b
SATA device

An STP target port that supports affiliations shall establish an affiliation whenever it accepts a connection request from an STP initiator port that does not already have an affiliation. When the maximum number of affiliations have been established (i.e., all affiliation contexts are in use), the STP target port shall reject all subsequent connection requests from other STP initiator ports with OPEN REJECT (STP RESOURCES

An STP target port shall maintain an affiliation until any of the following occurs:

- a) power on:
- b) the management device server receives an SMP PHY CONTROL request specifying the phy with the affiliation and specifying a phy operation of HARD RESET (see 10.4.3.28) from any SMP initiator port;
- c) the management device server receives an SMP PHY CONTROL request specifying the phy with the affiliation and specifying a phy operation of TRANSMIT SATA PORT SELECTION SIGNAL (see 10.4.3.28) from any SMP initiator port;
- d) the management device server receives an SMP PHY CONTROL request specifying the phy with the affiliation and specifying a phy operation of CLEAR AFFILIATION (see 10.4.3.28) from the same SAS initiator port that has the affiliation.

If a connection is already established to the STP target port on one phy while an SMP PHY CONTROL request specifying a phy operation of CLEAR AFFILIATION is processed by an MP target port on another phy, the affiliation shall be cleared and the STP target port shall respond to new connection attempts with:

- A) AIP (WAITING ON CONNECTION) and/or OPEN_REJECT (RETRY), if the STP target port is in an expander device: or
- B) OPEN_REJECT (RETRY), if the STP target port is in a SAS device rather than OPEN REJECT (STP RESOURCES BUSY);
- e) an STP connection to a phy in the STP target port is closed with CLOSE (CLEAR AFFILIATION);
- the STP target port encounters an I_T nexus loss. f)

The STP initiator port shall maintain an affiliation starting with the connection in which a command is, transmitted until all frames for the command have been delivered. An STP initiator port implementing command queuing (see ATA8-ACS and SATA-2) shall maintain an affiliation while any commands are outstanding. STP initiator ports may keep affiliations for longer tenures, but this is discouraged.

An STP target port that implements affiliations shall implement at least one affiliation context per STP target port. Multiple phys on the same STP target port shall use the same set of affiliation contexts. Support for affiliations is indicated in the SMP REPORT PHY SATA response (see 10.4.3.12).

An STP target port implementing multiple affiliations shall sort the affiliation contexts in a vendor-specific order. In the SMP REPORT PHY SATA response, if the SMP initiator port has the same SAS address as an affiliated STP initiator port, the management device server shall report the affiliation for that SAS address as relative identifier 0 and shall report all additional affiliations with incrementing relative identifiers following the sorted order. If the SMP initiator port does not have the same SAS address as an affiliated STP initiator port. the management device server shall report the affiliation contexts in the vendor-specific order.

Page: 407

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

the s/b

then the

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 6:34:25 PM -07'00'

TACCEPT - DONE

This << in a SAS device; >> should be << in a SAS device, >> That's a comma rather than a semicolon.

Author: Isi-gpenokie

Subject: Highlight Date: 5/25/2008 6:34:38 PM -07'00'

ACCEPT - DONE ("STP initiator ports should not keep affiliations while commands are not outstanding.")

This << STP initiator ports may keep affiliations for longer tenures, but this is discouraged. >> should be << STP initiator ports should not keep affiliations for longer tenures. >> or << STP initiator ports may keep affiliations for longer tenures. >>

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

the s/b

then the

For example, if the STP target port supports four affiliation contexts sorted in order A, B, C, and D, when returning the SMP REPORT PHY SATA response to an SMP initiator port, the sagnagement device server shall report the affiliation contexts as described in table 158.

Table 158 — Affiliation context relative identifier example

Affiliation context containing the SAS	Affiliation context relative identifier assignment			
address of the SMP initiator port	0	1	2	3
A	Α	В	С	D
В	В	С	D	Α
С	С	D	Α	В
D	D	Α	В	С
None	Α	В	С	D

7.17.5 Opening an STP connection

When the SATA host port in an STP/SATA bridge receives a SATA_X_RDY from the attached SATA device, the STP target port in the STP/SATA bridge shall establish an STP connection to the appropriate STP initiator port.

If an STP/SATA bridge receives a connection request for a SATA device that has not successfully delivered the initial Register – Device to Host FIS, it shall return an OPEN REJECT (NO DESTINATION).

NOTE 80 - If there is a problem seceiving the expected initial Register - Device to Host FIS, the STP/SATA bridge should use SATA_R_ERR to resy until it succeeds. by the DISCOVER response, the ATTACHEQ SATA DEVICE bit is set to one and the ATTACHED SAS ADDRESS fields valid, but the ATTACHED DEVICE TYPE rised is set to 000b (i.e., no device attached) during this sage.

If an STP/SATA bridge that retrieves IDENTIFY (PACKET) DEVICE data receives a connection request for a SATA device before it has retrieved the IDENTIFY (PACKET) DEVICE data it shall return an OPEN_REJECT (NO DESTINATION). It it has a problem retrieving the IDENTIFY (PACKET) EVICE data (e.g., word 255 (i.e., the Integrity Word) is not correct), the STP/SATA bridge, shall set the ATTACHED DEVICE NAME field to zero, set the ATTACHED DEVICE TYPE field to 001b (i.e, end device), and start accepting connections.

A wide STP initiator port shall not request more than one connection at a time to a specific STP target port.

While a wide STP initiator port is waiting for a response to a connection request to an STP target port, a SAS phy in the STP initiator port shall not reject an incoming connection request from that STP target port with OPEN_REJECT (RETRY) because the SAS port containing that SAS phy needs an outgoing connection request to be accepted. The SAS phy may reject an incoming connection request from that STP target port with OPEN_REJECT (RETRY) for any reason that is not dependent on the SAS port containing that SAS pay having an outgoing connection request accepted (e.g., because of a temporary buffer full condition).

If a wide STP initiator port receives an incoming connection request from an STP target port while it has a connection established with that STP target port, it shall reject the request with OPEN_REJECT (RETRY).

A wide STP target port shall not request more than one connection at a time to a specific STP initiator port.

While a wide STP target port is waiting for a response to a connection request or has established a connection to an STP initiator port. it shall:

- a) reject incoming connection requests from that STP initiator port with OPEN REJECT (RETRY); and
- b) if affiliations are supported and the maximum number of affiliations has been established (i.e., all
 affiliation contexts are in use), reject incoming connection requests from other STP initiator ports that
 do not have affiliations with OPEN_REJECT (STP RESOURCES BUSY).

Page: 408

28 January 2008

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 6:35:08 PM -07'00'

I do not think putting a shall in a example is a good idea. This << device server shall report the affiliation contexts as described >> should be << device server reports the affiliation contexts as described >>

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

the
s/b
then the

Author: hpq-relliott
Subject: Note
Date: 8/29/2008 11:50:27 AM -07'00'
ACCEPT - DONE (7/14 allow either COMINIT or do nothing.

5/5 either send a COMINIT or just wait and let an initiator deal with it. Expander vendors will research what behavior they currently have and what is best for the future (maybe more than one option))

If there is no affiliation established when a SATA_X_RDY arrives, define what happens. The initial register FIS is normal and expected: anything else is not.

Author: wdc-mevans
Subject: Highlight
TREJECT (first noun/subject convention, but added "then" although not requested)

it
s/b
then the STP/SATA bridge

Author: REIliott
Subject: Highlight

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the

Author: Isi-gpenokie
Subject: Highlight
Date: 9/3/2008 1:28:22 PM -07'00'
TACCEPT - DONE (7/14 SATA state machines appear to resend the initial FIS indefinitely upon receiving R_ERR, so SAS can safely do the same thing)

This note << NOTE 80 - If there is a problem >> should be normative text.

Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 6:36:42 PM -07'00'
ACCEPT - DONE (as "until the FIS is successfully received.")

Comments from page 408 continued on next page

For example, if the STP target port supports four affiliation contexts sorted in order A, B, C, and D, when returning the SMP REPORT PHY SATA response to an SMP initiator port, the management device server shall report the affiliation contexts as described in table 158.

Table 158 — Affiliation context relative identifier example

Affiliation context containing the SAS	Affiliation context relative identifier assignment			
address of the SMP initiator port	0	1	2	3
А	Α	В	С	D
В	В	С	D	Α
С	С	D	Α	В
D	D	Α	В	С
None	Α	В	С	D

7.17.5 Opening an STP connection

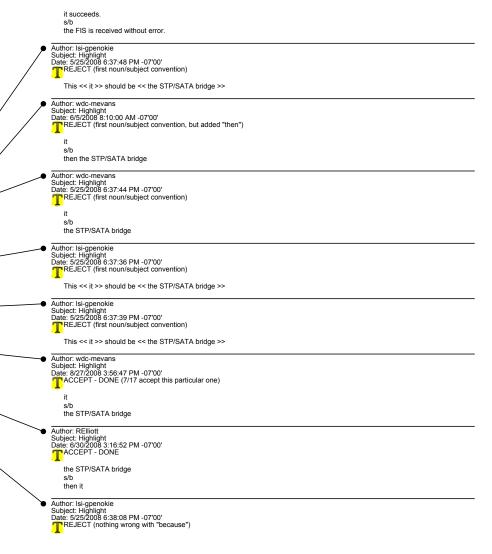
When the SATA host port in an STP/SATA bridge receives a SATA_X_RDY from the attached SATA Givice, the STP target port in the STP/SATA bridge shall establish an STP connection to the appropriaty STV initiator port.

If an STP/SATA bridge receives a connection request for a SATA device that has not succe/sty/ly delivered the initial Register – Device to Host FIS, it shall return an OPEN_REJECT (NO DESTINA/ICN).

NOTE 80 - If there is a problem receiving the expected initial Register - Device to Heat Fit, the STP/SATA bridge should use SATA_R_ERR to retry until it receeds. In the DISCOVER response, the ATTACHED SATA DEVICE bit is set to one and the ATTACHED SAS ADDRESS field is valid, but the ATTACHED DEVICE TYPE field is set to 000b (i.e., no device attactive) during the time.

If an STP/SATA bridge that receives IDENTIFY (PACKET) DEVICE data receives a connection request for a SATA device before it has retrieved the IDENTIFY (PACKET) DEVICE data, it shall return an OPEN_REJECT (NO DESTINATION). If it has a problem retrieving the IDENTIFY (PACKET) DEVICE data (e.g., word 255 (i.e., the Integrity Word) is not correct), the STP/SATA bridge shall set the ATTACHED DEVICE NAME field to 001b (i.e, end device), and start-scoepting connections.

A wide STP initiator port shall not request more than one connection at a time to a specific STP target port.


While a wide STP initiator port is waiting for a response to a connection request to an STP target port, a SAS phy in the STP initiator port shall not reject an incoming connection request from that STP target port with OPEN_REJECT (RETRY) because the SAS port containing that SAS phy needs an outgoing connection request to be accepted. The SAS phy may reject an incoming connection request from that STP target port with OPEN_REJECT (RETRY) for any reason that is not dependent on the SAS port containing that SAS phy having an outgoing connection request accepted (e.g., because of a temporary buffer full condition).

If a wide STP initiator port receives an incoming connection request from an STP target port while it has a connection established with that STP target port, it shall reject the request with OPEN_REJECT (RETRY).

A wide STP target port shall not request more than one connection at a time to a specific STP initiator port.

While a wide STP target port is waiting for a response to a connection request or has established a connection to an STP initiator port. it shall:

- a) reject incoming connection requests from that STP initiator port with OPEN REJECT (RETRY); and
- if affiliations are supported and the maximum number of affiliations has been established (i.e., all
 affiliation contexts are in use), reject incoming connection requests from other STP initiator ports that
 do not have affiliations with OPEN_REJECT (STP RESOURCES BUSY).

Comments from page 408 continued on next page

For example, if the STP target port supports four affiliation contexts sorted in order A, B, C, and D, when returning the SMP REPORT PHY SATA response to an SMP initiator port, the management device server shall report the affiliation contexts as described in table 158.

Table 158 —	 Affiliation 	context relative	identifier	example
-------------	---------------------------------	------------------	------------	---------

Affiliation context containing the SAS address of the SMP initiator port	Affiliation context relative identifier assignment			
	0	1	2	3
A	Α	В	С	D
В	В	С	D	Α
С	С	D	Α	В
D	D	Α	В	С
None	Α	В	С	D

7.17.5 Opening an STP connection

408

When the SATA host port in an STP/SATA bridge receives a SATA_X_RDY from the attached SATA device, the STP target port in the STP/SATA bridge shall establish an STP connection to the appropriate STP initiator port.

If an STP/SATA bridge receives a connection request for a SATA device that has not successfully delivered the initial Register – Device to Host FIS, it shall return an OPEN_REJECT (NO DESTINATION).

NOTE 80 - If there is a problem receiving the expected initial Register - Device to Host FIS, the STP/SATA bridge should use SATA_R_ERR to retry until it succeeds. In the DISCOVER response, the ATTACHED SATA DEVICE bit is set to one and the ATTACHED SAS ADDRESS field is valid, but the ATTACHED DEVICE TYPE field is set to 000b (i.e., no device attached) during this time.

If an STP/SATA bridge that retrieves IDENTIFY (PACKET) DEVICE data receives a connection request for a SATA device before it has retrieved the IDENTIFY (PACKET) DEVICE data, it shall return an OPEIX_REJECT (NO DESTINATION). If it has a problem retrieving the IDENTIFY (PACKET) DEVICE data (e.g. word 255 (i.e., the Integrity Word) is not correct), the STP/SATA bridge shall set the ATTACHED DEVICE MAKE field to zero set the ATTACHED DEVICE TYPE field to 001b (i.e., end device), and start accepting connections.

A wide STP initiator port shall not request more than one connection at a time to a specific STP target port

While a wide STP initiator port is waiting for a response to a connection request to an STP target port, a SS phy in the STP initiator port shall not reject an incoming connection request from that STP target port with OPEN_REJECT (RETRY) because the SAS port containing that SAS not possible to the saccepted. The SAS phy may reject an incoming connection request from that STP target port with OPEN_REJECT (RETRY) for any reason that is not dependent on the SAS port containing that St/S phy having an outgoing connection request accepted (e.g., because of a temporary buffer full condition).

If a wide STP initiator port receives an incoming connection request from an STP target port while it as a connection established with that STP target port, it shall reject the request with OPEN_REJECT (RETRY).

A wide STP target port shall not request more than one connection at a time to a specific STP initiator port.

While a wide STP target port is waiting for a response to a connection request or has established a connection to an STP initiator port, it strain:

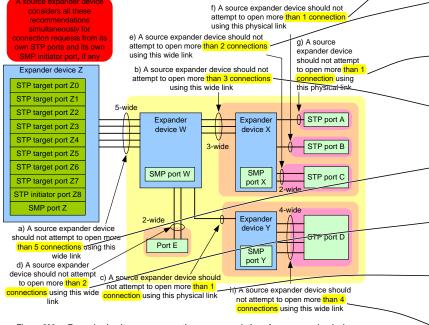
- a) reject incoming connection requests from that STP initiator port with OPEN REJECT (RETRY); and
- if affiliations are supported and the maximum number of affiliations has been established (i.e., all
 affiliation contexts are in use), reject incoming connection requests from other STP initiator ports that
 do not have affiliations with OPEN_REJECT (STP_RESOURCES BUSY).

Working Draft Serial Attached SCSI - 2 (SAS-2)

This << (RETRY) because the SAS port containing that SAS phy needs an outgoing >> should be << (RETRY) as a result of the SAS port containing that SAS phy needing an outgoing >>

```
Author: wdc-mevans
Subject: Highlight
Date: 5/25/2008 6:38:33 PM -07'00'
  REJECT (that change loses the concept that it NEEDs the connection request to be accepted. It might be designed such that it is
  attempting to establish a connection, but doesn't mind if it is not accepted.)
    needs an outgoing connection request to be accepted
    is attempting to establish a connection to transmit a FIS.
Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 6:38:52 PM -07'00'
 REJECT (first noun/subject convention)
    This << it >> should I think be << the STP initiator port >>
Subject: Highlight
Date: 5/22/2008 1:34:29 PM -07'00'
 REJECT (first noun/subject convention)
    the STP initiator port
Author: Isi-gpenokie
Subject: Highlight
Date: 8/27/2008 3:57:46 PM -07'00'
 TACCEPT - DONE (7/17 accept this one, although it complies with first noun/subject convention)
    This << it >> should I think be << the STP initiator port >>
Author: wdc-mevans
Subject: Highlight
Date: 5/22/2008 1:34:55 PM -07'00'
    REJECT (first noun/subject convention, but added "then")
    s/b
    then the STP initiator port
Author: wdc-mevans
Subject: Highlight
Date: 5/22/2008 1:35:07 PM -07'00'
 REJECT (first noun/subject convention)
    the STP target port
Author: Isi-gpenokie
Subject: Highlight
Date: 8/27/2008 3:58:08 PM -07'00'
  ACCEPT - DONE (accept this one, although it complies with the first noun/subject convention)
    This << it >> should I think be << the STP target port >>
```

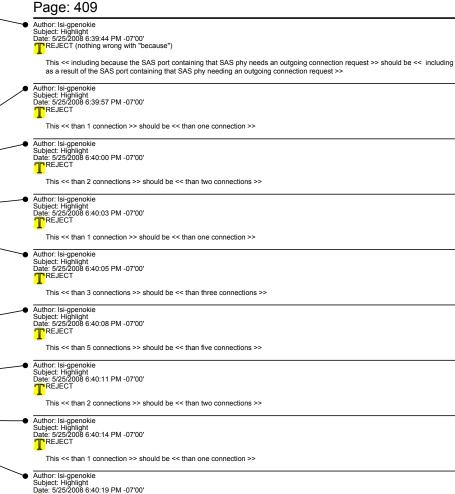
A SAS phy may reject an incoming connection request (i.e., an OPEN address frame) to an STP target port with OPEN_REJECT (RETRY) for any reason, including because the SAS port containing that SAS phy needs an outgoing connection request to be accepted (e.g., to transmit a frame and empty a buffer). An expander device should not allow its STP ports (e.g., the STP target ports in STP/SATA bridges and any STP initiator ports in the expander device) to attempt to establish more connections to a specific destination


port than the destination port width or the width of the narrowest physical link on the pathway to the

apply to connection requests being forwarded by the expander device.

destination port. This does not apply to connection requests being forwarded by the expander device.

An expander device should not allow its STP ports (e.g., the STP target ports in STP/SATA bridges and any STP initiator ports in the expander device) to attempt to establish more connections than the width of the narrowest common physical link on the pathways to the destination ports of those connections. This does not


Figure 200 shows an example of the simultaneous connection recommendations for an expander device containing STP ports.

 $\label{eq:Figure 200-Example simultaneous connection recommendations for an expander device} \\$

In figure 200, some of the recommendations are combined as follows:

 a) recommendations a), b), and e) together mean expander device Z should not attempt to open more than 2 connections to port C;

Comments from page 409 continued on next page

A SAS phy may reject an incoming connection request (i.e., an OPEN address frame) to an STP target port with OPEN_REJECT (RETRY) for any reason, including because the SAS port containing that SAS phyneeds an outgoing connection request to be accepted (e.g., to transmit a frame and empty a buffer).

An expander device should not allow its STP ports (e.g., the STP target ports in STP/SATA bridges and any STP initiator ports in the expander device) to attempt to establish more connections to a specific destination port than the destination port width or the width of the narrowest physical link on the pathway to the destination port. This does not apply to connection requests being forwarded by the expander device.

An expander device should not allow its STP ports (e.g., the STP target ports in STP/SATA bridges and any STP initiator ports in the expander device) to attempt to establish more connections than the width of the narrowest common physical link on the pathways to the destination ports of those connections. This does not apply to connection requests being forwarded by the expander device.

Figure 200 shows an example of the simultaneous connection recommendations for an expander de/fice containing STP ports.

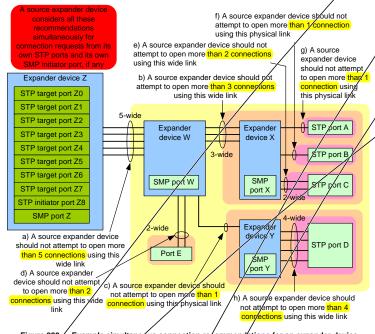


Figure 200 / Example simultaneous connection recommendations for an expander device

In figure 200, some of the recommendations are combined as follows:

a) recommendations a), //, and e) together mean expander device Z should not attempt to open more than 2 connections to port C;

Working Draft Serial Attached SCSI - 2 (SAS-2)

409

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 6:40:24 PM -07'00'

This << 2 connections >> should be << two connections >>

REJECT

This << than 4 connections >> should be << than four connections >>

Author: Isi-bday
Subject: Highlight
Date: 6/30/2008 7:32:09 AM -07'00'
TACCEPT - DONE (added "Multiplexing is disabled in this example.")

In figure 200,
Need comment that multiplexing not enabled in this example.

Author: Isi-gpenokie
Subject: Highlight
Date: 8/27/2008 3:59:32 PM -07'00'
TACCEPT - DONE (7717 go ahead and change to "specify that." Although I try to avoid "specify" except for Mark Evans' favorite usage.)

This << together mean >> should be << together specify >>

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

mean expander
s/b
mean that expander

b) recommendations a), b), e), f), and g) together mean that if expander device Z has 2 connections open to ports A, B, and X, it should not attempt to open more that 1 connection to port C. If it has 4 connections open to ports A, B, D, E, W, X, and Y, it should not attempt to open more than 1 connection to port C: and

c) recommendations a), c), and h) together mean expander device Z should not attempt to open more than 1 connection to port D. If it has a connection open to port Y, it should not attempt to open another connection to port D ontil the first connection is closed.

The first dword that an STP physicads inside an STP connection after OPEN_ACCEPT that is not a deletable primitive shall be an STP primitive (e.g., SATA_SYNC).

7.17.6 Closing an STP connection

Either STP port (i.e., either the STP initiator port of the STP target port) may originate closing an STP connection. An STP port shall not originate closing a STP connection after serving a SATA_X RDY or SATA_R_RDY until after both sending and receiving SXTA_SYNC. An STP port shall transmit CLQSE after receiving a CLQSE if it has not already transmitted CLQSE.

If an STP port receives a CLOSE after transmitting a SATA_X_RDY but before receiving a SATA_R_RDY, the STP port shall complete closing the connection (i.e., transmit CLOSE) and retransmit the SATA_X_RDY in a new connection

When an STP initiator port closes an STP connection, it shall transmit a CLOSE (NORMAL) or CLOSE (CLEAR AFFILIATION). When an STP target port closes an STP connection, it shall transmit a CLOSE (NORMAL).

An STP initiator port may issue CLOSE (CLEAR AFFILIATION) in place of a CLOSE (NORMAL) to cause the STP target port to clear the affiliation (see 7.17.4) along with closing the connection. If an STP target port receives CLOSE (CLEAR AFFILIATION), the STP target port shall clear the affiliation for the STP initiator port that sent the CLOSE (CLEAR AFFILIATION).

See 7.12.7 for additional details on closing connections.

An STP/SATA bridge shall break an STP connection if its SATA host phy loses dword synchronization (see 7.12.8).

7.17.7 STP connection management examples

The STP/SATA bridge adds the outgoing OPEN address frames and CLOSEs so the STP initiator port sees an STP target port. The STP/SATA bridge removes incoming OPEN address frame and CLOSEs so the SATA device port sees only a SATA host port. While the connection is open, the STP/SATA bridge passes through all dwords without modification. Both STP initiator port and STP target port use SATA, with SATA flow control (see 7.17.2), while the connection is open.

Page: 410 Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 6:40:26 PM -07'00' TREJECT This << 2 connections >> should be << two connections >> Author: Isi-apenokie Subject: Highlight Date: 8/27/2008 4:00:13 PM -07'00' This << together mean >> should be << together specify >> Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 6:40:29 PM -07'00' TREJECT. This << 4 connections >> should be << four connections >> Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 6:40:32 PM -07'00' This << 1 connection >> should be << one connection >> Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE mean expander mean that expander Author: Isi-gpenokie Subject: Highlight Date: 8/27/2008 4:00:26 PM -07'00' TACCEPT - DONE This << together mean >> should be << together specify >> Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 6:40:44 PM -07'00' This << 1 connection >> should be << one connection >> Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

the s/b then the

b) recommendations a), b), e), f), and g) together mean that if expander device Z has 2 connections open to ports A, B, and X, it should not attempt to open more than 1 connection to port C. If it has 4 connections open to ports A, B, D, E, W, X, and Y, it should not attempt to open more than 1 connection to port C; and

c) recommendations a), c), and h) together mean expander device Z should not attempt to open more than 1 connection to port D. If it has a connection open to port Y, it should not attempt to open another connection to port D until the first connection is closed.

The first dword that an STP phy sends inside an STP connection after OPEN_ACCEPT that is not a deletable primitive shall be an STP primitive (e.g., SATA_SYNC).

7.17.6 Closing an STP connection

Either STP port (i.e., either the STP initiator port or the STP target port) may originate closing an STP connection. An STP port shall not originate closing an STP connection after serding a SATA_X_RDY or SATA_R_RDY until after both sending and receiving SATA_SYNC. An STP port shall transmit CLOSE after receiving a CLOSE if it has not already transmitted CLOSE.

If an STP port receives a CLOSE after transmitting a SATA_X_RDY out before receiving a SATA_B_RDY, the STP port shall complete closing the connection (i.e., transmit CLOSE) and retransmit the SATA_X_RDY in a new connection

When an STP initiator port closes an STP connection, it shall transmit a CLOSE (MORMAL) or CLOSE (CLEAR AFFILIATION). When an STP target port closes an STP conpection, it shall transmit a CLOSE (NORMAL).

An STP initiator port may issue CLOSE (CLEAP AFFILIATION) in place of a CLOSE (NORMAL) to cause the STP target port to clear the affiliation (see 7.17.4) atong with closing the connection. If an STP target port receives CLOSE (CLEAR AFFILIATION), the STP target port shall clear the affiliation for the STP initiator port that sent the CLOSE (CLEAR AFFILIATION).

See 7.12.7 for additional details on closing connections.

An STP/SATA bridge shall break an STP connection if its SATA host phy loses dword synchronization (see 7.12.8).

7.17.7 STP connection management examples

The STP/SATA bridge adds the outgoing OPEN address frames and CLOSEs so the STP initiator port sees an STP target port. The STP/SATA bridge removes incoming OPEN address frame and CLOSEs so the SATA device port sees only a SATA host port. While the connection is open, the STP/SATA bridge passes through all dwords without modification. Both STP initiator port and STP target port use SATA, with SATA flow control (see 7.17.2), while the connection is open.

Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 6:41:16 PM -07'00'
PREJECT (first noun/subject convention) the STP initiator port Author: wdc-mevans Subject: Highlight Date: 5/25/2008 6:41:22 PM -07'00' REJECT (first noun/subject convention) the STP target port Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' that sent

from which the ... was received

Figure 201 shows an STP initiator port opening a connection, transmitting a single SATA frame, and closing the connection.

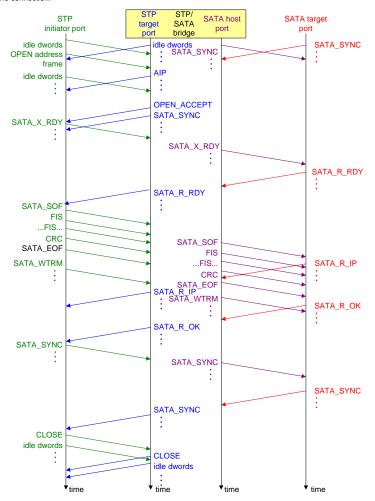


Figure 201 — STP initiator port opening an STP connection

This page contains no comments

Figure 202 shows a SATA device transmitting a SATA frame. In this example, the STP target port in the STP/SATA bridge opens a connection to an STP initiator port to send just one frame, then closes the connection.

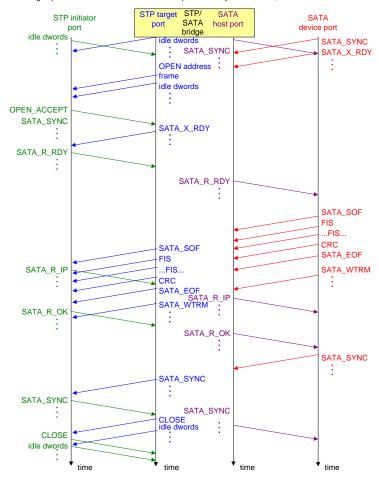


Figure 202 — STP target port opening an STP connection

This page contains no comments

7.17.8 STP (link layer for STP phys) state machines

The STP link layer uses the SATA link layer state machines (see SATA-2), modified to:

- a) communicate with the port layer rather than directly with the transport layer;
- b) interface with the SL state machines for connection management (e.g., to select when to open and close STP connections, and to tolerate idle dwords between an OPEN address frame and the first SATA primitive);
- c) communicate with an STP transmitter and receiver; and
- d) support an affiliation policy (see 7.17.4).

These modifications are not described in this standard.

The STP transmitter relationship to other transmitters is defined in 4.3.2. The STP receiver relationship to other receivers is defined in 4.3.3.

7.17.9 SMP target port support

A SAS device that contains an STP target port shall also contain an SMP target port.

7.18 SMP link layer

7.18.1 SMP frame transmission and reception

Inside an SMP connection, the SMP initiator phy transports a single SMP_REQUEST frame within 100 μs and the SMP target phy responds with a single SMP_RESPONSE frame (see 9.4) within 1 900 μs.

Frames are surrounded by SOF and EOF as shown in figure 203. See 7.18.5 for error handling details.

NOTE 81 - Unlike SSP, there is no acknowledgement of SMP frames with ACK and NAK and there is no credit exchange with RRDY.

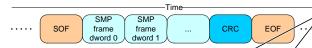


Figure 203 — SMP frame transmission

The last data dword after the SOF prior to the EOF always comains a CRC (see 7.5%. The SMP link layer state machine checks that the frame is not too short and that the CRC is valid (see 7.1%.5).

7.18.2 SMP flow control

By accepting an SMP connection, the SMP target phy indicates it is ready to receive one SMP_REQUEST frame

After the SMP initiator phy transmits one SMP_REQUEST frame, it shall be ready to receive one SMP_RESPONSE frame

7.18.3 Opening 2/1 SMP connection

An SMP taget port shall not attempt to establish an SMP connection.

phy may reject an incoming connection request (i.e., OPEN address frame) to an SMP target port with OPEN_REJECT (RETRY) for any reason, including because the SAS port containing that SAS phy needs an outgoing connection request to be accepted (e.g., to transmit a frame and empty a buffer).

7.18.4 Closing an SMP connection

After receiving the SMP_RESPONSE frame, the SMP initiator phy shall transmit a CLOSE (NORMAL) to close the connection.

Working Draft Serial Attached SCSI - 2 (SAS-2)

413

Page: 413

Author: wdc-mevans Subject: Cross-Out Date: 5/25/2008 6:41:46 PM -07'00'

directly

[Delete the unnecessary word.]

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'
REJECT (this is just informative commentary info)

This note << NOTE 81 - Unlike SSP, there >> should be normative text.

Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'
TREJECT
it

the SMP initiator phy

Author: stx-ghoulder Subject: Note

Sauject. Note
Date: 6/30/2008 7:33:27 AM -07'00'
REJECT (there is no such sentence in the "Opening an SSP connection" section; why should one be added here?)

There should be a sentence here that says "An SMP initiator establishes an SMP connection by sending an OPEN address frame to to an SMP target ports"

Author: Isi-gpenokie
Subject: Highlight
Date: 5/25/2008 6:42:10 PM -07'00'
PREJECT (nothing wrong with "because")

This << including because the SAS port containing that SAS phy needs an >> should be << including as a resulte of the SAS port containing that SAS phy needing an >>

After transmitting the SMP_RESPONSE frame, the SMP target phy shall reply with a CLOSE (NORMAL). See 7.12.7 for additional details on closing connections.

7.18.5 SMP (link layer for SMP phys) state machines

7.18.5.1 SMP state machines overview

The SMP state machines control the flow of dwords on the physical link during an SMP connection. The SMP state machines are as follows:

- a) SMP_IP (link layer for SMP initiator phys) state machine (see 7.18.5.3); and
- b) SMP_TP (link layer for SMP target phys) state machine (see 7.18.5.4).

7.18.5.2 SMP transmitter and receiver

The SMP transmitter receives the following messages from the SMP state machines specifying dwords and frames to transmit:

- a) Transmit Idle Dword; and
- b) Transmit Frame with an argument containing the frame contents.

In response to the Transmit Frame message, the SMP transmitter transmits:

- 1) SOF;
- 2) the frame contents;
- 3) CRC; and
- 4) EOF.

The SMP transmitter sends the following messages to the SMP state machines based on dwords that have been transmitted:

a) Frame Transmitted.

When there is no outstanding message specifying a dword to transmit, the SMP transmitter shall transmit idle

The SMP receiver sends the following messages to the SMP state machines indicating primitive sequences and dwords received from the SP_DWS receiver (see 6.9.2):

- a) SOF Received;
- b) Data Dword Received;
- c) EOF Received;

414

- d) ERROR Received: and
- e) Invalid Dword Received.

The SMP receiver shall ignore all other dwords.

The SMP transmitter relationship to other transmitters is defined in 4.3.2. The SMP receiver relationship to other receivers is defined in 4.3.3.

7.18.5.3 SMP_IP (link layer for SMP initiator phys) state machine

7.18.5.3.1 SMP_IP state machine overview

The SMP_IP state machine's function is to transmit an SMP request frame and then receive the corresponding response frame. This state machine consists of the following states:

- a) SMP IP1:Idle (see 7.18.5.3.2)(initial state);
- b) SMP_IP2:Transmit_Frame (see 7.18.5.3.3); and
- c) SMP_IP3:Receive_Frame (see 7.18.5.3.4).

This state machine shall start in the SMP_IP1:Idle state on receipt of an Enable Disable SMP (Enable) message from the SL state machines (see 7.14).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 414

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

This << the following messages to the SMP >> should be << the following message to the SMP >>

The SMP_IP state machine shall terminate after receiving an Enable Disable SMP (Disable) message from the SL state machines.

Figure 204 shows the SMP_IP state machine.

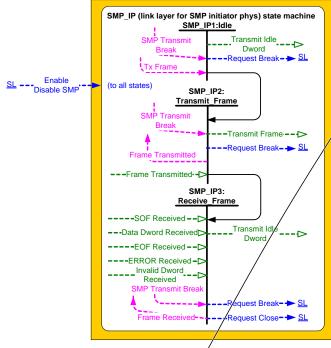


Figure 204 — SMP_IP (link layer for SMP init/ator phys) state machine

7.18.5.3.2 SMP_IP1:Idle state

7.18.5.3.2.1 State description

This state is the initial state.

This state shall request idle dwords be transmitted by epeatedly sending Transmit Idle Dword messages to the SMP transmitter.

If an SMP Transmit Break request is received, this state shall send a Request Break message to the SL state machines (see 7.14).

415

7.18.5.3.2.2 Transition SMP_IP1:Idle to SMP_IP2:Transmit_Frame

This transition shall occur after a Tx Frame request is received.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 415

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
s/b
then this

7.18.5.3.3 SMP IP2:Transmit Frame state

7.18.5.3.3.1 State description

This state shall send a Transmit Frame message to the SMP transmitter with an argument containing the frame contents.

If an SMP Transmit Break request is received, this state shall send a Request Break message to the SL state machines (see 7.14) and terminate.

After the Frame Transmitted message is received, this state shall send a Frame Transmitted confirmation to the port layer.

7.18.5.3.3.2 Transition SMP IP2:Transmit Frame to SMP IP3:Receive Frame

This transition shall occur after sending a Frame Transmitted confirmation to the port layer.

7.18.5.3.4 SMP IP3:Receive Frame state

This state checks the SMP response frame and determines if the SMP response frame was successfully received (e.g., no CRC error).

If this state receives a subsequent SOF Received message after receiving an SOF Received message but before receiving an EOF Received message (i.e., SOF, data dwords, SOF, data dwords, and EOF instead of SOF, data dwords, EOF, SOF, data dwords, and EOF), then this state shall discard the Data Dword Received messages received before the subsequent SOF Received message.

This state shall discard the frame, send a Frame Received (SMP Failure) sentirmation to the port layer, send a Request Break message to the SL state machines, and terminate the state machine.

a) this state receives more than 258 Data Dword Received messages after an SOF Received message and before an EOF Received message; or this state receives fewer than 2 Data Dword Received messages after an SOF Received message and before an EOF Received message.

If this state receives an Invalid Dword Received message of an ERROR Received message after an SOR Received message and before an EOF Received message, the this state machine shall:

- a) ignore the invalid dword or ERROR; or
- b) discard the frame, send a Frame Received (SMP Failure) confirmation to the port layer, send a Request Break message to the SL state machines, and terminate the state machine.

If the SMP response frame is received with a CRC error, this state shall discard the stame, send a Frame Received (SMP Failure) confirmation to the port layer, send a Request Break message to the SL state machines, and terminate the state machine.

If the SMP response frame is received with no CRC error and the SMP response frame is valid, this state shall:

- a) send a Frame Received confirmation to the port layer; and
- b) send a Request Close message to the SL state machines (see 7.14).

If an SMP Transmit Break request is received, this state shall send a Request Break message to the SL state machines and this state machine shall terminate.

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SMP transmitter.

Page: 416

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
this
s/b
then this

Author: RElliott Subject: Highlight Date: 8/30/2008 9:24:24 AM -07'00'

terminate s/b terminate this state machine

per 08-343

Author: RElliott
Subject: Highlight
Date: 8/29/2008 11:47:29 AM -07'00'
TACCEPT - DONE

shall discard

add "SOF Received message and" to match stx-ghoulder comment on page 399

Author: RElliott Subject: Underline Date: 9/3/2008 5:02:41 PM -07'00'

> Frame Received (SMP Failure) s/b Frame Received (SMP Unsuccessful)

to parallel SSP names

prompted by 08-343

Author: RElliott Subject: Highlight Date: 8/30/2008 9:23:56 AM -07'00'

terminate the state machine

the s/b this per 08-343

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Comments from page 416 continued on next page

7.18.5.3.3 SMP IP2:Transmit Frame state

7.18.5.3.3.1 State description

This state shall send a Transmit Frame message to the SMP transmitter with an argument containing the frame contents

If an SMP Transmit Break request is received, this state shall send a Request Break message to the SL state machines (see 7.14) and terminate.

After the Frame Transmitted message is received, this state shall send a Frame Transmitted confirmation to the port laver.

7.18.5.3.3.2 Transition SMP IP2:Transmit Frame to SMP IP3:Receive Frame

This transition shall occur after sending a Frame Transmitted confirmation to the port layer.

7.18.5.3.4 SMP IP3:Receive Frame state

This state checks the SMP response frame and determines if the SMP response frame was successfully received (e.g., no CRC error).

If this state receives a subsequent SOF Received message after receiving an SOF Received message but before receiving an EOF Received ressage (i.e., SOF, data dwords, SOF, data dwords, and EOF instead of SOF, data dwords, EOF, SOF data dwords, and EOF, then this state shall discard the Data Dword Received messages received before the subsequent SOF Received message.

This state shall discard the frame, send a Frame Received (SMP Failure) confirmation to the port layer, send a Request Break message to the SL state machines, and terminate the state machine if:

this state receives more than 258 Data Dword Received messages after an SOF Received message and beliefs an EOF Received message; or this state receives fewer than 2 Data Dword Received messages after an SOF Received message

and before an EOF Received message.

If this state receives an Invalid Dword Received message of an ERROR Received message after an SOF Received message and before an EOF Received message, then this state machine shall:

- a) ignore the invalid dword or ERROR; or
- b) discard the frame, send a <u>Frame Received (SMP Failure)</u> confirmation to the port layer, send a Request Break message to the SL state machines, and terminate the state machine.

If the SMP response frame is received with a CRC error, this state shall discard the frame, send a <u>Frame Received (SMP Failure)</u> confirmation to the port layer, send a Request Break message to the SL state machines, and terminate the state machine.

If the SMP response frame is received with no CRC error and the SMP response frame is valid, this state shall:

- a) send a Frame Received confirmation to the port layer; and
- b) send a Request Close message to the SL state machines (see 7.14).

If an SMP Transmit Break request is received, this state shall send a Request Break message to the SL state machines and this state machine shall terminate.

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SMP transmitter.

```
to restrict SMP frames to 4+1024+4 (see comments in chapter 9 and 10)
Author: RElliott
Date: 6/30/2008 3:16:52 PM -07'00'
    Add "(i.e., nnn bytes)" to make these dword counts easier to find
Author: RElliott
Subject: Note
 Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
    NOTE: SMP target phys compliant with previous versions of the standard may send vendor-specific SMP frames containing 258 data dwords.
Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'
 ACCEPT - DONE (added "either" - see earlier comment)
    It seems like this << or >> should be << and >> but that would be a different requirement in that the state would do both a and b
    rather that have to pick either a or b. I'm not sure which was intended
 Author: RElliott
Subject: Underline
Date: 9/3/2008 5:02:52 PM -07'00'
 TACCEPT - DONE
    Frame Received (SMP Failure)
    Frame Received (SMP Unsuccessful)
    to parallel SSP names
    prompted by 08-343
Author: RElliott
Subject: Highlight
Date: 8/30/2008 9:23:50 AM -07'00'
  CACCEPT - DONE
    terminate the state machine
    the s/b this
    per 08-343
Author: RElliott
Subject: Underline
Date: 9/3/2008 5:03:01 PM -07'00'
TACCEPT - DONE
```

258

257

Frame Received (SMP Failure)

T10/1760-D Revision 14

7.18.5.3.3 SMP IP2:Transmit Frame state

7.18.5.3.3.1 State description

This state shall send a Transmit Frame message to the SMP transmitter with an argument containing the frame contents

If an SMP Transmit Break request is received, this state shall send a Request Break message to the SL state machines (see 7.14) and terminate.

After the Frame Transmitted message is received, this state shall send a Frame Transmitted confirmation to the port laver.

7.18.5.3.3.2 Transition SMP IP2:Transmit Frame to SMP IP3:Receive Frame

This transition shall occur after sending a Frame Transmitted confirmation to the port layer.

7.18.5.3.4 SMP IP3:Receive Frame state

This state checks the SMP response frame and determines if the SMP response frame was successfully received (e.g., no CRC error).

If this state receives a subsequent SOF Received message after receiving an SOF Received message but before receiving an EOF Received message (i.e., SOF, data dwords, SOF, data dwords, and EOF instead of SOF, data dwords, EOF, SOF, data dwords, and EOF), then this state shall discard the Data Dword Received messages received before the subsequent SOF Received message.

This state shall discard the frame, send a Frame Received (SMP Failure) confirmation to the fort layer, send a Request Break message to the SL state machines, and terminate the state machine it:

a) this state receives more than 258 Data Dword Received messages after an 20F Received message and before an EOF Received message; or
 b) this state receives fewer than 2 Data Dword Received messages after an SOF Received message

and before an EOF Received message.

If this state receives an Invalid Dword Received message or an ERROR Received message after an SOF Received message and before an EOF Received message, then this state machine shall:

- a) ignore the invalid dword or ERROR; or
- b) discard the frame, send a Frame Received (SMP Failure) confirmation to the port layer send a Request Break message to the SL state machines, and reminate the state machine.

If the SMP response frame is received with a CRC error, this state shall discard the frame, send a <u>Frame Received</u> (SMP Failure) confirmation to the popt layer, send a Request Break message to the SL state machine, and terminate the state machine.

If the SMP response frame is received with no CBP error and the SMP response frame is valid, this state shall:

- a) send a Frame Received confirmation to the port layer; and
- b) send a Request Close message to the SL state machines (see 7.14).

If an SMP Transmit Break request is received, this state shall send a Request Break message to the SL state machines and this state machine shall terminate.

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SMP transmitter.

Frame Received (SMP Unsuccessful) to parallel SSP names prompted by 08-343 Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' this s/h then this Author: RElliott Subject: Highlight Date: 8/30/2008 9:23:43 AM -07'00' ACCEPT - DONE terminate the state machine the s/b this per 08-343 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE this s/b then this Author: RElliott Subject: Underline
Date: 9/3/2008 5:05:21 PM -07'00' Frame Received Frame Received (SMP Successful) to parallel SSP names prompted by 08-343 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE this s/b then this

Comments from page 416 continued on next page

Author: RElliott

28 January 2008

7.18.5.3.3 SMP IP2:Transmit Frame state

7.18.5.3.3.1 State description

This state shall send a Transmit Frame message to the SMP transmitter with an argument containing the frame contents.

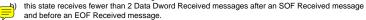
If an SMP Transmit Break request is received, this state shall send a Request Break message to the SL state machines (see 7.14) and terminate.

After the Frame Transmitted message is received, this state shall send a Frame Transmitted confirmation to the port laver.

7.18.5.3.3.2 Transition SMP IP2:Transmit Frame to SMP IP3:Receive Frame

This transition shall occur after sending a Frame Transmitted confirmation to the port layer.

7.18.5.3.4 SMP IP3:Receive Frame state


This state checks the SMP response frame and determines if the SMP response frame was successfully received (e.g., no CRC error).

If this state receives a subsequent SOF Received message after receiving an SOF Received message but before receiving an EOF Received message (i.e., SOF, data dwords, SOF, data dwords, and EOF instead of SOF, data dwords, EOF, SOF, data dwords, and EOF), then this state <a href="https://snata.gov/snata.go

This state shall discard the frame, send a <u>Frame Received (SMP Failure)</u> confirmation to the port layer, send a Request Break message to the SL state machines, and <u>terminate the state machine</u> if:

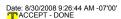
 a) this state receives more than 258 Data Dword Received messages after an SOF Received message and before an EOF Received message; or

If this state receives an Invalid Dword Received message or an ERROR Received message after an SOF Received message and before an EOF Received message, then this state machine shall:

- a) ignore the invalid dword or ERROR; or
- b) discard the frame, send a <u>Frame Received (SMP Failure)</u> confirmation to the port layer, send a Request Break message to the SL state machines, and <u>terminate the state machine</u>.

If the SMP response frame is received with a CRC error, this state shall discard the frame, send a <u>Frame Received (SMP Failure)</u> confirmation to the port layer, send a Request Break message to the SL state machines, and terminate the state machine.

If the SMP response frame is received with no CRC error and the SMP response frame is valid, this state shall:


- a) send a Frame Received confirmation to the port layer; and
- b) send a Request Close message to the SL state machines (see 7.14).

If an SMP Transmit Break request is received, this state shall send a Request Break message to the SL state machines and this state machine shall terminate.

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SMP transmitter.

Working Draft Serial Attached SCSI - 2 (SAS-2)

416

this state machine shall terminate

s/b

shall terminate this state machine

to match other wording (08-343 requests similar changes in this regard, but not this specific sentence)

7.18.5.4 SMP_TP (link layer for SMP target phys) state machine

7.18.5.4.1 SMP_TP state machine overview

The SMP_TP state machine's function is to receive an SMP request frame and then transmit the corresponding SMP response frame. The SMP_TP state machine consists of the following states:

- a) SMP_TP1:Receive_Frame (see 7.18.5.4.2)(initial state); and
- b) SMP_TP2:Transmit_Frame (see 7.18.5.4.3).

This state machine shall start in the SMP_TP1:Receive_Frame state after receiving an Enable Disable SMP (Enable) message from the SL state machines (see 7.14).

The SMP_TP state machine shall terminate after receiving an Enable Disable SMP (Disable) message from the SL state machines.

Figure 205 shows the SMP_TP state machine.

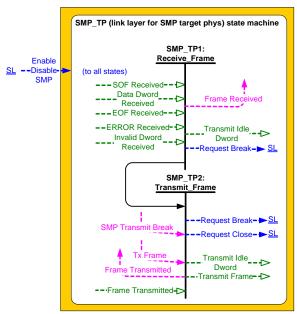
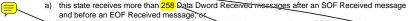


Figure 205 — SMP_TP (link layer for SMP target phys) state machine

7.18.5.4.2 SMP_TP1:Receive_Frame state

7.18.5.4.2.1 State description

This state waits for an SMP frame and determines if the SMP frame was successfully received (e.g., no CRC error).


417

Working Draft Serial Attached SCSI - 2 (SAS-2)

This page contains no comments

If this state receives a subsequent SOF Received message after receiving an SOF Received message but before receiving an EOF Received message (i.e., SOF, data dwords, SOF, data dwords, and EOF instead of SOF, data dwords, EOF, SOF, data dwords, and EOF), then this state shall discard the Data Dword Received messages received before the subsequent SOF Received message.

This state shall discard the frame, send a Request Break message to the SL state machines (see 7.14) and shall terminate the state machine if—

If this state receives an Invalid Dword Received message or an ERROR Received message after an SOF Received message and belong an EOF Received message, then this state machine shall:

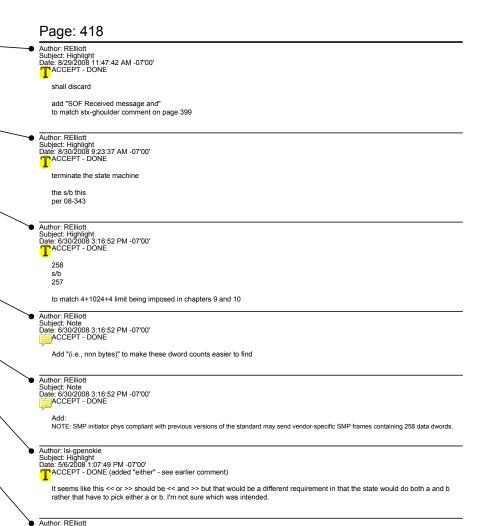
- a) ignore the invalid dword or ERROR; or
- b) discard the frame, send a Request Break ressage to the SL state machines (see 7.14) and shall terminate the state machine.

If the SMP request frame is received with a CRC error, this state shall discard the frame, send a Request Break message to the SL state machines (\$2,7.14) and shall tensinate the state machine.

Otherwise, this state shall send a Frame Received confirmation to the portlayer.

This state shall request idle dwords be transmitted by repeatedly sending Transmit-Idle Dword messages to the SMP transmitter.

7.18.5.4.2.2 Transition SMP TP1:Receive Frame to SMP TP2:Transmit Frame


This transition shall occur after sending a Frame Received confirmation to the postlayer.

7.18.5.4.3 SMP TP2:Transmit Frame state

If this state receives an SMP Transmit Break request, this state shall send a Request Break message to the SL state machines and terminate.

If this state receives a Tx Frame request, this state shall send a Transmit Frame ressage to the MP transmitter with an argument containing the frame contents, then wait for a Frame reasonited message. After receiving a Frame Transmitted message, this state shall send a Frame Transmitted confirmation to the cort layer, send a Request Close message to the SL state machines (see 7.14) and terminals.

After sending Transmit Frame message to the SMP transmitter, this state shall request idle twords be transmitted by repeatedly sending Transmit Idle Dword messages to the SMP transmitter.

Comments from page 418 continued on next page

If this state receives a subsequent SOF Received message after receiving an SOF Received message but before receiving an EOF Received message (i.e., SOF, data dwords, SOF, data dwords, and EOF instead of SOF, data dwords, EOF, SOF, data dwords, and EOF), then this state shall discard the Data Dword Received messages received before the subsequent SOF Received message.

This state shall discard the frame, send a Request Break message to the SL state machines (see 7.14) and shall terminate the state machine if:

- a) this state receives more than 258 Data Dword Received messages after an SOF Received message and before an EOF Received message; or
- b) this state receives fewer than 2 Data Dword Received messages after an SOF Received message and before an EOF Received message.

If this state receives an Invalid Dword Received message or an ERROR Received message after an SOF Received message and before an EOF Received message, then this state machine shall.

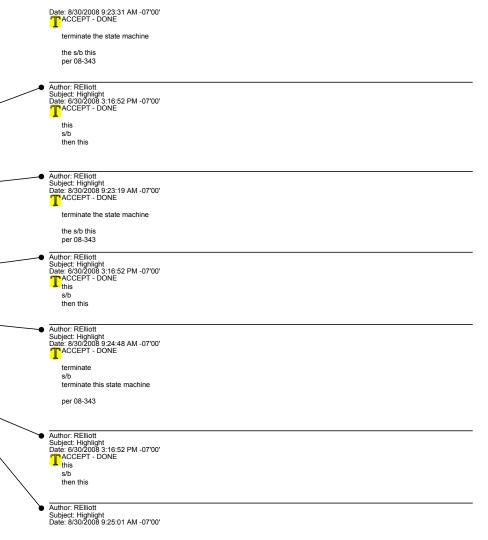
- a) ignore the invalid dword or ERROR; or
- b) discard the frame, send a Request Break message to the SL state machines (see 7.14) and shall terminate the state machine.

If the SMP request frame is received with a CRC error, this state shall discard the frame, send a Request Break message to the SL state machines (see 7.14) and shall terminate the state machine.

Otherwise, this state shall send a Frame Received confirmation to the port layer.

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SMP transmitter.

7.18.5.4.2.2 Transition SMP TP1:Receive Frame to SMP TP2:Transmit Frame


This transition shall occur after sending a Frame Received confirmation to the port layer.

7.18.5.4.3 SMP TP2:Transmit Frame state

If this state receives an SMP Transmit Break request, this state shall send a Request Break message to the SL state machines and terminate.

If this state receives a Tx Frame request, this state shall send a Transmit Frame message to the SMP transmitter with an argument containing the frame contexts, then wait for a Frame Transmitted message. After receiving a Frame Transmitted message, this state shall send a Frame Transmitted confirmation to the port layer, send a Request Close message to the SL state machines (see 7.44) and terminate.

After sending Transmit Frame message to the SMP transmitter, this state shall request idle dwards be transmitted by repeatedly sending Transmit Idle Dword messages to the SMP transmitter.

Comments from page 418 continued on next page

If this state receives a subsequent SOF Received message after receiving an SOF Received message but before receiving an EOF Received message (i.e., SOF, data dwords, SOF, data dwords, and EOF instead of SOF, data dwords, EOF, SOF, data dwords, and EOF), then this state shall discard the Data Dword Received messages received before the subsequent SOF Received message.

This state shall discard the frame, send a Request Break message to the SL state machines (see 7.14) and shall terminate the state machine if:

418

- a) this state receives more than 258 Data Dword Received messages after an SOF Received message and before an EOF Received message; or
- b) this state receives fewer than 2 Data Dword Received messages after an SOF Received message and before an EOF Received message.

If this state receives an Invalid Dword Received message or an ERROR Received message after an SOF Received message and before an EOF Received message, then this state machine shall:

- a) ignore the invalid dword or ERROR; or
- discard the frame, send a Request Break message to the SL state machines (see 7.14) and shall terminate the state machine.

If the SMP request frame is received with a CRC error, this state shall discard the frame, send a Request Break message to the SL state machines (see 7.14) and shall terminate the state machine.

Otherwise, this state shall send a Frame Received confirmation to the port layer.

This state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SMP transmitter.

7.18.5.4.2.2 Transition SMP TP1:Receive Frame to SMP TP2:Transmit Frame

This transition shall occur after sending a Frame Received confirmation to the port layer.

7.18.5.4.3 SMP TP2:Transmit Frame state

If this state receives an SMP Transmit Break request, this state shall send a Request Break message to the SL state machines and terminate.

If this state receives a Tx Frame request, this state shall send a Transmit Frame message to the SMP transmitter with an argument containing the frame contents, then wait for a Frame Transmitted message. After receiving a Frame Transmitted message, this state shall send a Frame Transmitted confirmation to the port layer, send a Request Close message to the SL state machines (see 7.14) and terminate.

After sending Transmit Frame message to the SMP transmitter, this state shall request idle dwords be transmitted by repeatedly sending Transmit Idle Dword messages to the SMP transmitter.

Working Draft Serial Attached SCSI - 2 (SAS-2)

terminate

terminate this state machine

per 08-343

8 Port layer

8.1 Port layer overview

The port layer (PL) state machines interface with one or more SAS link layer state machines and one or more SSP, SMP, and STP transport layer state machines to establish port connections and disconnections. The port layer state machines also interpret or pass transmit data, receive data, commands, and confirmations between the link and transport layers.

8.2 PL (port layer) state machines

8.2.1 PL state machines overview

transmission;

The PL (port layer) consists of state machines that run in parallel and perform the following functions:

- a) receive requests from the SSP, SMP, and STP transport layer state machines for connection
- management (e.g., requests to open or close connections) and frame transmission;
 b) send requests to the SAS link layer state machines for connection management and frame
- c) receive confirmation from the SAS link layer state machines; and
- d) send confirmations to the SSP, SMP, and STP transport layer state machines.

The port layer state machines are as follows:

- a) PL_OC (port layer overall control) state machines (see 8 2.27, and
- b) PL_PM (port layer phy manager) state machines (see 8.2.3).

There is one PL_OC state machine per port (see 4.1.4). There is one PL_PM state machine for each phy contained in the port. Phys are assigned to ports by the management application layer. More than one port in a SAS device may have the same SAS address.

Page: 419

Author: wdc-mevans
Subject: Highlight
Date: 56/2008 1:07:49 PM -07'00'
THEJECT (phy is true, but so is port, and port is the more surprising and the focus of clause 8)
port
s/b
phy

Author: stx-ghoulder Subject: Highlight Date: 5/25/2008 5:09:16 PM -07'00'

same SAS address.

add "same SAS address if the ports are in different SAS domains (see 4.2.7)."

Author: hpq-relliott Subject: Note Date: 9/3/2008 1:00:38 PM -07'00'

9/3 Hard Reset message from PL_OC to PL_PM replaces HARD_RESET Received processing in PL_PM.

7/14 yes, add the communication from PL_OC to the PL_PM to tell each phy that one of its peers was reset.)

PL_OC should be the sole recipient of HARD_RESET Received confirmations from the link layer. PL_PMs should not look at that confirmation from all the phys in the port (as it is implied they are doing, as written). PL_OC should distribute it as a message to all the PL_PMs in the port.

Figure 206 shows examples of the port layer state machines and their interaction with the transport and link layers.

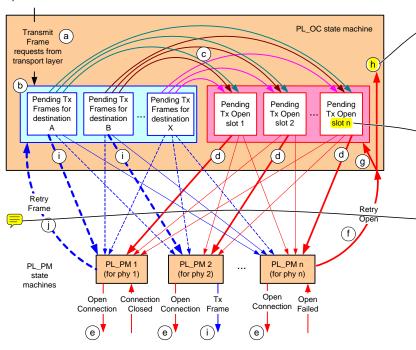


Figure 206 — Port layer examples

The following is a description of the example processes in figure 206. These example processes do not describe all of the possible condition or actions.

- a) Transmit Frame requests are received by the PL_OC state machine;
- b) the PL_OC state machine converts Transmit Frame requests into pending Tx Frame messages associated with the destination SAS address;
- c) the PL_OC state machine generates a pending Tx Open message for a pending Tx Exame message when there is a pending Tx Open slot available (i.e., the number of pending Tx Open messages is less than or equal to the number of phys);
- d) the PL_OC state machine sends a pending Tx Open message as a Tx Open message to a PL_PM state machine when a PL_PM machine is available; a slot is then available for a new pending Tx Open message;
- e) when a PL_PM state machine receives a Tx Oper nessage, the PL_PM state machine attempts to establish a connection with the destination SAS address through the link layer;
- f) if a PL_PM state machine is unable to establish a connection with the destination SAS address, then the PL_PM state machine sends a Retry Open message to the PL_OC state machine;

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 420

machine discards the Tx Open message and sends

Author: wdc-mevans Subject: Highlight Date: 9/2/2008 4:57:44 PM -07'00' REJECT (7/14 Brian Day's 08-216 resolves the need for this without adding arrows. 5/5 consider cases that result in confirmation to transport layer. An arc from PL_PM labeled Unable to Connect reaching through PL OC to the transport layer might be best. That covers the remaining case h) that treats Retry Open like Unable to Connect.) There are two possibilities here: either the PL_OC state machine may create a new Pending Tx Open for the Pending Tx Frame, or the state machine may send the appropriate Transmission Status confirmation (e.g., No Destination) to the transport layer. I've tried to describe this in the text below, but I'm not sure what to do with the arrows. Possibly there could be an arrow like the one on the right in the figure going the other way (i.e., to the transport layer) including the confirmation. I think this is all correctly defined in detail in 8.2.2.3.4.] Author: RElliott Subject: Highlight
Date: 9/2/2008 4:59:16 PM -07'00' Brian Day's 08-216r1 changes slot n to slot z Author: RElliott Subject: Note Date: 9/18/2008 2:12:15 PM -07'00' ACCEPT - DONE (added "See 7.13.2.1 for additional requirements and recommendations on how this state decides to create 9/8 Reference 7.13.2 Opening an SSP connection, 7.xx.x Opening an STP connection to pick up the rules about not having more connections open than the number of pathways to the destination. (pending Tx Open message + the number of Tx Opens that are already being processed by PL_PMs) <= rules in 7.13.2, etc. only one pending Tx Open per destination at a time, but PL_OC can issue multiple ones back-to-back in zero time 08-216r1 change seems to preclude sending more than one OPEN simultaneously to the same destination (if phys are available), which needs to be allowed Author: wdc-mevans Subject: Highlight Date: 5/30/2008 3:46:28 PM -07'00' REJECT (item j) doesn't say that the Tx Frame is discarded.) machine sends

- g) after the Reject To Open Limit timer, if any, has expired, and if there is a pending Tx Open slot available, then the PL_OC state machine converts a Retry Open message to a pending Tx Open message with the pathway blocked count and arbitration wait time context from the Retry Open message applied to the pending Tx Open message;
- h) if the PL_OC state machine does not convert a Retry Open to a pending Tx Open frame, then the PL_OC discards the Retry Open message. The PL_OC state machine may create a new Tx Open message for the same pending Tx Frame at a later time. If the PL_OC state machine discards a Retry Open message, then the pathway blocked count and arbitration wait time centext from the Retry Open message are also discarded:
- after a PL_PM state machine establishes a connection with a destination SAS address, the PL_OC state machine sends pending Tx Frame messages for the destination to the PL_PM state machine as Tx Frame messages;
- j) if a PL_PM state machine is unable to send a Tx Frame message to the link layer as a Tx Frame request (e.g., due to a credit timeout), then the PL_PM state machine sends a Retry Frame message to the PL_OC state machine, and the PL_OC state machine converts the Retry Frame message into a pending Tx Frame message; and
- k) if the PL_PM state machine is able to send a Tx Frame message as a Tx Frame request to the link layer, then the PL_PM state machine sends a Transmission Status confirmation to the transport layer.

The Transmission Status confirmation from either the PL_OC state machine or a PL_PM state machine shall include the following as arguments:

- a) tac
- b) destination SAS address; and
- c) source SAS address.

8.2.2 PL_OC (port layer overall control) state machine

8.2.2.1 PL_OC state machine overview

A PL_OC state machine:-

- a) receives requests from the SSP, SMP, and STP transport layers;
- b) sends messages to the PL_PM state machine;
- c) receives messages from the PL_PM state machine;
- d) selects frames to transmit;
- e) selects phys on which to transmit frames;
- f) receives confirmations from the link layer;
- g) sends confirmations to the transport layer;
- sends confirmations to the transport ia
 h) has Arbitration Wait Time timers:
- i) has I T Nexus Loss timers; and
- j) may have Reject To Open Limit timers:

This state machine consists of the following states:

- a) PL OC1:Idle (see 8.2.2.2) (initial state); and
- b) PL OC2:Overal Control (see 8.2.2.3)

After power on this state machine shall start in the PL_OC1:Idle state.

The PL OC state machine shall maintain:

- a) a pool of pending Tx Frame messages for each destination SAS address; and
- b) as many pending Tx Open message slots as there are phys in the port.

Page: 421

Author: wdc-mevans

Subject: Highlight Date: 6/26/2008 12:34:50 PM -07'00'

TREJECT (that would change the meaning. "after" implies waiting for the timer to expire, then doing the comparison. Just saying "if the timer has expired" does not indicate what time to apply this test).

after the Reject To Open Limit timer, if any, has expired, and if there is a pending Tx Open slot available,

if there is a pending Tx Open slot available, and the Reject To Open Limit timer, if any, has expired,

Author: wdc-mevans

Subject: Highlight Date: 7/17/2008 3:30:53 PM -07'00'

TACCEPT - DONE (7/14 do it, do not add another line in the figure going upstream)

time.

s/b

time or send the appropriate Transmission Status confirmation (e.g., No Destination) to the transport layer.

Author: RElliott

Subject: Highlight Date: 8/30/2008 1:57:54 PM -07'00'

TACCEPT - DONE

A PL_OC state machine

s/b -

The PL_OC state machine

Author: RElliott

Subject: Highlight Date: 8/30/2008 12:28:49 PM -07'00'

ACCEPT - DONE

After power on

move to end of sentence

Author: RElliott

Subject: Highlight Date: 8/30/2008 1:58:16 PM -07'00'

ACCEPT - DONE

The PL_OC state machine

s/h

This state machine

Author: wdc-mevans

Subject: Highlight Date: 6/2/2008 7:31:41 AM -07'00'

REJECT (they are also based on Retry Frames from this layer... just keeping the wording generic now seems better)

address; and

s/b

address based on transmit frame requests from the transport layer; and $% \left(1\right) =\left(1\right) \left(1\right) \left($

The PL_OC state machine shall maintain the timere licted in table 159

Table 159 — PL_OC state machine timers

1		
Timer	Maximum number of timers	Initial value
I_T Nexus Loss timer	One per destination SAS address	Depending on the protocol used by the port: a) for SSP target ports, the value in the LT NEXUS LOSS TIME field in the Protocol-Specific Port mode page (see 10.2.7.4); b) for SSP initiator ports, the value in the LT NEXUS LOSS TIME field in the Protocol-Specific Port mode page for the SSP target port with that destination SAS address (see 10.2.7.4); c) for STP target ports, the value in the STP SMP LT NEXUS LOSS TIME field in the SMP CONFIGURE GENERAL function (see 10.4.3.18); d) for STP initiator ports, the value in the STP SMP LT NEXUS LOSS TIME field in the SMP REPORT GENERAL function (see 10.4.3.4) for the STP target port with that destination SAS address; or e) for SMP initiator ports, the value in the STP SMP LT NEXUS LOSS TIME field in the SMP REPORT GENERAL function (see 10.4.3.4).
Arbitration Wait Time timer	One per pending Tx Open message	0000h, a vendor-specific value less than 8000h (see 7.12.3), or the value received with a Retry Open message.
Reject To Open Limit timer	One per Retry Open message	Depending on the protocol used by the port: a) for SSP target ports, the value in the REJECT TO OPEN LIMIT field in the Protocol-Specific Port mode page (see 10.2.7.4); b) for SSP initiator ports, a vendor specific value; c) for STP target ports, the value in the STP REJECT TO OPEN LIMIT field in the SMP CONFIGURE GENERAL function (see 10.4.3.18); or d) for STP initiator ports, a vendor specific value.

Page: 422

Author: RElliott
Subject: Highlight
Date: 8/30/2008 1:58:21 PM -07'00'

The PL_OC state machine s/b
This state machine

Figure 207 shows the PL_OC state machine.

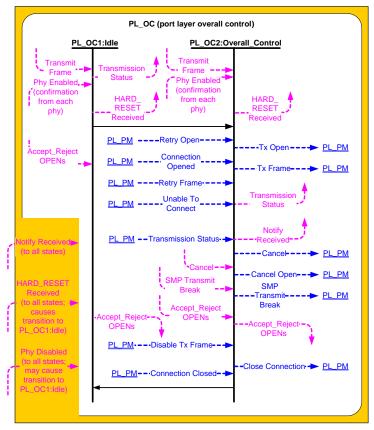


Figure 207 — PL_OC (port layer overall control) state machine

8.2.2.2 PL_OC1:Idle state

8.2.2.2.1 PL_OC1:Idle state description

This state is the initial state of the PL_OC state machine.

If this state receives a HARD_RESET Received confirmation, then this state shall send a HARD_RESET Received confirmation to the transport layer.

Working Draft Serial Attached SCSI - 2 (SAS-2)

This page contains no comments

If this state receives a Notify Received (Power Loss Expected) confirmation, then this state shall send a Notify Received (Power Loss Expected) confirmation to the transport layer.

If this state receives an Accept_Reject Opens request, then this state shall send an Accept_Reject Opens request to all link layers in the port.

If this state receives a Transmit Frame request, then this state shall send a Transmission Status (No Phys In Port) confirmation to the transport layer.

Man I T Nexus Loss timer expires for a destination SAS address, this state shall perform the following:

- delete the I_T Nexus Loss timer for the SAS address;
- b) send a Transmission Status (I_T Nexus Loss) confirmation for each pending Tx Frame message for the SAS address; and
- c) discard each pending Tx Frame message for the SAS address and any corresponding pending Tx Open messages

If the port is an STP target policy an STP initiator port, the port shall handle all pending commands as described in 4.5.

8.2.2.2 Transition PL OC1:Idle to PL OC2:Overall Control

This transition shall occur after a Phy Enabled confirmation is received for at least one phy assigned to the port.

8.2.2.3 PL OC2:Overall Control state

8.2.2.3.1 PL OC2:Overall Control state overview

This state may receive Transmit Frame requests from the transport layers (e., SSP and SMP) and Retry frame messages from PL_PM state machines. This state shall create a pending Tx Frame message for each received Transmit Frame request and Retry Frame message. There may be more san one pending Tx Frame message at a time for each SSP transport layer. There shall be only one pending Tx Frame message at a time for each SMP transport layer.

This state selects PL_PM state machines through which connections are established. This state shall only attempt to establish connections through PL_PM state machines whose phys are enabled. In a vendor-specific manner, this state selects PL PM state machines on which connections are established transmit frames. This state shall receive a response to a message from a PL_PM state machine before sending another message to that PL_PM state machine.

This state also:

- a) receives connection management requests from the transport layers;
- b) sends connection management messages to PL PM state machines:
- c) receives connection management messages from PL PM state machines; and
- d) sends connection management confirmations to the transport lavers.

After receiving a Transmit Frame request for a destination SAS address for which there is no connection established and for which no I_T Nexus Loss timer has been created, this state shall create an I_T Nexus Loss timer for that SAS address if:

- a) the protocol is SSP, the port is an SSP target port, the Protocol-Specific Port mode page is implemented, and the I T NEXUS LOSS TIME field in the Protocol-Specific Port mode page (see 10.2.7.4) is not set to 0000h:
- b) the protocol is STP, the port is an STP target port, and the STP SMP I_T NEXUS LOSS TIME field in the SMP CONFIGURE GENERAL function is not set to 0000h; or
- c) the protocol is SMP, the port is an SMP initiator port, and the STP SMP I_T NEXUS LOSS TIME field in the SMP CONFIGURE GENERAL function is not set to 0000h.

This state may create an I_T Nexus Loss timer for that SAS address if:

- a) the protocol is SSP and the port is an SSP initiator port; or;
- b) the protocol is STP and the port is an STP initiator port.

Page: 424

Author: RElliott

Author: RElliott Subject: Highlight Date: 8/30/2008 12:09:01 PM -07'00' ACCEPT - DONE Accept_Reject Opens Accept_Reject OPENs

Subject: Highlight Date: 8/30/2008 12:09:06 PM -07'00' ACCEPT - DONE Accept_Reject Opens

Accept_Reject OPENs

Author: RElliott Subject: Highlight
Date: 9/24/2008 6:29:53 AM -07'00' after request with the same arguments

Author: RElliott Subject: Underline Date: 9/24/2008 7:04:15 AM -07'00' change from 08-343r0 converts this into Transmission Complete (Connection Failed) in ST_TFR.)

7/14 George Penokie volunteered to work on this issue)

Transmission Status (No Phys In Port) confirmation

This is not mentioned anywhere else. The fact that Transmission Status is returned might be sufficient, but it should be investigated whether the transport layer is supposed to do something special with that (e.g., treat as an I_T nexus loss).

It needs to be mentioned in both SSP and SMP transport layers

Author: RElliott Subject: Note Date: 9/24/2008 7:07:58 AM -07'00' fixed by a comment in 08-343:

The following confirmations from the port layer are missing from this table: -Transmission Status (No Phys in Port)

-Transmission Status (Open Timeout Received) and

-Transmission Status (No Destination)

They convert into Transmission Complete (Connection Failed)

6/18 should allow an I_T nexus loss time before giving up on the port, probably for both cases)

(from Bill Martin, Emulex)

Comments from page 424 continued on next page

If this state receives a Notify Received (Power Loss Expected) confirmation, then this state shall send a Notify Received (Power Loss Expected) confirmation to the transport layer.

If this state receives an Accept_Reject Opens request, then this state shall send an Accept_Reject Opens request to all link layers in the port.

If this state receives a Transmit Frame request, then this state shall send a Transmission Status (No Phys In Port) confirmation to the transport layer.

If an I T Nexus Loss timer expires for a destination SAS address, this state shall perform the following:

- a) delete the I T Nexus Loss timer for the SAS address;
- b) send a Transmission Status (I_T Nexus Loss) confirmation for each pending Tx Frame message for the SAS address: and
- c) discard each pending Tx Frame message for the SAS address and any corresponding pending Tx

If the port is an STP target port or an STP initiator port, the port shall nandle all pending commands as described in 4.5.

8.2.2.2.2 Transition PL OC1:Idle to PL OC2:Overall Control

This transition shall occur after a Phy Enabled confirmation is received for at least one phy assigned to the port.

8.2.2.3 PL OC2:Overall Control state

8.2.2.3.1 PL OC2:Overall Control state overview

This state may receive Transmit Frame requests from the transport layers (i.e., SSP and SMP) and Retry frame messages from PL PM state machines. This state shall create a pending Tx Frame message for each received Transmit Frame request and Retry Frame message. There may be more than one pending Tx Frame message at a time for each SSP transport layer. There shall be only one pending Tx Frame message at a time for each SMP transport layer.

This state selects PL_PM state machines through which connections are established. This state shall only attempt to establish connections through PL_PM state machines whose phys are enabled. In a vendor-specific manner, this state selects PL PM state machines on which connections are established to transmit frames. This state shall receive a response to a message from a PL_PM state machine before sending another message to that PL_PM state machine.

This state also:

424

- a) receives connection management requests from the transport layers;
- b) sends connection management messages to PL PM state machines:
- c) receives connection management messages from PL PM state machines; and
- d) sends connection management confirmations to the transport lavers.

After receiving a Transmit Frame request for a destination SAS address for which there is no connection established and for which no I_T Nexus Loss timer has been created, this state shall create an I_T Nexus Loss timer for that SAS address if:

- a) the protocol is SSP, the port is an SSP target port, the Protocol-Specific Port mode page is implemented, and the I T NEXUS LOSS TIME field in the Protocol-Specific Port mode page (see 10.2.7.4) is not set to 0000h.
- b) the protocol is STP, the port is an STP target port, and the STP SMP I_T NEXUS LOSS TIME field in the SMP CONFIGURE GENERAL function is not set to 0000h; or
- c) the protocol is SMP, the port is an SMP initiator port, and the STP SMP I_T NEXUS LOSS TIME field in the SMP CONFIGURE GENERAL function is not set to 0000h.

This state may create an I_T Nexus Loss timer for that SAS address if:

- a) the protocol is SSP and the port is an SSP initiator port; or;
- b) the protocol is STP and the port is an STP initiator port.

Working Draft Serial Attached SCSI - 2 (SAS-2)

In 8.2.2.2.1, the port layer state machine may return Transmission Status (No Phys In Port). In two of the three Link layer states that this could be received in, there is a general statement that covers this, however, in 9.2.6.3.3.3.1 first paragraph on page 489 there is a pointer to table 187 which does not deal with the Transmission Status (No Phys In Port). This Transmission Status is also not covered in table 188

There are two issues that should be addressed:

a) 9.2.6.3.3.3.1, first paragraph on page 489 should add an additional reference to table 188

b) Table 188 should have a reference to Transmission Status (No Phys In Port)

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE

This << SAS address, this state shall >> should be << SAS address, then this state shall >>

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE

This << initiator port, the port shall >> should be << initiator port, then the port shall >>

Author: stx-ghoulder Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

REJECT (No, for STP the port layer just attaches the STP transport layer to the STP link layer and gets out of the way. Both of those layers are defined by SATA, not SAS. They may or may not have a message called Transmit Frame)

Can't STP transport layer also generate Transmit Frame requests?

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

TREJECT (I think it used to be worded that way, but that leaves what is "vendor-specific" unclear. The selection is supposed to be vendor specific, not transmitting frames.)

This << In a vendor-specific manner, this state selects PL_PM state machines on which connections are established to transmit frames. >> should be << This state selects PL PM state machines on which connections are established to transmit frames in a vendor-specific manner. >>

When this state creates an I T Nexus Loss timer it shall:

- 1) initialize the I_T Nexus Loss timer as specified in table 159 (see 8.2.2.1); and
- 2) not start the I_T Nexus Loss timer.

If this state machine is in an SSP initiator port, then this state may create an 1_T Nexus Loss timer for the SAS address. If a state machine in an SSP initiator port and creates an 1_T Nexus Loss timer, then the state machine should use the value in the 1_T NEXUS LOSS TIME field in the Protocol-Specific Port mode page for the SSP target port (see 10.2.7.4) as the initial value for its 1_T Nexus Loss timer.

If there are no pending Tx Frame messages for a destination SAS address and an I_T Nexus Loss timer has been created for that destination SAS address, then this state shall delete the I_T Nexus Loss timer for that destination SAS address

If this state receives a HARD_RESET Received confirmation, then this state shall discard all pending Tx.

Frame messages and delete all I_T Nexus Loss timers and send a HARD_RESET Received confirmation to the transport layer.

If this state receives a Notify Received (Power Loss Expected) confirmation, then this state shall:

- a) discard all pending Tx Frame messages, if any;
- b) delete all I_T Nexus Loss timers, if any;
- c) send a Close Connection message to all the PL_PM state machines;
- d) send a Cancel Open message to all the PL PM state machines; and
- e) send a Notify Received (Power Loss Expected) confirmation to the transport layer.

8.2.2.3.2 PL_OC2:Overall_Control state establishing connections

This state receives Phy Enabled confirmations indicating when a phy is available.

This state receives Retry Open messages from a PL PM state machine.

This state creates pending Tx Open messages based on pending Tx Frame messages and Retry Open messages. Pending Tx Open messages are sent to a PL_PM state machine as Tx Open messages.

If this state receives a Retry Open (Retry) message, then this state shall process the Retry Open message.

If this state receives a Retry Open (No Destination) sta Retry Open (Open Timeout Occurred) message and an I_T Nexus Loss timer has not been created for the destination SAS address (e.g., an SSP target port does not support the I_T NEXUS LOSS TIME field in the Protocol-Specific Port made page or the field is set to 0000h), then this state shall process the Retry Open message as either a Retry Open message or an Unable To Connect message. This selection is vendor-specific.

If this state receives a Retry Open (Pathway Blocked) message and an I_T Nexus Loss timer has not been created for the destination SAS address, then this state shall process the Retry Open message.

If this state receives a Retry Open (No Destination), Retry Open (Open Timeout Occurred), s. Retry Open (Pathway Blocked) message, and an L.T Nexus Loss timer has been created for the destination SAS address with an initial value of FFFFh, then this state shall process the Retry Open message (i.e., the Retry Open message is never processed as an Unable to Connect message).

If this state receives a Retry Open (No Destination) or a Retry Open (Open Timeout Occurred) message, an LT Nexus Loss timer has been created for the destination SAS address, and there is no connection established with the destination SAS address, then this state shall check the IT Nexus Loss timer, and:

- a) if the I_T Nexus Loss timer is not running, the I_T nexus loss time is not set to FFFFh, and the CONFIGURING bit is set to zero in the REPORT GENERAL response (see 10.4.3.4) for each expander device between this port and the destination port that is two or more levels away from this port, then this state shall start the timer;
- b) if the I_T Nexus Loss timer is not running and the I_T nexus loss time is not set to FFFFh, then this state shall start the timer:
- c) if the I_T Nexus Loss timer is running, then this state shall not stop the timer; and
- d) if the I_T Nexus Loss timer has expired, then this state shall process the Retry Open message as if it were an Unable To Connect message (see 8.2.2.3.4).

Page: 425

Author: wdc-mevans Subject: Cross-Out Date: 5/25/2008 5:10:38 PM -07'00' TACCEPT - DONE and

s/b

[Delete the extraneous word.]

Author: wdc-mevans Subject: Highlight Date: 6/26/2008 12:40:43 PM -07'00'

TACCEPT - DONE (using "all" rather than "any" in a)b)c) and not using "that are present in the state machine")

shall discard all pending Tx Frame messages and delete all I_T Nexus Loss timers and send a HARD_RESET Received confirmation to the transport layer.

S/D chall

a) discard any pending Tx Frame messages;

- b) discard any pending Tx Open messages;
- c) delete any timers that are present in the state machine (i.e., I_T Nexus Loss timers, Arbitration Wait Time timers, and Reject To Open Limit timers); and
- d) send a HARD_RESET Received confirmation to the transport layer.

Author: wdc-mevans Subject: Highlight

Subject: Highlight Date: 6/26/2008 12:40:50 PM -07'00'

CACCEPT - DONE (with "all" instead of "any" in a)b)c) and "each" instead of "all" in d)e), and not using "that are present in the state machine")

- a) discard all pending Tx Frame messages, if any;
- b) delete all I T Nexus Loss timers, if any;
- c) send a Close Connection message to all the PL PM state machines;
- d) send a Cancel Open message to all the PL_PM state machines; and
- e) send a Notify Received (Power Loss Expected) confirmation to the transport layer.

shall:

- a) discard any pending Tx Frame messages;
- b) discard any pending Tx Prame messages
 b) discard any pending Tx Open messages;
- c) delete any timers that are present in the state machine (i.e., I_T Nexus Loss timers, Arbitration Wait Time timers, and Reject To
- Open Limit timers);
- d) send a Close Connection message to all of the PL PM state machines;
- e) send a Cancel Open message to all of the PL_PM state machines; and
- f) send a Notify Received (Power Loss Expected) confirmation to the transport layer.

Author: RElliott

Subject: Highlight
Date: 8/30/2008 9:22:01 AM -07'00'
TACCEPT - DONE

TACCEPT - DONE
Retry Open (No Destination)

add message

per 08-343

Author: RElliott Subject: Highlight Date: 8/30/2008 9:22:18 AM -07'00'

Comments from page 425 continued on next page

When this state creates an I T Nexus Loss timer it shall:

- 1) initialize the LT Nexus Loss timer as specified in table 159 (see 8.2.2.1); and
- 2) not start the I T Nexus Loss timer.

If this state machine is in an SSP initiator port, then this state may create an I_T Nexus Loss timer for the SAS address. If a state machine in an SSP initiator port and creates an I_T Nexus Loss timer, then the state machine should use the value in the I_T NEXUS LOSS TIME field in the Protocol-Specific Port mode page for the SSP target port (see 10.2.7.4) as the initial value for its I_T Nexus Loss timer.

If there are no pending Tx Frame messages for a destination SAS address and an I_T Nexus Loss timer has been created for that destination SAS address, then this state shall delete the I_T Nexus Loss timer for that destination SAS address

If this state receives a HARD_RESET Received confirmation, then this state shall discard all pending Tx.

Frame messages and delete all I_T Nexus Loss timers and send a HARD_RESET Received confirmation to the transport layer.

If this state receives a Notify Received (Power Loss Expected) confirmation, then this state shall:

- a) discard all pending Tx Frame messages, if any;
- b) delete all I_T Nexus Loss timers, if any;
- c) send a Close Connection message to all the PL_PM state machines;
- d) send a Cancel Open message to all the PL PM state machines; and
- e) send a Notify Received (Power Loss Expected) confirmation to the transport layer.

8.2.2.3.2 PL_OC2:Overall_Control state establishing connections

This state receives Phy Enabled confirmations indicating when a phy is available.

This state receives Retry Open messages from a PL PM state machine.

This state creates pending Tx Open messages based on pending Tx Frame messages and Retry Open messages. Pending Tx Open messages are sent to a PL_PM state machine as /ix Open messages.

If this state receives a Retry Open (Retry) message, then this state shall process the Retry Open message.

If this state receives a Retry Open (No Destination) or a Retry Open (Open Timeout Occurred) message and an I_T Nexus Loss timer has not been created for the destination SAS andress (e.g., an SSP target port does not support the I_T NEXUS LOSS TIME field in the Protocol Specific Port prode page or the field is set to 0000h), then this state shall process the Retry Open message as either a Retry Open message or an Unable To Connect message. This selection is vendor-specific.

If this state receives a Retry Open (Pathway Mocked) message and an I_T Nexus Loss timer has not been created for the destination SAS address, then this state shall process the Retry Open message.

If this state receives a Retry Open (No Destination), Retry Open (Open Timeout Occurred), or Retry Open (Pathway Blocked) message, and an LT Nexus Loss time/ has been created for the destination SAS address with an initial value of FFFFh, then this state shall process the Retry Open message (i.e., the Retry Open message is never processed as an Unable to Connec/message).

If this state receives a very Open (No Destination) or a Retry Open (Open Timeout Occurred) message, an I_T Nexus Loss timer has been created for the destination SAS address, and there is no connection established with ne destination SAS address, then this state shall check the I_T Nexus Loss timer, and:

- a) if the _T Nexus Loss timer is not running, the I_T nexus loss time is not set to FFFFh, and the ONFIGURING bit is set to zero in the REPORT GENERAL response (see 10.4.3.4) for each expander device between this port and the destination port that is two or more levels away from this port, then this state shall start the timer;
- b) if the I_T Nexus Loss timer is not running and the I_T nexus loss time is not set to FFFFh, then this state shall start the timer:
- c) if the I T Nexus Loss timer is running, then this state shall not stop the timer; and
- d) if the I_T Nexus Loss timer has expired, then this state shall process the Retry Open message as if it were an Unable To Connect message (see 8.2.2.3.4).

Working Draft Serial Attached SCSI - 2 (SAS-2)

t

425

Retry Open (No Destination), Retry Open (Open Timeout Occurred), add message per 08-343

Author: RElliott
Subject: Highlight
Date: 8/30/2008 9:22:26 AM -07'00'

Retry Open (No Destination) add message

per 08-343

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

hhA

NOTE: The port layer may require assistance from the management application layer to determine the values of the CONFIGURING Dist; this interaction is not specified by this standard. Consequently, the I_T Nexus Loss timer may not start immediately after this state receives a Retry Open (No Destination) or a Retry Open (Open Timeout Occurred) message.

Noticed when splitting the CONFIGURING bit into SELF CONFIGURING and ZONE CONFIGURING per Isi-bbesmer comment on first page

If this state receives a Retry Open (Pathway Blocked) message, an I. T. Nexus Loss timer has been created for the destination SAS address, and there is no connection established with the destination SAS address, then this state shall check the I T Nexus Loss timer, and:

- a) if the I_T Nexus Loss timer is running, then this state shall not stop the timer; and
- b) if the I_T Nexus Loss timer has expired, then this state shall process the Retry Open message as if it were an Unable To Connect message (see 8.2.2.3.4).

If this state receives a Retry Open (Retry) and an I_T Nexus Loss timer is running for the destination SAS address, then this state shall:

- a) stop the I T Nexus Loss timer (if the timer has been running); and
- b) initialize the I T Nexus Loss timer.

This state shall create a pending Tx Open message if:

- a) this state has a pending Tx Frame message or has received a Retry Open message;
- b) this state has fewer pending Tx Open messages than the number of PL PM state machines (i.e., the number of phys in the port);
- c) there is no pending Tx Open message for the destination SAS address; and
- d) there is no connection established with the destination SAS address.

This state may create a pending Tx Open message if:

- a) this state has a pending Tx Frame message, or this state has received a Retry Open message and has not processed the message by sending a confirmation; and
- b) this state has fewer pending Tx Open messages than the number of PL PM state machines

This state shall have no more pending Tx Open messages than the number of PL PM state pachines.

If this state receives a Retry Open message and there are pending Tx Frame messages for which pending Tx Open messages have not been created, then this state should create a pending Tx Open message from the Retry Open message

If this state does not create a pending Tx Open message from a Retry open message (e.g., the current number of pending Tx Open messages equals the number of physi, then this state shall discard the Ret/y Open message. This state may create a new pending Tx Open message at a later time for the pending Tx Frame message that resulted in the Retry Open message:

If this state receives a Retry Open (Opened By Destination) message and the initiator port bit and protocol arguments match those in the Tx Open messages that resulted in the Berry Open message, then this state may discard the Retry Open message and use the established correction to send pending Tx Frame messages as Tx Frame messages to the destination SAS address. If this state receives a Retry pen (Opened By Destination) message, then, if this state has a pending Tx Open slot available, this state may create a pending Tx Open message from the Retry Open message.

NOTE 82 - If a cornection is established by another port as indicated by a Retry Open (Opened By Destination) message, credit may not be granted for frame transmission. In this case this state may create a pending Tx Open message from Retry Open message in order to establish a connection where credit is granted.

This state shall send a pending Tx Open message as a Tx Open message to a PL PM state machine that has an enabled phy any does not have a connection established. If there is more than one pending Tx Open message, this state should send a Tx Open message for the pending Tx Open message that has been pending for the longest time first.

If this state creates a pending Tx Open message from one of the following messages:

- a) Retry Open (Opened By Destination);
- b) Retry Open (Opened By Other);
- c) Retry Open (Collided);
- d) Retry Open (Pathway Blocked); or
- e) if the CONTINUE AWT bit is set to one in the Protocol-specific Port mode page (see 10.2.7.4), Retry Open (Retry),

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 426 Author: stx-ghoulder

Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE

Retry Open (Retry) Add "message" after this phrase.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

message, then, if this state has a pending Tx Open slot available, this

messand and this state has a pending Tx Open slot available, then

Author: Isi-gpenokie

Subject: Highlight Date: 6/26/2008 12:42:50 PM -07'00'

TREJECT (this note is essentially an example explaining when the state might choose to do what is discussed in the sentence

This note << NOTE 82 - If a co >> should be normative text.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE this s/h then this

Author: RElliott Subject: Highlight Date: 11/5/2008 9:44:49 PM ACCEPT - DONE

if the CONTINUE AWT bit is set to one in the Protocol-specific Port mode page (see 10.2.7.4), Retry Open (Retry),

Retry Open (Retry) if the CONTINUE AWT bit is set to one in the Protocol-specific Port mode page (see 10.2.7.4)

28 January 2008

T10/1760-D Revision 14

then this state shall:

- 1) create an Arbitration Wait Time timer for the pending Tx Open message:
- 2) set the Arbitration Wait Time timer for the pending Tx Open message to the arbitration wait time argument from the Retry Open message; and
- 3) start the Arbitration Wait Time timer for the pending Tx Open message.

When a pending Tx Open message is sent to a PL PM state machine as a Tx Open message, the Tx Open message shall contain the following arguments to be used in an OPEN address frame:

- a) initiator port bit from the Transmit Frame request
- b) protocol from the Transmit Frame request,
- connection rate from the Transmit Frame request;
- initiator connection tag from the Transmit Frame request;
- e) destination SAS address from the Transmit Frame request;
- f) source SAS address from the Transmit Frame request;
- g) pathway blocked count; and
- arbitration wait time.

If this state creates a pending Tx Open message from one of the following:

- a) a Transmit Frame request:
- b) a Retry Open (No Destination) message;
- c) a Retry Open (Open Timeout Occurred) message; or
- d) if the CONTINUE AWT bit is set to zero in the Protocol-specific Port mode page (see 10.2.7.4), a Retry Open (Retry) message.

then this state shall:

- a) set the pathway blocked count argument in the Tx Open message to zero; and
- set the arbitration wait time argument in the Tx Open message to zero or a vendor-specific value less than 8000h (see 7 12 3)

If a pending Tx Open message was created as the result of this state receiving a Retry Open (Retry) message and:

- a) the protocol for the connection is SSP, the Protocol-Specific Port mode page is implemented, and the REJECT TO OPEN LIMIT field in the Protocol-Specific Port mode page (see 10.2.7.4) is not set to zero; or
- b) the protocol for the connection is STP and the STP REJECT TO OPEN LIMIT field is not set to zero in the SMP REPORT GENERAL response (see 10.4.3.4),

then this state shall:

- 1) create a Reject To Open Limit timer associated with the pending Tx Open message that received the Retry Open (Retry) message:
- 2) initialize the Reject To Open Limit timer as specified in table 159 (see 8.2.2.1);
- start the Reject To Open Limit timer; and
- wait at least until the Reject To Open Limit timer expires before sending a Tx Open message

If a pending Tx Open message was created as the result this state receiving a Retry Open (Pathway Blocked) message, then this state shall set the pathway blocked count argument in the Tx Open message to the value of the pathway blocked count argument received with the message plus one, unless the pathway blocked count received with the argument is FFh.

If a pending Tx Open message was created as the result of this state receiving one of the following:

- a) a Retry Open (Opened By Destination) message;
- b) a Retry Open (Opened By Other) message;
- c) a Retry Open (Collided) message;
- d) a Retry Open (Pathway Blocked) message; or
- e) if the CONTINUE AWT bit is set to one in the Protocol-specific Port mode page (see 10.2.7.4), a Retry Open (Retry) message,

Page: 427

Author: stx-ghoulder

Subject: Highlight Date: 6/2/2008 1:06:09 PM -07'00'

ACCEPT - DONE (All uses are correct as is. Adding 3 definitions to 3.1.xxx:

3.1.xx initiator connection tag: A value in the OPEN address frame used for SSP and STP connection requests to provide a SAS initiator port an alternative to using the SAS target port's SAS address for context lookup when the SAS target port originates a connection request. See 7.8.3.

3.1.xx initiator port transfer tag: A value that allows an SSP initiator port to establish a context for commands and task management functions. See 9.2.1.

3.1.xx target port transfer tag: An optional value that allows an SSP target port to establish the write data context when receiving a write DATA frame. See 9.2.1

initiator connection tag

This term should be defined in Definitions clause. Should this term be used in place of "tag" in some or all of the other places where the meaning of tag is ambiguous?

Author: RElliott Subject: Highlight Date: 11/5/2008 9:45:46 PM ACCEPT - DONE

if the CONTINUE AWT bit is set to zero in the Protocol-specific Port mode page (see 10.2.7.4), a Retry Open (Retry) message,

a Retry Open (Retry) message if the CONTINUE AWT bit is set to zero in the Protocol-specific Port mode page (see 10.2.7.4)

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 5:12:48 PM -07'00' TACCEPT - DONE

> This << page (see 10.2.7.4), a Retry >> should be << page (see 10.2.7.4), then a Retry >> so as not to confuse this with the then on the next line.

Author: Isi-bday Subject: Highlight Date: 8/27/2008 4:50:08 PM -07'00'

TACCEPT - DONE (7/14 Brian's proposal 08-216r0 fixes this.

put into pending Tx Open pool. WG discussion that it should be associated with the pool of Tx Frames for each destination SAS address instead. Brian will update proposal along those lines.)

This whole section adds the Reject To Open Limit timer after the Retry Open has been converted to a pending Tx Open. Since you can't have more Tx Opens than PL PM state machines, this means you can't do new connections to other devices while this pending Tx Open is timing out. Change to be suggested in seperate proposal.

Author: Isi-gpenokie Subject: Highlight Date: 6/26/2008 12:47:57 PM -07'00' TACCEPT - DONE (reworded as:

"If a pending Tx Open message was created as the result this state receiving a Retry Open (Pathway Blocked) message, then: a) if the Retry Open message pathway blocked count argument is FFh, then this state shall set the Tx Open pathway blocked count

b) if the Retry Open pathway blocked count argument is less than FFh, then this state shall set the Tx Open pathway blocked count argument to the Retry Open pathway blocked count argument plus 01h.

then this state shall:

1) create an Arbitration Wait Time timer for the pending Tx Open message;

- 2) set the Arbitration Wait Time timer for the pending Tx Open message to the arbitration wait time argument from the Retry Open message; and
- 3) start the Arbitration Wait Time timer for the pending Tx Open message.

When a pending Tx Open message is sent to a PL_PM state machine as a Tx Open message, the Tx Open message shall contain the following arguments to be used in an OPEN address frame:

- a) initiator port bit from the Transmit Frame request;
- b) protocol from the Transmit Frame request;
- c) connection rate from the Transmit Frame request;
- d) initiator connection tag from the Transmit Frame request;
- e) destination SAS address from the Transmit Frame request;
- f) source SAS address from the Transmit Frame request;
- g) pathway blocked count; and
- h) arbitration wait time.

If this state creates a pending Tx Open message from one of the following:

- a) a Transmit Frame request;
- b) a Retry Open (No Destination) message;
- c) a Retry Open (Open Timeout Occurred) message; or
- d) if the CONTINUE AWT bit is set to zero in the Protocol-specific Port mode page (see 10.2.7.4), a Retry Open (Retry) message,

then this state shall:

- a) set the pathway blocked count argument in the Tx Open message to zero; and
- set the arbitration wait time argument in the Tx Open message to zero or a vendor-specific value less than 8000h (see 7.12.3).

If a pending Tx Open message was created as the result of this state receiving a Retry Open (Retry) message and:

- a) the protocol for the connection is SSP, the Protocol-Specific Port mode page is implemented, and the REJECT TO OPEN LIMIT field in the Protocol-Specific Port mode page (see 10.2.7.4) is not set to zero; or
- b) the protocol for the connection is STP and the STP REJECT TO OPEN LIMIT field is not set to zero in the SMP REPORT GENERAL response (see 10.4.3.4).

then this state shall:

- create a Reject To Open Limit timer associated with the pending Tx Open message that received the Retry Open (Retry) message;
- 2) initialize the Reject To Open Limit timer as specified in table 159 (see 8.2.2.1);
- 3) start the Reject To Open Limit timer; and
- wait at least until the Reject To Open Limit timer expires before sending a Tx Open message.

If a pending Tx Open message was created as the result this state receiving a Retry Open (Pathway Blocked) message, then this state shall set the pathway blocked count argument in the Tx Open message to the value of the pathway blocked count argument received with the message plus one, unless the pathway blocked count received with the argument is FFh.

If a pending Tx Open message was created as the result of this state receiving one of the following:

- a) a Retry Open (Opened By Destination) message;
- b) a Retry Open (Opened By Other) message;
- c) a Retry Open (Collided) message;
- d) a Retry Open (Pathway Blocked) message; or
- e) if the CONTINUE AWT bit is set to one in the Protocol-specific Port mode page (see 10.2.7.4), a Retry Open (Retry) message,

Working Draft Serial Attached SCSI - 2 (SAS-2)

427

This << count received with the argument is FFh. >> should be << count received with the argument is FFh in which case the pathway blocked count shall not be changed. >>

Author: RElliott Subject: Highlight Date: 11/5/2008 10:30:24 PM

if the CONTINUE AWT bit is set to one in the Protocol-specific Port mode page (see 10.2.7.4), a Retry Open (Retry) message, s/h

a Retry Open (Retry) message if the CONTINUE AWT bit is set to one in the Protocol-specific Port mode page (see 10.2.7.4)

Author: Isi-gpenokie Subject: Highlight Date: 5/25/2008 5:13:28 PM -07'00'

This << page (see 10.2.7.4), a Retry Open (Retry) message >> should be << page (see 10.2.7.4), then a Retry Open (Retry) message >> so as not to confuse this with the then on the next line.

then this state shall set the arbitration wait time argument in the Tx Open message to be the value from the Arbitration Wait Time timer created as a result of the Retry Open message.

After this state sends a Tx Open message, this state shell discard the pending Tx Open message from which the Tx Open messages was created. After this state discards a pending Tx Open message, this state may create a new pending Tx Open message.

If this state receives a Connection Opened message and the initiator port bit and protocol arguments match those in a pending Tx Open message, then any Reject To Open Limit timer associated with that pending Tx Open message shall be discarded.

If this state receives a Connection Opened message and the initiator port bit and protocol arguments match those in any pending Tx Frame messages, then this state may use the established connection to send pending Tx Frame messages as Tx Frame messages to the destination SAS address.

8.2.2.3.3 PL_OC2:Overall_Control state connection established

If this state receives a Connection Opened message or a Retry Open (Opened By Destination) message for a SAS address, and an I_T Nexus Loss timer has been created for the SAS address, then this state shall:

- a) stop the I T Nexus Loss timer for the SAS address, if the timer has been running; and
- b) initialize the I T Nexus Loss timer.

8.2.2.3.4 PL OC2:Overall Control state unable to establish a connection

If this state receives a Retry Open (No Destination), Retry Open (Open Timeout Occurred), et Retry Open (Pathway Blocked) message and the I_T Nexus Loss timer for the SAS address has expired, then this state shall perform the following:

- a) delete the I_T Nexus Loss timer for the SAS address;
- b) discard the Retry Open message;
- c) send a Transmission Status (I_T Nexus Loss) confirmation for the pending Tx Frame message from which the Retry Open message resulted;
- d) discard the pending Tx Frame message from which the Retry Open message resulted;
- e) if this state has any pending Tx Frame messages with the same destination SAS address and protocol as the Retry Open message, and this state has not sent a Tx Open message to a PL_PM state machine for the messages, then this state shall send a Transmission Status (I_T Nexus Loss) confirmation for each pending Tx Frame message and discard the pending Tx Frame messages and any corresponding pending Tx Open messages; and
- fthis state has any pending Tx Frame messages with the same destination SAS address and protocol as the Retry Open message, and this state has sent a Tx Open message to a PL_PM state machine for a message, then this state shall send a Cancel Open message to each PL_PM state machine to which it has sent a Tx Open message. After receiving an Unable To Connect (Cancel Acknowledge) message from a PL_PM state machine in response to the Cancel Open message, then this state shall send a Transmission Status (I_T Nexus Loss) confirmation for each pending Tx Frame message and discard the pending Tx Frame messages and any corresponding pending Tx Open messages

If this state receives a Retry Open (No Destination), Retry Open (Open Timeout Occurred), or Retry Open (Pathway Blocked) message and processes it as an Unable To Connect message, or this state receives an

Page: 428

 Author: wdc-mevans Subject: Highlight Date: 5/6/2/008 1:07:49 PM -07'00'
 ACCEPT - DONE
 messages

s/b message

Author: hpq-relliott Subject: Note

Date: 9/18/2008 1:21:04 PM -07'00'

ACCEPT - DONE (placed in .1 after the first mention of creating a pending Tx Open.

9/8 Add: This state shall discard a pending Tx Open message if there are no pending Tx Frame messages for that destination.

)

After receiving a Connection Opened message, if credit is granted during the connection, the state may delete a pending Tx Open if it no longer needs to open its own connection. No need for unnecessary connection requests later on.

Author: Isi-gpenokie Subject: Highlight Date: 6/26/2008 12:49:27 PM -07'00'

TACCEPT - DONE (as "if the I_T Nexus Loss timer for the SAS address has been running, then stop the timer")

This << stop the I_T Nexus Loss timer for the SAS address, if the timer has been running >> should be << if the I_T Nexus Loss timer has been running, then stop the I_T Nexus Loss timer for the SAS address, >>

Author: RElliott
Subject: Highlight
Date: 8/30/2008 9:30:26 AM -07'00'

Retry Open (No Destination), Retry Open (Open Timeout Occurred),

add message

per 08-343

Author: RElliott Subject: Cross-Out Date: 11/5/2008 9:48:37 PM

Delete then

since it's in an After phrase, not an If phrase

Author: RElliott Subject: Highlight Date: 8/30/2008 9:30:46 AM -07'00'

Retry Open (No Destination), Retry Open (Open Timeout Occurred), or

add message

Comments from page 428 continued on next page

then this state shall set the arbitration wait time argument in the Tx Open message to be the value from the Arbitration Wait Time timer created as a result of the Retry Open message.

After this state sends a Tx Open message, this state shall discard the pending Tx Open message from which the Tx Open messages was created. After this state discards a pending Tx Open message, this state may create a new pending Tx Open message.

If this state receives a Connection Opened message and the initiator port bit and protocol arguments match those in a pending Tx Open message, then any Reject To Open Limit timer associated with that pending Tx Open message shall be discarded.

If this state receives a Connection Opened message and the initiator port bit and protocol arguments match those in any pending Tx Frame messages, then this state may use the established connection to send pending Tx Frame messages as Tx Frame messages to the destination SAS address.

428

8.2.2.3.3 PL_OC2:Overall_Control state connection established

If this state receives a Connection Opened message or a Retry Open (Opened By Destination) message for a SAS address, and an I_T Nexus Loss timer has been created for the SAS address, then this state shall:

- a) stop the I_T Nexus Loss timer for the SAS address, if the timer has been running; and
- b) initialize the I T Nexus Loss timer.

8.2.2.3.4 PL OC2:Overall Control state unable to establish a connection

If this state receives a Retry Open (No Destination), Retry Open (Open Timeout Occurred), or Retry Open (Pathway Blocked) message and the I_T Nexus Loss timer for the SAS address has expired, then this state shall perform the following:

- a) delete the I_T Nexus Loss timer for the SAS address;
- b) discard the Retry Open message;
- c) send a Transmission Status (I_T Nexus Loss) confirmation for the pending Tx Frame message from which the Retry Open message resulted;
- d) discard the pending Tx Frame message from which the Retry Open message resulted;
- e) if this state has any pending Tx Frame messages with the same destination SAS address and protocol as the Retry Open message, and this state has not sent a Tx Open message to a PL_PM state machine for the messages, then this state shall send a Transmission Status (I_T Nexus Loss) confirmation for each pending Tx Frame message and discard the pending Tx Frame messages and any corresponding pending Tx Open messages; and
- f) if this state has any pending Tx Frame messages with the same destination SAS address and protocol as the Retry Open message, and this state has sent a Tx Open message to a PL_PM state machine for a message, then this state shall send a Cancel Open message to each PL_PM state machine to which it has sent a Tx Open message. After receiving an Unable To Connect (Cancel Acknowledge) message from a PL_PM state machine in response to the Cancel Open message, then this state shall send a Transmission Status (I_T Nexus Loss) confirmation for each pending Tx Frame message and discard the pending Tx Frame messages and any corresponding pending Tx Open messages.

If this state receives a Retry Open (No Destination), Retry Open (Open Timeout Occurred), or Retry Open (Pathway Blocked) message and processes it as an Unable To Connect message, or this state receives an

Working Draft Serial Attached SCSI - 2 (SAS-2)

per 08-343

Unable To Connect message, then this state shall send a Transmission Status confirmation as defined in table

Table 160 — Confirmations from Unable To Connect or Retry Open messages

Message received	Confirmation to be sent to transport layer
Retry Open (No Destination)	Transmission Status (I_T Nexus Loss) if the I_T Nexus Loss timer for the SAS address has expired, or Transmission Status (No Destination) if it has not
Retry Open (Open Timeout Occurred)	Transmission Status (I_T Nexus Loss) if the I_T Nexus Loss timer for the SAS address has expired, or Transmission Status (Open Timeout Occurred) if it has not
Retry Open (Pathway Blocked)	Transmission Status (I_T Nexus Loss) if the I_T Nexus Loss timer for the SAS address has expired
Unable To Connect (Break Received)	Transmission Status (Break Received)
Unable To Connect (Port Layer Request)	Transmission Status (Cancel Acknowledge)
Unable to Connect (Bad Destination)	Transmission Status (Bad Destination)
Unable To Connect (Connection Rate Not Supported)	Transmission Status (Connection Rate Not Supported)
Unable To Connect (Protocol Not Supported)	Transmission Status (Protocol Not Supported)
Unable To Connect (Reserved Abandon 1)	Transmission Status (Reserved Abandon 1)
Unable To Connect (Reserved Abandon 2)	Transmission Status (Reserved Abandon 2)
Unable To Connect (Reserved Abandon 3)	Transmission Status (Reserved Abandon 3)
Unable To Connect (STP Resources Busy)	Transmission Status (STP Resources Busy)
Unable To Connect (Wrong Destination)	Transmission Status (Wrong Destination)
Unable To Connect (Zone Violation)	Transmission Status (Zone Violation)

If this state receives an Unable To Connect (Connection Rate Not Supported), Unable To Connect (Protocol Not Supported), Unable To Connect (Zone Violation), Unable To Connect (Reserved Abandon 1), Unable To Connect (Reserved Abandon 2), Unable To Connect (Reserved Abandon 3), or Unable To Connect (STP Resources Busy) message and an I_T Nexus Loss timer is running for the SAS address, then this state shall:

- stop the I_T Nexus Loss timer, if the timer has been running; and
- initialize the I T Nexus Loss timer.

This state shall discard the pending Tx Frame message for which the Transmission Status confirmation was

8.2.2.3.5 PL_OC2:Overall_Control state connection management

If this state receives an Accept_Reject Opens Equeet, then this state shall send an Accept_Reject Opens request to all pinys in the port.

If this state receives an SMP Transmit Break request, then this state shall send an SMP Transmit Break message to the PL_PM state machine associated with the corresponding SMP transport state machine. If there is no PL_PM state machine associated with the request, the PM_OC state shall ignore the request.

Page: 429

Author: RElliott Subject: Cross-Out Date: 9/24/2008 6:50:52 AM -07'00' ACCEPT - DONE

Unable To Connect (Port Layer Request) | Transmission Status (Cancel Acknowledge)

This message only arrives in step f) on the previous page; it does not show up generally. The translation is unnecessary and probably wrong.

Author: RElliott

Subject: Note Date: 9/18/2008 1:32:42 PM -07'00'

ACCEPT - DONE (9/8 incorporate the last suggestion, merging the discard sentence into the sentence above table 160)

The last paragraph in section 8.2.2.3.4 PL_OC2:Overall_Control state unable to establish a connection states: This state shall discard the pending Tx Frame message for which the Transmission Status confirmation was sent.

But it is not clear as to which Transmission Status confirmation causes the pending Tx Frame message to be discarded. I believe a reference to Table 160 — Confirmations from Unable To Connect or Retry Open messages would make it clear. The new paragraph would then be:

This state shall discard the pending Tx Frame message for which the Transmission Status confirmation (see table 160) was sent.

Perhaps that should be merged into the sentence introducing table 160 instead?

If this state receives a Retry Open (No Destination), Retry Open (Open Timeout Occurred), or Retry Open (Pathway Blocked) message and processes it as an Unable To Connect message, or this state receives an Unable To Connect message, then this state shall send a Transmission Status confirmation as defined in table 160 and discard the corresponding pending Tx Frame message

Author: RElliott Subject: Highlight
Date: 8/30/2008 12:08:46 PM -07'00'
PACCEPT - DONE

Accept_Reject Opens Accept_Reject OPENs

Author: RElliott Subject: Highlight
Date: 8/30/2008 12:08:51 PM -07'00'

Accept_Reject Opens

Accept_Reject OPENs

Author: RElliott Subject: Highlight Date: 9/24/2008 6:30:08 AM -07'00' TACCEPT - DONE

Comments from page 429 continued on next page

T10/1760-D Revision 14

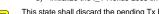

Unable To Connect message, then this state shall send a Transmission Status confirmation as defined in table

Table 160 — Confirmations from Unable To Connect or Retry Open messages

Message received	Confirmation to be sent to transport layer			
Retry Open (No Destination)	Transmission Status (I_T Nexus Loss) if the I_T Nexus Loss timer for the SAS address has expired, or Transmission Status (No Destination) if it has not			
Retry Open (Open Timeout Occurred)	Transmission Status (I_T Nexus Loss) if the I_T Nexus Loss timer for the SAS address has expired, or Transmission Status (Open Timeout Occurred) if it has not			
Retry Open (Pathway Blocked)	Transmission Status (I_T Nexus Loss) if the I_T Nexus Loss timer for the SAS address has expired			
Unable To Connect (Break Received)	Transmission Status (Break Received)			
Unable To Connect (Port Layer Request)	Transmission Status (Cancel Acknowledge)			
Unable to Connect (Bad Destination)	Transmission Status (Bad Destination)			
Unable To Connect (Connection Rate Not Supported)	Transmission Status (Connection Rate Not Supported)			
Unable To Connect (Protocol Not Supported)	Transmission Status (Protocol Not Supported)			
Unable To Connect (Reserved Abandon 1)	Transmission Status (Reserved Abandon 1)			
Unable To Connect (Reserved Abandon 2)	Transmission Status (Reserved Abandon 2)			
Unable To Connect (Reserved Abandon 3)	Transmission Status (Reserved Abandon 3)			
Unable To Connect (STP Resources Busy)	Transmission Status (STP Resources Busy)			
Unable To Connect (Wrong Destination)	Transmission Status (Wrong Destination)			
Unable To Connect (Zone Violation)	Transmission Status (Zone Violation)			

If this state receives an Unable To Connect (Connection Rate Not Supported), Unable To Confect (Protocol Not Supported), Unable To Connect (Zone Violation), Unable To Connect (Reserved Abandor/ 1), Unable To Connect (Reserved Abandon 2), Unable To Connect (Reserved Abandon 3), or Unable To Connect (STP Resources Busy) message and an I_T Nexus Loss timer is running for the SAS address, then this state shall:

- a) stop the I_T Nexus Loss timer, if the timer has been running; and
- b) initialize the I_T Nexus Loss timer.

This state shall discard the pending Tx Frame message for which the Transmission Statys confirmation was

8.2.2.3.5 PL_OC2:Overall_Control state connection management

If this state receives an Accept_Reject Opens request, then this state shall send an Accept_Reject Opens request to all phys in the port.

If this state receives an SMP Transmit Break request, then this state shall send an/SMP Transmit Break message to the PL_PM state machine associated with the request, the PM_OC state shall ignore the request.

Working Draft Serial Attached SCSI - 2 (SAS-2)

request add with the same arguments

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE the PM_OC state then the PL_OC state machine

429

T10/1760-D Revision 14

If this state receives one of the following:

- a) a Connection Closed (Close Timeout) message;
- b) a Connection Closed (Break Requested) message; or
- c) a Connection Closed (Break Received) message.

then this state shall not send a Tx Open or Tx Frame message to the PL_PM state machine that sent the message until this state receives a Connection Closed (Transition to Idle) message from that PL_PM state machine

If this state receives a Connection Closed (Normal) message or a Connection Closed (Transition of Idle) message indicating that a connection with a destination SAS address is no longer open and this state has pending Tx Open messages, then this state may send a Tx Open message to the PL_PM state machine that sent the Connection Closed message.

If this port is a wide SSP port, then this state shall not reject an incoming connection request on one phy because it has an outgoing connection request on another phy.

If this port is an SSP port, there are no pending Tx Frame messages for a destination SAS address with which a PL_PM state machine has established a connection, and the connection was established by a message from this state, then this state should send a Close Connection message to the PL_PM state machine.

If this port is an SSP port, has no pending Tx Frame messages for a destination SAS address with which a PL_PM state machine has established a connection, and the connection was established by the destination, then this state may wait a vendor-specific time and then shall send a Close Connection message to the PL_PM state machine

If this state has received a Disable Tx Frame message from a PL_PM state machine, then this state should send a Close Connection message to the PL-PM state machine.

NOTE 83 - The PL_PM state machine sends a Close Connection request to the link layer upon receipt of a Close Connection message or on expiration of the Bus Inactivity Time Limit timer (see 8.2.3.4.1).

8.2.2.3.6 PL_OC2:Overall_Control state frame transmission

In order to prevent livelocks, if this port is a wide SSP port, has multiple connections established, and has a pending Tx Frame message, then this state shall send at least one Tx Frame message to a PL_PM state machine before sending a Close Connection message to the PL_PM state machine.

After this state receives a Connection Opened message from a PL_PM state machine, this state selects pending Tx Frame messages for the destination SAS address with the same initiator port bit and protocol arguments, and, as an option, the same connection rate argument, and sends the messages to the PL_PM state machine as Tx Frame messages.

This state may send a Tx Frame message to any PL_PM state machine that has exablished a connection with the destination SAS address when the initiator port bit and protocol arguments match those in the Tx Frame message.

After this state sends a Tx Frame message to a PL_PM state machine, it shall not send another Tx Frame message to that PL_PM state machine until it receives a Transmission Status (Frame Transmitted) message.

This state shall not send a Tx Frame message containing a Request Fence argument or Response Fence argument to any PL_PM state machine until this state has received one of the following messages for each Tx Frame message with the same nexus as specified by that Request Fence argument or Response Fence argument:

- a) Transmission Status (ACK Received);
- b) Transmission Status (NAK Received);
- c) Transmission Status (ACK/NAK Timeout); or
- d) Transmission Status (Connection Lost Without ACK/NAK).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 430

28 January 2008

```
    Author: wdc-mevans
    Subject: Highlight
    Date: 5/25/2008 5:14:18 PM -07'00'
    TREJECT (only 2 things being ANDed)
    open and
    s/b
    open, and
```

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

This << because it has an outgoing connection request on >> should be << as a result of the port having an outgoing connection request on >>

Author: Isi-gpenokie
Subject: Highlight
Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'
TREJECT (this is the PL_OC section, which cannot have rules for PL_PM in it. This is just a note about what the other state machine

This note << NOTE 83 - The PL PM >> should be normative text.

Author: wdc-mevans
Subject: Highlight
Date: 5/30/2008 3:47:36 PM -07'00'
REJECT (first noun/subject convention)
it
s/b

this state

After this state sends a Tx Frame message containing a Request Fence argument or Response Fence argument. It shall not send another Tx Frame message with the same nexus as specified by that Request Fence argument or Response Fence argument until it has received one of the following messages:

- a) Transmission Status (ACK Received):
- b) Transmission Status (NAK Received);
- c) Transmission Status (ACK/NAK Timeout); or
- d) Transmission Status (Connection Lost Without ACK/NAK).

Once this state has sent a Tx Frame message containing a Non-Interlocked argument to a PL_PM state machine, this state shall not send a Tx Frame message containing a Non-Interlocked argument with the same LT_L_Q nexus to another PL_PM state machine until this state has received one of the following messages for each Tx Frame message containing a Non-Interlocked argument for the same LT_L_Q nexus:

- a) Transmission Status (ACK Received);
- b) Transmission Status (NAK Received);
- c) Transmission Status (ACK/NAK Timeout); or
- Transmission Status (Connection Lost Without ACK/NAK).

Frames with the Non-Interlocked argument for the same I_T_L_Q nexus raisy be transmitted and received simultaneously on the same or different phys.

If this port is an SMP initiator port, then this state shall send the Tx Frame message containing the SMP REQUEST frame to the PL_PM state machine on which the connection was established for the Tx Open message. If this port is an SMP target port, then this state shall send the Tx Frame message containing the SMP RESPONSE frame to the PL_PM state machine on which the connection was established for the Tx Open message. See 7.18 for additional information about SMP connections.

Characteristics of STP connections are defined by SATA (also see 7.17).

The following arguments shall be included with the Tx Frame message

- a) the frame to be transmitted; and
- b) Balance Required or Balance Not Required

A Balance Not Required argument shall only be included if:

- a) the request was a Transmit Frame (Non-Interlocked) request (i.e., the request included a DATA frame); and
- b) the last Tx Frame message sent to this PL_PM state machine while this connection ✓as ⊭een established was for a DATA frame having the same logical unit number and tag value as the DATA frame in this Tx Frame message.

If a Balance Not Required argument is not included in the Tx Frame message, then a Balance Required argument shall be included.

If this state receives a Disable Tx Frames message from a PL_PM state machine, then this state should send no more Tx Frame messages to that state machine until a new connection is established.

8.2.2.3.7 PL OC2:Overall Control state frame transmission cancellations

Cancel requests cause this state to cancel previous Transmit Frame requests. A Cancel request includes the following arguments:

- a) destination SAS address; and
- b) tag.

If this state receives a Cancel request and has not already sent a Tx Frame message for the Transmit Frame request to a PL_PM state machine for the Transmit Frame request specified by the Cancel request, then this state shall:

- a) discard all Transmit Frame requests for the specified destination SAS address and tag; and
- b) send a Transmission Status (Cancel Acknowledge) confirmation to the transport layer.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 431

This is an ambiguous tag reference.

```
Author: wdc-mevans
Subject: Highlight
Date: 5/30/2008 3:47:51 PM -07'00'
 REJECT (first noun/subject convention)
   it
   s/b
   this state
Author: Isi-bday
Subject: Highlight
Date: 6/28/2008 10:24:42 AM -07'00'
TACCEPT - DONE (as:
    "For a bidirectional command, frames with the Non-Interlocked argument for an I T L Q nexus may be transmitted on one phy at
   the same time as frames with the Non-Interlocked argument for the same I_T_L Q nexus are received on the same phy or on a
   different phy.")
    ...the same I_T_L_Q nexus...
   suggest
    ...the same I_T_L_Q nexus for a bidirectional command..
Author: RElliott
Subject: Cross-Out
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
   value
Author: stx-ghoulder
Subject: Highlight
Date: 5/25/2008 5:15:06 PM -07'00'
   ACCEPT - DONE (initiator port transfer tag)
```

If this state receives a Cancel request and has already sent a Tx Frame message to a PL_PM state machine for the Transmit Frame request specified by the Cancel request, then this state shall send a Cancel message to the PL_PM state machine to which the Tx Frame message was sent. The Cancel message snair include the

8.2.2.3.8 Transition PL_OC2:Overall_Control to PL_OC1:Idle

This transition shall occur after:

- a) sending a HARD RESET Received confirmation to the transport layer,
- b) a Phy Disabled confirmation is received from all of the link layers in the port; or
- c) sending a Notify Received (Power Loss Expected) confirmation to the transport layer.

8.2.3 PL_PM (port layer phy manager) state machine

8.2.3.1 PL_PM state machine overview

A PL PM state machine:

- a) receives messages from the PL_OC state machine;
- b) sends requests to the link layer;
- c) receives confirmations from the link layer;
- d) sends confirmations to the transport laver:
- e) sends messages to PL_OC state machine;
- f) has an Arbitration Wait Time timer;
- g) may have a Bus Inactivity Time Limit timer; and
- h) may have Maximum Connect Time Limit timer.

This state machine consist of the following states:

- a) PL_PM1:Idle (see 8.2.3.2) (initial state);
- b) PL_PM2:Req_Wait (see 8.2.3.3);
- c) PL_PM3:Connected (see 8.2.3.4); and
- d) PL_PM4:Wait_For_Close (see 8.2.3.5).

After power on this state machine shall start in the PL PM1:Idle state.

The PL_PM state machine shall maintain the timers listed in table 161.

Table 161 - PL PM state machine timers

Timer	Initial value			
Arbitration Wait Time timer	The arbitration wait time argument from a Retry Open message (see 8.2.2.3.1).			
Bus Inactivity Time Limit timer	Depending on the protocol used by the port: a) for SSP target ports, the value in the BUS INACTIVITY TIME LIMIT field in the Disconnect-Reconnect mode page (see 10.2.7.2); or b) for STP target ports, the value in the STP BUS INACTIVITY TIME LIMIT field in the SMP REPORT GENERAL response (see 10.4.3.4).			
Maximum Connect Time Limit timer	Depending on the protocol used by the port: a) for an SSP target port, the value in the MAXIMUM CONNECT TIME LIMIT field in the Disconnect-Reconnect mode page (see 10.2.7.2); or b) for an STP target port, the value in the STP MAXIMUM CONNECT TIME LIMIT field in the SMP REPORT GENERAL response.			

Page: 432

Author: stx-ghoulder Subject: Highlight Date: 5/25/2008 5:15:23 PM -07'00'

ACCEPT - DONE (initiator port transfer tag)

tag.

This is an ambiguous tag reference.

Author: RElliott Subject: Note Date: 9/24/2008 7:32:09 AM -07'00'

14d has paragraphs like this for case a) and c). Something similar to this is needed for case b):

"If this state receives a HARD_RESET Received confirmation, then this state shall:

- a) discard all pending Tx Frame messages;
- b) discard all pending Tx Open messages;
- c) delete all timers (e.g., I_T Nexus Loss timers, Arbitration Wait Time timers, and Reject To Open Limit

timers);

- d) send a Hard Reset message to each PL_PM state machine; and
- e) send a HARD_RESET Received confirmation to the transport layer."

For the Phy Disabled from all phys case, this might be appropriate:

"If ..., then this state shall send a Transmission Status (No Phys In Port) confirmation to the transport layer for each pending Tx Frame."

To better mimic a) and c), create a new All Phys Disabled In Port confirmation and sent that to the transport layer (send it everywhere that HARD_RESET Received goes). Then, each individual pending Tx Frame doesn't need a response. (no individual response is sent in case a) and c)).

"If this state receives a Phy Disabled confirmation from all the link layers in the port, then this state shall:

- a) discard all pending Tx Frame messages;
- b) discard all pending Tx Trame messages;
- c) delete all timers (e.g., I_T Nexus Loss timers, Arbitration Wait Time timers, and Reject To Open Limit timers);
- e) send a No Phys In Port confirmation to the transport layer.

then add handling of that in chapter 9 similar to handling of HARD_RESET Received, Notify Received (Power Loss Expected), and (per-frame) Transmission Complete (Connection Failed)

In ST_IFR and ST_TFR:

9.2.6.2.2.5 Processing miscellaneous requests

If this state machine receives a HARD_RESET Received confirmation, then this state machine shall send a Transport Reset event notification to the SCSI application layer.

add:

If this state machine receives a No Phys In Port confirmation, then this state machine shall send a Command Complete Received (Service Delivery or Target Failure - Connection Failed) or Received Task Management Function Executed (...) to the SCSI application layer for each rotocol service>

in ST_ITS and ST_TTS:

next to:

If this state machine receives a HARD_RESET Received confirmation, then this state machine shall transition to the ST_ITS1: Initiator_Start state.

add

If this state machine receives a No Phys In Port confirmation, then this state machine shall transition to the ST_ITS1:Initiator_Start state.

If this state receives a Cancel request and has already sent a Tx Frame message to a PL_PM state machine for the Transmit Frame request specified by the Cancel request, then this state shall send a Cancel message to the PL_PM state machine to which the Tx Frame message was sent. The Cancel message shall include the

8.2.2.3.8 Transition PL_OC2:Overall_Control to PL_OC1:Idle

This transition shall occur after:

- a) sending a HARD RESET Received confirmation to the transport layer;
- b) a Phy Disabled confirmation is received from all of the link layers in the port; or
- c) sending a Notify Received (Power Loss Expected) confirmation to the transport layer.

8.2.3 PL_PM (port layer phy manager) state machine

8.2.3.1 PL_PM state machine overview

A PL PM state machine:

- a) receives messages from the PL_OC state machine;
- b) sends requests to the link layer;
- c) receives confirmations from the link layer;
- d) sends confirmations to the transport laver:
- e) sends messages to PL_OC state machine;
- f) has an Arbitration Wait Time timer:
- g) may have a Bus Inactivity Time Limit timer; and
- h) may have Maximum Connect Time Limit timer

This state machine consist of the following states:

- a) PL_PM1:Idle (see 8.2.3.2) (initial state);
- b) PL_PM2:Req_Wait (see 9.2.3.3);
- PL_PM3:Connected (see 8.2.3.4); and
- d) PL_PM4:Wait_For_Close (see 8.2.3.5)

After power on this state machine shall start in the PL PM1:Idle state.

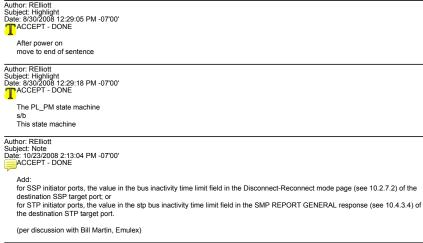

The PL PM state machine shall maintain the timers listed in table 161.

Table 161 — PL_PM state machine timers

Timer	Initial value
Arbitration Wait Time timer	The arbitration wait time argument from a Retry Open message (see 8.2.2.3.1)
Bus Inactivity Time Limit timer	Depending on the protocol used by the port: a) for SSP target ports, the value in the BUS INACTIVITY THE LIMIT field in the Disconnect-Reconnect mode page (see 19-2.7.2); or b) for STP target ports, the value in the STP BUS INACTIVITY TIME LIMIT field in the SMP REPORT GENERAL response (see 10.4.3.4).
Maximum Connect Time Limit timer	Depending on the profocol used by the port: a) for an SSP farget port, the value in the MAXIMUM CONNECT TIME LIMIT field in the Disconnect-Deconnect mode page (See 10.2.7.2); or b) for an STP larget port, the value in the STP MAXIMUM CONNECT TIME LIMIT field in the SMP REPORT GENERAL response.

7/14 George Penokie volunteered to work on this issue) (from Bill Martin, Emulex)

8.2.2.3.8 specifies a transition from PL_OC2 to PL_OC1 after a Phy Disabled confirmation is received from all of the link layers in the port; however, this event should cause a Transmission Status (No Phys In Port) to be sent to the port layer if there are any pending Transmit Frame requests, and this transition should be done after this Transmission Status is sent to the port layer. This may be as simple as adding a paragraph in 8.2.2.2.1.

Author: RElliott

Subject: Note Date: 10/23/2008 2:12:50 PM -07'00' ACCEPT - DONE

c) for an SMP target port, 2 ms.

This was in sas2r00 based on 05-305r0, but was lost in sas2r01 as 05-306r2's overlapping changes were made.

The timer is referred to as being created and running for SMP connections on page 469.

Author: RElliott Date: 10/23/2008 2:12:57 PM -07'00' ACCEPT - DONE

for an SSP initiator port, the value in the maximum connect time limit field in the Disconnect-Reconnect mode page (see 10.2.7.2)

Comments from page 432 continued on next page

If this state receives a Cancel request and has already sent a Tx Frame message to a PL_PM state machine for the Transmit Frame request specified by the Cancel request, then this state shall send a Cancel message to the PL_PM state machine to which the Tx Frame message was sent. The Cancel message shall include the tao.

8.2.2.3.8 Transition PL_OC2:Overall_Control to PL_OC1:Idle

This transition shall occur after:

- a) sending a HARD_RESET Received confirmation to the transport layer;
- b) a Phy Disabled confirmation is received from all of the link layers in the port; or
- c) sending a Notify Received (Power Loss Expected) confirmation to the transport layer.

8.2.3 PL_PM (port layer phy manager) state machine

8.2.3.1 PL_PM state machine overview

A PL_PM state machine:

- a) receives messages from the PL_OC state machine;
- b) sends requests to the link layer;
- c) receives confirmations from the link layer;
- d) sends confirmations to the transport layer;
- e) sends messages to PL_OC state machine;
- f) has an Arbitration Wait Time timer;
- g) may have a Bus Inactivity Time Limit timer; and
- h) may have Maximum Connect Time Limit timer.

This state machine consist of the following states:

- a) PL_PM1:Idle (see 8.2.3.2) (initial state);
- b) PL_PM2:Req_Wait (see 8.2.3.3);
- c) PL_PM3:Connected (see 8.2.3.4); and
- d) PL_PM4:Wait_For_Close (see 8.2.3.5).

After power on this state machine shall start in the PL_PM1:Idle state.

The PL_PM state machine shall maintain the timers listed in table 161.

Table 161 - PL PM state machine timers

Timer	Initial value
Arbitration Wait Time timer	The arbitration wait time argument from a Retry Open message (see 8.2.2.3.1).
Bus Inactivity Time Limit timer	Depending on the protocol used by the port: a) for SSP target ports, the value in the BUS INACTIVITY TIME LIMIT field in the Disconnect-Reconnect mode page (see 10.2.7.2); or b) for STP target ports, the value in the STP BUS INACTIVITY TIME LIMIT field in the SMP REPORT GENERAL response (see 10.4.3.4).
Maximum Connect Time Limit timer	Depending on the protocol used by the port: a) for an SSP target port, the value in the MAXIMUM CONNECT TIME LIMIT field in the Disconnect-Reconnect mode page (see 10.2.7.2); or b) for an STP target port, the value in the STP MAXIMUM CONNECT TIME LIMIT field in the SMP REPORT GENERAL response.

Working Draft Serial Attached SCSI - 2 (SAS-2)

432

of the destination SSP target port; or

for an STP initiator port, the value in the stp maximum connect time limit field in the SMP REPORT GENERAL response of the destination STP target port.

(per T10 reflector email from Bill Martin, Emulex)

Figure 208 shows part 1 of the PL_PM state machine.

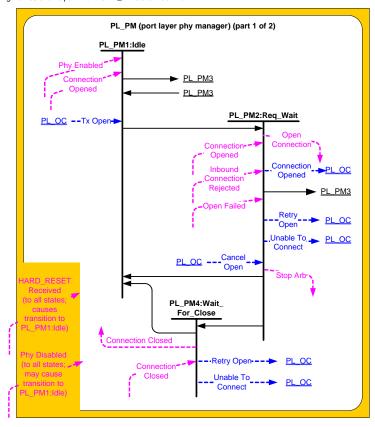


Figure 208 — PL_PM (port layer phy manager) state machine (part 1)

This page contains no comments

T10/1760-D Revision 14

Figure 209 shows part 2 of the PL_PM state machine.

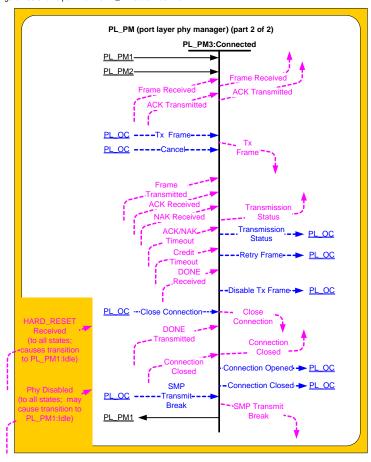


Figure 209 — PL_PM (port layer phy manager) state machine (part 2)

8.2.3.2 PL_PM1:Idle state

8.2.3.2.1 PL_PM1:Idle state description

This is the initial state of the PL_PM state machine.

This page contains no comments

28 January 2008

8.2.3.2.2 Transition PL_PM1:Idle to PL_PM2:Req_Wait

This transition shall occur after:

- a) a Phy Enabled confirmation is received; and
- b) a Tx Open message is received.

8.2.3.2.3 Transition PL PM1:Idle to PL PM3:Connected

This transition shall occur after a Connection Opened confirmation is received. The transition shall include the received OPEN address frame.

8.2.3.3 PL_PM2:Req_Wait state

8.2.3.3.1 PL PM2:Reg Wait state overview

This state sends an Open Connection request to the link layer and waits for a confirmation. This state sends and receives connection management messages to and from the PL OC state machine.

If this state receives a HARD_RESET Received confirmation, then this state shall terminate all operations.

8.2.3.3.2 PL_PM2:Req_Wait establishing a connection

Upon entry into this state, this state shall:

- 1) create an Arbitration Wait Time timer;
- initialize the Arbitration Wait Time timer to the arbitration wait time argument received with the Tx Open message;
- 3) start the Arbitration Wait Time timer; and
- 4) send an Open Connection request to the link layer.

The Open Connection request shall contain the following arguments from the Tx Open message to be used in an OPEN address frame:

- a) initiator port bit;
- b) protocol;
- c) connection rate;
- d) initiator connection tag;
- e) destination SAS address;
- f) source SAS address;
- g) pathway blocked count; and
- h) arbitration wait time.

8.2.3.3.3 PL_PM2:Req_Wait connection established

If this state receives a Connection Opened confirmation, then this state shall send a Connection Opened message to the PL OC state machine.

If this state receives a Connection Opened confirmation and the confirmation was not in response to an Open Connection request from this state (i.e., the connection was established in response to an OPEN address frame from another device), then this state shall discard any Open Connection request and send a Retry Open message to the PL_OC state machine. If the Connection Opened confirmation was from the destination of the Open Connection request, then this state shall send a Retry Open (Opened By Destination) message. If the Connection Opened confirmation was from a destination other than the destination of the Open Connection request, then this state shall send a Retry Open (Opened By Other) message.

A Retry Open (Opened By Destination) or Retry Open (Opened By Other) message shall contain the following arguments:

435

- a) initiator port bit set to the value received with the Tx Open message;
- b) protocol set to the value received with the Tx Open message;
- c) connection rate set to the value received with the Tx Open message;
- d) initiator connection tag set to the value received with the Tx Open message;

Working Draft Serial Attached SCSI - 2 (SAS-2)

This page contains no comments

- e) destination SAS address set to the value received with the Tx Open message;
- f) source SAS address set to the value received with the Tx Open message;
- g) pathway blocked count set to the value received with the Tx Open message; and
- h) arbitration wait time set to the value of the Arbitration Wait Time timer.

8.2.3.3.4 PL_PM2:Req_Wait unable to establish a connection

If this state receives one of the Open Failed confirmations listed in table 162, then this state shall send either a Retry Open message or an Unable To Connect message to the PL_OC state machine.

Table 162 defines the message to be sent for each Open Failed confirmation.

Table 162 — Messages from Open Failed confirmations

Confirmation received	Message to be sent to PL_OC
Open Failed (No Destination)	Retry Open (No Destination)
Open Failed (Pathway Blocked)	Retry Open (Pathway Blocked)
Open Failed (Reserved Continue 0)	Retry Open (Retry)
Open Failed (Reserved Continue 1)	Retry Open (Retry)
Open Failed (Reserved Initialize 0)	Retry Open (No Destination)
Open Failed (Reserved Initialize 1)	Retry Open (No Destination)
Open Failed (Reserved Stop 0)	Retry Open (Pathway Blocked)
Open Failed (Reserved Stop 1)	Retry Open (Pathway Blocked)
Open Failed (Retry)	Retry Open (Retry)
Open Failed (Bad Destination)	Unable To Connect (Bad Destination)
Open Failed (Connection Rate Not Supported)	Unable To Connect (Connection Rate Not Supported)
Open Failed (Protocol Not Supported)	Unable To Connect (Protocol Not Supported)
Open Failed (Reserved Abandon 1)	Unable To Connect (Reserved Abandon 1)
Open Failed (Reserved Abandon 2)	Unable To Connect (Reserved Abandon 2)
Open Failed (Reserved Abandon 3)	Unable To Connect (Reserved Abandon 3)
Open Failed (STP Resources Busy)	Unable To Connect (STP Resources Busy)
Open Failed (Wrong Destination)	Unable To Connect (Wrong Destination)
Open Failed (Zone Violation)	Unable To Connect (Zone Violation)

If this state receives an Inbound Connection Rejected confirmation after sending an Open Connection request, then this state shall discard the Open Connection request and send a Retry Open (Collided) message to the PL_OC state machine.

A Retry Open message shall include the following arguments:

- a) initiator port bit set to the value received with the Tx Open message;
- b) protocol set to the value received with the Tx Open message;
- c) connection rate set to the value received with the Tx Open message;
- d) initiator connection tag set to the value received with the Tx Open message;
- e) destination SAS address set to the value received with the Tx Open message;
- f) source SAS address set to the value received with the Tx Open message;

This page contains no comments

g) pathway blocked count argument set to the value received with the Tx Open message; and

h) arbitration wait time set to the value of the Arbitration Wait Time timer.

An Unable To Connect message shall include the following arguments:

- a) initiator connection tag set to the value received with the Tx Open message;
- b) destination SAS address set to the value received with the Tx Open message; and
- c) source SAS address set to the value received with the Tx Open message.

8.2.3.3.5 PL PM2:Reg Wait connection management

If this state receives a Cancel Open message and a Connection Opened confirmation has not been received, then this state shall send a Stop Arb request to the link layer.

8.2.3.3.6 Transition PL_PM2:Req_Wait to PL_PM1:Idle

This transition shall occur after:

- a) a Retry Open message is sent to the PL_OC state machine;
- b) an Unable To Connect message is sent to the PL_OC state machine;
- c) all operations have been terminated after a HARD_RESET Received confirmation is received; or
- d) a Phy Disabled confirmation is received.

8.2.3.3.7 Transition PL_PM2:Req_Wait to PL_PM3:Connected

This transition shall occur after a Connection Opened confirmation is received.

8.2.3.3.8 Transition PL_PM2:Req_Wait to PL_PM4:Wait_For_Close

This transition shall occur after one of the following confirmations is received:

- a) an Open Failed (Open Timeout Occurred);
- b) an Open Failed (Break Received); or
- c) an Open Failed (Port Layer Request).

8.2.3.4 PL PM3:Connected state

8.2.3.4.1 PL_PM3:Connected state description

If this state was entered from the PL_PM1:Idle state, then this state shall send a Connection Opened message to the PL_OC state machine that includes as an argument the received OPEN address frame.

If:

- a) the protocol for the connection is SSP, the port is an SSP target port, the Disconnect-Reconnect mode page is implemented, and the MAXIMUM CONNECT TIME LIMIT field in the Disconnect-Reconnect mode page (see 10.2.7.2) is not set to zero;
- b) the protocol for the connection is SMP and the port is an SMP target port; or
- c) the protocol for the connection is STP, the port is an STP target port, and the STP MAXIMUM CONNECT TIME LIMIT field is not set to zero in the SMP REPORT GENERAL response (see 10.4.3.4),

then, upon entry into this state, this state shall:

- 1) create a Maximum Connect Time Limit timer;
- 2) initialize the Maximum Connect Time Limit timer as specified in table 161 (see 8.2.3.1); and
- 3) start the Maximum Connect Time Limit timer.

If:

 a) the protocol for the connection is SSP, the port is an SSP initiator port, and the MAXIMUM CONNECT TIME LIMIT field in the Disconnect-Reconnect mode page (see 10.2.7.2) for the destination SSP target port is not set to zero; or

437

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 437

Author: RElliott
Subject: Highlight
Date: 8/30/2008 9:01:02 AM -07'00'
TACCEPT - DONE

Open Failed (Port Layer Request) s/b
Open Failed (Arb Stopped)

per 08-343

b) the protocol for the connection is STP, the port is an STP initiator port, and the STP MAXIMUM CONNECT TIME LIMIT field is not set to zero in the SMP REPORT GENERAL response (see 10.4.3.4) for the destination STP target port.

then, upon entry into this state, this state may:

- 1) create a Maximum Connect Time Limit timer;
- 2) initialize the Maximum Connect Time Limit timer as specified in table 161 (see 8.2.3.1); and
- 3) start the Maximum Connect Time Limit timer.

If:

- a) the protocol for the connection is SSP, the port is an SSP target port, and the BUS INACTIVITY TIME LIMIT field in the Disconnect-Reconnect mode page (see 10.2.7.2) is set to a non-zero value; or
- b) the protocol for the connection is STP, the port is an STP initiator port, and the STP BUS INACTIVITY TIME LIMIT field is not set to zero in the SMP REPORT GENERAL response for the destination STP target port.

then, upon entry into this state, this state shall:

- 1) create a Bus Inactivity Time Limit timer;
- 2) initialize the Bus Inactivity Time Limit timer as specified in table 161 (see 8.2.3.1); and
- 3) start the Bus Inactivity Time Limit timer.

If a Bus Inactivity Time Limit timer has been greated and:

- a) the connection is SSP or SMP and this state receives a Tx Frame message; or
- b) the connection is STP and the phy is not both transmitting and receiving SATA_SYNC,

then this state shall:

- 1) stop the Bus Inactivity Time Limit timer, if it is running,
- 2) initialize the Bus Inactivity Time Limit timer as specified in table 161 (see 8.2.3.1); and
- 3) start the Bus Inactivity Time Limit timer.

If this state receives a Tx Frame message, this state shall send a Tx Frame request to the link layer. The following arguments from the Tx Frame message shall be included with the Tx Frame request:

- a) the frame to be transmitted; and
- b) if this port is an SSP port, Balance Required or Balance Not Required.

For STP connections, this state connects the STP transport layer to the STP link layer

If a Bus Inactivity Time Limit timer expires:

- a) if the connection is SSP and there is no Tx Frame request outstanding (i.e., this state is not waiting for an ACK Received or NAK Received confirmation), then this state shall send a Close Connection request to the link layer;
- b) if the connection is SSP and there is a Tx Frame request outstanding (i.e., this state is waiting for an ACK Received or NAK Received confirmation), then this state shall send a Close Connection request to the link layer after receiving an ACK Received or NAK Received confirmation; and
- c) if the connection is STP, then this state shall send a Close Connection request to the link layer.

If a Maximum Connect Time Limit timer expires:

- a) if the connection is SSP and there is no Tx Frame request outstanding (i.e., this state is not waiting for an ACK Received or NAK Received confirmation), then this state shall send a Close Connection request to the link layer.
- if the connection is SSP and there is a Tx Frame request outstanding (i.e., this state is waiting for an ACK Received on NAK Received confirmation), then this state shall send a Close Connection request to the link layer after receiving an ACK Received or NAK Received confirmation;
- c) if the connection is SMP, then this state shall send an SMP Transmit Break request to the link layer;
- d) if the connection is STP, then this state shall send a Close Connection request to the link layer after the phy is both transmitting and receiving SATA_SYNC.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 438

Author: RElliott
Subject: Cross-Out
Date: 10/23/2008 3:30:08 PM -07'00'
TACCEPT - DONE
Delete:
or SMP

The Bus Inactivity Time Limit timer does not exist in SMP connections.

Author: Relliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE this s/b then this

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'

This << and >> should be << or >> as only one of the list can occur at a time.

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00'

This << and >> should be << or >> as only one of the list can occur at a time.

If this state receives a Tx Frame message after sending a Close Connection request but before receiving a Connection Closed confirmation, then this state shall send a Retry Frame message to the PL_OC state machine.

If this state receives a Frame Received confirmation, then this state shall send a Frame Received confirmation to the transport layer. The confirmation shall include the arguments received with the confirmation (e.g., the frame).

If this state receives an ACK Transmitted confirmation, then this state shall send an ACK Transmitted confirmation to the transport layer including the tran

If this state receives a Frame Transmitted confirmation, then this state shall send:

- a) a Transmission Status (Frame Transmitted) confirmation to the transport layer; and
- b) a Transmission Status (Frame Transmitted) message to the PL_OC state machine.

If this state receives an ACK Received confirmation, then this state shall send:

- a) a Transmission Status (ACK Received) confirmation to the transport layer; and
- b) a Transmission Status (ACK Received) message to the PL_OC state machine.

If this state receives a NAK Received confirmation, then this state shall send:

- a) a Transmission Status (NAK Received) confirmation to the transport layer; and
- b) a Transmission Status (NAK Received) message to the PL_OC state machine.

If this state receives an ACK/NAK Timeout confirmation, then this state shall send:

- a) a Transmission Status (ACK/NAK Timeout) confirmation to the transport layer; and
- b) a Transmission Status (ACK/NAK Timeout) message to the PL OC state machine.

If this state receives a Cancel message, then this state shall:

- a) discard all Tx Frame requests for the specified tag;
- send a Transmission Status (Cancel Acknowledge) confirmation to the transport layer including the destination SAS address and the tag as arguments; and
- c) discard any subsequent confirmations for previous Tx Frame requests sent for the tag.

If this state receives a Close Connection message from the PL_OC state machine, then this state shall send a Close Connection request to the link layer.

If this state receives one of the following:

- a) a Connection Closed (Normal) confirmation;
- b) a Connection Closed (Close Timeout) confirmation;
- c) a Connection Closed (Break Requested) confirmation;
- d) a Connection Closed (Break Received) confirmation; or
- e) a Connection Closed (Transition to Idle) confirmation,

then this state shall send a Connection Closed message to the PL_OC state machine including the argument received with the confirmation.

If this state receives a Connection Closed (Transition to Idle) confirmation after receiving:

- a) a Connection Closed (Break Received) confirmation; or
- b) a Connection Closed (Break Requested) confirmation,

then this state shall send a Transmission Status (Break Received) confirmation to the transport layer.

If this state receives a Connection Closed (Normal) confirmation, a Connection Closed (Transition to Idle) confirmation, or a Phy Disabled confirmation after sending a Transmission Status (Frame Transmitted) confirmation, but before this state receives an ACK Received or NAK Received confirmation, then this state shall send:

- a) a Transmission Status (Connection Lost Without ACK/NAK) confirmation to the transport layer; and
- b) a Transmission Status (Connection Lost Without ACK/NAK) message to the PL_OC state machine.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 439

Author: stx-ghoulder Subject: Highlight Date: 5/25/2008 5:16:10 PM -07'00'

tag

This is an ambiguous tag reference.

Author: RElliott Subject: Highlight Date: 8/30/2008 9:36:34 AM -07'00'

receiving

receiving one of the following

T10/1760-D Revision 14

If this state receives a Connection Closed (Normal) confirmation, a Connection Closed (Transition to Idle) confirmation, or a Phy Disabled confirmation after sending a Tx Frame request but before receiving a Frame Transmitted confirmation, then this state shall send a Retry Frame message to the PL_OC state machine.

28 January 2008

Page: 440

per 08-343

If this state receives a Connection Closed confirmation during an SMP connection, this state shall send a Connection Closed confirmation to the transport layer.

If this state receives a Credit Timeout confirmation, then this state shall send a Retry Frame message to the PL_OC state machine.

A Retry Frame message shall include the following arguments from the Tx Frame message:

- a) initiator port bit;
- b) protocol;
- c) connection rate;
- d) initiator connection tag;
- e) destination SAS address;
- f) source SAS address; and
- g) frame.

After this state receives a DONE Received (Normal) or DONE Received (Credit Blocked) commitmation, if it/
does not receive a Tx Frame message within 1 ms, then this state shall send a Disable Tx Frames message
to the PL OC state machine.

If this state receives a DONE Received (ACK/NAK Timeout) or DONE Transmitted confirmation, then this state shall send a Disable Tx Frames message to the PL_OC state machine.

If this state receives an SMP Transmit Break message, then this state shall send an SMP Transmit Break request to the link layer.

If this state receives a HARD_RESET Received confirmation, then this state machine shall terminate all operations.

8.2.3.4.2 Transition PL PM3:Connected to PL PM1:Idle

This transition shall occur after:

- a) a Connection Closed (Transition to Idle) message is sent to the PL_OC state machine; or
- b) all operations are terminated after a HARD_RESET Received confirmation is received.

8.2.3.5 PL_PM4:Wait_For_Close state

8.2.3.5.1 PL_PM4:Wait_For_Close state description

After receiving a Connection Closed (Transition to Idle) confirmation, if this state was entered as the result of the PL_PM2:Req_Wait state receiving an Open Failed (Open Timeout Occurred) confirmation, then this state shall send a Retry Open (Open Timeout Occurred) message to the PL_OC state machine. The Retry Open message shall include the following arguments:

- a) initiator port bit set to the value received with the Tx Open message;
- b) protocol set to the value received with the Tx Open message;
- c) connection rate set to the value received with the Tx Open message;
- d) initiator connection tag set to the value received with the Tx Open message;
- e) destination SAS address set to the value received with the Tx Open message;
- f) source SAS address set to the value received with the Tx Open message;
- g) pathway blocked count argument set to the value received with the Tx Open message; and
- h) arbitration wait time set to the value of the Arbitration Wait Time timer.

If this state receives a Connection Closed confirmation and the connection request was for an SMP connection, this state shall send a Connection Closed confirmation to the transport layer.

After receiving a Connection Closed (Transition to Idle) confirmation, if this state was entered after the PL_PM2:Req_Wait state received an Open Failed (Port Layer Request) confirmation (i.e., as the result of the

Author: Isi-gpenokie Subject: Highlight
Date: 5/6/2008 1:07:49 PM -07'00' TACCEPT - DONE This << SMP connection, this state >> should be << SMP connection, then this state >> Author: wdc-mevans Subject: Highlight
Date: 5/25/2008 5:16:30 PM -07'00'
REJECT (first noun/subject convention) s/b this state Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE Credit Blocked Credit Timeout from Brian Day, LSI Author: Isi-gpenokie Subject: Highlight This << connection, this state shall >> should be << connection, then this state shall >> Author: RElliott Subject: Highlight Date: 8/30/2008 9:00:52 AM -07'00' ACCEPT - DONE Open Failed (Port Layer Request) Open Failed (Arb Stopped)

PL_PM2:Req_Wait state sending a Stop Arb request), then this state shall send an Unable to Connect (Port Layer Request) message to the PL_OC state machine.

After receiving a Connection Closed (Transition to Idle) confirmation, if this state was entered as the result of the PL_PM2:Req_Wait state receiving an Open Failed (Break Received) confirmation, then this state shall send an Unable to Connect (Break Received) message to the PL_OC state machine.

The Unable To Connect message shall include the following arguments:

- a) initiator connection tag set to the value received with the Tx Open message;
- b) destination SAS address set to the value received with the Tx Open message; and
- c) source SAS address set to the value received with the Tx Open message.

If this state receives a HARD_RESET Received confirmation, then this state shall terminate all operations.

8.2.3.5.2 Transition PL_PM4:Wait_For_Close to PL_PM1:Idle

This transition shall occur after:

- a) a Retry Open or Unable To Connect message is sent to the PL_OC state machine; or
- b) all operations are terminated after a HARD_RESET Received confirmation is received.

This page contains no comments

9 Transport layer

9.1 Transport layer overview

The transport layer defines frame formats. Transport <u>layer state</u> machines interface to the application layer and port layer and construct and <u>parses</u> frame contents. For SSP, the transport layer only receives frames from the port layer for which an ACK is going to be transmitted by the link layer.

Page: 442

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07-49 PM -07'00' TACCEPT - DONE parses s/b parse

T10/1760-D Revision 14

9.2 SSP transport layer

9.2.1 SSP frame format

Table 163 defines the SSP frame format.

Table 163 — SSP frame format

Byte\Bit	7	6	5	4	3	2	1	0
0		FRAME TYPE						
1	(MSB)	HASHED DESTINATION SAS ADDRESS						
3			(LSB)					
4			Reserved					
5	(MSB)		шас	SHED SOURC	E CAC ADDE	ESS		
7		•	HAS	SHED SOURC	E SAS ADDR	.53	,	(LSB)
8				Res	erved			
9				Res	erved		. /	
10		Reserved		TLR CO	NTROL	RETRY DATA FRAMES	RETRANSMIT	CHANGING DATA POINTER
11		Reserved NUMBER OF					FILL BYTES	
12		Reserved						
13		Reserved						
15			Reserved					
16	(MSB)	. TAG						
17							(LSB)	
18	(MSB)	Ξ.	TA	RGET PORT	TRANSFER T	AG		
19						7.0		(LSB)
20	(MSB)	Ξ.		DATA (OFFSET			
23							(LSB)	
24		(e.g., see table 165, table 167, table 169, table 170, or table 171)						
m								
		Fill bytes, if needed						
n - 3	(MSB)			CI	RC			
n				O.				(LSB)

Table 164 defines the FRAME TYPE field, which defines the format of the INFORMATION UNIT field.

The HASHED DESTINATION SAS ADDRESS field contains the hashed value of the destination SAS address (see 4.2.3). See 9.2.6.2.2 and 9.2.6.3.2 for transport layer requirements on checking this field.

Working Draft Serial Attached SCSI - 2 (SAS-2)

443

Page: 443

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

To resolve a Seagate comment about confusion between this TAG field and the other fields ending in the word TAG, rename this TAG field to INITIATOR PORT TRANSFER TAG.

Table 164 — FRAME TYPE field

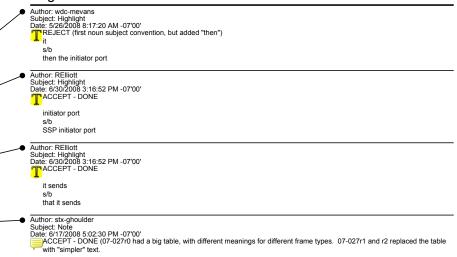
Code	Name of frame	Type of information unit	Originator	Information unit size (bytes)	Reference
01h	DATA frame (i.e., write DATA frame or read DATA frame)	Data information unit (i.e., write Data information unit or read Data information unit)	SSP initiator port or SSP target port	1 to 1 024	9.2.2.4
05h	XFER_RDY frame	Transfer Ready information unit	SSP target port	12	%.2.2.3
06h	COMMAND frame	Command information unit	SSP initiator port	28 to 280	9.2.2.1
07h	RESPONSE frame	Response information unit	SSP target port	24/0 1 024	9.2.2.5
16h	TASK frame	Task Management Function information unit	SSB initiator por	28	9,2,7.2
F0h - FFh	Vendor specific				
All others	Reserved				

The HASHED SOURCE SAS ADDRESS field contains the hasher value of the source SAS address (see 4.2.3). See 9.2.6.2.2 and 9.2.6.3.2 for transport layer requirements as checking this field.

If an initiator port support support layer retries, it shall set the TLR CONTROL field to 01b in each COMMAND frame it separations it has determined that the LT_L nexus does not support the TLR CONTROL field.

If an <mark>initiator port</mark> does not support transport layer retries, it shall set the TLR CONTROL field to 10b in each COMMAND frame it sends unless it has determined that the I_T_L nexts does not support the TLR CONTROL

An initiator port determines that an L_T_L nexus does not support the TLR CONTROL field if it sends a COMMAND frame with the TLR CONTROL field set to DISON 10b and receives a RESPONSE frame with TIDE DATAPRES field set to RESPONSE_DATA and the RESPONSE COSE field set to 02h (i.e., INVALID FRAME). After determining that an L_T_L nexus does not support the TLR CONTROL field, an initiator port shall set the TLR CONTROL field to 00b for subsequent COMMAND frames for that L_T_L nexus.

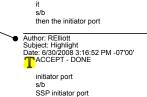

NOTE 84 - Initiator ports compliant with previous versions of this standard always set the TLR CONTROL field to

NOTE 85 - The TLR CONTROL SUPPORTED field in the Protocol-Specific Logical Unit Information VPD page (see 10.2.11.3) indicates if the target port supports the TLR CONTROL field set to a non-zero value.

A TLR CONTROL field set to 00b or 11b in a COMMAND frame specifies that the SSP target port shall use the TRANSPORT LAYER RETRIES bit in the Protocol-Specific Logical Unit mode page (see 10.2.7.3) to enable or disable transport layer retries for this command:

- if the TRANSPORT LAYER RETRIES bit is set to one, the target port shall set the RETRY DATA FRAMES bit to
 one in any XFER_RDY frames that it transmits for this command; and
- b) if the TRANSPORT LAYER RETRIES bit is set to zero, the target port shall set the RETRY DATA FRAMES bit to zero in any XFER_RDY frames that it transmits for this command.

Page: 444



Reverted to a table for COMMAND frames.

REJECT (first noun subject convention, but added "then")

5/5 check the original proposal - did it have a table that was removed for good reason? Maybe add one intro sentence about TLR CONTROL before all these paragraphs. Maybe put target rules in a table and put the initiator rules afterwards in text.)

I find the TLR CONTROL field description to be in an unconventional order and hard to follow. It would be better to describe what the 00, 01, 10, and 11 combinations mean before describing rules for when they shall or shall not be set. Currently the text tells the reader rules for when certain combinations are allowed before describing what the combinations mean.

Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:17:25 AM -07'00'

Comments from page 444 continued on next page

Table 164 — FRAME TYPE field

Code	Name of frame	Type of information unit	Originator	Information unit size (bytes)	Reference
01h	DATA frame (i.e., write DATA frame or read DATA frame)	Data information unit (i.e., write Data information unit or read Data information unit)	SSP initiator port or SSP target port	1 to 1 024	9/2.2.4
05h	XFER_RDY frame	Transfer Ready information unit	SSP target port	1/2	9.2.2.3
06h	COMMAND frame	Command information unit	SSP initiator port	28 to 280	9.2.2.1
07h	RESPONSE frame	Response information unit	SSP target port	24 to 1 024	9.2.2.5
16h	TASK frame	Task Management Function information unit	SSF initiator port	28	9.2.2.2
F0h - FFh	Vendor specific		y		
All others	Reserved				

The HASHED SOURCE SAS ADDRESS field contains the hashed value of the source SAS address (see 4.2.3). See 9.2.6.2.2 and 9.2.6.3.2 for transport layer requirements on checking this field.

If an initiator port supports transport layer retries, it shall set the TIP CONTROL field to 01b in each COMMAND frame it sends unless it has determined that the LT Lexus does not support the TLR CONTROL field.

If an initiator port does not support traceport layer retries, it shall set the TLR CONTROL field to 10b in each COMMAND frame it sends cales it has determined that the I_T_L nexus does not support the /LR CONTROL field.

An initiator port determines that an I_T_L nexus does not support the TLR CONTROL field if it sends a COMMAND frame with the TLR CONTROL field set to 01b or 10b and receives a RESPONSE frame with the DATAPRES field set to RESPONSE_DATA and the RESPONSE CODE field set to 02b (i.e., INVALID FRAME). After determining that an I_T_L nexus does not support the TLR CONTROL field, an initiator port shall set the TLR CONTROL field to 00b for subsequent COMMAND frames for that I_T_ nexus.

NOTE 84 - Initiator ports compliant with previous versions of this standard always set the TLR CONTROL field to 00b.

NOTE 85 - The TLR CONTROL SUPPORTED field in the Protocol-Specific Logical Unit Information VPD page (see 10.2.11.3) indicates if the target port supports the TLR CONTROL field set to a non-zero value.

A TLR CONTROL field set to 00b or 11b in a COMMAND frame specifies that the SSP target port shall use the TRANSPORT LAYER RETRIES bit in the Protocol-Specific Logical Unit mode page (see 10.2.7.3) to enable or disable transport layer retries for this command:

- a) if the TRANSPORT LAYER RETRIES bit is set to one, the target port small set the RETRY DATA FRAMES bit to one in any XFER_RDY frames that it transmits for this command; and
- if the TRANSPORT LAYER RETRIES bit is set to zero, the target port shall set the RETRY DATA FRAMES bit to zero in any XFER_RDY frames that it transmits for this command.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
it sends
s/b

Author: wdc-mevans
Subject: Highlight
Date: 5/26/2008 8:17:42 AM -07'00'
REJECT (first noun subject convention)

s/b the initiator port

that it sends

Author: ibm-steve-wallace Subject: Highlight Date: 5/26/2008 8:17:57 AM -07'00'

REJECT (5/5 no change. There is already a NOTE below this pointing to the VPD page.)

This check is not sufficient to determine that the I_T_L nexus does support the TLR CONTROL field. The TLR CONTROL field is replacing part of a reserved field. The definition of reserved states that the recipients are not required to check reserved fields for zero. If the target device does not check this field, then the initiator must use the VPD page to determine if the target supports TLR CONTROL. Otherwise, the initiator may think the TLR CONTROL field is valid when the target is ignoring the field.

Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

An initiator port s/b An SSP initiator port

and an initiator port

the SSP initiator port

Author: Isi-gpenokie Subject: Highlight Date: 6/17/2008 4:53:16 PM -07'00'

TREJECT (this is not important for the rules being conveyed; it's just an aside, mentioning that VPD bit is out there. If this were a model section describing that the application client must read the VPD page to make a decision, then it would not be a NOTE. However, the bit is purely informational, since you cannot fetch the VPD page without already setting TLR CONTROL to something (and possibly having a mismatch with a SAS-1.1 target). The paragraph above the note explains how the initiator must gently probe.)

This note << NOTE 85 - The TLR >> should be normative text.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

> target port s/b SSP target port

Author: RElliott Subject: Highlight

Comments from page 444 continued on next page

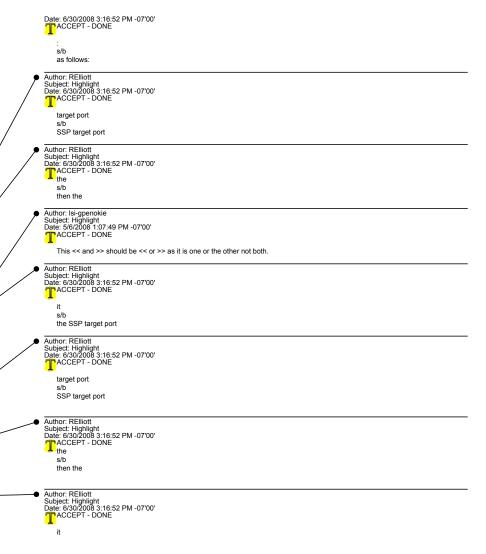
Table 164 — FRAME TYPE field

Code	Name of frame	Type of information unit	Originator	Information unit size (bytes)	Reference
01h	DATA frame (i.e., write DATA frame or read DATA frame)	Data information unit (i.e., write Data information unit or read Data information unit)	SSP initiator port or SSP target port	1 to 1 024	9.2.2.4
05h	XFER_RDY frame	Transfer Ready information unit	SSP target port	12	9.2.2.3
06h	COMMAND frame	Command information unit	SSP initiator port	28 to 280	9.2.2.1
07h	RESPONSE frame	Response information unit	SSP target port	24 to 1 024	9.2.2.5
16h	TASK frame	Task Management Function information unit	SSP initiator port	28	9.2.2.2
F0h - FFh	Vendor specific			•	
All others	Reserved	·			

The HASHED SOURCE SAS ADDRESS field contains the hashed value of the source SAS address (see 4.2/3). See 9.2.6.2.2 and 9.2.6.3.2 for transport layer requirements on checking this field.

If an initiator port supports transport layer retries, it shall set the TLR CONTROL field to 01b in each #/DMMAND frame it sends unless it has determined that the I_T_L nexus does not support the TLR CONTROL field.

If an initiator port does not support transport layer retries, it shall set the TLR CONTROL field to 30b in each COMMAND frame it sends unless it has determined that the I_T_L nexus does not support the TLR CONTRO field.


An initiator port determines that an I_T_L nexus does not support the TLR CONTROL field if the sends of COMMAND frame with the TLR CONTROL field set to 01b or 10b and receives a RESPONSE frame with the DATAPRES field set to RESPONSE_DATA and the RESPONSE CODE field set to 02h (j.e., VNV LID FRAME). After determining that an I_T_L nexus does not support the TLR CONTROL field, an initiative port shall set the TLR CONTROL field to 00b for subsequent COMMAND frames for that I_T_L nexus.

NOTE 84 - Initiator ports compliant with previous versions of this standard always set the TLR CONTROL field to 00b.

NOTE 85 - The TLR CONTROL SUPPORTED field in the Protocol-Specific Logical Unit Information /PD page (see 10.2.11.3) indicates if the target port supports the TLR CONTROL field set /o a non-zero value.

A TLR CONTROL field set to 00b or 11b in a COMMAND frame specifies that the SSP target port shall use the TRANSPORT LAYER RETRIES bit in the Protocol-Specific Logical Unix mode page (see 1).2.7.27 to enable or disable transport layer retries for this command:

- a) if the TRANSPORT LAYER RETRIES bit is set to one, the larget port spair set the RETRY DATA FRAMES bit to one in any XFER_RDY frames that it transmits for this command;
- b) if the TRANSPORT LAYER RETRIES bit is set to zero, the target port shall set the RETRY DATA FRAMES bit to zero in any XFER_RDY frames that it transmits for this command.

Comments from page 444 continued on next page

Table 164 — FRAME TYPE field

Code	Name of frame	Type of information unit	Originator	Information unit size (bytes)	Reference
01h	DATA frame (i.e., write DATA frame or read DATA frame)	Data information unit (i.e., write Data information unit or read Data information unit)	SSP initiator port or SSP target port	1 to 1 024	9.2.2.4
05h	XFER_RDY frame	Transfer Ready information unit	SSP target port	12	9.2.2.3
06h	COMMAND frame	Command information unit	SSP initiator port	28 to 280	9.2.2.1
07h	RESPONSE frame	Response information unit	SSP target port	24 to 1 024	9.2.2.5
16h	TASK frame	Task Management Function information unit	SSP initiator port	28	9.2.2.2
F0h - FFh	Vendor specific				•
All others	Reserved	·			

The HASHED SOURCE SAS ADDRESS field contains the hashed value of the source SAS address (see 4.2.3). See 9.2.6.2.2 and 9.2.6.3.2 for transport layer requirements on checking this field.

If an initiator port supports transport layer retries, it shall set the TLR CONTROL field to 01b in each COMMAND frame it sends unless it has determined that the I_T_L nexus does not support the TLR CONTROL field.

If an initiator port does not support transport layer retries, it shall set the TLR CONTROL field to 10b in each COMMAND frame it sends unless it has determined that the I_T_L nexus does not support the TLR CONTROL field.

444

An initiator port determines that an I_T_L nexus does not support the TLR CONTROL field if it sends a COMMAND frame with the TLR CONTROL field set to 01b or 10b and receives a RESPONSE frame with the DATAPRES field set to RESPONSE_DATA and the RESPONSE CODE field set to 02h (i.e., INVALID FRAME). After determining that an I_T_L nexus does not support the TLR CONTROL field, an initiator port shall set the TLR CONTROL field to 00b for subsequent COMMAND frames for that I_T_L nexus.

NOTE 84 - Initiator ports compliant with previous versions of this standard always set the TLR CONTROL field to 00b.

NOTE 85 - The TLR CONTROL SUPPORTED field in the Protocol-Specific Logical Unit Information VPD page (see 10.2.11.3) indicates if the target port supports the TLR CONTROL field set to a non-zero value.

A TLR CONTROL field set to 00b or 11b in a COMMAND frame specifies that the SSP target port shall use the TRANSPORT LAYER RETRIES bit in the Protocol-Specific Logical Unit mode page (see 10.2.7.3) to enable or disable transport layer retries for this command:

- a) if the TRANSPORT LAYER RETRIES bit is set to one, the target port shall set the RETRY DATA FRAMES bit to one in any XFER_RDY frames that it transmits for this command; and
- b) if the TRANSPORT LAYER RETRIES bit is set to zero, the target port shall set the RETRY DATA FRAMES bit to zero in any XFER_RDY frames that it transmits for this command.

Working Draft Serial Attached SCSI - 2 (SAS-2)

s/b the SSP target port

A TLR CONTROL field set to 01b in a COMMAND frame specifies that the SSP target port may enable transport layer retries for this command and:

- ு இடிப்பிக்கு ables transport layer retries, <mark>the</mark> target port shall set the RETRY DATA FRAMES bit to one in any XFER RSY frames that it transmits for this command; and
 - b) if it does not enable transport layer retries, in target port shall set the RETRY DATA FRAMES bit to zero in any XFER RDY itsmes that it transmits for this command.

A TLR CONTROL field set to 10b in a COMMAND frame specifies that the SNP target port shall:

- a) disable transport layer retries for this command; and
- b) set the RETRY DATA-FRAMES bit to zero in any XFER RDY frames that it transmits for this command.

The TLR CONTROL field is reserved for frames other than COMMAND frames

A target port sets the RETRY DATA FRAMES bit in an XFER_RDY frame seed on the TOR CONTROL field received in the COMMAND frame for the command and the TRANSPORT LAYER RETRIES by in the Protocol-Specific Logical Unit mode page (see 10.2.7.3).

A RETRY DATA FRAMES bit set to one in an XFER_RDY frame specifies that the SSP initiator port shall enable transport layer retries for write DATA transfers related to this XFER_RDY.

A RETRY DATA FRAMES bit set to zero in an XFER RDY rame specifies that the SSP initiator but shall disable transport layer retries for write DATA transfers related to this XFER RDY.

The RETRY DATA FRAMES bit is reserved for frames other than XFER_RDY frames.

A RETRANSMIT bit set to one specifies that the frame is a retransmission after the SSP port failed in its previous attempt to transmit the frame. The RETRANSMIT bit is set to one for TASK frames, RESPONSE frames, and XFER RDY frames under the conditions defined in 9.2.4 and shall be set to zero for all other frame types

A CHANGING DATA POINTER bit set to one this bit specifies that the frame is a retransmission after the SSP post failed in its previous attempt to transmit the frame or a subsequent frame and the DATA OFFSET field of the frame may not be sequentially increased from that of the previous frame. The CHANGING DATA POINTER bit is set to one for DATA frames under the conditions defined in 9.2.4 and shall be set to zero for all other frame

The NUMBER OF FILL BYTES field specifies the number of fill bytes between the INFORMATION NIT field and the CRC field. The NUMBER OF FILL BYTES field shall be set to zero for all frame types except DATA rames as specified in 9.2.2.4 and RESPONSE frames as specified in 9.2.2.5 (i.e., all other frame types are already four-byte aligned).

The TAG field contains a value that allows the SSP initiator port to establish a context for commands and task management functions

For COMMAND frames and TASK frames, the SSP initiator port shall set the TAG field to a value that is unique for the I_T nexus established by the connection (see 7.12). An SSP initiator port shall not reuse the same tag when transmitting COMMAND frames or TASK frames to different LUNs in the same SSP target port. An SSP initiator port may reuse a tag when transmitting frames to different SSP target ports. An SSP initiator port does not reuse a tag until it receives indication from the SSP target port that the tag is no longer in use (see 9.2.4, 9.2.5, and 10.2.2).

The TAG field in a COMMAND frame contains the task tag defined in SAM-4. The TAG field in a TASK frame does not correspond to a SAM-4 task tag, but corresponds to an SAM-4 association (see 10.2.1). The tag space used in the TAG fields is shared across COMMAND frames and TASK frames (e.g., if a tag is used for a COMMAND frame, it is not also used for a concurrent TASK frame).

For DATA, XFER_RDY, and RESPONSE frames, the SSP target port shall set the TAG field to the tag of the command or task management function to which the frame pertains.

The TARGET PORT TRANSFER TAG field provides an optional method for an SSP target port to establish the write data context when receiving a write DATA frame (i.e., determine the command to which the write data corresponds). Unlike the TAG field, which was assigned by the SSP initiator port, the TARGET PORT TRANSFER TAG field in a write DATA frame contains a value assigned by the SSP target port that was delivered to the SSP initiator port in the XFER_RDY frame requesting the write data.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 445

the SSP target port

445

```
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
   and
   s/b
    . and
Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
    To follow the first noun/subject convention for "it", reword as 3 single sentence paragraphs. They're all in a table cell of their own, so
   it's not important to bunch them into one paragraph.
   The SSP target port may enable transport layer retries for this command.
   If the SSP target port enables transport layer retries, then it shall set the retry data frames bit to one in any XFER RDY frames that
   it transmits for this command.
   If the SSP target port does not enable transport layer retries, then it shall set the retry data frames bit to zero in any XFER_RDY
   frames that it transmits for this command.
Author: wdc-mevans
Subject: Highlight
Date: 6/17/2008 4:55:18 PM -07'00'
   ACCEPT - DONE (see rewording comment)
   s/b
   the SSP target port
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
 the
   then the
Author: Isi-gpenokie
Subject: Highlight
Date: 6/17/2008 4:56:51 PM -07'00'
REJECT (a)b) list changed into standalone sentences instead)
   This << and >> should be << or >> as it is one or the other not both
Author: wdc-meyans
Subject: Highlight
Date: 6/17/2008 4:55:27 PM -07'00'
 PACCEPT - DONE (see rewording comment)
   it
```

Comments from page 445 continued on next page

A TLR CONTROL field set to 01b in a COMMAND frame specifies that the SSP target port may enable transperil layer retries for this command and:

- a) if it enables transport layer retries, the target port shall set the RETRY DATA FRAMES bit to one in any XFER RDY frames that it transmits for this command
- if it does not enable transport layer retries, the target port shall set the RETRY DATA FRAMES bit to zero
 in any XFER RDY frames that it transmits for this command.

A TLR CONTROL field set to 10b in a COMMAND frame specifies that the SSP target port shall:

- a) disable transport layer retries for this command; and
- b) set the RETRY DATA FRAMES bit to zero in any XFER RDY frames that it transmits for this command.

The TLR CONTROL field is reserved for frames other than COMMAND frames.

A target port sets the RETRY DATA FRAMES bit in an XFER_RDY frame based on the TLR CONTROL field received in the COMMAND frame for the command and the TRANSPORT LAYER RETRIES bit in the Protocol-Specific Logical Unit mode page (see 10.2.7.3).

A RETRY DATA FRAMES bit set to one in an XFER_RDY frame specifies that the SSP initiator port shall enable transport layer retries for write DATA transfers related to this XFER_RDY.

A RETRY DATA FRAMES bit set to zero in an XFER_RDY frame specifies that the SSP initiator port shall-disable transport layer retries for write DATA transfers related to this XFER_RDY.

The RETRY DATA FRAMES bit is reserved for frames other than XFER_RDY frames.

A RETRANSMIT bit set to one specifies that the frame is a retransmission after the SSP port failed in its previous attempt to transmit the frame. The RETRANSMIT bit is set to one for TASK frames, RESPONSE frames, and XFER RDY frames under the conditions defined in 9.2.4 and shall be set to zero for all other frame types.

A CHANGING DATA POINTER bit set to one this bit specifies that the frame is a retransmission after the SSP port failed in its previous attempt to transmit the frame or a subsequent frame and the DATA OFFSET field of the frame may not be sequentially increased from that of the previous frame. The CHANGING DATA POINTER bit is set to one for DATA frames under the conditions defined in 9.2.4 and shall be set to zero for all other frame types.

The NUMBER OF FILL BYTES field specifies the number of fill bytes between the INFORMATION UNIT field and the CRC field. The NUMBER OF FILL BYTES field shall be set to zero sec all frame types except DATA frames as specified in 9.2.2.4 and RESPONSE frames as specified in 9.2.2.5 (i.e., all other frame types are already four-byte aligned).

The TAG field contains a value that allows the SSP initiator port to establish a context for commands and task management functions.

For COMMAND frames and TASK frames, the SSP initiator port shall set the TAG field to a value that is unique for the I_T nexus established by the connection (see 7.12). An SSP initiator port shall not reuse the same tag when transmitting COMMAND frames or TASK frames to different LUNs in the same SSP target port. An SSP initiator port may reuse a tag when transmitting frames to different SSP target ports. An SSP initiator port does not reuse a tag until it receives indication from the SSP target port that the tag is no longer in use (see 9.2.4, 9.2.5, and 10.2.2).

The TAG field in a COMMAND frame contains the task tag defined in SAM-4. The TAG field in a TASK frame does not correspond to a SAM-4 task tag, but corresponds to an SAM-4 association (see 10.2.1). The tag space used in the TAG fields is shared across COMMAND frames and TASK frames (e.g., if a tag is used for a COMMAND frame, it is not also used for a concurrent TASK frame).

For DATA, XFER_RDY, and RESPONSE frames, the SSP target port shall set the TAG field to the tag of the command or task management function to which the frame pertains.

The TARGET PORT TRANSFER TAG field provides an optional method for an SSP target port to establish the write data context when receiving a write DATA frame (i.e., determine the command to which the write data corresponds). Unlike the TAG field, which was assigned by the SSP initiator port, the TARGET PORT TRANSFER TAG field in a write DATA frame contains a value assigned by the SSP target port that was delivered to the SSP initiator port in the XFER_RDY frame requesting the write data.

445

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b then the Author: elx-bmartin ACCEPT - DONE (added a footnote to the new table defining TLR CONTROL: "a If the target port does receives a non-zero value in the tlr control field and does not support non-zero values in the tlr control field, then it shall reply with a RESPONSE frame with the datapres field set to RESPONSE DATA and the response code field set to 02h (i.e., INVALID FRAME)." Added this to the state machine and the transport layer error handling summary sections too as separate comments. the SSP .. if the SSP target port supports the TLR CONTROL field, then the SSP ... note from previous page - if the target does not support this it sends a response of INVALID FRAME. Author: RElliott Date: 6/30/2008 3:16:52 PM -07'00' A target port An SSP target port Author: wdc-mevans Subject: Cross-Out Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE this bit [Delete the unnecessary words.] Author: stx-ghoulder Subject: Highlight Date: 5/30/2008 3:51:25 PM -07'00' in 9.2.4 and clause reference should be 9.2.4.5. Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' zero 00b Author: wdc-mevans Subject: Cross-Out Date: 5/6/2008 1:07:49 PM -07'00' ACCEPT - DONE

A TLR CONTROL field set to 01b in a COMMAND frame specifies that the SSP target port may enable transport layer retries for this command and:

- a) if it enables transport layer retries, the target port shall set the RETRY DATA FRAMES bit to one in any XFER RDY frames that it transmits for this command; and
- b) if it does not enable transport layer retries, the target port shall set the RETRY DATA FRAMES bit to zero in any XFER RDY frames that it transmits for this command.

A TLR CONTROL field set to 10b in a COMMAND frame specifies that the SSP target port shall:

- a) disable transport layer retries for this command; and
- b) set the RETRY DATA FRAMES bit to zero in any XFER RDY frames that it transmits for this command.

The TLR CONTROL field is reserved for frames other than COMMAND frames.

A target port sets the RETRY DATA FRAMES bit in an XFER RDY frame based on the TLR CONTROL field received in the COMMAND frame for the command and the TRANSPORT LAYER RETRIES bit in the Protocol-Specific Logical Unit mode page (see 10.2.7.3).

A RETRY DATA FRAMES bit set to one in an XFER_RDY frame specifies that the SSP initiator port shall engole transport layer retries for write DATA transfers related to this XFER_RDY.

A RETRY DATA FRAMES bit set to zero in an XFER RDY frame specifies that the SSP initiator port shall disable transport layer retries for write DATA transfers related to this XFER RDY.

The RETRY DATA FRAMES bit is reserved for frames other than XFER_RDY frames.

A RETRANSMIT bit set to one specifies that the frame is a retransmission after the SSP port failed in its previous attempt to transmit the frame. The RETRANSMIT bit is set to one for TASK frames, RESPONSE frames, and XFER RDY frames under the conditions defined in 9.2.4 and shall be set to zero for all other frame types.

A CHANGING DATA POINTER bit set to one this bit specifies that the frame is a retransmission after the SSP port failed in its previous attempt to transmit the frame or a subsequent frame and the DATA OFFSET field of the frame may not be sequentially increased from that of the previous framy. The CHANGING DATA POINTER bit is set to one for DATA frames under the conditions defined in 9.2.4 and shall be set to zero for all other frame

The NUMBER OF FILL BYTES field specifies the number of fill bytes between the INFORMATION UNIT field and the CRC field. The NUMBER OF FILL BYTES field shall be set to zero for all frame types except DATA frames as specified in 9.2.2.4 and RESPONSE frames as specified in 9.2.2.5 (i.e., all other frame types are already

The TAG field contains a value that allows the SSP initiator port to establish a context for commands and task management functions.

For COMMAND frames and TASK frames, the SSP initiator port shall set the TAG field to a value that is unique for the I_T nexus established by the connection (see 7.12). An SSP initiator port shall not reuse the same tag when transmitting COMMAND frames of TASK frames to different LUNs in the same SSP target port. An SSP initiator port may reuse a tag when transmitting frames to different SSP target ports. An SSP initiator port does not reuse a tag until it receives indication from the SSP target port that the tag is no longer in use (see 9.2.4, 9.2.5, and 10.2.2).

The TAG field in a COMMAND frame contains the task tag defined in SAM-4. The TAG field in a TASK frame does not correspond to a AM-4 task tag, but corresponds to an SAM-4 association (see 10.2.1). The tag space used in the TAG fields is shared across COMMAND frames and TASK frames (e.g., if a tag is used for a COMMAND frame, it is not also used for a concurrent TASK frame).

For DATA, XFER_RDY, and RESPONSE frames, the SSP target port shall set the TAG field to the tag of the command or task management function to which the frame pertains.

The TARGET PORT TRANSFER TAG field provides an optional method for an SSP target port to establish the write data context when receiving a write DATA frame (i.e., determine the command to which the write data corresponds). Unlike the TAG field, which was assigned by the SSP initiator port, the TARGET PORT TRANSFER TAG field in a write DATA frame contains a value assigned by the SSP target port that was delivered to the SSP initiator port in the XFER_RDY frame requesting the write data.

Working Draft Serial Attached SCSI - 2 (SAS-2)

445

[Delete the unnecessary word.]

Author: Isi-gpenokie

Subject: Highlight Date: 6/27/2008 10:29:23 AM -07'00'

REJECT (The 3 referenced sections describe the rules in more detail. This is actually the responsibility of the application layer not the transport layer, so a "shall" is not well positioned here.)

This << initiator port does not reuse a tag until it >> should be << initiator port shall not reuse a tag until it >>

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

s/b then it

NOTE 86 - The TARGET PORT TRANSFER TAG field may be useful when the SSP target port has more than one XFER_RDY frame outstanding (i.e., the SSP target port has transmitted an XFER_RDY frame for each of two or more commands and has not yet received all the write data for them).

SSP target ports may set the TARGET PORT TRANSFER TAG field to any value when transmitting any SSP frame. SSP target ports that use this field should set the TARGET PORT TRANSFER TAG field in every XFER_RDV frame to a value that is unique for the L_Q portion of the L_L Q nexus (i.e., that is unique for every XFER_RDV that is outstanding from the SSP target port).

SSP initiator ports shall set the TARGET PORT TRANSFER TAG field as follows:

- a) For each write DATA frame that is sent in response to an XFER_RDY frame, the SSP initiator port shall set the TARGET PORT TRANSFER TAG field to the value that was in the corresponding XFER_RDY frame;
- For each write DATA frame that is sent containing first burst data (see 9.2.2.4), the SSP initiator port shall set the TARGET PORT TRANSFER TAG field to FFFFh; and
- c) For frames other than write DATA frames, the SSP initiator port shall set the TARGET PORT TRANSFER TAG field to FFFFT:

For DATA frames, the DATA OFFSET field is described in 9.2.2.4. For all other frame types, the DATA OFFSET field shall be ignored.

The INFORMATION UNIT field contains the information unit, the format of which is defined by the FRAME TYPE field (see table 164). The maximum size of the INFORMATION UNIT field is 1 024 bytes, making the maximum size of the frame 1 052 bytes (1 024 bytes of data + 24 bytes of header + 4 bytes of CRC).

Fill bytes shall be included after the INFORMATION UNIT field so the CRC field is aligned on a four byte boundary. The number of fill bytes are specified by the NUMBER OF FILL BYTES field. The contents of the fill bytes are vendor specific.

The CRC field contains a CRC value (see 7.5) that is computed over the entire SSP frame prior to the CRC field including the fill bytes (i.e., all data dwords between the SOF and EOF). The CRC field is checked by the link layer (see 7.16), not the transport layer.

9.2.2 Information units

9.2.2.1 COMMAND frame - Command information unit

The COMMAND frame is sent by an SSP initiator port to request that a command be processed by the device server in a logical unit (see 9.2.3.3, 9.2.3.4, 9.2.3.5, and 9.2.3.6).

Page: 446

```
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
    For
    s/b
    for
    (part of global change to lowercase a)b)c) entries)
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
    For
    s/b
    for
    (part of global change to lowercase a)b)c) entries)
 Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    For
    s/b
    for
    (part of global change to lowercase a)b)c) entries)
 Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
    move this earlier and add an i.e.,
    24 bytes of header +
Author: stx-ahoulder
Subject: Highlight
Date: 6/27/2008 1:36:31 PM -07'00'
 TACCEPT - DONE
    Should be "the first byte of the CRC field".
Author: stx-ghoulder
Subject: Highlight
Date: 6/27/2008 1:40:51 PM -07'00'
TREJECT (this standard is silent on where the CRC in inserted - the transport and link layer are both possible. It is clear that it must be checked by the link layer, though.)
```

NOTE 86 - The TARGET PORT TRANSFER TAG field may be useful when the SSP target port has more than one XFER_RDY frame outstanding (i.e., the SSP target port has transmitted an XFER_RDY frame for each of two or more commands and has not yet received all the write data for them).

SSP target ports may set the TARGET PORT TRANSFER TAG field to any value when transmitting any SSP frame. SSP target ports that use this field should set the TARGET PORT TRANSFER TAG field in every XFER_RDY frame to a value that is unique for the L_Q portion of the I_T_L_Q nexus (i.e., that is unique for every XFER_RDY that is outstanding from the SSP target port).

SSP initiator ports shall set the TARGET PORT TRANSFER TAG field as follows:

- a) For each write DATA frame that is sent in response to an XFER_RDY frame, the SSP initiator port shall set the TARGET PORT TRANSFER TAG field to the value that was in the corresponding XFER_RDY frame;
- <u>For</u> each write DATA frame that is sent containing first burst data (see 9.2.2.4), the SSP initiator port shall set the TARGET PORT TRANSFER TAG field to FFFFh; and
- <u>For</u> frames other than write DATA frames, the SSP initiator port shall set the TARGET PORT TRANSFER TAG field to FFFFh.

For DATA frames, the DATA OFFSET field is described in 9.2.2.4. For all other frame types, the DATA OFFSET field shall be ignored.

The INFORMATION UNIT field contains the information unit, the format of which is defined by the FRAME TYPE field (see table 164). The maximum size of the INFORMATION UNIT field is 1 024 bytes, making the maximum size of the frame 1 052 bytes (1 024 bytes of data + 24 bytes of header + 4 bytes of CRC).

Fill bytes shall be included after the INFORMATION UNIT field so the CRC field is aligned on a four byte boundary. The number of fill bytes are specified by the NUMBER OF FILL BYTES field. The contents of the fill bytes are vendor specific.

The CRC field contains a CRC value (see 7.5) that is computed over the entire SSP frame prior to the CRC field including the fill bytes (i.e., all data dwords between the SOF and EOF). The CRC field is checked by the link layer (see 7.16), not the transport layer.

9.2.2 Information units

446

9.2.2.1 COMMAND frame - Command information unit

The COMMAND frame is sent by an SSP initiator port to request that a command be processed by the device server in a logical unit (see 9.2.3.3, 9.2.3.4, 9.2.3.5, and 9.2.3.6).

Working Draft Serial Attached SCSI - 2 (SAS-2)

checked

should be "generated and checked"

Table 165 defines the Command information unit used in the COMMAND frame.

Table 165 — COMMAND frame - Command information unit

Byte\Bit	7	6	5	4	3	2	1	0				
0				LOGICAL UN	IT NII IMBED							
7				LOGICAL ON	II NOMBER							
8				Rese	erved							
9	ENABLE FIRST BURST		1	TASK ATTRIBUTE								
10				Rese	erved							
11		ADDITIO	ONAL CDB LE	NGTH (n dw	ords)		Res	erved				
12				CF	ıD.							
27			CDB									
28		ADDITIONAL CDB BYTES										
27+n×4				ADDITIONAL	CDD BT IES							

The LOGICAL UNIT NUMBER field contains the address of the logical unit. The structure of the LOGICAL UNIT NUMBER field shall be as defined in SAM-4. If the addressed logical unit does not exist, the task manager shall follow the rules for selection of incorrect logical units defined in SAM-4.

An ENABLE FIRST BURST bit set to one specifies that the SSP target port shall expect first burst data for the command as defined by the FIRST BURST SIZE field in the Disconnect-Reconnect mode page (see 10.2.7.2). An ENABLE FIRST BURST bit set to zero specifies that the SSP target port shall not expect first burst data for the command (i.e., that the FIRST BURST SIZE field in the Disconnect-Reconnect mode page shall be ignored). Application clients shall only set the ENABLE FIRST BURST bit to one if:

- a) the FIRST BURST SIZE field in the Disconnect-Reconnect mode page is non-zero or changeable; and
- the logical unit and target port comply with this standard (e.g., as reported in the standard INQUIRY data version descriptors (see SPC-4)).

The TASK PRIORITY field specifies the relative scheduling of the task containing this command in relation to other tasks already in the task set, if the tasks have SIMPLE task attributes (see SAM-4).

Page: 447 Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00' "TACCEPT - DONE

Global

Change << TASK PRIORITY >> to << command priority >>

Author: wdc-mevans
 Subject: Highlight
 Date: 56/2008 1:07:49 PM -07'00'
 TACCEPT - DONE (globally; also per Isi-gop comment)
 Global
 TASK PRIORITY
 s/b
 COMMAND PRIORITY

Author: wdc-mevans
Subject: Highlight
Date: 6/27/2008 7:05:22 AM -07'00'

ACCEPT - DONE (as "specifies the logical unit number of the logical unit to which the task router shall route the command.")

address of the logical unit.

LUN of the logical unit addressed by the application client for the command.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

task manager
s/b
task router

Although SAM-4 doesn't say which entity in the SCSI target device handles incorrect LUNs for commands, it does have the task router do that job for TMFs. Since the LUN is incorrect, there probably is no task manager to handle a command either, so the task router is the logical choice for commands as well.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b
then the

Author: stx-ghoulder Subject: Highlight Date: 5/26/2008 8:19:42 AM -07'00'

or changeable;

Delete this. If the FIRST BURST SIZE is changeable but set to zero the ENABLE FIRST BURST bit should still be set to zero.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Comments from page 447 continued on next page

28 January 2008

T10/1760-D Revision 14

Table 165 defines the Command information unit used in the COMMAND frame.

Table 165 — COMMAND frame - Command information unit

Byte\Bit	7	6	5	4	3	2	1	0		
0				LOGICAL UN	IT NUMBER					
7		-		LOGICAL UN	II NUMBER					
8				Rese	erved					
9	ENABLE FIRST BURST		TASK PRIORITY					TE		
10				Rese	erved					
11		ADDITIO	NAL CDB LE	NGTH (n dw	ords)		Kes	erved		
12				0.0	D					
27		-	CDB							
28				ADDITIONAL	CDB BVTEC					
27+n×4		•		ADDITIONAL	CDB BYTES	•				

The LOGICAL UNIT NUMBER field contains the address of the logical unit. The structure of the LOGICAL UNIT NUMBER field shall be as defined in SAM-4. If the addressed logical unit does not exist, the task manager shall follow the rules for selection of incorrect logical units defined in SAM-4.

An ENABLE FIRST BURST bit set to one specifies that the SSP target port shall expect first burst data for the command as defined by the FIRST BURST SIZE field in the Disconnect-Reconnect mode page (see 10.2.7.2). An ENABLE FIRST BURST bit set to zero specifies that the SSP target port shall not expect first burst data for the command (i.e., that the FIRST BURST SIZE field in the Disconnect-Reconnect mode page shall be ignored). Application clients shall only set the ENABLE FAST BURST bit to one if:

- a) the FIRST BURST SIZE field in the Disconnect-Reconnect mode page is non-zero or changeable; and
- b) the logical unit and target port comply with this standard (e.g., as reported in the standard INQUIRY data version descriptors (see SPC-4)).

The TASK PRIORITY field specifies the relative scheduling of the task containing this command in relation to other tasks already in the task set, if the tasks have SIMPLE task attributes (see SAM-4).

TACCEPT - DONE non-zero s/h set to a value other than 0000h

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

target port SSP target port

Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:49 PM -07'00'

TACCEPT - DONE (as "The command priority field specifies the relative scheduling importance of a command with the task attribute field set to 000b (i.e., SIMPLE) in relation to other commands already in the task set with SIMPLE task attributes (see SAM-4)")

The TASK PRIORITY field specifies the relative scheduling of the task containing this command in relation to other tasks already in the task set, if the tasks have SIMPLE task attributes (see SAM-4).

If the TASK ATTRIBUTE field is set to SIMPLE (see table 166), then the COMMAND PRIORITY field specifies the relative scheduling importance of this command in relation to other commands having the SIMPLE task attribute that are already in the task set (see SAM-4).

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' SIMPLE small caps to match SAM-4

The TASK ATTRIBUTE field is defined in table 166.

Table 166 — TASK ATTRIBUTE field

Code	Task attribute	Description
000b	SIMPLE	Specifies that the task be managed according to the rules for a simple task attribute (see SAM-4).
001b	HEAD OF QUEUE	Specifies that the task be managed according to the rules for a head of queue task attribute (see SAM-4).
010b	ORDERED	Specifies that the task be managed according to the rules for an ordered tesk attribute (see SAM-4).
011b	Reserved	
100b	ACA	Specifies that the task be managed according to the rules for an automatic contingent allegiance task attribute (see SAM-4).
101b-111b	Reserved	

The ADDITIONAL CDB LENGTH field contains the length in dwords (four bytes) of the ADDITIONAL CDB field.

The CDB and ADDITIONAL CDB BYTES fields together contain the CDB to be interpreted by the addressed logical unit. Any bytes between the lend of the CDB and the end of the two fields shall be ignored (e.g., a six-byte CDB occupies the first six bytes of the CDB field, the remaining ten bytes of the CDB field are ignored, and the ADDITIONAL CDB BYTES field is not present).

The contents of the CDB are defined in the SCSI command standards (e.g., SPC-4).

9.2.2.2 TASK frame - Task Management Function information unit

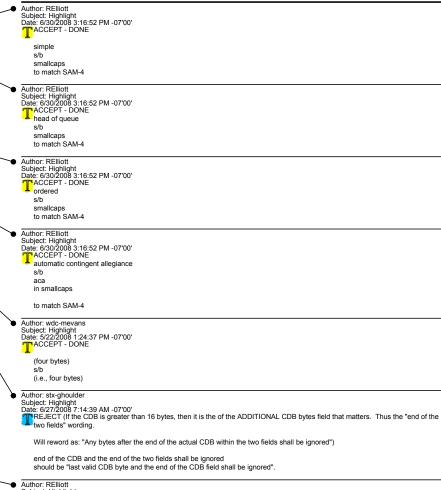

The TASK frame is sent by an SSP initiator port to request that a task management function be processed by the task manager in a logical unit (see 9.2.3.2).

Table 167 defines the Task Management Function information unit used in the TASK frame.

Table 167 — TASK frame - Task Management Function information unit

Byte\Bit	7	6	5	4	3	2	1	0			
0				1001041 111	IT NUMBER						
7				LOGICAL UN	II NUMBER						
8				Res	erved						
9		Reserved									
10		TASK MANAGEMENT FUNCTION									
11				Res	erved						
12	(MSB)					 -					
13			TAG	OF TASK TO) BE MANAG	Ευ ——		(LSB)			
14			Reserved								
27		•		Rese	iveu						

Page: 448

Comments from page 448 continued on next page

The TASK ATTRIBUTE field is defined in table 166.

Table 166 — TASK ATTRIBUTE field

Code	Task attribute	Description
000b	SIMPLE	Specifies that the task be managed according to the rules for a simple task attribute (see SAM-4).
001b	HEAD OF QUEUE	Specifies that the task be managed according to the rules for a head of queue task attribute (see SAM-4).
010b	ORDERED	Specifies that the task be managed according to the rules for an ordered task attribute (see SAM-4).
011b	Reserved	
100b	ACA	Specifies that the task be managed according to the rules for an automatic contingent allegiance task attribute (see SAM-4).
101b-111b	Reserved	

The ADDITIONAL CDB LENGTH field contains the length in dwords (four bytes) of the ADDITIONAL CDB field.

The CDB and ADDITIONAL CDB BYTES fields together contain the CDB to be interpreted by the addressed logical unit. Any bytes between the <code>lend</code> of the CDB and the end of the two fields shall be ignored (e.g., a six-byte CDB occupies the first six bytes of the CDB field, the remaining ten bytes of the CDB field are ignored, and the ADDITIONAL CDB BYTES field is not present).

The contents of the CDB are defined in the SCSI command standards (e.g., SPC-4).

9.2.2.2 TASK frame - Task Management Function information unit

448

The TASK frame is sent by an SSP initiator port to request that a task management function be processed by the task manager in a logical unit (see 9.2.3.2).

Table 167 defines the Task Management Function information unit used in the TASK frame.

Table 167 — TASK frame - Task Management Function information unit

Byte\Bit	7	6	5	4	3	2	1	0				
0				LOGICAL UN	IT AU IMPED							
7				LOGICAL UN	II NUMBER							
8				Rese	erved							
9		Reserved										
10		TASK MANAGEMENT FUNCTION										
11				Rese	erved							
12	(MSB)		TAC	OF TABLE TO	DE MANAGE	<u></u>						
13			TAG OF TASK TO BE MANAGED (LSB)									
14				Rese	nyod							
27				Rese	iveu							

Working Draft Serial Attached SCSI - 2 (SAS-2)

Global - to match SAM-4 elimination of "task", change this field name. This may make it clearer that TMFs using this field manage commands and not other TMFs, too. Since another comment is expanding "tag" to "initiator port transfer tag", get rid of the "of task" part altogether to keep the field size smaller. Shorten "to be managed" to "to manage" as well.

TAG OF TASK TO BE MANAGED s/b INITIATOR PORT TRANSFER TAG TO MANAGE

The LOGICAL UNIT NUMBER field contains the address of the logical unit. The structure of the logical unit number field shall be as defined in SAM-4. If the addressed logical unit does not exist, the task manager shall returns. RESPONSE frame with the DATAPRES field set to RESPONSE_DATA and its RESPONSE CODE field set to ROCORRECT LOGICAL UNIT NUMBER.

Table 168 defines the TASK MANAGEMENT FUNCTION field.

Table 168 — TASK MANAGEMENT FUNCTION field

Code	Task management function	Uses LOGICAL UNIT NUMBER field	Uses TAG OF TASK TO BE MANAGED field	Description
91h	ABORT TASK	yes	yes	The task manager shall perform the ABORT TASK task management function with L set to the value of the LOGICAL UNIT NUMBER field and Q set to the value of the TAG OF TASK TO BE MANAGED field (see SAM-4).
02h	ABORTTASK SET	yes	no	The task manager shall perform the ABORT TASK SET task management function with L set to the value of the LOGICAL UNIT NUMBER field (see SAM-4). ^a
04h	CLEAR TASK SET	yes	80/	The task manager shall perform the CLEAR TASK SET task management function with L set to the value of the LOGICAL UNIT NUMBER field (see SAM-4). ^a
08h	LOGICAL UNIT RESET	yes	no	The task manager shall perform the LOGICAL UNIT RESET task management function with L set to the value of the LOGICAL UNIT NUMBER field (see SAM-4).
10h	I_T NEXUS RESET	no	no	The task manager small perform the I_T NEXUS RESET task management function (see SAM-4). ^a
20h	Reserved			
40h	CLEAR ACA	yes	no	The task manager shall perform the CEEAR ACA task management function with L set to the value of the LOGICAL UNIT NUMBER field (see SAM-4).
80h	QUERY TASK	yes	yes	The task manager shall perform the QUERY TASK task management function with L set to the value of the LOGICAL UNIT NUMBER field and Q set to the value of the TAG OF TASK TO BE MANAGED field (see SAM-4). ^a
81h	QUERYTASK SET	yes	no	The task manager shall perform the QUERY TASK SET task management function with L set to the value of the LOGICAL UNIT NUMBER field (see SAM-4). ^a
82h	QUERY UNIT ATTENTION	yes	no	The task manager shall perform the QUERY UNIT ATTENTION task management function with L set to the value of the LOGICAL UNIT NUMBER field (see SAM-4).
All others	Reserved			

^a The task manager shall perform the specified task management function with the I and T arguments set to the initiator port and target port involved in the connection used to deliver the TASK frame.

Page: 449 Author: wdc-mevans Subject: Highlight Date: 6/27/2008 7:07:12 AM -07'00' TACCEPT - DONE (as "specifies the logical unit number of the logical unit, if any, to which the task router shall route the task management function". Some TMFs don't specify LUNs) address of the logical unit. LUN of the logical unit addressed by the application client for the task management function. Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE logical unit number field smallcaps Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' task manager task router SAM-4 section 7.12 has the task router do this, not a task manager. For TMFs with I_T Nexus scope, there is no particular task Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE s/b then the Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' Description Left-justify Author: RElliott Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

M = implementation is mandatory, X = implementation requirements are specified by SAM-4.

which is dicated by SAM-4 (if ACA is supported, it's mandatory.)

To go with stx-ghoulder comment on pg 508, add a Support column indicating that all TMFs are mandatory except for CLEAR ACA,

The LOGICAL UNIT NUMBER field contains the address of the logical unit. The structure of the logical unit number field shall be as defined in SAM-4. If the addressed logical unit does not exist, the task manager shall return a RESPONSE frame with the DATAPRES field set to RESPONSE_DATA and its RESPONSE CODE field set to INCORRECT LOGICAL UNIT NUMBER.

Table 168 defines the TASK MANAGEMENT FUNCTION field.

Table 168 — TASK MANAGEMENT FUNCTION field

Code	Task management function	Uses LOGICAL UNIT NUMBER field	Uses TAG OF TASK TO BE MANAGED field	Description
01h	ABORT TASK	yes	yes	The task manager shall perform the ABORT TASK task management function with L set to the value of the LOGICAL UNIT NUMBER field and Q set to the value of the TAG OF TASK TO BE MANAGED field (see SAM-4).
02h	ABORT TASK SET	yes	no	The task manager shall perform the ABORT TASK SET task management function with L set to the value of the LOGICAL UNIT NUMBER field (see SAM-4). ^a
04h	CLEAR TASK SET	yes	no	The task manager shall perform the CLEAR TASK SET task management function with L set to the value of the LOGICAL UNIT NUMBER field (see SAM-4). ^a
08h	LOGICAL UNIT RESET	yes	no	The task manager shall perform the LOCICAL UNIT RESET task management function with L set to the value of the LOGICAL UNIT NUMBER field (see SAM-4).
10h	I_T NEXUS RESET	no	no	The task manager shall perform the I_T NEXUS RESET task management function (see SAM-4). ^a
20h	Reserved			
40h	CLEAR ACA	yes	no	The task manager shall perform the CLEAR ACA task management function with L set to the value of the LOGICAL UNIT NUMBER field (see SAM-4)
80h	QUERY TASK	yes	yes	The task manager shall perform the QUERY TASK task management function with L set to the value of the LOGICAL UNIT NUMBER field and Q set to the value of the TAG OF TASK TO BE MANAGED field (see SAM-4). ^a
81h	QUERYTASK SET	yes	no	The task manager shall perform the QUERY TASK SET task management function with L set to the value of the LOGICAL UNIT NUMBER field (see SAM-4). ^a
82h	QUERY UNIT ATTENTION	yes	no	The task manager shall perform the QUERY UNIT ATTENTION task management function with L set to the value of the LOGICAL UNIT NUMBER field (see SAM-4).
All others	Reserved			

to the initiator port and target port involved in the connection used to deliver the TASK frame.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

Since footnote a is referenced by every entry, move it to the column header

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

QUERY UNIT ATTENTION QUERY ASYNCHRONOUS EVENT

to match sam4r14h

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

QUERY UNIT ATTENTION QUERY ASYNCHRONOUS EVENT

to match sam4r14h

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

initiator port and target port SSP initiator port and SSP target port

^a The task manager shall perform the specified task management function with the I and T arguments set

If the TASK MANAGEMENT FUNCTION field contains a reserved or unsupported value, the teck manager shall return a RESPONSE frame with the DATAPRES field set to RESPONSE_DATA and its RESPONSE CODE field set to TASK MANAGEMENT FUNCTION NOT SUPPORTED.

If the TASK MANAGEMENT FUNCTION field is set to ABORT TASK or QUERY TASK, the FAG OF TASK TO BE MANAGED field specifies the TAG value from the COMMAND frame that contained the task to be aborted or checked. For all other task management functions, the TAG OF TASK TO BE MANAGED field shall be ignored.

9.2.2.3 XFER_RDY frame - Transfer Ready information unit

The XFER_RDY frame is sent by an SSP target port to request write data from the SSP initiator port during a write command or a bidirectional command (see 9:2:34 and 9:2.3.6).

Table 169 defines the Transfer Ready information unit used in the XFER RDY frame.

Table 169 — XFER_RDY frame - Transfer Ready information unit

Byte\Bit	7	6	5	4	3	2	1	6				
0	(MSB)			DEQUESTE								
3		•	REQUESTED OFFSET —									
4	(MSB)											
7		-	WRITE DATA LENGTH -									
8		— Reserved										
11		=		Rese	veu							

The REQUESTED OFFSET field contains the application client buffer offset of the segment of write data in the data-out buffer that the SSP initiator port may transmit to the logical unit using write DATA frames. The requested offset shall be a multiple of four (i.e., each write DATA frame shall begin transferring data on a dword boundary).

The REQUESTED OFFSET field shall be zero for the first XFER_RDY frame of a command unless

- a) the ENABLE FIRST BURST field in the COMMAND frame (see 9.2.2.1) was set to one; and
- b) the FIRST BURST SIZE field in the Disconnect-Reconnect mode page (see 10.2.7.2.5) is not set to zero.

If the **ENABLE FIRST BURST field** is the COMMAND frame (see 9.2.2.1) was set to one, then in the initial XFER_RDY frame for the command, the SSP target port shall set the REQUESTED OFFSET field to the application client buffer offset of the segment of write data following the first burst data defined by the FIRST BURST SIZE field in the Disconnect-Reconnect mode page-{see} 10.2.7.2.5).

If any additional XFER_RDY frames are required for the command and transport-layer retries are not being used, the REQUESTED OFFSET field shall be set to the sum of the requested offset and write data length of the previous XFER_RDY frame.

The WRITE DATA LENGTH field contains the number of bytes of write data the SSP initiator port may transmit to the logical unit using write DATA frames from the application client data-out buffer starting at the requested offset. The SSP target port shall set the WRITE DATA LENGTH field to a value greater than or equal to 00000001h. If the value in the MAXIMUM BURST SIZE field in the Disconnect-Reconnect mode page is not zero, the SSP target port shall set the WRITE DATA LENGTH field to a value less than or equal to the value in the MAXIMUM BURST SIZE field (see 10.2.7.2.4).

If an SSP target port transmits an XFER_RDY frame containing a WRITE DATA LENGTH field that is not divisible by four, the SSP target port shall not transmit any subsequent XFER_RDY frames for that command (i.e., only the last XFER_RDY for a command may request a non-dword multiple write data length).

Page: 450

28 January 2008

Author: RElliott
Subject: Highlight
Date: 6/30/2/008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b
then the

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

the s/b then the

Author: stx-ghoulder

Subject: Note Date: 5/6/2008 1:07:50 PM -07'00'

REJECT (the last paragraph is the one defining that field. Its sentences are each prefaced by If statements, which makes it less

Insert a paragraph

The TAG OF TASK TO BE MANAGED field indicates the TAG field value of the task that is to be managed. This field is only used for cases indicated in table 168; otherwise, it is ignored.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

zero s/b

set to 00000000h

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE
ENABLE FIRST BURST field

ENABLE FIRST BURST field s/b ENABLE FIRST BURST bit

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

not set to zero s/b set to a value other than 0000h

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
ENABLE FIRST BURST field

Comments from page 450 continued on next page

If the TASK MANAGEMENT FUNCTION field contains a reserved or unsupported value, the task manager shall return a RESPONSE frame with the DATAPRES field set to RESPONSE_DATA and its RESPONSE CODE field set to TASK MANAGEMENT FUNCTION NOT SUPPORTED.

If the TASK MANAGEMENT FUNCTION field is set to ABORT TASK or QUERY TASK, the TAG OF TASK TO BE MANAGED field specifies the TAG value from the COMMAND frame that contained the task to be aborted or checked. For all other task management functions, the TAG OF TASK TO BE MANAGED field shall be ignored.

Ę

9.2.2.3 XFER RDY frame - Transfer Ready information unit

The XFER_RDY frame is sent by an SSP target port to request write data from the SSP initiator port during a write command or a bidirectional command (see 9.2.3.4 and 9.2.3.6).

Table 169 defines the Transfer Ready information unit used in the XFER RDY frame.

Table 169 — XFER_RDY frame - Transfer Ready information unit

Byte\Bit	7	6	5	4	3	2	1	0					
0	(MSB)		REQUESTED OFFSET -										
3		•	REQUESTED OFFSET —										
4	(MSB)		WOITE DATA LENGTH										
7		-	WRITE DATA LENGTH -										
8			Peneriad										
11		-	Reserved										

The REQUESTED OFFSET field contains the application client buffer offset of the segment of write data in the data-out buffer that the SSP initiator port may transmit to the logical unit using write DATA frames. The requested offset shall be a multiple of four (i.e., each write DATA frame shall begin transferring data on a dword boundary).

The REQUESTED OFFSET field shall be zero for the first XFER_RDY frame of a command unless:

- a) the ENABLE FIRST BURST field in the COMMAND frame (see 9.2.2.1) was set to one; and
- b) the FIRST BURST SIZE field in the Disconnect-Reconnect mode page (see 10.2.7.2.5) is not let to zero

If the ENABLE FIRST BURST field in the COMMAND frame (see 9.2.2.1) was set to one, then in the initial XFER_RDY frame for the command, the SSP target port shall set the REQUESTED OFFSET field to the application client buffer offset of the segment of write data following the first ourst data defined by the FIRST BURST SIZE field in the Disconnect-Reconnect mode page (see 10.2.7.2.5)

If any additional XFER_RDY frames are required for the command and transport-layer retries are not being used, the REQUESTED OFFSET field shall be set to the sum of the requested offset and write data length of the previous XFER_RDY frame.

The WRITE DATA LENGTH field contains the number of bytes of write data the SSP initiator port may transmit to the logical unit using write DATA frames from the application client data-out buffer starting at the requested offset. The SSP target post strall set the WRITE DATA LENGTH field to a value greater than or equal to 00000001h. If the Value in the MAXIMUM BURST SIZE field in the Disconnect-Reconnect mode page is not zero, the SSF target port shall set the WRITE DATA LENGTH field to a value less than or equal to the value in the MAXIMUM BURST SIZE field (see 10.2.7.2.4).

If an SSP target port transmits an XFER_RDY frame containing a WRITE DATA LENGTH field that is not divisible by four, the SSP target port shall not transmit any subsequent XFER_RDY frames for that command (i.e., only the last XFER_RDY for a command may request a non-dword multiple write data length).

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE transport-layer retries transport layer retries (to match Isi-gop comments) Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' REJECT (only two items here) command and command, and Subject: Highlight Date: 5/23/2008 11:14:54 AM -07'00' ACCEPT - DONE s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE zero 0000h Author: wdc-mevans Subject: Highlight Date: 6/27/2008 7:27:49 AM -07'00' PACCEPT - DONE (as "the number of bytes specified by the maximum burst size field") the value in the MAXIMUM BURST SIZE field (see 10.2.7.2.4). the value in the MAXIMUM BURST SIZE field times 512 (see 10.2.7.2.4). Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b then the

ENABLE FIRST BURST bit

If the TASK MANAGEMENT FUNCTION field contains a reserved or unsupported value, the task manager shall return a RESPONSE frame with the DATAPRES field set to RESPONSE_DATA and its RESPONSE CODE field set to TASK MANAGEMENT FUNCTION NOT SUPPORTED.

If the TASK MANAGEMENT FUNCTION field is set to ABORT TASK or QUERY TASK, the TAG OF TASK TO BE MANAGED field specifies the TAG value from the COMMAND frame that contained the task to be aborted or checked. For all other task management functions, the TAG OF TASK TO BE MANAGED field shall be ignored.

9.2.2.3 XFER RDY frame - Transfer Ready information unit

The XFER_RDY frame is sent by an SSP target port to request write data from the SSP initiator port during a write command or a bidirectional command (see 9.2.3.4 and 9.2.3.6).

Table 169 defines the Transfer Ready information unit used in the XFER RDY frame.

Table 169 — XFER_RDY frame - Transfer Ready information unit

Byte\Bit	7	6	5	4	3	2	1	0				
0	(MSB)		REQUESTED OFFSET (LSB									
3		-										
4	(MSB)		MOTE DATA LENGTH									
7			WRITE DATA LENGTH									
8			Reserved									
11		-		IX636	1764			7				

The REQUESTED OFFSET field contains the application client buffer offset of the segment of write/data in the data-out buffer that the SSP initiator port may transmit to the logical upit using write DATA frances. The requested offset shall be a multiple of four (i.e., each write DATA france shall begin transferring data on a dword boundary).

The REQUESTED OFFSET field shall be zero for the first XFE/_RDY frame of a command unless:

- a) the ENABLE FIRST BURST field in the COMMAN frame (see 9.2.2.1) was set to orde; and
- b) the FIRST BURST SIZE field in the Disconnext/Reconnect mode page (see 10.2.7.2.5) is not set to zero.

If the **ENABLE FIRST BURST field** in the COMMAND frame (see 9.2.2.1) was set to one, then in the initial XFER RDY frame for the command, the XFEA arget port shall set the REQUESTED OFFSET field to the application client buffer offset of the segment of write data following the first burst data defined by the FIRST BURST SIZE field in the Disconnect-Reconfect mode page (see 10.2.7.2.5).

If any additional XFER_RDY frames are required for the command and transport-layer retries are not being used, the REQUESTED OFFSX field shall be set to the sum of the requested offset and write data length of the previous XFER_RDY frame.

The WRITE DATA LEXCTH field ontains the number of bytes of write data the SSP initiator port may transmit to the logical unit using write DATA frames from the application client data-out by fifer starting at the requested offset. The SSP target port shall set the WRITE DATA LENGTH field to a value greater than or equal to 00000001. If the value in the MAXIMUM BURST SIZE field in the Disconnect-Peconnect mode page is not zero, the SSP target port shall set the WRITE DATA LENGTH field to a value less than or equal to the value in the MAXIMUM BURST SIZE field (see 10.2.7.2.4).

450

If an SSP target port transmits an XFER_RDY frame containing a WRITE DATA LENGTH field that is not divisible by four, the SSP target port shall not transmit any subsequent XFER_RDY frames for that command (i.e., only the last XFER_RDY for a command may request a non-dword multiple write data length).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: wdc-mevans
Subject: Highlight
Date: 6/27/2008 7:28:55 AM -07'00'

TACCETT - DONE (as "WRITE DATA LENGTH field set to a value that...")

a WRITE
s/b
a value in the WRITE

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCETT - DONE

the s/b then the

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Per 6/11 LB call, add:

The value in the requested offset field plus the value of the write data length field shall not be greater than 1_00000000h (i.e., a SCSI command shall not transfer more than 2³² bytes of write data).

See related comments in Data IU section and chapter 10 on page 509

28 January 2008

T10/1760-D Revision 14

451

9.2.2.4 DATA frame - Data information unit

During a write command or a bidirectional command (see 9.2.3.4 and 9.2.3.6), one or more write DATA frames are sent by an SSP initiator port to deliver write data.

During a read command or a bidirectional command (see 9.2.3.5 and 9.2.3.6), one or more read DATA frames are sent by an SSP target port to deliver read data.

Table 170 defines the Data information unit used in the DATA frame.

Table 170 — DATA frame - Data information unit

Byte\Bit	7	6	5	4	3	2	1	0			
0		DATA									
n		-		DAI	IA .						

The DATA field contains the read data (i.e., data to the application client's data-in buffer) or write data (i.e., data from the application client's data-out buffer). The size of the DATA field (i.e., the data length) is determined by the NUMBER OF FILL BYTES field in the frame header (see 9.2.1) and the link layer reception of FOF (acc) (7.16.3).

The maximum size of the Data information unit (i.e., me DATA field) is the maximum size of any information unit in an SSP frame (see 9.2.1). The minimum size of the Data information unit is one byte.

An SSP initiator port shall only transmit a write DATA frame:

- a) in response to an XFER RDY frame; or
- b) after transmitting a COMMAND frame if the ENABLE FIRST BURST field in the COMMAND frame was set to one (see 9.2.2.1) and the FIRST BURST SIZE field in the Disconnect-Reconnect mode page is not zero (see 10.2.7.2.5).

If the value in the MAXIMUM BURST SIZE field on the Disconnect-Reconnect mode page is not zero, the maximum amount of data that is transferred at one time by an SSP target port per I_T_L_Q nexus is limited by the value in the MAXIMUM BURST SIZE field (see 10.2.7.2.4).

A write DATA frame shall only contain write data for a single XFER_RDY frame.

An SSP initiator port shall set the NUMBER OF FILL BYTES field to zero in the frame header (see 9.2.1) in all write DATA frames that it transmits in response to an XFER_RDY frame except the last write DATA frame for that XFER_RDY frame. An SSP initiator port may set the NUMBER OF FILL BYTES field to a non-zero value in the last DATA frame that it transmits in response to an XFER_RDY.

NOTE 87 - Combined with the restrictions on WRITE DATA LENGTH in the XFER_RDY frame (see 9.2.2.3), this ensures that only the last write DATA frame for a command may have data with a length that is not a multiple of four).

An SSP target port shall set the NUMBER OF FILL BYTES field to zero in the frame header (see 9.2.4) in all read DATA frames for a command except the last read DATA frame for that command. The SSP target port may set the NUMBER OF FILL BYTES field to a non-zero value in the last read DATA frame for a command (i.e., only the last read DATA frame for a command may contain data with a length that is not a multiple of four).

An SSP initiator port shall not transmit a write DATA frame for a given I_T_L_Q nexus after it has sent a TASK frame that terminates that task (e.g., an ABORT TASK).

The DATA OFFSET field in the frame header (see 9.2.1) contains the application client buffer offset as described by SAM-4. For read DATA frames, this is the offset into the application client's data-in buffer; for write DATA frames, this is the offset into the application client's data-out buffer. The data offset shall be a multiple of four (i.e., each DATA frame shall transfer data beginning on a dword boundary).

The DATA OFFSET field shall be set to zero in the initial read DATA frame for a command. If any additional read DATA frames are required for the command and transport-layer retries are not being used, the DATA OFFSET field shall be set to the sum of the data offset and data length of the previous read DATA frame.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 451

Author: stx-ghoulder Subject: Highlight Date: 6/27/2008 7:41:38 AM -07'00' ACCEPT - DONE (as: The size of the data field (i.e., the data length) is determined by subtracting the following values from the DATA frame size (i.e., the number of bytes between SOF and EOF (see 7.16.3)): a) the number of bytes in frame header (i.e., 28); b) the number of bytes in the crc field (i.e., 4); and c) the number of fill bytes, specified by the number of fill bytes field in the frame header (see 9.2.1). The size of the DATA field (i.e., the data length) is determined by the NUMBER OF FILL BYTES field in the frame header (see 9.2.1) and the link layer reception of EOF (see 7.16.3). This description is insufficient. I suggest: "The size of the DATA field (i.e., the data length) is determined by counting the number of data dwords between SOF and EOF and subtracting 28 (to account for the 24 byte header information and the 4 byte CRC information). The number of valid data bytes is determined by ignoring the last NUMBER OF FILL BYTES bytes of the DATA field." Author: stx-ghoulder Subject: Highlight
Date: 5/30/2008 3:53:53 PM -07'00'
PREJECT (9.2.1 includes the frame layout and table 164 showing information unit sizes. Since the cross reference follows "an SSP frame" it's a better match.) (see 9.2.1). replace with "(see table 164)". Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE ENABLE FIRST BURST field ENABLE FIRST BURST bit Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' is not zero set to a value other than 0000h Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' the then the Author: RElliott Subject: Highlight Date: 7/17/2008 2:56:39 PM -07'00' ACCEPT - DONE (fix this) WRITE DATA LENGTH in

Comments from page 451 continued on next page

28 January 2008

T10/1760-D Revision 14

9.2.2.4 DATA frame - Data information unit

During a write command or a bidirectional command (see 9.2.3.4 and 9.2.3.6), one or more write DATA frames are sent by an SSP initiator port to deliver write data.

During a read command or a bidirectional command (see 9.2.3.5 and 9.2.3.6), one or more read DATA frames are sent by an SSP target port to deliver read data.

Table 170 defines the Data information unit used in the DATA frame.

Table 170 — DATA frame - Data information unit

Byte\Bit	7	6	5	4	3	2	1	0
0				D.43	F.A.			
n		•		DAT	IA			

The DATA field contains the read data (i.e., data to the application client's data-in buffer) or write data //.e., data from the application client's data-out buffer). The size of the DATA field (i.e., the data length) is determined by the Number OF FILL BYTES field in the frame header (see 9.2.1) and the link layer reception of EO/ (see 7.16.3).

The maximum size of the Data information unit (i.e., the DATA field) is the maximum size of a/v information unit in an SSP frame (see 9.2.1). The minimum size of the Data information unit is one byte.

An SSP initiator port shall only transmit a write DATA frame:

- a) in response to an XFER RDY frame; or
- b) after transmitting a COMMAND frame if the ENABLE FIRST BURST field in the COMMAND frame was set to one (see 9.2.2.1) and the FIRST BURST SIZE field in the Disconnect-Recognect mode page is not zero (see 10.2.7.2.5).

If the value in the MAXIMUM BURST SIZE field on the Disconnect-Reconnect mode page is not zero, the maximum amount of data that is transferred at one time by an SSP target port or I_T_L_Q nexus is limited by the value in the MAXIMUM BURST SIZE field (see 10.2.7.2.4).

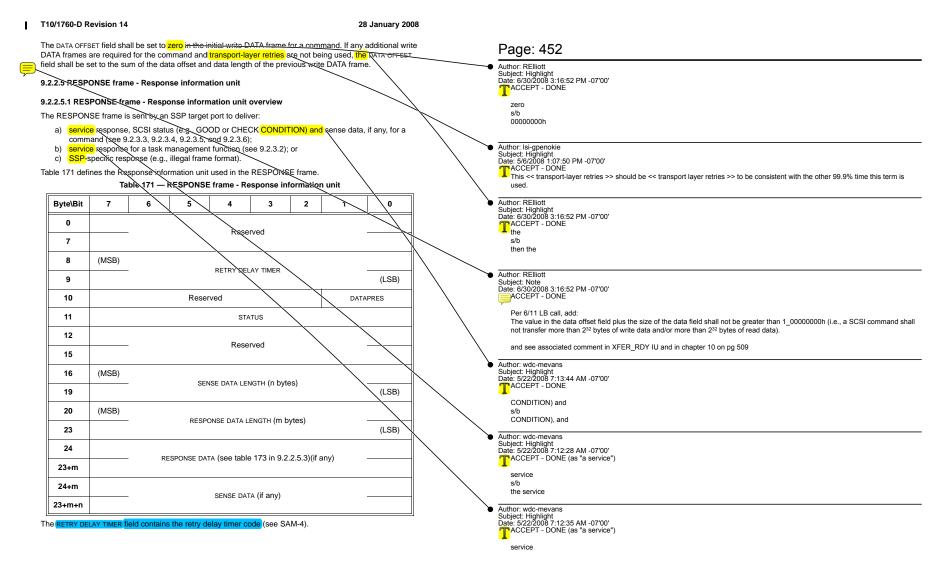
A write DATA frame shall only contain write data for a single XFER_RDY frame.

An SSP initiator port shall set the NUMBER OF FILL BYTES field to zero in the frame header (see 9.2.1) in all wrighted frames that it transmits in response to an XFER_RDY frame except the last write DATA frame for the XFER_RDY frame. An SSP initiator port may set the NUMBER OF FILL SYTES field to a non-zero value in the last DATA frame that it transmits in response to an XFER_RDY.

NOTE 87 - Combined with the restrictions on WRITE DATA LENGTH in the XFER_RDY frame (see 9.2.2/s), this ensures that only the last write DATA frame for a command may have data with a length that is not a multiple of four).

An SSP target port shall set the NUMBER OF FILL BYTES field to zero in the frame header (see § 2.1) in all lead DATA frames for a command except the last read DATA frame for that command. The SSP target port rhay set the NUMBER OF FILL BYTES field to a non-zero value in the last read DATA frame for a command (i.e., chly the last read DATA frame for a command may contain data with a length that is not a multiple of four).

An SSP initiator port shall not transmit a write DATA frame for a given I_T_L_Q nexus after it has sertly a TASK frame that terminates that task (e.g., an ABORT TASK).


The DATA OFFSET field in the frame header (see 9/2.1) contains the application client buffer offset as described by SAM-4. For read DATA frames, this is the offset into the application client's data-in buffer; for with DATA frames, this is the offset into the application cylent's data-out buffer. The data offset shall be a multiple of four (i.e., each DATA frame shall transfer data beginning on a dword boundary).

The DATA OFFSET field shall be set to zero in the initial read DATA frame for a command. If any additional read DATA frames are required for the command and transport-layer retries are not being used, the DATA OFFSET field shall be set to the sum of the data offset and data length of the previous read DATA frame.

Working Draft Serial Attached SCSI - 2 (SAS-2)

451

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE zero 00000000h Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the then the Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' L the then the Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' This << transport-layer retries >> should be << transport layer retries >> to be consistent with the other 99.9% time this term is

The DATA OFFSET field shall be set to zero in the initial write DATA frame for a command. If any additional write DATA frames are required for the command and transport-layer retries are not being used, the DATA OFFSET field shall be set to the sum of the data offset and data length of the previous write DATA frame.

9.2.2.5 RESPONSE frame - Response information unit

9.2.2.5.1 RESPONSE frame - Response information unit overview

The RESPONSE frame is sent by an SSP target port to deliver:

- a) service response, SCSI status (e.g., GOOD or CHECK CONDITION) and sense data, if any, for a command (see 9.2.3.3-8.2.3.4, 9.2.3.5, and 9.2.3.6);
- b) service response for a task management function (see 9.2.3.2); or
- c) SSP-specific response (e.g., illegal frame format).

Table 171 defines the Response information unit used in the RESPONSE frame.

Table 171 — RESPONSE frame - Response information unit

Byte\Bit	7	6	5	4	3	2	1	0	
0									
7			Reserved						
8	(MSB)								
9		•	RETRY DELAY TIMER (LSB)						
10			Reserved DATAPRES						
11			STATUS						
12			Personal						
15		:	Reserved						
16	(MSB)								
19			SENSE DATA LENGTH (n bytes)					(LSB)	
20	(MSB)		DECEMBER DATA LENGTH (m butca)						
23			RESPONSE DATA LENGTH (m bytes) (LSB)						
24		RESPONSE DATA (see table 173 in 9.2.2.3.3)(if any)							
23+m		KL	RESPONSE DATA (see lable 173 in 9.2.2.25.3)(if any)						
24+m			SENSE DATA (if any)						
23+m+n									

The RETRY DELAY TIMER field contains the retry delay timer code (see SAM-4).

Working Draft Serial Attached SCSI - 2 (SAS-2)

s/b the service

Author: wdc-mevans Subject: Highlight Date: 5/22/2008 7:12:42 AM -07'00'

SSP s/b

an SSP

Author: stx-ghoulder
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

ACCEPT - DONE (affects several areas of the standard. Moved this description into the per-DATAPRES sections so it always sits alongside the STATUS field description. Describe that it is 0000h for task management function responses.)

RETRY DELAY TIMER field contains the retry delay timer code

SAM-4 has renamed this field the STATUS QUALIFIER CODE field. SAS-2 needs to rename this accordingly.

Table 172 defines the DATAPRES field, which specifies the format and content of the STATUS field, SENSE DATA LENGTH field, RESPONSE DATA field, and SENSE DATA field.

Table 172 — DATAPRES field

Code	Name	Description	Reference	
00b	NO_DATA	No response data or sense data present	9.2.2.5.2	
01b	RESPONSE_DATA	Response data present	9.2.2.5.3	
10b	SENSE_DATA	Sense data present	9.2.2.5.4	
11b	Reserved			

The SSP target port shall return a RESPONSE frame with the DATAPRES field set to NO_DATA if a command completes without response data or sense data to return.

The SSP target port shall return a RESPONSE frame with the DATAPRES field set to RESPONSE_DATA in response to every TASK frame and in response to errors that occur while the transport layer is processing a COMMAND frame (see 9.2.5.3).

The SSP target port shall return a RESPONSE frame with the DATAPRES field set to SENSE_DATA if a command completes with sense data to return (e.g., CHECK CONDITION status).

If the DATAPRES field is set to a reserved value, then the SSP initiator port shall discard the RESPONSE frame

9.2.2.5.2 Response information unit - NO_DATA format

If the DATAPRES field is set to NO_DATA, then:

- a) the SSP target port shall set the STATUS field to the status code for a command that has ended (see SAM-4 for a list of status codes);
- b) the SSP target port shall set the SENSE DATA LENGTH field to zero and the RESPONSE DATA LENGTH field to zero;
- the SSP initiator port shall ignore the SENSE DATA LENGTH field and the RESPONSE DATA LENGTH field;
 and
- d) the SSP target port shall not include the SENSE DATA field and the RESPONSE DATA field.

9.2.2.5.3 Response information unit - RESPONSE_DATA format

If the DATAPRES field is set to RESPONSE_DATA, then:

- a) the SSP target port shall set the STATUS field to zero and the SENSE DATA LENGTH field to zero;
- b) the SSP initiator port shall ignore the STATUS field and the SENSE DATA LENGTH field;
- c) the SSP target port shall not include the SENSE DATA field;
- d) the SSP target port shall set the RESPONSE DATA LENGTH field to 00000004h; and
- e) the SSP target port shall include the RESPONSE DATA field.

Table 173 defines the RESPONSE DATA field. The RESPONSE DATA field shall be present if the SSP target port detects any of the conditions described by a non-zero value in the RESPONSE CODE field and shall be present for a RESPONSE frame sent in response to a TASK frame.

Table 173 — RESPONSE DATA field

Byte\Bit	7	6	5	4	3	2	1	0
0	ADDITIONAL DESCRIPTION ATTOM							
2		ADDITIONAL RESPONSE INFORMATION						
3	RESPONSE CODE							

453

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 453

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

command that has ended
s/b
completed command
to match sam4r14

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Global: wording about setting sense data length and response data length to "zero" s/b "00000000h"

The ADDITIONAL RESPONSE INFORMATION field contains additional response information for certain task management functions (e.g., QUERY UNIT ATTENTION) as defined in SAM-4. If the task management function does not define additional response information or the logical unit does not support additional response information, the SSP target port shall set the ADDITIONAL RESPONSE INFORMATION field to 000000h.

Table 174 defines the RESPONSE COSE field, which specifies the error condition or the completion status of a task management function. See 10.2.1.5 and 10.2.1.15 for the mapping of these responses codes to SCSI service responses.

Table 174 — RESPONSE CODE field

Code	Description			
00h	TASK MANAGEMENT FUNCTION COMPLETE \$			
02h	INVALID FRAME			
04h	TASK MANAGEMENT FUNCTION NOT SUPPORTED ^a			
05h	TASK MANAGEMENT FUNCTION FAILED ^a			
08h	TASK MANAGEMENT FUNCTION SUCCEEDED a			
09h	INCORRECT LOGICAL UNIT NUMBER ^a			
0Ah	OVERLAPPED TAG ATTEMPTED b			
All others	Reserved			
a Only valid when responding to a TASK frame				
b Returned in case of command/task management function or task				

9.2.2.5.4 Response information unit - SENSE DATA format

If the DATAPRES field is set to SENSE_DATA, then:

 a) the SSP target port shall set the STATUS field to the status code for a command that has ended (see SAM-4 for a list of status codes);

management function/task management function tag conflicts.

- b) the SSP target port shall set the RESPONSE DATA LENGTH field to zero;
- c) the SSP initiator port shall ignore the RESPONSE DATA LENGTH field;
- d) the SSP target port shall not include the RESPONSE DATA field;
- e) the SSP target port shall set the SENSE DATA LENGTH field to a non-zero value indicating the number of bytes in the SENSE DATA field. The value in the SENSE DATA LENGTH field shall not be greater than 1 000 (see table 164 in 9.2.1); and
- f) the SSP target port shall set the SENSE DATA field to the sense data (see SAM-4).

The value in the SENSE DATA LENGTH field is not required to be a multiple of four. If it is not, the value in the NUMBER OF FILL BYTES field in the SSP frame header is non-zero and fill bytes are present.

Page: 454

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE QUERY UNIT ATTENTION QUERY ASYNCHRONOUS EVENT to match sam4r14h Author: wdc-mevans Subject: Highlight
Date: 5/26/2008 8:23:27 AM -07'00'
REJECT (2 things being ANDed) information or information, or Author: wdc-mevans Author: Woc-inevans Subject: Highlight Date: 5/23/2008 11:17:53 AM -07'00' s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE frame s/b frame. Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE command that has ended completed command to match sam4r14 Author: wdc-mevans Addition: Wdc-inevans Subject: Highlight Date: 5/23/2008 11:18:31 AM -07'00' TACCEPT - DONE If it is not, the If the value is not a multiple of four, then the

9.2.3 Sequences of SSP frames

9.2.3.1 Sequences of SSP frames overview

Table 175 lists the sequences of SSP frames supporting the SCSI transport protocol services described in 10.2.1

Table 175 — Sequences of SSP frames

Sequence	Reference
Task management function	9.2.3.2
Non-data command	9.2.3.3
Write command	9.2.3.4
Read command	9.2.3.5
Bidirectional command	9.2.3.6

When multiple commands and/or task management functions are outstanding, frames from each of the individual sequences may be interleaved in any order. RESPONSE frames may be refurned in any order (i.e., the order in which TASK frames and COMMAND frames are sent has no effect on the order that RESPONSE frames are returned).

Frames in a sequence may be transmitted during one or more connections (see 7.12)(e.g., for purific command using a single XFER_RDY frame, the COMMAND frame could be transmitted in a connection originated by the SSP initiator port, the XFER_RDY frame in a connection originated by the SSP target port, the DATA frames in one or more connections originated by the SSP initiator port, and the RESPONSE frame in a connection originated by the SSP target port. Or, they could all be transmitted in one connection).

9.2.3.2 Task management function sequence of SSP frames

Figure 210 shows the sequence of SSP frames for a task management function (e.g., ABORT TASK (see SAM-4)), including the transport protocol services (see 10.2.1) invoked by the SCSI application layer.

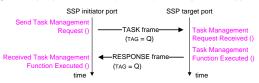


Figure 210 — Task management function sequence of SSP frames

9.2.3.3 Non-data command sequence of SSP frames

Figure 211 shows the sequence of SSP frames for a non-data command (e.g., TEST UNIT READY (see SPC-4)), including the transport protocol services (see 10.2.1) invoked by the SCSI application layer.



Figure 211 — Non-data command sequence of SSP frames

455

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 455

```
Author: Wdc-mevans
Subject: Highlight
Date: 6/27/2008 7:43-29 AM -07'00'
TACCEPT - DONE (changed to "may" since this is an e.g. for a "may" sentence)

the COMMAND frame could s/b
it is permissible for the COMMAND frame to

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16-52 PM -07'00'
TACCEPT - DONE

.).
s/b
).

Although the inner words are a sentence, .). doesn't look right

Author: wdc-mevans
Subject: Highlight
Date: 6/27/2008 7:44-29 AM -07'00'
TACCEPT - DONE (changed to "Alternatively, all the frames...". Don't want to join the sentences, since the first sentence is already 4 lines long. This gets rid of the vague "they" and provides a stronger break than "Or". Also, changed to "may" since this is an e.g. for a "may" sentence.)

port. Or, they could all s/b
port, or, all frames for the transaction may
```

9.2.3.4 Write command sequence of SSP frames

Figure 212 shows the sequence of SSP frames for a write command (e.g., MODE SELECT (see SPC-4)), including the transport protocol services (see 10.2.1) invoked by the SCSI application layer.

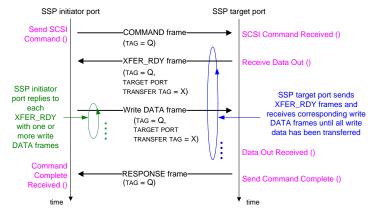


Figure 212 — Write command sequence of SSP frames

9.2.3.5 Read command sequence of SSP frames

Figure 213 shows the sequence of SSP frames for a read command (e.g., INQUIRY, REPORT LUNS, or MODE SENSE (see SPC-4)), including the transport protocol services (see 10.2.1) invoked by the SCSI application layer.

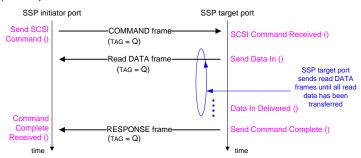


Figure 213 — Read command sequence of SSP frames

This page contains no comments

9.2.3.6 Bidirectional command sequence of SSP frames

Figure 214 shows the sequence of SSP frames for a bidirectional command (e.g., XDWRITEREAD (see SBC-3)), including the transport protocol services (see 10.2.1) invoked by the SCSI application layer.

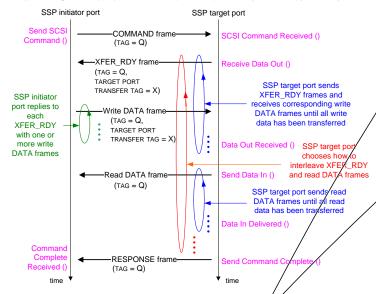


Figure 214 — Bidirectional command sequence of S/SP frames

The SSP target port may transmit read DATA frames for a bidirectional command at the same time it is receiving write DATA frames for the same bidirectional command.

9.2.4 SSP transport layer handling of link layer errors

9.2.4.1 SSP transport layer handling of link layer errors overview

The transport layer, sometimes assisted by the application/ayer, handles some link layer errors (e.g., NAKs and ACK/NAK timeouts). See 9.2.5 for transport layer handling of transport layer errors (e.g., invalid frame contents).

Link layer errors that occur when transmitting XFEX_RDY and DATA frames are handled differently based on the TLR CONTROL field in the COMMAND frame beader (see 9.2.1) and the TRANSPORT LAYER RETRIES bit in the Protocol-Specific Logical Unit mode page (see 10.2.7.3) of the logical unit that is the source of the frame.

If transport layer retries are disabled, the logical unit:

- a) sets the RETRY DATA FRAMES bit to zero in each XFER RDY frame;
- b) may or may not select a different value for the TARGET PORT TRANSFER TAG field in each XFER_RDY frame than that used in the previous XFER_RDY frame for that I_T_L_Q nexus;
- c) processes XFER_RDY frame link layer errors as described in 9.2.4.4.3; and
- d) processes DATA frame link layer errors as described in 9.2.4.5.3.

Working Draft Serial Attached SCSI - 2 (SAS-2)

457

Page: 457

```
Author: stx-ghoulder
Subject: Highlight
Date: 5/26/2008 8:24:34 AM -07'00'

ACCEPT - DONE
application layer,
Should be "SCSI application layer".

Author: wdc-mevans
Subject: Highlight
Date: 5/22/2008 2:22:32 PM -07'00'
TREJECT (the section title uses "handling" and there's nothing wrong with adverbs)
handled differently based on
s/b
processed in a different manner based on the setting of

Author: RELliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b
then the
```

If transport layer retries are enabled, the logical unit:

- a) supports the QUERY TASK task management function (see SAM-4);
- b) sets the RETRY DATA FRAMES bit to one in each XFER_RDY frame;
- selects a different value for the TARGET PORT TRANSFER TAG field in each XFER_RDY frame than that
 used in the previous XFER_RDY frame for that I_T_L_Q nexus;
- d) processes XFER RDY frame link layer errors as described in 9.2.4.4.2; and
- e) processes DATA frame link layer errors as described in 9.2.4.5.2.

9.2.4.2 COMMAND frame - handling of link layer errors

If an SSP initiator port transmits a COMMAND frame and receives a NAK for that frame, then the COMMAND frame was not received. The SSP initiator port should retransmit, in the same or in a new connection, the COMMAND frame at least one time (see 9.2.6.2.3.3). The SSP initiator port may reuse the fact

If an SSP initiator port transmits a COMMAND frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- 1) the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
- 2) to determine whether the command was received, the application client calls Send Task Management Function Request () (see 10.2.2) with:
 - A) Nexus set to the I_T_L_Q nexus of the COMMAND frame; and
 - B) Function Identifier set to QUERY TASK;

and

3) the SSP initiator port transmits the TASK frame in a new connection to the SSP target port.

If the SSP issitiator port receives an XFER_RDY frame for the I_T_L_Q nexus of the command before the RESPONSE frame for the QUERY TASK, then the COMMAND frame was received and be being processed by the target port, sod the XFER_RDY frame is valid.

If the SSP initiator port receives a read-DATA frame for the I_T_L_Q nexus of the command before the RESPONSE frame for the QVERY TASK, then the COMMAND frame was received and is being processed by the target port, and the read DATA trame is valid.

If the SSP initiator port receives a RESPONSE frame for the I_T_L Q nexus of the command before the RESPONSE frame for the QUERY TASK, then the COMMAND frame was received by the target port, the RESPONSE frame is valid, and the command processing is complete. The SSR initiator port may reuse the tag of the COMMAND frame.

If the SSP initiator port receives a RESPONSE frame for the QUERY TASK with a response code of TASK MANAGEMENT FUNCTION SUCCEEDED, then the COMMAND frame was received by the SSP target port (i.e., ACKed) and the command is being processed.

If the SSP initiator port receives a RESPONSE frame for the QUERY TASK with a response code of TASK MANAGEMENT FUNCTION COMPLETE, then the COMMAND frame is not being processed. If neither an XFER_RDY frame, a read DATA frame, nor a RESPONSE frame has been received for the I_T_Q nexus of the command, then the COMMAND frame was not received. The SSP initiator port should retransit the COMMAND frame at least one time. The SSP initiator port may reuse the tag of the COMMAND frame.

9.2.4.3 TASK frame - handling of link layer errors

If an SSP initiator port transmits a TASK frame and receives a NAK for that frame, then the TASK frame was not received. The SSP initiator port should retransmit, in the same or in a new connection, the TASK frame at least one time with the RETRANSMIT bit set to one (see 9.2.6.2.2.2). The SSP initiator port may reuse the tag.

If an SSP initiator port transmits a TASK frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- 1) the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
- 2) the application client calls Send Task Management Request () using the same tag (see 10.2.2);

Page: 458

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b
then the
```

```
Author: stx-ghoulder
Subject: Highlight
Date: 6/27/2008 7:56:40 AM -07'00'
```

TACCEPT - DONE (5/5 yes mandate it, and the new TMFs too. This item can then be deleted.)

supports the QUERY TASK

This implies Query Task is optional (ie only required if transport layer retries are enabled) but command frame error recovery in next clause seems to require Query Task regardless. Which statement is correct?

we should define a term "command tao" that means the value of the TAG field in the command frame. This term could be used in a

```
Author: stx-ghoulder Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' DATE: 5/6/200 PM -07'00' DATE: 5/6
```

tag
ambiguous meaning of tag, Later in this clause the term "tag of the COMMAND frame" is used, that would be better here. Perhaps

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

:
s/b
, then:
```

lot of places to clear up ambiguous use of 'tag"

Author: stx-ghoulder
 Subject: Highlight
 Date: 6/27/2008 8:03:55 AM -07'00'

TREJECT (actually it's always been mandatory, used by an initiator port to determine if its COMMAND frame made it to the target port if an ACK or NAK doesn't appear. That's not a transport layer retry feature.)

QUERY TASK:

Query Task support is supposed to be optional (i.e., only needed if transport layer retries are supported) but this wording seems to require Query Task support regardless. If Query Task is optional then an alternate recovery method is needed here.

```
Author: wdc-mevans
Subject: Highlight
Date: 6/27/2008 2:00:52 PM -07'00'
ACCEPT - DONE (as "If the command is a write command or a bidirectional command and ")
the SSP
s/b
the command specified a data-out operation and the SSP
```

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
```

target port

Comments from page 458 continued on next page

If transport layer retries are enabled, the logical unit:

- a) supports the QUERY TASK task management function (see SAM-4);
- b) sets the RETRY DATA FRAMES bit to one in each XFER_RDY frame;
- selects a different value for the TARGET PORT TRANSFER TAG field in each XFER_RDY frame than that
 used in the previous XFER_RDY frame for that I_T_L_Q nexus;
- d) processes XFER RDY frame link layer errors as described in 9.2.4.4.2; and
- e) processes DATA frame link layer errors as described in 9.2.4.5.2.

9.2.4.2 COMMAND frame - handling of link layer errors

If an SSP initiator port transmits a COMMAND frame and receives a NAK for that frame, then the COMMAND frame was not received. The SSP initiator port should retransmit, in the same or in a new connection, the COMMAND frame at least one time (see 9.2.6.2.3.3). The SSP initiator port may rease the tag.

If an SSP initiator port transmits a COMMAND frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- 1) the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) [see 7.16.8.6.5);
- 2) to determine whether the command was received, the application client calls Separask Management Function Request () (see 10.2.2) with:
 - A) Nexus set to the I_T_L_Q nexus of the COMMAND frame; and
 - B) Function Identifier set to QUERY TASK;

and

3) the SSP initiator port transmits the TASK frame in a new connection to the SSP target port.

If the SSP initiator port reserves an XFER_BDY frame for the L_T_L_Q nexus of the command before the RESPONSE frame for the QUERY TASK, then the COMMAND frame was received and is being processed by the target port, and the XFER_RDY frame is valid.

If the SSP initiator port receives a read DATA frame for the L_T_L_Q nexus of the command before the RESPONSE frame for the QUERY TASK, then the COMMAND frame was received and is being processed by the target port, and the read DATA frame is valid.

If the SSP initiator port receives a RESPONSE frame for the I_T_L_Q nexus of the command before the RESPONSE frame for the QUERY TASK, then the COMMAND frame was received by the target port, the RESPONSE frame is valid, and the command processing is complete. The SSP initiator port may reuse the tag of the COMMAND frame.

If the SSP initiator port receives a RESPONSE frame for the QUERY TASK with a response code of TASK MANAGEMENT FUNCTION SUCCEEDED, then the COMMAND frame was received by the SSP target port (i.e., ACKed) and the command is being processed.

If the SSP initiator port receives a RESPONSE frame for the QUERY TASK with a response code of TASK MANAGEMENT FUNCTION COMPLETE, then the COMMAND frame is not being processed. It weither an XFER_RDY frame, a read DATA frame, nor a RESPONSE frame has been received for the L_Q nexus of the command, then the COMMAND frame was not received. The SSP initiator port would retransmit the COMMAND frame at least one time. The SSP initiator port may reuse the tag of the COMMAND frame.

9.2.4.3 TASK frame - handling of link layer errors

If an SSP initiator port transmits a TASK frame and receives a NAK for that frame, then the TASK frame was not received. The SSP initiator port should retransmit in the same entities new connection, the TASK frame at least one time with the RETRANSMIT bit set to oper (see 9.2-0-7.2.2). The SSP initiator port may reuse the tag.

If an SSP initiator port transmits a TASK trame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- 1) the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
- 2) the application client calls Send Task Management Request () using the same tag (see 10.2.2);

```
(global)
Author: wdc-mevans
Subject: Highlight
Date: 6/27/2008 2:01:07 PM -07'00'
 TACCEPT - DONE (as "If the command is a read command or a bidirectional command and ")
   the command specified a data-in operation and the SSP
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
   target port
   SSP target port
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
   target port
   SSP target port
Author: stx-ghoulder
Subject: Highlight
Date: 7/14/2008 5:34:21 PM -07'00'
REJECT (7/14 no desire to enhance this for SAS-2 or SAM-4.
   6/18 I_T nexus loss might be appropriate; it would wipe out all other commands (which are probably having problems as well). 5/5
   this gets into SAM and above territory; SAS doesn't really care what happens.)
   retransmit the COMMAND frame at least one time
   Need to add description of action if all retries are unsuccessful as well.
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
   broken):
   broken), then:
Author: elx-bmartin
Subject: Highlight
Date: 5/26/2008 8:53:15 AM -07'00'
   REJECT (like everything else in 9.2.4, these are statements of fact describing what the state machines do. No "shalls" appear
here, but they do appear in the state machines)
   is the following list part of the above should, or is this a shall, or is this an example of a possible situation?
Author: Isi-gpenokie
Subject: Cross-Out
Date: 5/6/2008 1:07:50 PM -07'00'
ACCEPT - DONE
```

SSP target port

If transport layer retries are enabled, the logical unit:

- a) supports the QUERY TASK task management function (see SAM-4);
- b) sets the RETRY DATA FRAMES bit to one in each XFER_RDY frame;
- selects a different value for the TARGET PORT TRANSFER TAG field in each XFER_RDY frame than that
 used in the previous XFER_RDY frame for that I_T_L_Q nexus;
- d) processes XFER_RDY frame link layer errors as described in 9.2.4.4.2; and
- e) processes DATA frame link layer errors as described in 9.2.4.5.2.

9.2.4.2 COMMAND frame - handling of link layer errors

If an SSP initiator port transmits a COMMAND frame and receives a NAK for that frame, then the COMMAND frame was not received. The SSP initiator port should retransmit, in the same or in a new connection, the COMMAND frame at least one time (see 9.2.6.2.3.3). The SSP initiator port may reuse the tag.

If an SSP initiator port transmits a COMMAND frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- 1) the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
- 2) to determine whether the command was received, the application client calls Send Task Management Function Request () (see 10.2.2) with:
 - A) Nexus set to the I_T_L_Q nexus of the COMMAND frame; and
 - B) Function Identifier set to QUERY TASK;

and

458

3) the SSP initiator port transmits the TASK frame in a new connection to the SSP target port.

If the SSP initiator port receives an XFER_RDY frame for the L_T_L_Q nexus of the command before the RESPONSE frame for the QUERY TASK, then the COMMAND frame was received and is being processed by the target port, and the XFER_RDY frame is valid.

If the SSP initiator port receives a read DATA frame for the L_T_L onexus of the command before the RESPONSE frame for the QUERY TASK, then the COMMAND trame was received and is being processed by the target port, and the read DATA frame is valid.

If the SSP initiator port receives a RESPONSE frame for the I_T_L_Q nexus of the command before the RESPONSE frame for the QUERY TASK, then the COMMAND frame was received by the target port, the RESPONSE frame is valid, and the command processing is complete. The SSP initiator port may reuse the tag of the COMMAND frame.

If the SSP initiator port receives a RESPONSE frame for the QUERY TASK with a response code of TASK MANAGEMENT FUNCTION SUCCEEDED, then the COMMAND frame was received by the SSP target port (i.e., ACKed) and the command is being processed.

If the SSP initiator port receives a RESPONSE frame for the QUERY TASK with a response code of TASK MANAGEMENT FUNCTION COMPLETE, then the COMMAND frame is not being processed. If neither an XFER_RDY frame, a read DATA frame, nor a RESPONSE frame has been received for the I_T_L_Q nexus of the command, then the COMMAND frame was not received. The SSP initiator port should retransmit the COMMAND frame at least one time. The SSP initiator port may reuse the tag of the COMMAND frame.

9.2.4.3 TASK frame - handling of link layer errors

If an SSP initiator port transmits a TASK frame and receives a NAK for that frame, then the TASK frame was not received. The SSP initiator port should retransmit, in the same or in a new connection, the TASK frame at least one time with the RETRANSMIT bit set to one (see 9.2.6.2.2.2). The SSP initiator port may reuse the tay.

If an SSP initiator port transmits a TASK frame and does not receive an ACK or NAK for that frame (e.g., tinles out, or the connection is broken):

- 1) the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.\$.5);
- 2) the application client calls Send Task Management Request () using the same tag (see 10.2.2);

Working Draft Serial Attached SCSI - 2 (SAS-2)

This is on the wrong item

Author: elx-bmartin
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
TACCEPT - DONE

This and is in the wrong place since there are three items in the list.

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

This << same tag (see 10.2.2); >> should be << same tag (see 10.2.2); and >>

 the SSP initiator port transmits the TASK frame with the RETRANSMIT bit set to one in a new connection to the SSP target port (see 9.2.6.2.2.2).

If the SSP initiator port receives a RESPONSE frame for the TASK frame that arrives before the ACK or NAK for the TASK frame, then the TASK frame was received by the SSP target port (i.e., ACKed), the RESPONSE frame is valid, and the task management function is complete (see 9.2.6.2.2.3). The initiator port may reuse the tag of the TASK frame.

9.2.4.4 XFER RDY frame - handling of link layer errors

9.2.4.4.1 XFER RDY frame overview

If transport layer retries are enabled, then the SSP target port processes link layer errors that occur while transmitting XFER_RDY frames as described in 9.2.4.4.2.

If transport layer retries are disabled, then the SSP target port processes link layer errors that occur while transmitting XFER RDY frames as described in 9.2.4.4.3.

9.2.4.4.2 XFER_RDY frame with transport layer retries enabled

If an SSP target port transmits an XFER_RDY frame and receives a NAK for that frame, the SSP target portretransmits, in the same or a new connection, the XFER_RDY frame with a different value in the TARGET PORT
TRANSFER TAG field, with the RETRANSMIT bit set to one, and with the other fields set to the same values as in
the original XFER_RDY frame (see 9.2.6.3.3.3).

If an SSP target port transmits an XFER_RDY frame and does not receive an ACK or NAK for that frame (e.g times out, or the connection is broken):

- the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
 and
- 2) the SSP target port retransmits, in a new connection, the XFER_RDY frame with:
- A) the TARGET PORT TRANSFER TAG field set to a different value than in the original XFER_RDY frame
- B) the RETRANSMIT bit set to one; and
- C) the other fields set to the same values as in the original XEER_RDY frame (see 9.2.6.3.3.3).

If an SSP initiator port receives a new XFER_RDY frame with the RETRANSING bit set to one while processing the previous XFER_RDY frame for that I_T_L_Q nexus, the ST_ITS state machine stops processing the previous XFER_RDY frame (i.e., stops transmitting write DATA frames) and starts securing the new XFER_RDY frame (see 9.2.6.2.3). The ST_ITS state machine does not transmit any write DATA frames for the previous XFER_RDY frame after transmitting a write DATA frame for the new XFER_RDY frame.

The SSP target port may reuse the value in the TARGET PORT TRANSFER TAG iield from the previous XFER RDY frame after it receives a write DATA frame for the new XFER RDY frame.

An SSP target port retransmits each XFER_RDY frame that does not receive an ACK at least one time.

9.2.4.4.3 XFER_RDY frame with transport layer retries disabled

If an SSP target port transmits an XFER RDY frame and receives a NAK for that frame:

- the device server calls Send Command Complete () to return CHECK CONDITION status for that command with the sense key set to ABORTED COMMAND and the additional sense code set to NAK RECEIVED (see 10.2.3); and
- 2) the SSP target port transmits the RESPONSE frame in the same or a new connection.

If an SSP target port transmits an XFER_RDY frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- 1) the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
- the device server calls Send Command Complete () to return CHECK CONDITION status for that command with the sense key set to ABORTED COMMAND and the additional sense code set to ACK/NAK TIMEOUT (see 10.2.3); and
- 3) the SSP target port transmits the RESPONSE frame in a new connection.

Author: stx-ghoulder Subject: Highlight Date: 7/14/2008 5:34:41 PM -07'00' REJECT (7/14 no desire to enhance this for SAS-2 or SAM-4. 6/18 I_T nexus loss might be appropriate; it would wipe out all other commands (which are probably having problems as well). 5/5 this gets into SAM and above territory; SAS doesn't really care what happens.) transmits the TASK frame Need to add description of action after retries are exhausted and transfer is still unsuccessful Author: elx-nayalasomayajula Subject: Note Date: 5/26/2008 8:26:21 AM -07'00' REJECT (9.2.6.3.3.2 discusses the checking (or not) that the target performs. If the task management function is finished -"already responded to" - it doesn't care about the RETRANSMIT bit.) What does the SSP target do if it receives a TASK frame with RETRANSMIT BIT set for a tag that it had already responded to? Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b then the Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE -After "the XFER_RDY frame" "at least one time" to match the other text like this Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE with s/b with: a) ... b) ...; and

Page: 459

c) ...

s/b , then:

Author: RElliott

Subject: Highlight

Author: RElliott

Subject: Underline

Daté: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

Comments from page 459 continued on next page

 the SSP initiator port transmits the TASK frame with the RETRANSMIT bit set to one in a new connection to the SSP target port (see 9.2.6.2.2.2).

If the SSP initiator port receives a RESPONSE frame for the TASK frame that arrives before the ACK or NAK for the TASK frame, then the TASK frame was received by the SSP target port (i.e., ACKed), the RESPONSE frame is valid, and the task management function is complete (see 9.2.6.2.2.3). The initiator port may reuse the tag of the TASK frame.

9.2.4.4 XFER RDY frame - handling of link layer errors

9.2.4.4.1 XFER RDY frame overview

If transport layer retries are enabled, then the SSP target port processes link layer errors that occur while transmitting XFER_RDY frames as described in 9.2.4.4.2.

If transport layer retries are disabled, then the SSP target port processes link layer errors that occur while transmitting XFER_RDY frames as described in 9.2.4.4.3.

9.2.4.4.2 XFER_RDY frame with transport layer retries enabled

If an SSP target port transmits an XFER_RDY frame and receives a NAK for that frame, the SSP target port retransmits, in the same or a new connection, the XFER_RDY frame with a different value in the TARGET PORT TRANSFER TAG field, with the RETRANSMIT bit set to one, and with the other fields set to the same values as in the original XFER_RDY frame (see 9.2.6.3.3.3).

If an SSP target port transmits an XFER_RDY frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
 and
- 2) the SSP target port retransmits, in a new connection, the XFER_RDY frame with:
- A) the TARGET PORT TRANSFER TAG field set to a different value than in the original XFER_RDY frame;
- B) the RETRANSMIT bit set to one; and
- C) the other fields set to the same values as in the original XFER RDY frame (see 9.2.6.3.3.2)

If an SSP initiator port receives a new XFER_RDY frame with the RETRANSMIT bit set to one while processing the previous XFER_RDY frame for that I_T_L_Q nexus, the ST_ITS state machine stops processing the previous XFER_RDY frame (i.e., stops transmitting write DATA frames) and starts servicing the rew XFER_RDY frame (see 9.2.6.2.3). The ST_ITS state machine does not transmit any write DATA frames for the previous XFER_RDY frame after transmitting a write DATA frame for the new XFER_RDY frame.

The SSP target port may reuse the value in the TARGET PORT TRANSFER TAG field from the previous XFER RDY frame after it receives a write DATA frame for the new XFER RDY frame.

An SSP target port retransmits each XFER_RDY frame that does not receive an ACV at least one time

9.2.4.4.3 XFER_RDY frame with transport layer retries disabled

If an SSP target port transmits an XFER RDY frame and receives a MAK for that frame:

- the device server calls Send Command Complete () to eturn CHECK CONDITION status for that command with the sense key set to ABORTED COMMAND and the additional sense code set to NAK RECEIVED (see 10.2.3); and
- 2) the SSP target port transmits the RESPONSE frame in the same or a new connection.

If an SSP target port transmits an XFER_RDY frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
- the device server calls Send Command Complete () to return CHECK CONDITION status for that command with the sense key set to ABORTED COMMAND and the additional sense code set to ACK/NAK TIMEOUT (see 10.2.3): and
- 3) the SSP target port transmits the RESPONSE frame in a new connection.

Working Draft Serial Attached SCSI - 2 (SAS-2)

459

s/b , then:

Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE s/b then the Author: stx-ghoulder Subject: Highlight Date: 6/20/2008 5:31:23 PM -07'00' ACCEPT - DONE (Added: The number of times an SSP target port retransmits each XFER_RDY frame is vendor-specific. When it reaches its vendor-specific limit, it follows the procedure for transport layer retries disabled described in 9.2.4.4.3." 6/18 for XFER_RDY, describe the CHECK CONDITION) There should be discussion of action to take when retries are exhausted and transfer is still unsuccessful Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE ACK ACK or NAK Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE s/h , then: Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

9 2 4 5 DATA frame handling of link layer errors

9.2.4.5.1 DATA frame overview

If an SSP target port transmits a read DATA frame for a command with transport layer retries enabled, then the SSP target port processes link layer errors that occur while transmitting read DATA frames as described in 9.2.4.5.2

If an SSP target port transmits a read DATA frame for a command with transport layer retries disabled, then the SSP target port processes link layer errors that occur while transmitting read DATA frames as described in 9.2.4.5.3

An SSP initiator port processes link layer errors that occur while transmitting write DATA frames transmitted in response to an XFER RDY frame that has its RETRY DATA FRAMES bit set to one as described in 9.2.4.5.2.

An SSP initiator port processes link layer errors that occur while transmitting write DATA frames in response to an XFER_RDY frame that has its RETRY DATA FRAMES bit set to zero as described in 9.2.4.5.3.

9.2.4.5.2 DATA frame with transport layer retries enabled

If an SSP target port transmits a read DATA frame and receives a NAK for that frame, then the read DATA frame was not received. The SSP target port retransmits, in the same or in a new connection, all the read DATA frames since a previous time when ACK/NAK balance occurred (see 9.2.6.3.3.4).

If an SSP target port transmits a read DATA frame and does not receive an ACK or NAK for that frame (e.g. times out, or the connection is broken):

- the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5); and
- the ST_TTS state machine retransmits, in a new connection, all the read DATA frames since aprevious time when ACK/NAK balance occurred (see 9.2.6.3.3.4).

If an SSP initiator port transmits a write DATA frame and receives a NAK for that frame, then the write DATA frame was not received. The SSP_ITS state machine retransmits, in the same or in a new connection, all the write DATA frames for the previous XFER RDV frame (see 9.2.6.2.3.3.2).

If an SSP initiator port transmits a write DATA frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
- the ST_ITS state machine retransmits, in a new connection, sut the write DATA frames for the previous XFER RDY frame (see 9.2.6.2.3.3.2).

If that SSP initiator port receives a new XFER_RDY frame or a RESPONSE frame for the command while retransmitting or preparing to retransmit the write DATA frames, the ST_IFR state machine and ST_IFS state machine process the XFER_RDY frame or RESPONSE frame and stop retransmitting the write DATA frames (see 9.2.6.2.2 and 9.2.6.2.3). The ST_IFS state machine does not transmit a write DATA frame for the previous XFER_RDY frame after transmitting a write DATA frame in response to the new XFER_RDY frame.

For both reads and writes, the CHANGING DATA POINTER bit is set to one in the first retransmitted DATA frame and the CHANGING DATA POINTER bit is set to zero in subsequent DATA frames.

The ST_ITS state machine and ST_TTS state machine retransmit each DATA frame that does not receive an ACK at least one time (see 9.2.6.2.3 and 9.2.6.3.3). The number of times they retransmit each DATA frame is vendors.excitic.

9.2.4.5.3 DATA frame with transport layer retries disabled

If an SSP target port transmits a read DATA frame and receives a NAK for that frame:

 the device server calls Send Command Complete () to return CHECK CONDITION status for that command with the sense key set to ABORTED COMMAND and the additional sense code set to NAK RECEIVED (see 10.2.3); and

Page: 460 Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE Split 9.2.4.5 DATA frame - handling of link layers into two sections: 9.2.4.5 Read DATA frame 9.2.4.6 Write DATA frame This isolates the target port and initiator port rules Author: wdc-mevans Subject: Highlight Date: 6/27/2008 2:05:56 PM -07'00' TACCEPT - DONE frames since frames for that I T L Q nexus since Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' PACCEPT - DONE s/b , then: Author: wdc-mevans Subject: Highlight Date: 6/27/2008 2:06:19 PM -07'00' ACCEPT - DONE frames since frames for that I_T_L_Q nexus since Author: stx-ghoulder Subject: Highlight Date: 6/20/2008 5:34:53 PM -07'00' ACCEPT - DONE (Added "at least one time" and added at the end of the section: "When they reach their vendor-specific limit, they follow the procedure for transport layer retries disabled described in 9.2.4.5.3.") retransmits, in a new connection, all the read DATA frames This description doesn't indicate what should happen when it does give up on retries. Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE s/h , then:

9.2.4.5 DATA frame - handling of link layer errors

9.2.4.5.1 DATA frame overview

If an SSP target port transmits a read DATA frame for a command with transport layer retries enabled, then the SSP target port processes link layer errors that occur while transmitting read DATA frames as described in 0.2.4.6.2

If an SSP target port transmits a read DATA frame for a command with transport layer retries disabled, then the SSP target port processes link layer errors that occur while transmitting read DATA frames as described in 2.2.4.5.3

An SSP initiator port processes link layer errors that occur while transmitting write DATA frames transmitted in response to an XFER RDY frame that has its RETRY DATA FRAMES bit set to one as described in 9.2.4.5.2.

An SSP initiator port processes link layer errors that occur while transmitting write DATA frames in response to an XFER_RDY frame that has its RETRY DATA FRAMES bit set to zero as described in 9.2.4.5.3.

9.2.4.5.2 DATA frame with transport layer retries enabled

If an SSP target port transmits a read DATA frame and receives a NAK for that frame, then the read DATA frame was not received. The SSP target port retransmits, in the same or in a new connection, all the read DATA frames since a previous time when ACK/NAK balance occurred (see 9.2.6.3.3.4).

If an SSP target port transmits a read DATA frame and does not receive an ACK or NAK for that frame (e.g. times out, or the connection is broken):

- 1) the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.5); and
- the ST_TTS state machine retransmits, in a new connection, all the read DATA frames since a previous time when ACK/NAK balance occurred (see 9.2.6.3.3.4).

If an SSP initiator port transmits a write DATA frame and receives a NAK for that frame, then the write DATA frame was not received. The SSP_ITS state machine retransmits, in the same or in a new connection, all the write DATA frames for the previous XFER RDV frame (see 9.2.6.2.3.3.2).

If an SSP initiator port transmits a write DATA frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- 1) the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOI/T) (see 7.16.8 6.5); and
- the ST_ITS state machine retransmits, in a new connection, all the write DATA //ames for the p/evious XFER RDY frame (see 9.2.6.2.3.3.2).

If that SSP initiator port receives a new XFER_RDY frame or a RESPONSE frame for the command while retransmitting or preparing to retransmit the write DATA frames, the ST_IFR state machine and ST_ITS state machine process the XFER_RDY frame or RESPONSE frame and stop retransmitting the write DATA frames (see 9.2.6.2.2 and 9.2.6.2.3). The ST_ITS state machine does not transmit a write DATA frame for the previous XFER_RDY frame after transmitting a write DATA frame in response to the new XFER_RDY frame.

For both reads and writes, the CHANGING DATA POINTER bit is set to one in the first retransmitted DATA frame and the CHANGING DATA POINTER bit is set to zero in subsequent DATA frames.

The ST_ITS state machine and ST_TTS state machine retransmit each DATA frame that does not receive an ACK at least one time (see 9.2.6.2.3 and 9.2.6.3.3). The number of times they retransmit each DATA frame is vendor-specific.

9.2.4.5.3 DATA frame with transport layer retries disabled

460

If an SSP target port transmits a read DATA frame and receives a NAK for that frame

 the device server calls Send Command Complete () to return CHECK CONDITION status for that command with the sense key set to ABORTED COMMAND and the additional sense code set to NAK RECEIVED (see 10.2.3); and

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: sbx-ghoulder
Subject: Highlight
Date: 6/20/2008 5:35:13 PM -07'00'
TACCEPT - DONE (Added "at least one time" and added text at the end of the section - see earlier comment)

retransmits, in a new connection, all the write DATA frames
This case also doesn't indicate action when all retries are exhausted.

Author: Isi-gpenokie
Subject: Highlight
Date: 5/23/2008 11:21:59 AM -07'00'
TACCEPT - DONE (but did not add an extra space before write)
This

< write DATA frames, the ST_IFR state >> should be
<< write DATA frames, then the ST_IFR state >>

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

: s/b
then:

2) the SSP target port transmits the RESPONSE frame in the same or a new connection.

If an SSP target port transmits a read DATA frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- 1) the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
- the device server calls Send Command Complete () to return CHECK CONDITION status for that command with the sense key set to ABORTED COMMAND and the additional sense code set to ACK/NAK TIMEOUT (see 10.2.3); and
- 3) the SSP target port transmits the RESPONSE frame in a new connection.

If an SSP initiator port transmits a write DATA frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
 and
- 2) the application client aborts the command (see 10.2.2).

If an SSP initiator port transmits a write DATA frame and receives a NAK for that frame, the application client aborts the command (see 10.2.2).

9.2.4.6 RESPONSE frame - handling of link layer errors

If an SSP target port transmits a RESPONSE frame and receives a NAK for that frame, the SSP target port retransmits, in the same or a new connection, the RESPONSE frame at least one time with the RESPONSE frame at least one time with the other fields set to the same values as in the original RESPONSE frame (see

If an SSP target port transmits a RESPONSE frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
- 2) the SSP target port retransmits, in a new connection, the RESPONSE frame with:
 - A) the RETRANSMIT bit set to one; and
- B) the other fields set to the same values as in the original RESPONSE frame (see 9.2.6.3.3).

The ST_TTS state machine retransmits each RESPONSE frame that does not receive an ACK at least one time (see 9.2.6.3.3). The number of times it stansmits each RESPONSE frame is vendor-specific.

If an SSP initiator port receives a RESPONSE frame with a RETRANSMIT bit set to one, and it has previously received a RESPONSE frame for the same I_T_L_Q nexus, the ST_IFR State-machine discards the extra RESPONSE frame (see 9.2.6.3.2). If the ST_IFR state machine has not previously received a RESPONSE frame for the I_T_L_Q nexus, then it considers the RESPONSE frame to be the valid RESPONSE—tame.

9.2.5 SSP transport layer error handling summary

9.2.5.1 SSP transport layer error handling summary introduction

This subclause contains a summary of how SSP ports process transport layer errors. This summary does not include every error case. See 9.2.4 for transport layer handling of link layer errors (e.g., using transport layer retries).

9.2.5.2 SSP initiator port transport layer error handling summary

If an SSP initiator port receives a COMMAND or TASK frame or an unsupported frame type, the ST_IFR state machine discards the frame (see 9.2.6.2.2.3).

If an SSP initiator port receives an XFER_RDY, read DATA, or RESPONSE frame with an unknown TAG field value, the ST_IFR state machine discards the frame (see 9.2.6.2.2.3). The application client may then abort the command with that tan

If an SSP initiator port receives an XFER_RDY frame that is not 12 bytes long, the ST_IFR state machine discards the frame (see 9.2.6.2.2.3). The application client may then abort the command.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 461

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    s/b
     . then:
 Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    s/b
    , then:
 Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
  the
    s/b
    then the
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
  CACCEPT - DONE
 the
    s/b
    then the
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    s/h
    , then:
Author: wdc-mevans
Subject: Highlight
Date: 6/27/2008 2:07:40 PM -07'00'
 PACCEPT - DONE (as "an SSP target port" which matches all the other similar sentences)
    s/b
    state machine
Author: stx-ghoulder
Subject: Highlight
Date: 7/14/2008 2:47:59 PM -07'00'
 TREJECT (7/14 don't change anything now. Maybe SAS-2.1 and SAM-5.
```

6/18 04-072 proposed creating a unit attention condition and logging the lost status in a log page, but that did not get a good

Comments from page 461 continued on next page

2) the SSP target port transmits the RESPONSE frame in the same or a new connection.

If an SSP target port transmits a read DATA frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- 1) the SSP TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5);
- the device server calls Send Command Complete () to return CHECK CONDITION status for that command with the sense key set to ABORTED COMMAND and the additional sense code set to ACK/NAK TIMEOUT (see 10.2.3); and
- 3) the SSP target port transmits the RESPONSE frame in a new connection.

If an SSP initiator port transmits a write DATA frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- the SSP_TF state machine closes the connection with DONE (ACK/NAK TIMEOUT) (see 7.16.8.6.5); and
- 2) the application client aborts the command (see 10.2.2).

If an SSP initiator port transmits a write DATA frame and receives a NAK for that frame, the application client aborts the command (see 10.2.2).

9.2.4.6 RESPONSE frame - handling of link layer errors

If an SSP target port transmits a RESPONSE frame and receives a NAK for that frame, the SSP target port retransmits, in the same or a new connection, the RESPONSE frame at least one time with the RETRANSMIT by set to one and with the other fields set to the same values as in the original RESPONSE frame (see 9.2.6.3.3.3).

If an SSP target port transmits a RESPONSE frame and does not receive an ACK or NAK for that frame (e.g., times out, or the connection is broken):

- the SSP_TF state machine closes the connection with DONE (ACK/NAK TIME OUT) (see 7.10.8.6.5);
 and
- 2) the SSP target port retransmits, in a new connection, the RESPONSE frame with:
 - A) the RETRANSMIT bit set to one; and
 - B) the other fields set to the same values as in the original RESPONSE frame (see 9.2./b.3.3.3).

The ST_TTS state machine retransmits each RESPONSE frame that does not receive an ACK at least one time (see 9.2.6.3.3). The number of times it retransmits each RESPONSE frame is vendor-specific.

If an SSP initiator port receives a RESPONSE frame with a RETRANSMIT bit set to one, and it has previously received a RESPONSE frame for the same I_T_L_Q nexus, the ST_IFR state machine discards the extra RESPONSE frame (see 9.2.6.3.2). If the ST_IFR state machine has not previously received a RESPONSE frame for the I_T_L_Q nexus, then it considers the RESPONSE frame to be the valid RESPONSE frame.

9.2.5 SSP transport layer error handling summary

9.2.5.1 SSP transport layer error handling summary introduction

This subclause contains a summary of how SSP ports process transport layer errors. This summary does not include every error case. See 9.2.4 for transport layer handling of limit layer errors (e.g., using transport layer retries).

9.2.5.2 SSP initiator port transport layer error handling summary

If an SSP initiator port receives a COMMAND or TASK frame or an unsupported frame type, the ST_IFR state machine discards the frame (see £2.6.2.2.3).

If an SSP initiator port receives an XFER_RDY, read DATA, or RESPONSE frame with an unknown TAG field value, the ST_IFR state machine discards the frame (see 9.2.6.2.2.3). The application client may then about the command with that tag.

If an SSP initiator port receives an XFER_RDY frame that is not 12 bytes long) the ST_IFR state machine inscribed in the state of the state machine in the state of the state

Working Draft Serial Attached SCSI - 2 (SAS-2)

461

reception at the time. I_T nexus loss might be appropriate; it would wipe out all other commands (which are probably having problems as well). This is a SAM level issue, not just a SAS issue.)

The number of times it retransmits each RESPONSE frame is vendor-specific.

There should be discussion of what the target does if all retransmissions also fail (i.e., NAK or ACK/NAK TIMEOUT occurrs).

Author: wdc-mevans
Subject: Highlight
Date: 5/26/2008 8:27:35 AM -07'00'
TREJECT (first noun/subject convention)
it
s/b
the initiator port

Author: wdc-mevans
Subject: Highlight
Date: 5/23/2008 11:23:34 AM -07'00'
TACCEPT - DONE
nexus, the

s/b nexus, then the

Author: wdc-mevans Subject: Highlight Date: 6/20/2008 6:01:59 PM -07'00'

it considers the RESPONSE frame to be the valid RESPONSE frame.

)

the state machine processes the RESPONSE frame.

Author: RElliott Subject: Highlight Date: 8/31/2008 2:00:52 PM -07'00'

XFER_RDY frame that is not 12 bytes long s/b

XFER_RDY frame _with a Transfer Ready information unit_ that is not 12 bytes long

The frame header is 24 bytes alone.

Author: Isi-gpenokie Subject: Sticky Note Date: 5/23/2008 11:25:52 AM -07'00'

Put << then >> in all the if statement in 9.2.5.2. SSP initiator port transport layer error handling summary and 9.2.5.3 SSP target port transport layer error handling summary

If an SSP initiator port receives an XFER_RDY frame in response to a command with no write data, the ST_IFR state machine discards the frame (see 9.2.6.2.2.3) and the application client aborts the command (see 10.2.2).

If an SSP initiator port receives an XFER_RDY frame requesting more write data than expected, the ST_ITS state machine discards the frame (see 9.2.6.2.3.3) and the application client aborts the command (see 10.2.2)

If an SSP initiator port receives an XFER_RDY frame requesting zero bytes, the ST_ITS state machine discards the frame (see 9.2.6.2.3.3) and the application client aborts the command (see 10.2.2).

If transport layer retries are disabled and an CSP initiator port receives an XFER RDY frame with a requested offset that was not expected, the ST_ITS state machine discards the frame (see 9.2.6.2.3.3) and the application client aborts the command (see 10.2.2).

If an SSP initiator port receives a read DATA frame in response to a command with no read data, the ST_IFR state machine discards the frame (see 9.2.6.2.2.3) and the application client aborts the command (see

If an SSP initiator port receives a read DATA frame with more read-data thou expected, the ST_ITS state machine discards the frame (see 9.2.6.2.3.3) and the application client-borts the command (see 10.2.2). The SSP initiator port may receive a RESPONSE for the command before beins able to about the command.

If an SSP initiator port receives a read DATA frame with zero bytes, the ST_ITS state machine discards the frame (see 9.2.6.2.3.3) and the application client aborts the command (see 10.2.2). The SSP initiator port may receive a RESPONSE for the command before being able to abort the command.

If transport layer retries are disabled and an SSP initiator port receives a read DATA frame with a data offset that was not expected, the ST_ITS state haschine discards that frame and any subsequent read DATA frames received for that command (see 9.2.6.2.3.7) and the application client aborts the command (see 10.2.2). The SSP initiator port may receive a RESPONSE for the command before being able to abort the command.

If an SSP initiator port receives a RESPONSE frame that is not the correct length, the ST, IFR state machine considers the command or task management function completed with an error and discards the frame (see 9.2.6.2.2.3).

9.2.5.3 SSP target port transport layer error handling summary

If an SSP target port receives an XFER_RDY or RESPONSE frame or another unsupported frame type, the ST_TFR state machine discards the frame (see 9.2.6.3.2.2).

If an SSP target port receives a COMMAND frame and:

- a) the frame is too short to contain a LOGICAL UNIT NUMBER field;
- b) the frame is too short to contain a CDB; or
- =c) the ADDITIONAL CDB LENGTH field specifies that the frame should be a different length,

then the ST_TTS state machine returns a RESPONSE frame with the DATAPRES field set to RESPONSE DATA and the RESPONSE CODE field set to INVALID FRAME (see 9.2.6.3.2.2).

If an SSP target port receives a TASK frame that is too short, the ST_TTS state machine returns a RESPONSE frame with the DATAPRES field set to RESPONSE_DATA and the RESPONSE CODE field set to INVALID FRAME (see 9.2.6.3.2.2).

If an SSP target port receives a COMMAND frame with a tag that is already in use for another command, the device server may return CHECK CONDITION status with the sense key set to ABORTED COMMAND and the additional sense code set to OVERLAPPED COMMANDS ATTEMPTED (see 10.2.3).

If an SSP target port receives:

- a) a COMMAND frame with a tag that is already in use for a task management function; or
- b) a TASK frame with a tag that is already in use for a command or another task management function,

then the task router and task manager(s) return a RESPONSE frame with the RESPONSE CODE field set to OVERLAPPED TAG ATTEMPTED (see 10.2.4).

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE and s/b . and to match wdc-meyans comment on next paragraph Author: wdc-mevans Subject: Highlight Date: 5/23/2008 11:26:06 AM -07'00' REJECT (2 things ANDed) disabled and disabled, and Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:28:41 AM -07'00' ACCEPT - DONE 9.2.6.2.3.3) and 9.2.6.2.3.3), and Author: wdc-mevans Subject: Highlight Date: 5/23/2008 11:26:15 AM -07'00' expected, the expected, then the Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:29:43 AM -07'00' ACCEPT - DONE (see 9.2.6.2.2.3) and (see 9.2.6.2.2.3), and Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:29:49 AM -07'00' TACCEPT - DONE (see 9.2.6.2.2.3) and (see 9.2.6.2.2.3), and Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:29:56 AM -07'00' TACCEPT - DONE

Page: 462

(see 9.2.6.2.2.3) and

If an SSP initiator port receives an XFER RDY frame in response to a command with no write data, the ST IFR state machine discards the frame (see 9.2.6.2.2.3) and the application client aborts the command (see 10.2.2)

If an SSP initiator port receives an XFER RDY frame requesting more write data than expected, the ST ITS state machine discards the frame (see 9.2.6.2.3.3) and the application client aborts the command (see

If an SSP initiator port receives an XFER_RDY frame requesting zero bytes, the ST_ITS state machine discards the frame (see 9.2.6.2.3.3) and the application client aborts the command (see 10.2.2).

If transport layer retries are disabled and an SSP initiator port receives an XFER RDY frame with a requested offset that was not expected, the ST_ITS state machine discards the frame (see 9.2.6.2%3) and the application client aborts the command (see 10.2.2).

If an SSP initiator port receives a read DATA frame in response to a command with no read data; the ST IFR state machine discards the frame (see 9.2.6.2.2.3) and the application client aborts the command (see

If an SSP initiator port receives a read DATA frame with more read data than expected, the ST_ITS state machine discards the frame (see 9.2.6.2.3.3) and the application given aborts the command (see 10.2.2). The SSP initiator port may receive a RESPONSE for the command before being able to abort the command.

If an SSP initiator port receives a read DATA frame with zero bytes, the ST_ITS state machine discards the frame (see 9.2.6.2.3.3) and the application client aborts the command (see 10.2.2). The SSP initiator port may receive a RESPONSE for the command before being able to abort the command.

If transport layer retries are disabled and an SSP initiator port receives a read DATA frame with a data offset that was not expected, the ST ITS state machine discards that frame and any subsequent read DATA frames received for that command (see 9.2.6.2.3.7) and the application client aborts the command (see 10.2.2). The SSP initiator port may receive a RESPONSE for the command before being able to abort the command

If an SSP initiator port receives a RESPONSE frame that is not the correct length, the ST IFR state machine considers the command or task management function completed with an error and discards the frame (see

9.2.5.3 SSP target port transport layer error handling summary

If an SSP target port receives an XFER RDY or RESPONSE frame or another unsupported frame type, the ST_TFR state machine discards the frame (see 9.2.6.3.2.2).

If an SSP target port receives a COMMAND frame and:

- a) the frame is too short to contain a LOGICAL UNIT NUMBER field;
- b) the frame is too short to contain a CDB; or

the ADDITIONAL CDB LENGTH field specifies that the frame should be a different length,

then the ST_TTS state machine returns a RESPONSE frame with the DATAPRES field set to RESPONSE DATA and the RESPONSE CODE field set to INVALID FRAME (see 9.2.6.3.2.2).

If an SSP target port receives a TASK frame that is too short, the ST_TTS state machine returns a RESPONSE frame with the DATAPBES field set to RESPONSE_DATA and the RESPONSE CODE field set to INVALID FRAME (see 9.2.6,3.2.2).

If an SSP target portreceives a COMMAND frame with a tag that is already in use for apoiner command, the device server may return CHECK CONDITION status with the sense key set to ABORTED COMMAND and the additional sense code set to OVERLAPPED COMMANDS ATTEMPTED (see 10.2.3).

If an SSP target port receives:

- a) a COMMAND frame with a tag that is already in use for a task management function; or
- b) a TASK frame with a tag that is already in see for a command or another task management function,

then the task router and task manager(s) return a RESPONSE frame with the RESPONSE CODE field set to OVERLAPPED TAG ATTEMPTED (see 10.2.4).

Working Draft Serial Attached SCSI - 2 (SAS-2)

(see 9.2.6.2.2.3), and

Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:30:15 AM -07'00' REJECT (2 things being ANDed)

disabled and

disabled, and

Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:30:37 AM -07'00'

ACCEPT - DONE

expected, the

s/b expected, then the

Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:30:03 AM -07'00'

TACCEPT - DONE

(see 9.2.6.2.3.7) and

(see 9.2.6.2.3.7), and

Author: RElliott Subject: Note

Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

d) the tlr control field is set to a non-zero value and non-zero values are not supported,

to match response to elx-bmartin comment in the COMMAND frame section TLR CONTROL field paragraphs

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

device server

task router or task manager

In SAM-4, the task router/task manager do this, not a device server

Author: wdc-mevans

Subject: Highlight Date: 6/27/2008 2:25:15 PM -07'00'

REJECT (This is the wording used in 10.2.4. Although "or" is more correct for describing who returns CHECK CONDITION status,

and" wording used in that section is more correct for who must abort commands and TMFs.)

task router and task manager(s)

task router or one of the task managers

If an SSP target port receives a write DATA frame with an unknown tag, the ST_TFR state machine discards the frame (see 9.2.6.3.2).

If an SSP target port receives a write DATA frame (that does not contain first burst data) and for which there is no XFER_RDY frame outstanding (fi.e., # has received all requested write data), the ST_TFR state machine discards the frame (see 9.2.6.3.2.2).

If an SSP target port receives a TASK frame with an unknown logical unit number, the ST_TFR state machine returns a RESPONSE frame with the DATAPRES field set to RESPONSE_DATA and the RESPONSE CODE field set to INCORRECT LOGICAL UNIT NUMBER (see 9.2.6.3.2.2).

If an SSP target port receives a COMMAND frame or TASK frame with a TARGET PORT TRANSFER TAG field set to a value other than FFFFh, the ST_IFR_state machine may return a RESPONSE frame with the DATAPRES field set to RESPONSE_DATA and the RESPONSE COSE_field set to INVALID FRAME (see 9.2.6.3.2.2).

If an SSP target port is using target port transfer tags and receives a write DATA frame with an unknown target port transfer tag, the ST_TFR state machine discards the frame (see 9.2.6.3.3).

If transport layer retries are disabled and so SSP target port receives a write DATA frame with a data offset that was not expected, the ST_TTS state mackine discards the frame (see 9.2.6.3.3.6.1) and the device server terminates the command with CHECK CONDITION status with the sense key set to ABARTED COMMAND and the additional sense code set to DATA-OFFSET ERROR (see 10.2.3).

If an SSP target port receives a write NATA frame with more write data than expected (i.e., the write DATA frame contains data in excess of that requested by an XFER_RDY same or, for first burst data, indicated by the FIRST BURST LENGTH field in the Disconnext-Reconnect mode page), see ST. TTS state machine discards the frame (see 9.2.6.3.3.6.1) and the device server terminates the command with CHECK CONDITION status with the sense key set to ABORTED COMMAND and the additional sense code set to TOO MUCH WRITE DATA (see 10.2.3).

If an SSP target port receives a write DATA frame with zero wrtes, the ST_TTS state machine discards the frame (see 9.2.6.3.3.6.1) and the device server terminates the command with CHECK CONDITION status with the sense key set to ABORTED COMMAND and the additional sense code set to INFORMATION UNIT TOO SHORT (see 10.2.3).

9.2.6 ST (transport layer for SSP ports) state machines

9.2.6.1 ST state machines overview

The ST state machines perform the following functions:

- a) receive and process transport protocol service requests and transport protocol service responses from the SCSI application layer;
- b) receive and process other SAS connection management requests from the application layer;
- c) send transport protocol service indications and transport protocol service confirmations to the SCSI application layer:
- d) send requests to the port layer to transmit frames and manage SAS connections; and
- e) receive confirmations from the port layer.

The following confirmations between the ST state machines and the port layer:

- a) Transmission Status; and
- b) Frame Received;

include the following as arguments:

- a) <mark>ta</mark>
- b) destination SAS address; and
- c) source SAS address;

and are used to route the confirmations to the correct ST state machines.

NOTE 88 - Although allowed by this standard, the ST state machines do not handle bidirectional commands that result in concurrent write DATA frames and read DATA frames.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 463

TACCEPT - DONE

463

Author: stx-ghoulder Subject: Highlight Date: 6/20/2008 6:12:24 PM -07'00' *REJECT ("when" is used to describe a point in time. First burst data is not "not permitted" at any particular point in time. It might be considered to start being "not permitted" after all the first burst data has been received. The suggested "e.g." has the wrong scope - this paragraph covers both the case of first burst disabled and the case of first burst data having already been received. The current wording is correct.) that does not contain first burst data replace with: "when first burst data is not permitted (e.g., ENABLE FIRST BURST is set to zero in the command frame)" Author: stx-ghoulder Subject: Highlight Date: 6/20/2008 6:13:45 PM -07'00' TREJECT ("requested write data" is only requested by an XFER_RDY frame. If any has not arrived, that XFER_RDY is still considered outstanding.) should be "e.g.". Another case is the target may not have received all the requested data but doesn't have and XFER_RDY frame outstanding. Author: stx-ghoulder Subject: Highlight 2: 26:56 PM -07'00' Date: 6/27/2008 2:26:56 PM -07'00' PREJECT (The Target Port Transfer Tag field is never valid in a COMMAND or TASK frame. Whether or not the target uses target port transfer tags is irrelevant.) replace with: "is not using target port transfer tags and receives". Author: stx-ghoulder Subject: Highlight Date: 6/27/2008 2:28:58 PM -07'00' REJECT (no, the state machine clearly makes this a "may." For COMMAND and TASK frames, it's like a reserved field, and reserved field checking is optional.) may return should be "returns". Author: wdc-mevans Subject: Highlight Date: 5/23/2008 11:26:48 AM -07'00' REJECT (2 things ANDed) disabled and disabled, and Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:32:14 AM -07'00' (see 9.2.6.3.3.6.1) and (see 9.2.6.3.3.6.1), and Author: wdc-mevans Subject: Highlight Date: 5/27/2008 6:07:48 PM -07'00'

Comments from page 463 continued on next page

If an SSP target port receives a write DATA frame with an unknown tag, the ST_TFR state machine discards the frame (see 9.2.6.3.2).

If an SSP target port receives a write DATA frame that does not contain first burst data and for which there is no XFER_RDY frame outstanding (i.e., it has received all requested write data), the ST_TFR state machine discards the frame (see 9.2.6.3.2.2)

If an SSP target port receives a TASK frame with an unknown logical unit number, the ST TFR state machine returns a RESPONSE frame with the DATAPRES field set to RESPONSE_DATA and the RESPONSE CODE field set to INCORRECT LOGICAL UNIT NUMBER (see 9.2.6.3.2.2).

If an SSP target port receives a COMMAND frame or TASK frame with a TARGET PORT TRANSFER TAG field set to a value other than FFFFh, the ST_TFR state machine may return a RESPONSE frame with the DATAPRES field set to RESPONSE DATA and the RESPONSE CODE field set to INVALID FRAME (see 9.2.6.3.2.2).

If an SSP target port is using target port transfer tags and receives a write DATA frame with an unknown target port transfer tag, the ST_TFR state machine discards the frame (see 9.2.6.3.3).

If transport layer retries are disabled and an SSP target port receives a write DATA frame with a data offset that was not expected, the ST TTS state machine discards the frame (see 9.2.6.3.5.1) and the device server terminates the command with CHECK CONDITION status with the sense key set to ABORTED COMMAND and the additional sense code set to DATA OFFSET ERROR (see 10.2.3).

If an SSP target port receives a write DATA frame with more write data than expected (i.e., the write DATA frame contains data in excess of that requested by an XFER_RDY frame or, for first burst data, indicated by the FIRST BURST LENGTH field in the Disconnect Reconnect mode page), the ST TTS state machine discards the frame (see 9.2.6.3.3.6.1) and the device server terminates the command with CHECK CONDITION status with the sense key set to ABORTED COMMAND and the additional sense code set to TOO MUCH WRITE DATA (see 10.2.3).

If an SSP target port receives a write DATA frame with zero bytes, the ST TTS state machine discards the frame (see 9.2.6.3.3.6.1) and the device server terminates the command with CHECK CONDITION status with the sense key set to ABORTED COMMAND and the additional sense code set to INFORMATION UNIT TOO SHORT (see 10.2.3).

9.2.6 ST (transport layer for SSP ports) state machines

9.2.6.1 ST state machines overview

The ST state machines perform the following functions:

- a) receive and process transport protocol service requests and transport protocol service responses from the SCSI application layer;
- b) receive and process other SAS connection management requests from the application layer
- c) send transport protocol service indications and transport protocol service confirmations to the SCSI application layer.
- d) send requests to the port layer to transmit frames and manage SAS connections; and
- e) receive confirmations from the port layer.

The following confirmations between the ST state machines and the port layer:

- a) Transmission Status: and
- b) Frame Received;

include the following as arguments:

- b) destination SAS address; and
- c) source SAS address;

and are used to route the confirmations to the correct ST state machines.

NOTE 88 - Although allowed by this standard, the ST state machines do not handle bidirectional of hat result in concurrent write DATA frames and read DATA frames.

Working Draft Serial Attached SCSI - 2 (SAS-2)

463

expected, the expected, then the Author: stx-ghoulder Subject: Highlight Date: 7/14/2008 5:50:16 PM -07'00' REJECT (7/14 these are slightly different cases. If the target has not sent an XFER_RDY, the ST_TTS state machine is idle and only the ST_TFR can do anything. If first burst didn't exist to complicate things, could change "frame with more" to "frame for which there is an XFER_RDY frame outstanding with more". Defer to SAS-2.1 or later.) ST TTS state machine discards the frame The ST_TFR state machine also discards frames with this type of error (see 5 paragraphs earlier). Is this an unneeded overlap in responsibility or must both machines act together to make the discard happen? Author: wdc-meyans Subject: Highlight Date: 5/26/2008 8:32:21 AM -07'00' TRACCEPT - DONE (see 9.2.6.3.3.6.1) and (see 9.2.6.3.3.6.1), and Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:32:27 AM -07'00' ACCEPT - DONE (see 9.2.6.3.3.6.1) and (see 9.2.6.3.3.6.1), and Author: stx-ghoulder Subject: Highlight Date: 5/26/2008 8:32:42 AM -07'00' ACCEPT - DONE Should be "SCSI application layer" like items a) and c), else there is more explaining to do. Author: stx-ahoulder Adultin: Standards Subject: Highlight Date: 5/23/2008 11:28:33 AM -07'00' ACCEPT - DONE (yes. changed to "initiator port transfer tag") Is this the command tag? Author: stx-ghoulder Subject: Highlight

Date: 7/14/2008 5:52:56 PM -07'00'

TREJECT (7/14 no, it just means that the committee is too lazy or lacks the ability to define state machines correctly)

NOTE 88 - Although allowed by this standard, the ST state machines do not handle bidirectional commands that result in concurrent write DATA frames and read DATA frames.

This seems like a requirement that should NOT be hidden away in a note. The statement also seems wrong -- if the ST state machines in this standard don't allow this feature, then "this standard" doesn't allow it. Is it trying to say that the feature is allowed by SAM but not by this standard?

28 January 2008

9.2.6.2 ST_I (transport layer for SSP initiator ports) state machines

9.2.6.2.1 ST_I state machines overview

The ST_I state machines are as follows:

- a) ST_IFR (initiator frame router) state machine (see 9.2.6.2.2); and b) ST_ITS (initiator transport server) state machine (see 9.2.6.2.3).

The SAS initiator port includes:

- a) one ST_IFR state machine; and
 b) one ST_ITS state machine for each possible task and task management function (i.e., for each tag).

Page: 464

Author: wdc-mevans Subject: Highlight Date: 6/27/2008 2:30:06 PM -07'00'

The s/b Each

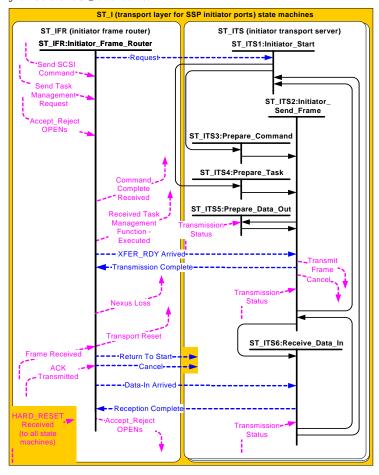


Figure 215 — ST_I (transport layer for SSP initiator ports) state machines

This page contains no comments

9.2.6.2.2 ST IFR (initiator frame router) state machine

9.2.6.2.2.1 ST IFR state machine overview

The ST IFR state machine performs the following functions:

- a) receives Send SCSI Command and Send Task Management transport protocol service requests from the SCSI application layer;
- b) sends messages to the ST_ITS state machine;
- c) receives messages from the ST ITS state machine;
- d) receives confirmations from the port layer;
- e) sends transport protocol service confirmations to the SCSI application layer;
- f) receives vendor-specific requests from the SCSI application layer;
- g) sends vendor-specific confirmations to the SCSI application layer;
- h) receives Accept Reject OPENs requests from the SCSI application layer;
- sends Accept_Reject OPENs requests to the port layer;
- sends I T Nexus Loss event notifications to the SCSI application layer; and
- k) sends Transport Reset event notifications to the SCSI application layer.

This state machine consists of one state.

This state machine shall be started after power on.

9.2.6.2.2.2 Processing transport protocol service requests

If this state machine receives a Send SCSI Command transport protocol service request then this state machine shall send a Request (Send Command) message with Command arguments and Application Client Buffer arguments to the ST ITS state machine for the specified tag.

The following is the list of Command arguments:

- a) connection rate;
- b) initiator connection tag;
- c) destination SAS address;
- d) source SAS address set to the SAS address of the SSP initiator port;
- e) tag;
- f) logical unit number;
- q) task priority;
- h) task attribute;
- i) additional CDB length;
- CDB;
- additional CDB bytes, if any;
- I) first burst enabled; and
- m) request fence.

The following is the list of Application Client Buffer arguments

- a) data-in buffer size;
- b) data-out buffer; and
- c) data-out buffer size

If the command is performing a write operations and the Send SCSI Command transport service request contains a First Burst Enabled argument, then the Request (Send Command) message shall also include the Enable First Burst argument and the number of bytes for the First Burst Size argument.

If this state machine receives a Send Task Management Request transport protocol service request, then this state machine shall send a Request (Send Task) message with the Task arguments to the ST_ITS state machine for the specified tag.

The following is the list of Task arguments:

- a) connection rate:
- b) initiator connection tag;

Page: 466

Author: stx-ghoulder

Subject: Highlight Date: 6/27/2008 2:34:51 PM -07'00'

REJECT (these are the arguments defined in SAM-4, which purposely avoids a concrete description of such things. If SAM-5 adds more, then SAS-2.1 can add them too.)

data-out buffer;

Does this mean data-out buffer address, or data-out buffer contents? Why shouldn't there also be a data-in buffer argument?

Author: wdc-mevans

Subject: Highlight Date: 6/27/2008 2:32:28 PM -07'00'

**REJECT (why saddle the basic list of arguments with that? It's not an example of anything being described in this section.)

data-out buffer size.

data-out buffer size (e.g., this value takes into account the value set in the MAXIMUM BURST SIZE field in the Disconnect-Reconnect mode page).

Author: stx-ahoulder

Subject: Highlight
Date: 5/26/2008 8:34:04 AM -07'00'

TACCEPT - DONE

operations

should be singular, not plural.

Author: wdc-mevans

Subject: Highlight Date: 5/26/2008 8:33:55 AM -07'00'

PACCEPT - DONE (fixed plural, but did not add comma because 2 things are being ANDed)

operations and

s/b

operation, and

28 January 2008

T10/1760-D Revision 14

Page: 467

then send

- c) source SAS address set to the SAS address of the SSP initiator port;
- d) destination SAS address;
- e) retransmit bit;
- f) tac
- g) logical unit number;
- h) task management function;
- i) tag of task to be managed; and
- request fence.

If the ST_ITS state machine for the tag specified in the Send Task Management Request is currently in use, then this state machine shall set the retransmit bit argument to one. If the ST_ITS state machine for the tag specified in the Send Task Management Request is not currently in use, then this state machine shall set the retransmit bit argument to zero.

9.2.6.2.2.3 Processing Frame Received confirmations

If this state machine receives a Frame Received (ACK/NAK Balanced) confirmation or Frame Received (ACK/NAK Balanced) confirmation, then this state machine shall compare the frame type of the frame-facevived with the received confirmation (see table 164 in 9.2.1). If the confirmation was Frame Received ACK/NAK Balanced) and the frame type is not XFER_RDY, RESPONSE, or DATA, then this state machine shall discard the frame. If the confirmation was Frame Received (ACK/NAK Not Balanced) and the frame type is not DATA, then this state machine shall discard the frame.

If the frame type is correct relative to the Frame Received confirmation, then this state machine may check that the hashed source SAS address matches the SAS address of the SAS port that transmitted the frame and that the hashed destination SAS address matches the SAS address of the SAS port that received the frame based on the connection information. If this state magnitude checks these SAS addresses, and they do not match then this state machine:

- a) shall discard the frame; and
- may send a vendor-specific confirmation to the SCSI application layer to cause the command using that tag to be aborted.

If the frame type is XFER_RDY then this state machine shall check the length of the information unit. If the length of the information unit is not correct, then this state machine:

- a) shall discard the frame; and
- may send a vendor-specific confirmation to the SCSI application layer to cause the command using that tag to be aborted.

If the frame type is XFER_RDY and the tag is for a task with no write data, then this state machine shall:

- a) discard the frame;
- send a Command Complete Received transport protocol service confirmation with the Betivery Result argument set to Service Delivery or Target Failure - DATA Not sepected to the SCSI application layer; and
- c) if there is an ST_ITS state machine for the tag, send a Return To Start message to that state machine.

If the frame type is DATA and the tag is for a task with no read data, then this state machine shall:

- a) discard the frame;
- b) send a Command Complete Received transport protocol service confirmation with the Delivery Received argument set to Service Delivery or Target Failure DATA Not Expected to the SCST application layer; and
- c) if there is an ST_ITS state machine for the tag, send a Return To Start message to that state machine.

If the frame type is RESPONSE then this state machine shall check the length of the information unit. If the length of the information unit is not correct and the RESPONSE frame was for a command, then this state shall discard the frame and send a Command Complete Received confirmation to the SCSI application layer with the Service Response argument set to Service Delivery or Target Failure. If the length of the information unit is not correct and the RESPONSE frame was for a task management function, then this state shall

Author: stx-ghoulder Subject: Highlight Date: 6/27/2008 2:37:13 PM -07'00' *REJECT (the basic check is optional - that results in discarding the frame. Aborting the tag in question is also optional. If hash values are wrong, something major is broken.) may send a vendor-specific confirmation This is optional? If some do it and others don't, wouldn't this cause interoperability problems? Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:34:43 AM -07'00' TACCEPT - DONE XFER RDY then XFER_RDY, then Author: RElliott Subject: Highlight Date: 8/30/2008 10:16:15 AM -07'00' ACCEPT - DONE Service Delivery or Target Failure - DATA Not Expected DATA s/b XFER RDY since this is receiving an XFER_RDY frame, not a DATA frame. The application layer includes XFER_RDY Not Expected in its list, but there is no source of it. (noticed by 08-343, but different solution than it requests) Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE send s/b then send Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:34:55 AM -07'00' REJECT (2 things ANDed) DATA and DATA, and Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' send s/h

- c) source SAS address set to the SAS address of the SSP initiator port;
- d) destination SAS address;
- e) retransmit bit;
- f) tac
- g) logical unit number;
- h) task management function;
- i) tag of task to be managed; and
- request fence.

If the ST_ITS state machine for the tag specified in the Send Task Management Request is currently in use, then this state machine shall set the retransmit bit argument to one. If the ST_ITS state machine for the tag specified in the Send Task Management Request is not currently in use, then this state machine shall set the retransmit bit argument to zero.

9.2.6.2.2.3 Processing Frame Received confirmations

If this state machine receives a Frame Received (ACK/NAK Balanced) confirmation or Frame Received (ACK/NAK Not Balanced) confirmation, then this state machine shall compare the frame type of the frame received with the received confirmation (see table 164 in 9.2.1). If the confirmation was Frame Received/ACK/NAK Balanced) and the frame type is not XFER_RDY, RESPONSE, or DATA, then this state machine shall discard the frame. If the confirmation was Frame Received (ACK/NAK Not Balanced) and the frame type is not DATA, then this state machine shall discard the frame.

If the frame type is correct relative to the Frame Received confirmation, then this state machine may check that the hashed source SAS address matches the SAS address of the SAS port that transmitted the frame and that the hashed destination SAS address matches the SAS address of the SAS port that received the frame based on the connection information. If this state machine checks these S/S addresses, and they do not match, then this state machine:

- a) shall discard the frame; and
- may send a vendor-specific confirmation to the SCSI application la/er to cause the command using that tag to be aborted.

If the frame type is XFER_RDY then this state machine shall check the length of the information unit. If the length of the information unit is not correct, then this state machine:

- a) shall discard the frame; and
- b) may send a vendor-specific confirmation to the SCSI application layer to cause the command using that tag to be aborted.

If the frame type is XFER_RDY and the tag is for a task with no write data, they this state machine shall:

- a) discard the frame;
- b) send a Command Complete Received transport protocol service confirmation with the Delivery Results
 argument set to Service Delivery or Target Failure DATA of Expected to the SCSI application layer
 and
- c) if there is an ST_ITS state machine for the yag, send a feturn To Start message to that state machine.

If the frame type is DATA and the tag is for a task with no read data, then this state machine shall:

- a) discard the frame;
- send a Command Complete Received transport protocol service confirmation with the Delivery Result argument set to Service Delivery or arget Failure - DATA Not Expected to the SCSI application layer; and
- c) if there is an ST_ITS state machine for the tag, send a Return To Start message to that state machine.

If the frame type is RESPONSE than this state machine shall check the length of the information until If the length of the information until is for correct and the RESPONSE frame was for a command, then this state shall discard the frame and send a Command Complete Received confirmation to the SCSI application layer with the Service Response argument set to Service Delivery or Target Failure. If the length of the information unit is not correct and the RESPONSE frame was for a task management function, then this state shall

Working Draft Serial Attached SCSI - 2 (SAS-2)

467

s/b correct, and

Author: wdc-meyans Subject: Highlight
Date: 5/26/2008 8:35:14 AM -07'00' RESPONSE then RESPONSE, then Author: wdc-mevans Subject: Highlight Date: 5/23/2008 11:09:46 AM -07'00' REJECT (2 things ANDed) correct and correct, and Author: wdc-meyans Subject: Highlight Date: 5/23/2008 11:11:51 AM -07'00' ACCEPT - DONE state state machine Author: wdc-meyans Subject: Highlight Date: 5/23/2008 11:12:12 AM -07'00' REJECT (2 things ANDed together) correct and

discard the frame and send a Received Task Management Function – Executed confirmation to the SCSI application layer with the Service Response argument set to Service Delivery or Target Failure.

If the frame type is correct relative to the Frame Received confirmation, then this state machine shall check the tag. If the tag does not specify a valid ST_ITS state machine, then this state machine shall discard the frame and may send a vendor-specific confirmation to the SCSI application layer to cause the certificant that tag to be aborted.

If the frame type is RESPONSE, and this state machine has received a RESPONSE frame for the I_T_L_Q nexus, then this state machine shall discard the frame.

If the frame type is RESPONSE, the fields checked in the frame are correct, and this state machine has not received a RESPONSE frame for this I_T_L_Q nexus, then this state machine shall send a Return To Start message to the ST_ITS state machine for the specified tag and:

- if the RESPONSE frame was for a command, then this state machine shall send a Command Complete Received protocol service confirmation to the SCSI application layer with the arguments set as specified in table 200 (see 10.2.1.5); or
- b) if the RESPONSE frame was for a task management request, then this state machine shall send a Received Task Management Function Executed protocol service confirmation to the SCSI application layer with the arguments set as specified in table 200 (see 10.2.1.5).

If the frame type is XFER_RDY and the fields checked in the frame are correct, then this state machine shall wait to receive an ACK Transmitted confirmation.

If this state machine receives an ACK Transmitted confirmation for an XFER_RDY frame, then this state machine shall send an XFER_RDY Arrived message to ST_ITS state machine specified by the tag. The message shall include the following Xfer_Rdy arguments:

- a) retry data frames;
- b) retransmit bit;
- c) target port transfer tag;
- d) requested offset; and
- e) write data length.

If the frame type is DATA and the fields checked in the frame are correct, then this state machine shall send a Data-In Arrived message to the ST_ITS state machine specified by the tag. The message shall include the following Read Data arguments:

- a) changing data pointer;
- b) number of fill bytes;
- c) data offset; and
- d) data

9.2.6.2.2.4 Processing Transmission Complete and Reception Complete messages

If this state receives a Transmission Complete (I_T Nexus Loss), then this state machine shall send a Nexus Loss event notification to the SCSI application layer.

Page: 468 Author: Isi-bday Subject: Highlight Date: 5/26/2008 8:35:36 AM -07'00' TACCEPT - DONE has received suggest has previously received Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE RESPONSE, and RESPONSE and Author: Isi-bday Subject: Highlight Date: 5/26/2008 8:35:46 AM -07'00' ACCEPT - DONE has not received suggest has not previously received Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' this state machine Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' TACCEPT - DONE to ST_ITS s/b to the ST_ITS Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE this state machine s/b Author: RElliott Subject: Highlight Date: 8/30/2008 9:33:10 AM -07'00'

Comments from page 468 continued on next page

Transmission Complete (I_T Nexus Loss)

discard the frame and send a Received Task Management Function – Executed confirmation to the SCSI application layer with the Service Response argument set to Service Delivery or Target Failure.

If the frame type is correct relative to the Frame Received confirmation, then this state machine shall check the tag. If the tag does not specify a valid ST_ITS state machine, then this state machine shall discard the frame and may send a vendor-specific confirmation to the SCSI application layer to cause the command using that tag to be aborted.

If the frame type is RESPONSE, and this state machine has received a RESPONSE frame for the I_T_L_Q nexus, then this state machine shall discard the frame.

If the frame type is RESPONSE, the fields checked in the frame are correct, and this state machine has not received a RESPONSE frame for this I_T_L_Q nexus, then this state machine shall send a Return 10 Start message to the ST_ITS state machine for the specified tag and:

- a) if the RESPONSE frame was for a command, then this state machine shall send a Command Complete Received protocol service confirmation to the SCSI application layer with the arguments set as specified in table 200 (see 10.2.1.5); or
- b) if the RESPONSE frame was for a task management request, then this state machine shall send a Received Task Management Function Executed protocol service confirmation to the SCSI application layer with the arguments set as specified in table 200 (see 10.2.1.5)

If the frame type is XFER_RDY and the fields checked in the frame are correct, then this state machine shall wait to receive an ACK Transmitted confirmation.

If this state machine receives an ACK Transmitted confirmation for an XFER_RDY frame, then this state machine shall send an XFER_RDY Arrived message to ST_ITS state machine specified by the tag. The message shall include the following Xfer_Rdy arguments:

- a) retry data frames;
- b) retransmit bit;
- c) target port transfer tag;
- d) requested offset; and
- e) write data length.

If the frame type is DATA and the fields checked in the frame are correct, then this state machine shall send a Data-In Arrived message to the ST YIS state machine specified by the tag. The message shall include the following Read Data arguments:

- a) changing data pointer
- b) number of fill bytes,
- c) data offset; and
- d) data.

468

9.2.6.2.2.4 Provessing Transmission Complete and Reception Complete messages

If this state receives a Transmission Complete (LT Nexus Loss), then this state machine shall send a Nexus Loss event notification to the SCSI application layer.

Working Draft Serial Attached SCSI - 2 (SAS-2)

message per 08-343

Author: wdc-mevans Subject: Highlight Date: 5/23/2008 11:12:36 AM -07'00'

state s/b

state machine

Page: 469

Author: RElliott

Table 176 defines the transport protocol service confirmation and its argument generated as a result of receiving a Transmission Complete message or a Reception Complete message that indicate on error occurred during the transmission or reception of a frame.

Table 176 — Confirmations sent to the SCSI application layer if a frame transmission or reception error occurs

1	
Message received from ST_ITS state machine	Protocol service confirmation and Delivery Result argument sent to the SCSI application layer
Transmission Complete (Command Failed, ACK/NAK Timeout)	Command Complete Received (Service Delivery or Target Failure - ACK/NAK Timeout)
Transmission Complete (Command Failed, NAK Received)	Command Complete Received (Service Delivery or Target Failure - NAK Received)
Transmission Complete (Command Failed, Connection Failed)	Command Complete Received (Service Delivery or Target Failure - Connection Failed)
Transmission Complete (Task Failed, ACK/NAK Timeout)	Received Task Management Function - Executed (Service Delivery or Target Failure - ACK/NAK Timeout)
Transmission Complete (Task Failed, NAK Received)	Received Task Management Function - Executed (Service Delivery or Target Failure - NAK Received)
Transmission Complete (Task Failed, Connection Failed)	Received Task Management Function - Executed (Service Delivery or Target Failure - Connection Failed)
Transmission Complete (XFER_RDY Incorrect Write Data Length)	Command Complete Received (Service Delivery or Target Failure - XFER_RDY Incorrect Write Data Length)
Transmission Complete (XFER_RDY Requested Offset Error)	Command Complete Received (Service Delivery or Target Failure - XFER_RDY Requested Offset Error)
Transmission Complete (Cancel Acknowledged)	Command Complete Received (Service Delivery or Target Failure - Cancel Acknowledged)
Reception Complete (Data Offset Error)	(Command Complete Received (Service Delivery or Target) [Failure - DATA Offset Error)
Reception Complete (Too Much Read Data)	Command Complete Received (Service Delivery or Target Failure - DATA Too Much Read Data)
Reception Complete (Information Unit Too Short)	Command Complete Received (Service Delivery or Target Failure - DATA Information Unit Too Short)
Reception Complete (Command Failed, ACK/NAK Timeout)	Command Complete Received (Service Delivery or Target Failure - ACK/NAK Timeout)
Reception Complete (Cancel Acknowledged)	Command Complete Received (Service Delivery or Target Failure - Cancel Acknowledged)

The protocol service confirmation shall include the tag as an argument.

9.2.6.2.2.5 Processing miscellaneous requests

If this state machine receives an Accept_Reject OPENs (Accept SSP) or Accept_Reject OPENs (Reject SSP) request, then this state machine shall send a corresponding Accept_Reject OPENs request to the port layer.

If this state machine receives a HARD_RESET Received confirmation, then this state machine shall send a Transport Reset event notification to the SCSI application layer.

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' its argument Delivery Result argument Author: wdc-mevans Autnor: wdc-mevans
Subject: Highlight
Date: 6/27/2008 2:39:36 PM -07'00'
TREJECT (the grammar is OK; read the whole sentence) defines the defines each Author: wdc-mevans Subject: Highlight
Date: 6/27/2008 2:37:48 PM -07'00'

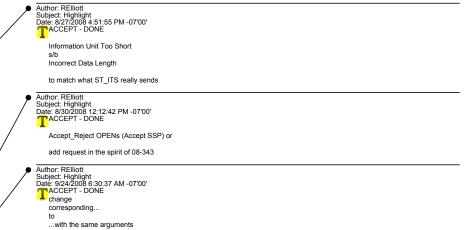
REJECT (see other comments on "receiving") of receiving s/b of this state machine receiving Author: wdc-mevans Subject: Highlight Date: 6/27/2008 2:38:21 PM -07'00' ACCEPT - DONE that indicate indicating that Author: RElliott Subject: Highlight Date: 8/30/2008 10:24:09 AM -07'00' ACCEPT - DONE Command Complete Received (Service Delivery or Target Failure - DATA Offset Error) DATA Data Offset Error to match app client list, and have consistent <frame type> <error name> wording (noticed by 08-343, different solution) Author: RElliott Subject: Highlight
Date: 8/27/2008 4:51:50 PM -07'00'
ACCEPT - DONE Information Unit Too Short Incorrect Data Length to match what ST_ITS really sends

Table 176 defines the transport protocol service confirmation and its argument generated as a result of receiving a Transmission Complete message or a Reception Complete message that indicate an error occurred during the transmission or reception of a frame.

Table 176 — Confirmations sent to the SCSI application layer if a frame transmission or reception error occurs

Message received from ST_ITS state machine	Protocol service confirmation and Delivery Result argument sent to the SCSI application layer
Transmission Complete (Command Failed, ACK/NAK Timeout)	Command Complete Received (Service Delivery or Target Failure - ACK/NAK Timeout)
Transmission Complete (Command Failed, NAK Received)	Command Complete Received (Service Delivery or Target Failure - NAK Received)
Transmission Complete (Command Failed, Connection Failed)	Command Complete Received (Service Delivery or Target Failure - Connection Failed)
Transmission Complete (Task Failed, ACK/NAK Timeout)	Received Task Management Function Executed (Service Delivery or Target Failure - ACK/NAX Timeout)
Transmission Complete (Task Failed, NAK Received)	Received Task Management Function - Executed (Service Delivery or Target Failure - NAK Received)
Transmission Complete (Task Failed, Connection Failed)	Received Task Management Function - Executed (Service Delivery or Target Failure - Connection Failed)
Transmission Complete (XFER_RDY Incorrect Write Data Length)	Command Complete Received (Service Delivery or Target Failure - XFER ADY Incorrect Write Data Length)
Transmission Complete (XFER_RDY Requested Offset Error)	Command Complete Received (Service Delivery or Target/ Failure - XFER_RDY Requested Offset Error)
Transmission Complete (Cancel Acknowledged)	Command Complete Received (Service Delivery or Target Fairure - Cancel Acknowledged)
Reception Complete (Data Offset Error)	Command Complete Received (Service Deliver or Target Failure - DATA Offset Error)
Reception Complete (Too Much Read Data)	Command Complete Received (Service Delivery or Target Failure - DATA Too Much Read Data)
Reception Complete (Information Unit Too Short)	Command Complete Received (Service Delivery or Target Failure - DATA Information Unit Too Shoyt)
Reception Complete (Command Failed, ACK/NAK Timeout)	Command Complete Received (Service Delivery or Target Failure - ACK/NAK Timeout)
Reception Complete (Cancel Acknowledged)	Command Complete Received (Service Delivery or Target Failure - Cancel Acknowledged)

The protocol service confirmation shall include the tag as an argument.


9.2.6.2.2.5 Processing miscellaneous requests

If this state machine receives an Accept_Reject OPENs (Accept_SSP) or Accept_Reject OPENs (Reject SSP) request, then this state machine shall send a corresponding Accept_Reject OPENs request to the port layer.

If this state machine receives a HARD_RESET Received confirmation, then this state machine shall send a Transport Reset event notification to the SCSI application layer.

Working Draft Serial Attached SCSI - 2 (SAS-2)

469

This state machine may receive vendor-specific requests from the SCSI application layer that cause this state machine to send a Cancel message to an ST_ITS state machine.

9.2.6.2.3 ST_ITS (initiator transport server) state machine

9.2.6.2.3.1 ST_ITS state machine overview

The ST_ITS state machine performs the following functions:

- a) receives and processes messages from the ST_IFR state machine;
- b) sends messages to the ST_IFR state machine;
- c) sends request to the port layer regarding frame transmission;
- d) receives confirmations from the port layer regarding frame transmission; and
- e) receives HARD_RESET Received confirmations from the port layer.

This state machine consists of the following states:

- a) ST ITS1:Initiator Start state (see 9.2.6.2.3.2) (initial state):
- b) ST_ITS2:Initiator_Send_Frame state (see 9.2.6.2.3.3);
- c) ST_ITS3:Prepare_Command state (see 9.2.6.2.3.4);
- d) ST_ITS4:Prepare_Task state (see 9.2.6.2.3.5);
- e) ST_ITS5:Prepare_Data_Out state (see 9.2.6.2.3.6); and
- f) ST_ITS6:Receive_Data_In state (see 9.2.6.2.3.7).

This state machine shall start in the ST_ITS1:Initiator_Start state after power on.

If this state machine receives a HARD_RESET Received confirmation, then this state machine shall transition to the ST_ITS1:Initiator_Start state.

This state machine shall maintain the state machine variables defined in table 177.

Table 177 - ST ITS state machine variables

State machine variable	Description
Data-In Buffer Offset	Current offset in the application client's data-in buffer (i.e., the application client buffer for read data)
Data-Out Buffer Offset	Current offset in the application client's data-out buffer (i.e., the application client buffer for write data)
Previous Requested Offset	Offset in the application client's data-out buffer (i.e., the application client buffer for write data) from the last XFER_RDY frame received
Previous Write Data Length	Write data length from the last XFER_RDY frame received

This page contains no comments

28 January 2008

T10/1760-D Revision 14

This state machine shall maintain the state machine arguments defined in table 178.

Table 178 — ST_ITS state machine arguments

State machine argument	Description
Command	Consists of the Command arguments received in the Request (Send Command) message
Task	Consists of the arguments received in the Request (Send Task) message
Xfer_Rdy	Consists of the arguments received in the XFER_RDY Arrived message
Data-Out Buffer	The location of the application client's data-out buffer (i.e., the application client buffer for write data)
Data-Out Buffer Size	The size in bytes of the application client's data-out buffer (i.e., the application client buffer for write data)
Data-In Buffer Size	The size in bytes of the application client's data-in buffer (i.e., the application client buffer for read data)

9.2.6.2.3.2 ST_ITS1:Initiator_Start state

9.2.6.2.3.2.1 State description

This state is the initial state of the ST ITS state machine.

Upon entry into this state, this state shall set the Data-In Buffer offset state machine variable to zero.

Upon entry into this state, this state shall set the Data-Out Puffer Offset state machine variable to zero.

9.2.6.2.3.2.2 Transition ST ITS1:Initiator Start to S7 ITS3:Prepare Command

This transition shall occur after this state receives a Request (Send Command) message.

9.2.6.2.3.2.3 Transition ST_ITS1:Initiator_Start to ST_ITS4:Prepare_Tags/k

This transition shall occur after this state receives a Request (Send Task) message.

9.2.6.2.3.3 ST_ITS2:Initiator_Send_Frame state

If this state is entered from the ST_ITS3:Prepare_Command state for transmission of a COMMAND frame, then this state shall send a Transmit Frame (Interlocked) request to the port layer.

If this state is entered from the ST_ITS6:Receive_Data_In state, and the vendor-specific number of retries has not been reached for the COMMAND frame requesting a read operation, then this state shall send a Transmit Frame (Interlocked) request to the port layer.

If this state is entered from the ST_ITS4:Prepare_Task state for transmission of an TASK frame, then this state shall send a Transmit Frame (Interlocked) request to the port layer.

If this state is entered from the ST ITS5:Prepare Data Out state for transmission of a write DATA frame, then this state shall send a fransmit Frame (Non-Interlocked) request to the port layer after this state has received an XFER RDY Arrived message.

If this state is entered from the ST ITS5:Prepare Data Out state for transmission of a write DATA frame and first bust is enabled, then this state shall send a Transmit Frame (Non-Interlocked) request to the port layer after this state has received a Transmission Status (Frame Transmitted) confirmation and a Transmission Status (ACK Received) confirmation for the COMMAND frame.

A Transmit Frame request shall include the COMMAND frame from the ST_ITS3:Prepare_Command state or from the ST_ITS6:Receive_Data_In state, the TASK frame from the ST_ITS4:Prepare_Task state, or the write

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 471

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE after this state receives after receiving Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

> after this state receives after receiving

Author: wdc-mevans Subject: Highlight
Date: 5/22/2008 1:35:33 PM -07'00' ACCEPT - DONE (although first burst is a bust)

first bust s/b first burst

DATA frame from the ST_ITS5:Prepare_Data_Out state and the following arguments to be used for any OPEN address frame:

- a) initiator port bit set to one;
- b) protocol set to SSP:
- c) Connection Rate argument;
- d) Initiator Connection Tag argument;
- e) Destination SAS Address argument; and
- f) Source SAS Address argument.

After sending a Transmit Frame request this state shall wait to receive a Transmission Status confirmation.

If the confirmation is Transmission Status (L_T Nexus Loss), then this state shall send a Transmission Complete (L_T Nexus Loss) message to the ST_IFR state machine. This Transmission Complete message shall include the tag as an argument.

If the confirmation is not Transmission Status (Frame Transmitted) or Transmission Status (I_T Nexus Loss) (see table 160 in 8.2.2.3.4), and the Transmit Frame request was for a COMMAND frame or a DATA frame, then this state shall send a Transmission Complete (Command Failed, Connection Failed) message to the ST_IFR state machine. The message shall include the tag.

If the confirmation is not Transmission Status (Frame Transmitted) or Transmission Status (I_T Nexus Loss) (see table 160 in 8.2.2.3.4), and the Transmit Frame request was for a TASK frame, then this state shall send a Transmission Complete (Task Failed, Connection Failed) message to the ST_IFR state machine. The message shall include the tag.

If the confirmation is Transmission Status (Frame Transmitted), and the Transmit Frame request was for a COMMAND frame not requesting a read operation, a COMMAND frame not requesting a write operation, a TASK frame, or a write DATA frame where the number of data bytes that have been transmitted equal the Data-Out Buffer Size state machine argument, then this state shall wait to receive one of the following confirmations:

- a) Transmission Status (ACK Received);
- b) Transmission Status (NAK Received);
- c) Transmission Status (ACK/NAK Timeout); or
- d) Transmission Status (Connection Lost Without ACK/NAK).

If the confirmation is Transmission Status (Frame Transmitted), and the Transmit Frame request was for a COMMAND frame requesting a write operation, or a write DATA frame where the number of the base share been transmitted is less than the Data-Out Buffer Size state mackine argument and the write data length from the previous XFER_RDY frame, then this state shall wait to possive one of the following confirmations:

- a) Transmission Status (ACK Received);
- b) Transmission Status (NAK Received);
- c) Transmission Status (ACK/NAK Timeout);
- d) Transmission Status (Connection Lost Without ACK/NAK); or
- e) XFER_RDY Arrived message.

If a XFER_RDY Arrived message is received, then the ST_ITS shall respond to the XFER_RDY frame as if a Transmission Status (ACK Received) was received.

NOTE 89 - If the number of data bytes requested to be transmitted for the Sexial SCSI Command protocol service request are fewer than the number of bytes in the service request nen this state may send additional Transmit Frame requests for write DATA frames for the protocol service request before receiving a Transmission Status (ACK Received), Transmission Status (ACK/NAK Timeout), or Transmission Status (Connection Lost Without Confirmation for Transmit Frame requests for previous write DATA frames sent for the L_L_Q nexus.

After a Transmission Status (Frame Transmitted) of received, if a confirmation of Transmission Status (NAK Received) is received, the Transmit Frame request was for a COMMAND frame, and the vendor-specific number of retries has not been reached, then this state shall send a Transmit Frame (interlocked) request to the port layer (i.e., the last COMMAND frame is retransmitted).

Page: 472

```
Author: wdc-mevans
Subject: Highlight
Date: 6/27/2008 2:40:48 PM -07'00'
  REJECT (no, it must be less than the buffer size, and must be less than the write data length. They're not added together, which
    would allow a buffer overflow.)
    and
   s/b
   plus
Author: RElliott
Subject: Highlight
Date: 8/30/2008 9:39:13 AM -07'00'
TACCEPT - DONE
    move confirmations
   into a)b)c)d) since it doesn't apply to e)
   per 08-343
Author: RElliott
Subject: Highlight
Date: 8/30/2008 9:39:30 AM -07'00'
  TO ACCEPT - DONE
 Transmission Status (ACK Received)
   add
   confirmation
    per 08-343
Author: Isi-gpenokie
Subject: Highlight
Date: 6/27/2008 2:41:50 PM -07'00'
 REJECT (this is summarizing the effects of other rules in this section. Making it normative would introduce duplicate requirements.)
    This note << NOTE 89 - If the number of d >> should be normative
Author: RElliott
Subject: Highlight
Date: 8/30/2008 9:39:41 AM -07'00'
   Transmission Status (Frame Transmitted)
    add
   confirmation
   per 08-343
Author: RElliott
Subject: Highlight
Date: 8/30/2008 9:41:05 AM -07'00'
   confirmation of Transmission Status (NAK Received)
   Transmission Status (NAK Received) confirmation
Author: RElliott
Subject: Highlight
Date: 8/30/2008 9:43:16 AM -07'00'
ACCEPT - DONE
```

DATA frame from the ST_ITS5:Prepare_Data_Out state and the following arguments to be used for any OPEN address frame:

- a) initiator port bit set to one;
- b) protocol set to SSP:
- c) Connection Rate argument;
- d) Initiator Connection Tag argument:
- e) Destination SAS Address argument; and
- f) Source SAS Address argument.

After sending a Transmit Frame request this state shall wait to receive a Transmission Status confirmation.

If the confirmation is Transmission Status (I_T Nexus Loss), then this state shall send a Transmission Complete (I T Nexus Loss) message to the ST IFR state machine. This Transmission Complete message shall include the tag as an argument.

If the confirmation is not Transmission Status (Frame Transmitted) or Transmission Status (I_T Nexus Loss) (see table 160 in 8.2.2.3.4), and the Transmit Frame request was for a COMMAND frame or a DATA frame. then this state shall send a Transmission Complete (Command Failed, Connection Failed) message to the ST_IFR state machine. The message shall include the tag.

If the confirmation is not Transmission Status (Frame Transmitted) or Transmission Status (I T Nexus Loss) (see table 160 in 8.2.2.3.4), and the Transmit Frame request was for a TASK frame, then this state shall send a Transmission Complete (Task Failed, Connection Failed) message to the ST_IFR state machine. The message shall include the tag.

If the confirmation is Transmission Status (Frame Transmitted), and the Transmit Frame request was for a COMMAND frame not requesting a read operation, a COMMAND frame not requesting a write operation, a TASK frame, or a write DATA frame where the number of data bytes that have been transmitted equal the Data-Out Buffer Size state machine argument, then this state shall wait to receive one of the following confirmations:

- a) Transmission Status (ACK Received);
- b) Transmission Status (NAK Received):
- c) Transmission Status (ACK/NAK Timeout); or
- d) Transmission Status (Connection Lost Without ACK/NAK).

If the confirmation is Transmission Status (Frame Transmitted), and the Transmit Frame request was for a COMMAND frame requesting a write operation, or a write DATA frame where the number of data bytes that have been transmitted is less than the Data-Out Buffer Size state machine argument and the write data length from the previous XFER_RDY frame, then this state shall wait to receive one of the following confirmations:

- a) Transmission Status (ACK Received);
- b) Transmission Status (NAK Received);
- Transmission Status (ACK/NAK Timeout);
- Transmission Status (Connection Lost Without ACK/NAK); or
- e) XFER RDY Arrived message.

472

If a XFER RDY Arrived message is received, then the ST ITS shall respond to the XFER RDY frame as if a Transmission Status (ACK Received) was received.

NOTE 89 - If the number of data bytes requested to be transmitted for the Send SCSI Command protocol service request are fewer than the number of bytes in the service request, then this state may send additional Transmit Frame requests for write DATA frames for the protocol service request before receiving a Transmission Status (ACK Received), Transmission Status (NAK Received), Transmission Status (ACK/NAK Timeout), or Transmission Status (Connection Lost Without ACK/NAK) confirmation for Transmit Frame requests for previous write DATA frames sent for the I_T_L_Q nexus.

After a Transmission Status (Frame Transmitted) is received, if a confirmation of Transmission Status (NAK Received) is received, the Transmit Frame request was for a COMMAND frame, and the vendor-specific number of retries has not been reached, then this state shall send a Transmit Frame (interlocked) request to the port layer (i.e., the last COMMAND frame is retransmitted).

Working Draft Serial Attached SCSI - 2 (SAS-2)

interlocked Interlocked

(Data-Out Failed, AKK/

NAK Timeout)

After a Transmission Status (Frame Transmitted) is received, if a confirmation of Transmission Status (NAK Received) is received, the Transmit Frame request was for a TASK frame, and the vendor-specific number of retries has not been reached, then this state shall send a Transmit Frame (interlocked) request to the port layer (i.e., the last TASK frame is retransmitted).

Table 179 defines the messages that this state shall send to the ST_IFR state machine upon receipt of the listed confirmations, based on the conditions under which each confirmation was received.

Table 179 — Messages sent to the ST IFR state machine

Confirmation received from the port layer	Conditions under which confirmation was received	Message sent to ST_IFR state machine
Transmission Status (ACK/NAK Timeout) or Transmission Status	The Transmit Frame request was for a COMMAND frame.	Transmission Complete (Command Failed, ACK/ NAK Timeout)
(Connection Lost Without ACK/NAK)	The Transmit Frame request was for a TASK frame.	Transmission Complete (Task Failed, ACK/NAK Timeout)
Transmission Status	The Transmit Frame request was for a COMMAND frame and the vendor-specific number of retries has been reached.	Transmission Complete (Command Failed, NAK Received)
(NAK Received)	The Transmit Frame request was for a TASK frame and the vendor-specific number of retries has been reached.	Transmission Complete (Task Failed, NAK Received)
Transmission Status (NAK Received)	The Transmit Frame request was for a write DATA frame and: a) the RETRY DATA FRAMES bit was set to zero in	Transmission Complete (Data-Out Failed, NAK Received)
Transmission Status (ACK/NAK Timeout) or Transmission Status	the XFER_RDY frame requesting the data; or b) the RETRY DATA FRAMES bit was set to one in the XFER_RDY frame requesting the data,	Transmission Complete (Data-Out Failed, A&K/

After this state sends a Transmission Complete (Command Failed, ACK/NAK Timeout) this state shall continue processing messages and confirmations.

been reached.

NOTE 90 - The application client may determine the command was received and is being processed by the device server and allow the command to complete. The application client may accomplish this by the use of the QUERY TASK task management request.

and the vendor-specific number of retries has

If this state receives a Return to Start message or a Return to Start argument, and this state has not received confirmations for all Transmit Frame requests sent to the port layer, then this state shall send a Cancel request to the port layer. This state may also send a Cancel request to the port layer to cancel a previous

If this state receives a Cancel message or a Cancel argument, and this state has received confirmations for all Transmit Frame requests sent to the port layer, then this state shall send a Transmission Complete (Cancel Acknowledged) message to the ST_IFR state machine.

If this state receives a Cancel message or a Cancel argument, and this state has not received confirmations for all Transmit Frame requests sent to the port layer, then this state shall send a Cancel request to the port layer. This state may also send a Cancel request to the port layer to cancel a previous Transmit Frame request. The Cancel request shall include the following arguments:

a) destination SAS address; and

Transmission Status

(Connection Lost

Without ACK/NAK)

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 473

Author: RElliott Subject: Highlight Date: 8/30/2008 9:39:54 AM -07'00' ACCEPT - DONE Transmission Status (Frame Transmitted) add confirmation per 08-343 Author: RElliott Subject: Highlight Date: 8/30/2008 9:40:37 AM -07'00' TACCEPT - DONE confirmation of Transmission Status (NAK Received) Transmission Status (NAK Received) confirmation Author: RElliott Subject: Highlight Date: 8/30/2008 9:42:54 AM -07'00' ACCEPT - DONE interlocked s/b Interlocked Author: RElliott Subject: Highlight Date: 8/30/2008 9:44:23 AM -07'00' ACCEPT - DONE Transmission Complete (Command Failed, ACK/NAK Timeout) add message per 08-343 Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' the use of s/b using

b) tag.

NOTE 91 - The Cancel message results from a vendor-specific request from the SCSI application layer after the SCSI application layer has used a task management function to determine that the SAS target port elici+ποτ receive the COMMAND frame.

If this state receives a Transmission Status (Cancel Acknowledged) confirmation, then this state shall send a Transmission Complete (Cancel Acknowledged) message to the ST_IFR state machine.

If this state receives an XFER_RDY Arrived message, then this state shall verify the Xfer_Rdy state machine argument as specified in table 180. If the verification fails, then this state sends the Transmission Complete—message specified in table 180 to the ST_IFR state machine.

Table 180 — Transmission Complete messages for XFER_RDY frame verification failures

Message sent to ST_IFR a	Condition	
Transmission Complete	The Write Data Length Xfer_Rdy state machine argument is zero.	
(XFER_RDY Incorrect Write Data Length)	The Requested Offset Xfer_Rdy state machine argument plus the Write Data Length Xfer_Rdy state machine argument is greater than the Data-Out Buffer Size state machine argument.	
	First burst is disabled, this is the first XFER_RDY frame for a command, and the value in the Requested Offset Xfer_Rdy state machine argument is not set to zero.	
	First burst is enabled, this is the first XFER_RDY frame for a command, and the value in the Requested Offset Xfer_Rdy state machine argument is not equal to the value indicated by the FIRST BURST SIZE field in the Disconnect-Reconnect mode page (see 10.2.7.2.5).	
Transmission Complete (XFER_RDY Requested Offset Error)	Transport layer retries are disabled and the Requested Offset Xfer_Rdy state machine argument is not equal to the Previous Requested Offset state machine variable plus the Previous Write Data Length Field state machine variable.	
21101)	Transport layer retries are enabled, the Retransmit Bit Xfer_Rdy state machine argument is set to zero, and the Requested Offset Xfer_Rdy state machine argument is not equal to the Previous Requested Offset state machine variable plus the Previous Write Data Length state machine variable.	
	Transport layer retries are enabled, this is not the first XFER_RDY frame for the command, the Retransmit Bit Xfer_Rdy state machine argument is set to one, and the Requested Offset Xfer_Rdy state machine argument is not equal to the Previous Requested Offset state machine variable.	
^a If more than one condition is true, then this state shall send the Transmission Complete (XFER_RDY Incorrect Write Data Length) message to the ST_IFR state machine.		

After this state verifies an XFER_RDY frame, it shall:

- a) set the Data-Out Buffer Offset state machine variable to the Requested Offset Xfer_Rdy state machine argument;
- b) set the Previous Requested Offset state machine variable to the Requested Offset Xfer_Rdy state machine argument; and
- set the Previous Write Data Length state machine variable to the Write Data Length Xfer_Rdy state machine argument.

Page: 474

Author: RElliott
Subject: Highlight

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

> SAS target port s/b SSP target port

Author: wdc-mevans Subject: Highlight Date: 5/22/2008 7:16:47 AM -07'00'

> sends s/b shall send

9.2.6.2.3.3.1 Transition ST_ITS2:Initiator_Send_Frame to ST_ITS1:Initiator_Start

This transition shall occur after:

- a) this state has sent one of the following to the ST IFR state machine:
 - A) a Transmission Complete (Command Failed, NAK Received) message;
 - B) a Transmission Complete (Task Failed, ACK/NAK Timeout) message;
 - C) a Transmission Complete (Task Failed, NAK Received) message;
 - D) a Transmission Complete (Command Failed, ACK/NAK Timeout) message and the command was for a non-data operation;
 - E) a Transmission Complete (Data-Out Failed, NAK Received) message;
 - F) a Transmission Complete (Data-Out Failed, ACK/NAK Timeout) message;
 - G) a Transmission Complete (XFER RDY Incorrect Write Data Length) message;
 - H) a Transmission Complete (XFER_RDY Requested Offset Error) message; or
 - I) a Transmission Complete (Cancel Acknowledged) message;
- b) this state has received a Return To Start message or Return To Start argument, and has received:
 - A) confirmations for all Transmit Frame requests sent to the port layer; or
 - B) a Transmission Status (Cancel Acknowledged) confirmation.

9.2.6.2.3.3.2 Transition ST_ITS2:Initiator_Send_Frame to ST_ITS5:Prepare_Data_Out

If first burst is enabled, this transition shall occur and include the First Burst argument after this state receives.

- a Transmission Status (Frame Transmitted) confirmation followed by a Transmission Status (ACK Received) for a COMMAND frame requesting a write operation; or
- a Transmission Status (Frame Transmitted) confirmation for a Transmit Frame (Non-interlocked) request if the Data-Out Buffer Offset state machine variable is less than the first burst size.

This transition shall occur after this state receives:

- a) an XFER_RDY Arrived message; or
- a Transmission Status (Frame Transmitted) confirmation for a Transmit Frame (Non-interlocked) request if the Data-Out Buffer Offset state machine variable is less than the Requested Offset Xfer_Rdy state machine argument plus the Write Data Length Xfer_Rdy state machine argument.

NOTE 92 - This transition occurs even if this state has not received a Transmission Status (ACK Received) for the write DATA frame.

This transition shall include a Retry argument and occur after:

- a) this state receives one of the following confirmations or arguments for a write DATA frame:
- A) Transmission Status (NAK Received);
- B) Transmission Status (ACK/NAK Timeout); or
- C) Transmission Status (Connection Lost without ACK/NAK);
- b) the RETRY DATA FRAMES bit is set to one in the XFER_RDY frame for the write operation;
- the Data-Out Buffer Offset state machine variable is set to the Requested Offset Xfer_Rdy state machine argument;
- d) all write DATA frames that have received a Transmission Status (Frame Transmitted) confirmation have received a Transmission Status confirmation; and
- e) the vendor-specific number of retries, if any, for the write DATA frame has not been reached.

9.2.6.2.3.3.3 Transition ST_ITS2:Initiator_Send_Frame to ST_ITS6:Process_Data_In

This transition shall occur after this state receives a Transmission Status (Frame Transmitted) confirmation for a COMMAND frame for a command requesting a read operation.

NOTE 93 - This transition occurs even if this state has not received a Transmission Status (ACK Received) for the COMMAND frame.

Page: 475 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE after this state receives after receiving Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE this s/b then this Author: RElliott Subject: Highlight Date: 8/30/2008 10:00:30 AM -07'00' ACCEPT - DONE Transmission Status (ACK Received) add confirmation per 08-343 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' after this state receives after receiving Author: RElliott Subject: Highlight
Date: 8/30/2008 10:00:48 AM -07'00'
PACCEPT - DONE Transmission Status (ACK Received) confirmation in the spirit of 08-343 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

after this state receives

after receiving

9.2.6.2.3.4 ST ITS3:Prepare Command state

9.2.6.2.3.4.1 State description

This state shall construct a COMMAND frame using the Command arguments:

- a) FRAME TYPE field set to 06h (i.e., COMMAND frame);
- b) HASHED DESTINATION SAS ADDRESS field set to the hashed value of the Destination SAS Address Commands argument:
- c) HASHED SOURCE SAS ADDRESS field set to the hashed value of the SSF initiator port's SAS address;
- d) RETRY DATA FRAMES bit set to zero:
- e) RETRANSMIT bit set to zero;
- f) CHANGING DATA POINTER bit set to zero;
- g) NUMBER OF FILL BYTES field set zero.
- h) TAG field set to the Tag Command argument;
- TARGET PORT TRANSFER TAG field set to FFFFh
- DATA OFFSET field set to zero:
- k) in the information unit, LOGICAL UNIT NUMBER field set to the Logical Unit Number Command argument;
- I) in the information unit, ENABLE FIRST BURST bit set to the Enable First Burst Command argument;
- m) in the information unit, TASK PRIORITY field set to the Task Priority Command argument;
- n) in the information unit, TASK ATTRIBUTE field set to the Task Attribute Command argument;
- o) in the information unit, ADDITIONAL CDB LENGTH field set to the Additional CDB Length Command
- p) in the information unit, CDB field set to the CDB Command argument;
- q) in the information unit, ADDITIONAL CDB BYTES field set to the Additional CDB Bytes Compand argument, if any; and
- r) no fill bytes.

9.2.6.2.3.4.2 Transition ST_ITS3:Prepare_Command to ST_ITS2:Initiator_Send_Frame

This transition shall occur after this state:

- a) constructs a COMMAND frame;
- b) receives a Cancel message; or
- c) receives a Return To Start message

This transition shall include the:

- a) COMMAND frame as an argument;
- b) if a Cancel message was received, then a Cancel argument; or
- c) if a Return To Start message was received, then a Return To Start argument.

9.2.6.2.3.5 ST ITS4:Prepare Task state

9.2.6.2.3.5.1 State description

This state shall construct a TASK frame using the Task arguments:

- a) FRAME TYPE field set to 16h (i.e., TASK frame);
- HASHED DESTINATION SAS ADDRESS field set to the hashed value of the Destination SAS Address Task argument:
- c) HASHED SOURCE SAS ADDRESS field set to the hashed value of the SSP initiator port's SAS address;
- d) RETRY DATA FRAMES bit set to zero:
- e) RETRANSMIT bit set to the Retransmit Bit Task argument;
- f) CHANGING DATA POINTER bit set to zero;
- g) NUMBER OF FILL BYTES field set zero.
- h) TAG field set to the Tag Task argument;
- TARGET PORT TRANSFER TAG field set to FFFFh;
- DATA OFFSET field set to zero; -
- k) in the information unit, LOGICAL UNIT NUMBER field set to the Logical Unit Number Task argument;

Page: 476

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

set zero. s/b set to 00b:

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE zero

s/b 00000000h

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

move "the" into a)

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE COMMAND frame

if neither a Cancel message nor a Return to Start message was received, then the COMMAND frame

Author: Isi-apenokie Subject: Highlight
Date: 6/27/2008 3:22:47 PM -07'00' REJECT (no, only one is included. See added comment)

This << or >> should be a << and >>.

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' set zero.

s/b set to 00b;

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

zero s/b 00000000h

Comments from page 476 continued on next page

9.2.6.2.3.4 ST_ITS3:Prepare_Command state

9.2.6.2.3.4.1 State description

This state shall construct a COMMAND frame using the Command arguments:

- a) FRAME TYPE field set to 06h (i.e., COMMAND frame);
- h) HASHED DESTINATION SAS ADDRESS field set to the hashed value of the Destination SAS Address Commands argument;
- c) HASHED SOURCE SAS ADDRESS field set to the hashed value of the SSP initiator port's SAS address;
- d) RETRY DATA FRAMES bit set to zero;
- e) RETRANSMIT bit set to zero;
- f) CHANGING DATA POINTER bit set to zero;
- g) NUMBER OF FILL BYTES field set zero.
- h) TAG field set to the Tag Command argument;
- i) TARGET PORT TRANSFER TAG field set to FFFFh;
- i) DATA OFFSET field set to zero;
- k) in the information unit, LOGICAL UNIT NUMBER field set to the Logical Unit Number Command argument;
- I) in the information unit, ENABLE FIRST BURST bit set to the Enable First Burst Command argument;
- m) in the information unit, TASK PRIORITY field set to the Task Priority Command argument;
- n) in the information unit, TASK ATTRIBUTE field set to the Task Attribute Command argument;
- in the information unit, ADDITIONAL CDB LENGTH field set to the Additional CDB Length Command argument;
- p) in the information unit, CDB field set to the CDB Command argument;
- q) in the information unit, ADDITIONAL CDB BYTES field set to the Additional CDB Bytes Command argument, if any; and
- r) no fill bytes.

9.2.6.2.3.4.2 Transition ST_ITS3:Prepare_Command to ST_ITS2:Initiator_Send_Frame

This transition shall occur after this state:

- a) constructs a COMMAND frame;
- b) receives a Cancel message; or
- c) receives a Return To Start message.

This transition shall include the:

- a) COMMAND frame as an argument;
- b) if a Cancel message was received, then a Cancel argument; or
- c) if a Return To Start message was received, then a Return To Start argument.

9.2.6.2.3.5 ST_ITS4:Prepare_Task state

9.2.6.2.3.5.1 State description

This state shall construct a TASK frame using the Task arguments:

- a) FRAME TYPE field set to 16h (i.e., TASK frame);
- b) HASHED DESTINATION SAS ADDRESS field set to the hashed value of the Destination SAS Address Task argument;
- c) HASHED SOURCE SAS ADDRESS field set to the hashed value of the SSP initiator port's SAS address;
- d) RETRY DATA FRAMES bit set to zero:
- e) RETRANSMIT bit set to the Retransmit Bit Task argument;
- f) CHANGING DATA POINTER bit set to zero;
- g) NUMBER OF FILL BYTES field set zero.
- h) TAG field set to the Tag Task argument;
- i) TARGET PORT TRANSFER TAG field set to FFFFh;
- j) DATA OFFSET field set to zero;
- k) in the information unit, LOGICAL UNIT NUMBER field set to the Logical Unit Number Task argument;

T10/1760-D Revision 14

- in the information unit, TASK MANAGEMENT FUNCTION field set to the Task Management Function Task argument:
- m) in the information unit, TAG OF TASK TO BE MANAGED field set to the Tag Task argument of task to be managed and
- n) no fill bytes.

9.2.6.2.3.5.2 Transition ST ITS4:Prepare Task to ST ITS2:Initiator Send Frame

This transition shall occur after this state:

- a) constructs a TASK frame;
- b) receives a Cancel message; or
- c) receives a Return To Start message.

This transition shall include the:

- a) TASK frame as an argument;
- b) if a Cancel message was received, then a Cancel argument; or
- c) if a Return To Start message was received then a Return To Start argument.

9.2.6.2.3.6 ST_ITS5:Prepare_Data_Out state

9.2.6.2.3.6.1 State description

This state shall construct a write DATA frame using the following Xfer_Rdy state machine arguments and Command state machine arguments:

- a) FRAME TYPE field set to 01h (i.e., DATA frame);
- b) HASHED DESTINATION SAS ADDRESS field set to the hashed value of the Destination SAS Address Command argument:
- c) HASHED SOURCE SAS ADDRESS field set to the hashed value of the SSP initiator port's SAS address;
- d) RETRY DATA FRAMES bit set to zero;
- e) RETRANSMIT bit set to zero;
- f) CHANGING DATA POINTER bit set as specified in this subclause;
- g) NUMBER OF FILL BYTES field set to the number of fill bytes, based on the length of the specified data;
- h) TAG field set to the Tag Command argument;
- TARGET PORT TRANSFER TAG field set to FFFFh if this state received a First Burst argument or the Target Port Transfer Tag Xfer_Rdy argument if this state did not receive a First Burst argument;
- j) DATA OFFSET field set to the Data-Out Buffer Offset state machine variable;
- k) in the information unit, DATA field set to the information that starts at the location in the Data-Out Buffer state machine argument pointed to by the Data-Out Buffer Offset state machine variable. If the number of bytes remaining to be transferred as defined by the following calculation:

bytes remaining to be transferred = Write Data Length Xfer_Rdy state machine argument - (Data-Out Buffer Offset state machine argument - Requested Offset Xfer_Rdy state machine argument)

- is equal to the maximum size of the write Data information unit, then the amount of data shall be the maximum size of the write Data information unit. Otherwise, the amount of data shall be the lesser of:
- A) the bytes remaining to be transferred; and
- B) the maximum size of the Write information unit;

and

- I) fill bytes, if any.
- If this state is entered without a Retry argument, then this state shall set the CHANGING DATA POINTER bit to zero.

If this state is entered with a Retry argument, then this state shall set the CHANGING DATA POINTER bit to one.

After constructing the write DATA frame, this state shall set the Data-Out Buffer Offset state machine variable to the value of the DATA OFFSET field plus the number of bytes in the DATA field in the write Data information unit.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 477

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

task s/b

the command

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

managed and

managed; and

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

move "the" into a)

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

TASK frame

s/b

if neither a Cancel message nor a Return to Start message was received,

then the TASK frame

Author: Isi-gpenokie

Subject: Highlight Date: 6/27/2008 3:22:56 PM -07'00'

REJECT (no, only one of them is included. See added comment)

This << or >> should be a << and >>.

Author: wdc-mevans

Subject: Highlight Date: 6/27/2008 3:30:42 PM -07'00'

TREJECT (this is the state machine, so referring to the state machine variables concretely in terms is preferable.)

If the number of bytes remaining to be transferred as defined by the following calculation:

bytes remaining to be transferred = Write Data Length Xfer_Rdy state machine argument - (Data-Out Buffer Offset state machine argument - Requested Offset Xfer_Rdy state machine argument)

is equal to the maximum size of the write Data information unit, then the amount of data shall be the maximum size of the write Data information unit. Otherwise, the amount of data shall be the lesser of:

A) the bytes remaining to be transferred; and

B) the maximum size of the Write information unit;

s/b

477

Comments from page 477 continued on next page

- I) in the information unit. TASK MANAGEMENT FUNCTION field set to the Task Management Function Task
- m) in the information unit, TAG OF TASK TO BE MANAGED field set to the Tag Task argument of task to be managed and
- n) no fill bytes.

9.2.6.2.3.5.2 Transition ST ITS4:Prepare Task to ST ITS2:Initiator Send Frame

This transition shall occur after this state:

- a) constructs a TASK frame:
- b) receives a Cancel message; or
- c) receives a Return To Start message.

This transition shall include the:

- a) TASK frame as an argument;
- b) if a Cancel message was received, then a Cancel argument; or
- c) if a Return To Start message was received, then a Return To Start argument.

9.2.6.2.3.6 ST_ITS5:Prepare_Data_Out state

9.2.6.2.3.6.1 State description

This state shall construct a write DATA frame using the following Xfer Rdy state machine arguments and Command state machine arguments:

- a) FRAME TYPE field set to 01h (i.e., DATA frame):
- b) HASHED DESTINATION SAS ADDRESS field set to the hashed value of the Destination SAS Address Command argument;
- c) HASHED SOURCE SAS ADDRESS field set to the hashed value of the SSP initiator port's SAS address;
- d) RETRY DATA FRAMES bit set to zero;
- e) RETRANSMIT bit set to zero:
- f) CHANGING DATA POINTER bit set as specified in this subclause;
- g) NUMBER OF FILL BYTES field set to the number of fill bytes, based on the length of the specified data;
- h) TAG field set to the Tag Command argument;
- i) TARGET PORT TRANSFER TAG field set to FFFFh if this state received a First Burst argument or the Target Port Transfer Tag Xfer_Rdy argument if this state did not receive a First Burst argument;
- j) DATA OFFSET field set to the Data-Out Buffer Offset state machine variable;
- k) in the information unit, DATA field set to the information that starts at the location in the Data-Out Buffer state machine argument pointed to by the Data-Out Buffer Offset state machine variable. If the number of bytes remaining to be transferred as defined by the following calculation:

bytes remaining to be transferred = Write Data Length Xfer_Rdy state machine argument - (Data-Out) Buffer Offset state machine argument - Requested Offset Xfer Rdy state machine argument)

- is equal to the maximum size of the write Data information unit, then the amount of data shall be the maximum size of the write Data information unit. Otherwise, the amount of data shall be the lesser of:
- A) the bytes remaining to be transferred; and
 b) the maximum size of the Write information unit:

and

I) fill bytes, if any.

If this state is entered without a Retry argument, then this state shall set the CHANGING DATA POINTER bit to

If this state is entered with a Retry argument, then this state shall set the CHANGING DATA POINTER bit to one.

After constructing the write DATA frame, this state shall set the Data-Out Buffer Offset state machine variable to the value of the DATA OFFSET field plus the number of bytes in the DATA field in the write Data information

Working Draft Serial Attached SCSI - 2 (SAS-2)

477

The number of bytes in the DATA field shall be less than or equal to the maximum number of bytes of the field. If the DATA frame does not contain the last data for the transfer, then the number of bytes contained in the DATA field shall be a multiple of four. If the DATA frame contains the last data for the transfer, then the number of bytes contained in the DATA field may not be a multiple of four.

9.2.6.2.3.6.2 Transition ST ITS5:Prepare Data Out to ST ITS2:Intiator Send Frame

This transition shall occur after this state:

- a) constructs a write DATA frame;
- b) receives a Cancel message; or
- c) receives a Return To Start message.

This transition shall include the received Transmission Status, if any, as an argument and the:

- a) write DATA frame as an argument;
- b) if a Cancel message was received, then a Cancel argument; or
- c) if a Return To Start message was received, then a Return To Start argument.

9.2.6.2.3.7 ST_ITS6:Receive_Data_In state

9.2.6.2.3.7.1 State description

If this state receives a Data-In Arrived message, then this state shall verify the values in the read DATA frame received with the message as defined in table 181.

If the verification fails, then this state sends the Reception Complete message specified in table 181 to the ST_IFR state machine.

Table 181 — Reception Complete messages for read DATA frame verification failures

Message sent to ST_IFR a	Condition	
Reception Complete (Data Offset	Transport layer retries are disabled, and the DATA OFFSET field in the read DATA frame is not equal to the Data-In Buffer Offset state machine variable.	
Error)	The DATA OFFSET field in the read DATA frame is greater than the Data-In Buffer Size state machine argument.	
Reception Complete (Too Much Read Data)	The number of bytes in the DATA field in the read Data information unit plus the Data-In Buffer Offset state machine variable is greater than the Data-In Buffer Size state machine argument.	
Reception Complete (Incorrect	The number of bytes in the DATA field in the read Data information unit is	
Data Length)	zero.	

- a If more than one condition is true, then this state shall select which message to send to the ST_IFR state machine using the following order:
- 1) Reception Complete (Data Offset Error);
- 2) Reception Complete (Too Much Read Data); or
- 3) Reception Complete (Incorrect Data Length).

lf:

- a) transport layer retries are enabled;
- b) the CHANGING DATA POINTER DIT IS set to zero;
- c) the DATA OFFSET field is not set to the Data-In Buffer Offset state machine variable;
- d) the DATA OFFSET field is less than the Data-In Buffer Size state machine argument; and
- e) the DATA OFFSET field plus the number of bytes in the DATA field in the read Data information unit is less than or equal to the Data-In Buffer Size state machine argument,

then this state should discard all Data-In Arrived messages until a read DATA frame is received in which the CHANGING DATA POINTER bit is set to one. This state shall resume processing additional Data-In Arrived messages when it receives a Data-In Arrived message with the CHANGING DATA POINTER bit set to one.

If the read DATA frame verification is successful or after this state resumes processing Data-In Arrived messages, then this state shall process the data received in the read DATA frame and set the Data-In Buffer Page: 478

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

move "the" into a)

Author: RElliott Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

write DATA frame

s/h

if neither a Cancel message nor a Return to Start message was received,

then the write DATA frame

Author: Isi-gpenokie Subject: Highlight Date: 6/27/2008 3:23:18 PM -07'00'

REJECT (no, only one of them is sent. See added comment)

This << or >> should be a << and >>.

Author: wdc-meyans

see associated comment in target reception of write data and Information Unit Too Short)

The number of bytes in the DATA field in the read Data information unit is zero.

a) The number of bytes in the DATA field in the read Data information unit is zero; or

b) This is not the last DATA frame for the transfer and the NUMBER OF FILL BYTES field in the frame is not set to zero.

Author: RElliott

Auulor: KEIIIOtt Subject: Highlight Date: 8/28/2008 12:59:05 PM -07'00'

Incorrect Data Length

Information Unit Too Short

to match what the ST_IFR is looking for. This is simpler than adding a new message throughout all the layers, or renaming it everywhere.

Author: hpq-relliott Subject: Note

Date: 7/17/2008 6:19:51 PM -07'00'

REJECT

this wording should parallel ST_TTS5:Receive_Data_Out. Items d) and e) in particular are different.

28 January 2008

T10/1760-D Revision 14

Offset state machine variable to the DATA OFFSET field plus the number of bytes in the DATA field in the read Data information unit.

If data received in the read DATA frame overlaps data previously received and verified successfully, this state may either discard the overlapping data, or replace the previously received data with the new data.

If this state receives Transmission Status (ACK/NAK Timeout) or Transmission Status (Connection Lost Without ACK/NAK), then this state shall send a Reception Complete (Command Failed, Connection Failed the ST_IFR state machine.

After this state sends a Reception Complete (Command Failed, Connection Failed) message, this state shall continue processing messages and confirmations.

NOTE 94 - The application client may determine the command was received and is being processed by the device server and allow the command to complete.

If this state receives a Cancel message, then this state shall send a Reception Complete (Cancel Acknowledged) message to the ST_IFR state machine. The Reception Complete message shall include the tag as an argument.

NOTE 95 - The Cancel message results from a vendor-specific request from the SCSI application layer after the SCSI application layer has used a task management function to determine that the SAS target port skit not receive the COMMAND frame.

9.2.6.2.3.7.2 Transition ST_ITS6:Receive_Data_In to ST_ITS1:Initiator_Start

This transition shall occur after this state:

- a) sends one of the following to the ST_IFR state machine:
 - A) a Reception Complete (Data Offset Error) message;
 - B) a Reception Complete (Too Much Read Data) message;
 - C) a Reception Complete (Incorrect Data Length) message; or
 - D) a Reception Complete (Cancel Acknowledged) message;

or

b) receives a Return To Start message.

9.2.6.2.3.7.3 Transition ST_ITS6:Receve_Data_In to ST_ITS2:Initiator_Send_Frame

This transition shall occur after this state receives a Transmission Status (NAK Received) confirmation for a COMMAND frame for a command requesting a read operation.

9.2.6.3 ST_T (transport layer for SSP target ports) state machines

9.2.6.3.1 ST_T state machines overview

The ST_T state machines are as follows:

- a) ST_TFR (target frame router) state machine (see 9.2.6.3.2); and
- b) ST_TTS (target transport server) state machine (see 9.2.6.3.3).

The SAS target port includes:

- a) one ST_TFR state machine; and
- b) one ST_TTS state machine for each possible task and task management function (i.e., for each tag).

Page: 479

per 08-343

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE this s/b then this

Author: RElliott Subject: Highlight Date: 8/30/2008 10:03:14 AM -07'00'

TACCEPT - DONE

Transmission Status (ACK/NAK Timeout) or Transmission Status (Connection Lost Without ACK/NAK) add confirmation

Author: RElliott Subject: Highlight Date: 8/30/2008 10:03:28 AM -07'00'

Reception Complete (Command Failed, Connection Failed) add message per 08-343

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

SAS target port s/b SSP target port

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

after this state receives s/b after receiving

The ST_TTS state machine may maintain the timere listed in table 182

Table 182 — ST_T state machine timers

Timer	Initial value
Initiator Response Timeout	The value in the INITIATOR RESPONSE TIMEOUT field in the Protocol-Specific Port mode page (see 10.2.7.4).

Page: 480

Author: RElliott Subject: Highlight Date: 8/30/2008 2:00:08 PM -07'00'

The ST_TTS state machine s/b
This state machine

(should be ST_T not ST_TTS in any case)

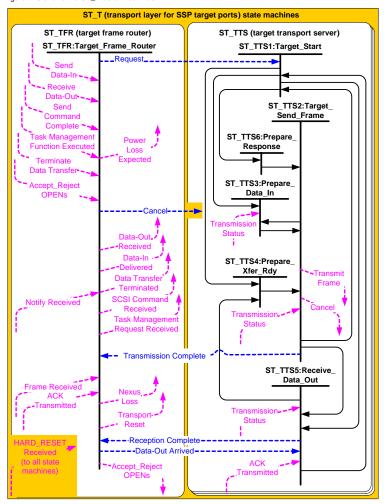


Figure 216 — ST_T (transport layer for SSP target ports) state machines

This page contains no comments

9.2.6.3.2 ST_TFR (target frame router) state machine

9.2.6.3.2.1 ST TFR state machine overview

The ST_TFR state machine performs the following functions:

- a) receives confirmations from the port layer;
- b) receives transport protocol service requests from the SCSI application layer;
- c) sends transport protocol service indications to the SCSI application layer;
- d) sends messages to the ST TTS state machine;
- e) receives messages from the ST_TTS state machine;
- f) receives Accept_Reject OPENs requests from the SCSI application layer;
- g) sends Accept Reject OPENs requests to the port layer;
- h) sends Nexus Loss event notifications to the SCSI application layer;
- sends Transport Reset event notifications to the SCSI application layer; and
- j) sends Power Loss Expected event notifications to the SCSI application layer.

This state machine consists of one state.

This state machine shall be started after power on.

If this state receives a Notify Received (Power Loss Expected) confirmation, then this state shall:

- a) send a Cancel message to all the ST TTS state machines; and
- b) send a Power Loss Expected confirmation to the SCSI application layer.

9.2.6.3.2.2 Processing Frame Received confirmations

If this state machine receives a Frame Received (ACK/NAK Balanced) or Frame Received (ACK/NAK Not Balanced) confirmation, then this state machine shall check the frame type in the received frame (see table 164 in 9.2.1). If the frame type is not COMMAND, TASK, or DATA, then this state machine shall discard the frame. If the confirmation was Frame Received (ACK/NAK Not Balanced) and the frame type is not DATA, then this state machine shall discard the frame.

This state machine may check that reserved fields in the received frame are zero.

reserved fields are checked and they are not set to zero, then this state machine shall send the following to an ST_TTS state machine that does not have an active task and discard the frame:

- a) a Request (Send Transport Response) message with the Transport Response arguments;
- the destination SAS address argument set to the SAS address from which the invalid frame was received; and
- c) the service response argument set to Invalid Frame.

The check of reserved fields within the frame shall not apply to the reserved fields within the CDB in a COMMAND frame. Checking of reserved fields in a CDB is described in SPC-4.

The following is the list of Transport Response arguments:

- a) connection rate;
- b) initiator connection tag;
- c) destination SAS address (i.e., the SAS address to which the RESPONSE frame is to be transmitted);
- d) source SAS address set to the SAS address of the SAS port containing the state machine;
- e) tag; and

482

f) service response.

The response fence argument is not included in the Transport Response arguments.

If the frame type is correct relative to the Frame Received confirmation, then this state machine may check that the hashed source SAS address matches the SAS address of the SAS port that transmitted the frame and that the hashed destination SAS address matches the SAS address of the SAS port that received the frame based on the connection information. If this state machine checks these SAS addresses, and they do not match, then this state machine shall discard the frame.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 482

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Add

If non-zero values are not supported in the tir control field in a COMMAND frame, then the tir control field shall be treated as a reserved field

to match an elx-bmartin comment in the COMMAND frame section TLR CONTROL field paragraphs

If the frame type is COMMAND or TASK then this state machine shall check the length of the information unit. If the length of the information unit is not correct, then this state machine shall send the following to an ST TTS state machine that does not have an active task and discard the frame:

- a) a Request (Send Transport Response) message with the Transport Response arguments;
- b) the destination SAS address argument set to the SAS address from which the invalid frame was received; and
- c) the service response argument set to Invalid Frame.

If the frame type is TASK, this state machine checks tags, the RETRANSMIT bit in the new TASK frame is set to one, and the tag for the new TASK frame is the same as the tag for a previous TASK frame where the task management function for the previous TASK frame is not complete, then this state machine shall discard the new TASK frame and not send a Task Management Request Received confirmation to the SCSI application layer.

If the frame type is TASK and this state machine does not check tage, then this state machine shall ignore the RETRANSMIT bit.

If the frame type is COMMAND or TASK, then this state machine may check the target port transfer tag. If this state checks the target port transfer tag and the tag is set to a value other than FFFFh, then this state machine shall send the following to an ST_TTS state machine that does not have an active task and discard the frame:

- a) a Request (Send Transport Response) message with the Transport Response arguments;
- b) the destination SAS address argument set to the SAS address from which the invalid frame was received; and
- c) the service response argument set to Invalid Frame.

If the frame type is TASK, then this state machine shall check the logical unit number. If the logical unit number is unknown, then this state machine shall send the following to an ST_TTS state machine that does not have an active task and discard the frame:

- a) a Request (Send Transport Response) message with the Transport Response arguments;
- the destination SAS address argument set to the SAS address from which the invalid frame was received; and
- c) the service response argument set to Incorrect Logical Unit Number.

If the frame type is DATA and this frame is for first burst data or this state machine did not assign a target port transfer tag for the data transfer, then this state machine may check the target port transfer tag. If target port transfer tag is set to a value other than FFFFh, then this state machine shall send the following to an ST_TTS state machine that does not have an active task and discard the frame:

- a) a Request (Send Transport Response) message with the Transport Response arguments;
- the destination SAS address argument set to the SAS address from which the invalid frame was received; and
- c) the service response argument set to Invalid Frame.

If the frame type is COMMAND or TASK and the fields checked in the frame are correct, then this state machine shall wait to receive an ACK Transmitted confirmation.

If the frame type is COMMAND, the fields checked in the frame are correct, and this state machine receives an ACK Transmitted confirmation, then this state machine shall send a SCSI Command Received transport protocol service indication with the following arguments to the SCSI application layer:

- a) source SAS address (i.e., the SAS address that transmitted the COMMAND frame);
- b) tag;
- c) logical unit number;
- d) task attribute;
- e) task priority;
- f) CDB; and
- g) additional CDB bytes, if any.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 483

```
Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

the tag
s/b
it
to avoid confusing with the real "tag"

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

If target
s/b
If the target
```

If the frame type is TASK, the fields checked in the frame are correct, and this state machine receives an ACK Transmitted confirmation, then this state machine shall send a Task Management Request Received transport protocol service indication with the following arguments to the SCSI application layer:

- a) source SAS address (i.e., the SAS address that transmitted the TASK frame):
- b) tag;
- c) logical unit number;
- d) task management function; and
- e) tag of the task to be managed.

If the frame type is DATA, and the tag does not match a tag for an outstanding command performing write operations, then this state machine shall discard the frame.

If the frame type is DATA, and the tag matches a tag for an outstanding command performing write operations when first burst is disabled or for which no Transmission Complete (Xfer_Rdy Delivered) message has been received from an ST_TTS state machine, then this state machine shall discard the frame.

If the frame type is DATA and a target port transfer tag was received in a Transpission Complete (Xfer_Rdy Delivered) message, then this state machine shall check the target port transfer tag. If the target port transfer tag received in the DATA frame does not match the Target Transport Tag argument in the Transmission Complete (Xfer_Rdy Delivered) message, then this state machine shall discard the frame.

If the frame type is DATA and the fields checked in the frame are correct, and first burst is enabled or this state machine has received a Transmission Complete (Xfer_Rdy Delivered) from the ST_TTS state machine for the request, then this state machine shall send a Data-Out Arrived message to the ST_TTS state machine specified by the tag in the frame. The message shall include the content of the write DATA frax/e.

9.2.6.3.2.3 Processing transport protocol service requests and responses

If this state machine receives a Send Data-In transport protocol service request from the SCSI application layer, then this state machine shall send a Request (Send Data-In) message to an ST_TTS state machine that does not have an active task. The message shall include the following Data-In arguments:

- a) connection rate:
- b) initiator connection tag;
- c) destination SAS address (i.e., the SAS address to which the read DATA frame is to be transmitted);
- d) source SAS address set to the SAS address of the SSP target port;
- e) tag:
- f) device server buffer;
- g) request byte count; and
- h) application client buffer offset.

If this state machine receives a Receive Data-Out transport protocol service request from the SCSI application layer, then this state machine shall send a Request (Receive Data-Out) message to an ST_TTS state machine that does not have an active task. The ressage shall include the following Data-Out state machine arguments:

- a) connection rate;
- b) initiator connection tag;
- c) destination SAS address (i.e. the SAS address to which the XFER_RDY frame is to be transmitted);
- d) source SAS address set to the SAS address of the SSP target port;
- e) tag

484

- f) device server buffer;
- g) request byte count;
 - h) application client buffer offset; and
 - i) target port transfer tag.

If first burst is enabled, then the Request (Receive Data_Out) message shall also include the Enable First Burst argument and First Burst Size argument. The First Burst Size argument shall be set to the first burst size from the Disconnect-Reconnect mode page (see 10.2.7.2.5).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 484

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Target Transport Tag

Target Port Transfer Tag

Author: wdc-mevans

Subject: Highlight Date: 6/27/2008 3:38:05 PM -07'00'

**REJECT (why include all that in the simple list of arguments? It's not an example of anything being discussed here.)

request byte count;

s/b

request byte count (e.g., this value takes into account the value set in the MAXIMUM BURST SIZE field in the Disconnect-Reconnect mode page).

If this state machine receives a Send Command Complete transport protocol service response from the SCSI application layer with the Service Response argument set to TASK COMPLETE, then this state machine shall send a Request (Send Application Response) message to the ST_TTS state machine specified by the tag. The message shall include the following Application Response arguments:

- a) connection rate;
- b) initiator connection tag;
- c) destination SAS address (i.e., the SAS address to which the RESPONSE frame is to be transmitted);
- d) source SAS address set to the SAS address of the SSP target port;
- e) tag;
- f) status;
- g) sense data, if any; and
- h) response fence.

If this state machine receives a Task Management Function Executed transport protocol service response from the SCSI application layer, then this state machine shall send the following to the ST_TTS state machine specified by the tag:

- a) a Request (Send Transport Response) message with the Transport Response arguments;
- b) the service response argument set as specified in table 183; and
- c) the response fence argument set to the Task Management Function Executed protocol service response Response Fence argument.

Table 183 specifies which argument to send with Request (Send Transport Response) based on the Service Response argument that was received.

Table 183 — Task Management Function Executed Service Response argument mapping to Request (Send Transport Response) service response argument

Task Management Function Executed protocol service response Service Response argument received	Request (Send Transport Response) message service response argument
FUNCTION COMPLETE	Task Management Function Complete
FUNCTION SUCCEEDED	Task Management Function Succeeded
FUNCTION REJECTED	Task Management Function Not Supported
INCORRECT LOGICAL UNIT NUMBER	Incorrect Logical Unit Number
SERVICE DELIVERY OR TARGET FAILURE - Overlapped Tag Attempted	Overlapped Tag Attempted

If this state machine receives a Terminate Data Transfer protocol service request from the SCSI application layer and this state machine has not sent a Request message to a ST_TTS state machine for the Send Data-In or Receive Data-Out protocol service request to which the Terminate Data Transfer request applies, then this state machine shall:

- discard the Terminate Data Transfer request and any corresponding Send Data-In or Receive Data-Out request: and
- 2) send a Data Transfer Terminated protocol service confirmation to the SCSI application layer.

If this state machine receives a Terminate Data Transfer protocol service request from the SCSI application layer and this state machine has sent a Request message to a ST_TTS state machine for the Send Data-In protocol service request to which the Terminate Data Transfer request applies, then this state machine shall send a Cancel message to the ST_TTS state machine specified by the tag and the Send Data-In protocol service request.

If this state machine receives a Terminate Data Transfer protocol service request from the SCSI application layer and this state machine has sent a Request message to a ST_TTS state machine for the Receive Data-Out protocol service request to which the Terminate Data Transfer request applies, then this state

485

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 485

Author: Relliott
Subject: Highlight
Date: 8/30/2008 10:04:24 AM -07'00'

TACCEPT - DONE

Request (Send Transport Response)

the and message per 08-343

machine shall send a Cancel message to the ST_TTS state machine specified by the tag and the Receive Data-Out protocol service request.

This state machine receives Transmission Complete and Reception Complete messages that may result in this state machine sending a Nexus Loss event notification or a protocol service confirmation to the SCSI application layer. If this state machine receives a Transmission Complete (I_T Nexus Loss) message, then this state machine shall send a Nexus Loss event notification to the SCSI application laver. Table 184 defines messages received from ST_TTS state machines and the corresponding service confirmations, if any, that shall be sent upon receipt of the message.

Table 184 — Confirmations sent to the SCSI application layer (part 1 of 2)

Message received from ST_71S state machine	Protocol service confirmation sent to SCSI application layer
Transmission Complete (Xfer_Rdy Delivered)	None
Transmission Complete (Response Delivered)	None
Transmission Complete (Response Failed) ^a	None
Transmission Complete (Data Transfer Terminated)	Data Transfer Terminated
Transmission Complete (Data-In Delivered)	Data-In Delivered with the Delivery Result argument set to DELIVERY SUCCESSFUL
Transmission Complete (Xfer_Rdy Failed, NAK Received)	Data-Out Received with the Delivery Result argument set to DELIVERY FAILURE - NAK RECEIVED
Transmission Complete (Xfer_Rdy Failed, ACK/NAK Timeout)	Data-Out Received with the Delivery Result argument set to DELIVERY FAILURE - CONNECTION FAILED
Transmission Complete (Xfer_Rdy Failed, Connection Failed)	Data-Out Received with the Delivery Result argument set to DELIVERY FAILURE - CONNECTION FAILED
Transmission Complete (Data-In Failed, NAK Received)	Data-In Delivered with the Delivery Result argument set to DELIVERY FAILURE - NAK RECEIVED
Transmission Complete (Data-In Failed, ACK/NAK Timeout)	Data-In Delivered with the Delivery Result argument set to DELIVERY FAILURE - CONNECTION FAILED
Transmission Complete (Data-In Failed, Connection Failed)	Data-In Delivered with the Delivery Result argument set to DELIVERY FAILURE - CONNECTION FAILED
Reception Complete (Data-Out Received)	Data-Out Received with the Delivery Result argument set to DELIVERY SUCCESSFUL
Reception Complete (Data Offset Error)	Data-Out Received with the Delivery Result argument set to DELIVERY FAILURE - DATA OFFSET ERROR
a SAM-4 does not define a mechanism for the device	

Command Complete and Task Management Function Executed transport protocol service response calls.

Working Draft Serial Attached SCSI - 2 (SAS-2)

486

Page: 486

Author: RElliott

Subject: Note Date: 9/24/2008 7:14:21 AM -07'00'

REJECT (footnote a) points out that SAM-4 doesn't define any response to Send Command Complete or Task Management Function Executed. So, Transmission Status (Connection Failed) just goes into the ether.)

7/17 George will write up)

(from George Penokie, LSI)

It looks like the Transmission Complete (Connection Failed) from ST_TTS disappeared (Table 188 — Additional messages sent to the ST_TFR state machine message). It should be in Table 184 — Confirmations sent to the SCSI application layer but are not.

Table 184 — Confirmations sent to the SCSI application layer (part 2 of 2)

Message received from ST_TTS state machine	Protocol service confirmation sent to SCSI application layer
Reception Complete (Too Much Write Data)	Data-Out Received with the Delivery Result argument set to DELIVERY FAILURE - TOO MUCH WRITE DATA
Reception Complete (Information Unit Too Short)	Data-Out Received with the Delivery Result argument set to DELIVERY FAILURE - INFORMATION UNIT TOO SHORT
Reception Complete (Initiator Response Timeout)	Data-Out Received with the Delivery Result argument set to DELIVERY FAILURE - INITIATOR RESPONSE TIMEOUT
Reception Complete (Data Transfer Terminated)	Data Transfer Terminated

^a SAM-4 does not define a mechanism for the device server to determine the result of its Serva Command Complete and Task Management Function Executed transport protocol service response calls.

Each protocol service confirmation shall include the tag as an argument.

9.2.6.3.2.4 Processing miscellaneous requests and confirmations

If this state machine receives an Accept_Reject OPENs (Accept_8SP) or Accept_Reject OPENs (Reject SSP) request, then this state machine shall send a corresponding Accept_Reject OPENs request to the port layer.

If this state machine receives a HARD_RESET Received confirmation, then this state shall send a Transport Reset event notification to the SCSI application layer.

9.2.6.3.3 ST_TTS (target transport server) state machine

9.2.6.3.3.1 ST_TTS state machine overview

The ST_TTS state machine performs the following functions:

- a) receives and processes messages from the ST_TFR state machine;
- b) sends messages to the ST_TFR state machine;
- c) communicates with the port layer using requests and confirmations regarding frame transmission;
 and
- d) receives HARD_RESET Received confirmations from the port layer.

This state machine consists of the following states:

- a) ST_TTS1:Target_Start (see 9.2.6.3.3.2) (initial state);
- b) ST_TTS2:Target_Send_Frame (see 9.2.6.3.3.3);
- c) ST_TTS3:Prepare_Data_In (see 9.2.6.3.3.4);
- d) ST_TTS4:Prepare_Xfer_Rdy (see 9.2.6.3.3.5);
- e) ST_TTS5:Receive_Data_Out (see 9.2.6.3.3.6); and
- f) ST_TTS6:Prepare_Response (see 9.2.6.3.3.7).

This state machine shall start in the ST_TTS1:Target_Start state after power on.

If this state machine receives a HARD_RESET Received confirmation, then this state machine shall transition to the ST_TTS1:Target_Start state.

```
    Author: RElliott
Subject: Highlight
Date: 8/30/2/008 12:13:39 PM -07'00'
    ACCEPT - DONE

Accept_Reject OPENs (Accept SSP) or
```

add request in the spirit of 08-343

Page: 487

Author: RElliott
Subject: Highlight
Date: 9/24/2008 6:30:49 AM -07'00'
TACCEPT - DONE
change
corresponding...
to
...with the same arguments

The state machine shall maintain the state machine variables defined in table 185.

Table 185 — ST_TTS state machine variables

State machine variable	Description
Read Data Offset	Offset into the application client's data-in buffer (i.e., the application client buffer for read data)
Balance Point-Read Data Offset	offset into the application client's data-in buffer (i.e., the application client buffer for read data) of last point at which the number of Transmission Status (ACK Received) confirmations or arguments was equal to the number of transmitted read DATA frames
Read Data Frames Transmitted	The number of Transmission Status (Frame Transmitted) confirmations received for read DATA frames
Read Data Frames ACKed	The number of Transmission Status (ACK Received) confirmations received for read DATA frames
Read Data Buffer End	One greater than the offset into the application client's data-in buffer (i.e., the application client buffer for read data) of the last location into which read data is to be placed.
Requested Write Data Offset	Device server requested offset in the application client buffer for write data
Requested Write Data Length	Amount of write data requested by the device server from the application client buffer
Write Data Offset	Offset into the application client's data-out buffer (i.e., the application client buffer containing write data)

This state machine shall maintain the state machine arguments defined in table 186.

Table 186 — ST_TTS state machine arguments

State machine argument	Description
Data-In	The Data-In arguments received in the Request (Send Data-In) message (see 9.2.6.3.2.3)
Data-Out	The Data-Out arguments received in the Request (Receive Data-Out) message (see 9.2.6.3.2.3)

9.2.6.3.3.2 ST TTS1:Target Start state

9.2.6.3.3.2.1 State description

488

This state is the initial state of the ST_TTS state machine.

Upon entry into this state, this state shall:

- a) set the Read Data Offset state machine variable to the Application Client Buffer Offset Data-In state machine argument;
- b) set the Balance Point Read Data Offset state machine variable to the Application Client Buffer Offset Data-In state machine argument;
- c) set the Read Data Frames Transmitted state machine variable to zero;
- d) set the Read Data Frames ACKed state machine variable to zero;
- e) set the Read Data Buffer End state machine variable to the Application Client Buffer Offset Data-In state machine argument plus the Request Byte Count Data-In state machine argument; and

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 488

Author: Isi-gpenokie Subject: Sticky Note Date: 6/30/2008 2:56:47 PM -07'00'

REJECT (the convention is: Use all sentences or all partial sentences on one table, try not to mix. If there is more than one sentence in any table entry, then they all get periods. If each of them is less than one sentence, then they forgo periods. This is easily broken when descriptors are reworded; ending each with a period would make it consistent, but that's bad grammar for partial sentences. This table, for example, does not have full sentences (just subjects), so periods don't belong.)

Global

The descriptions in the tables are all over the place when it comes to if the is a period or not after the description. I suggest if the description is a complete sentence then it should have a period at the end. There are many cases where that is not the case and many cases where it is. This, at lease, should be consistent.

 set the Requested Write Data Offset state machine variable to the Application Client Buffer Offset Data-Out state machine argument.

If this state was entered without an Enable First Burst Data-Out state machine argument, then the Requested Write Data Length state machine variable shall be set to the Request Byte Count Data-Out state machine argument.

If this state was entered with an Enable First Burst Data-Out state machine argument, then the Requested Write Data Length state machine variable shall be set to the First Burst Size Data-Out State machine argument.

9.2.6.3.3.2.2 Transition ST_TTS1:Target_Start to ST_TTS2:Frepare_Data_In

This transition shall occur after this state receives a Request (Send Data-In) message.

9.2.6.3.3.2.3 Transition ST_TTS1:Target_Start to ST_TTS4:Prepare_Xfer_Rdy

If this state was entered without an Enable First Burst Data-Out state machine argument, then this transition shall occur after a Request (Receive Data-Out) message is received.

9.2.6.3.3.2.4 Transition ST_TTS1:Target_Start to ST_TTS5:Receive_Data_Out

If this state was entered with an Enable First Burst Data-Out state machine argument, then this transition shall occur after a Request (Receive Data-Out) message is received.

9.2.6.3.3.2.5 Transition ST_TTS1:Target_Start to ST_TTS7:Prepare_Response

This transition shall occur after this state receives a Request (Send Transport Response) message.

The transition shall include the Transport Response arguments.

9.2.6.3.3.3 ST_TTS2:Target_Send_Frame state

9.2.6.3.3.3.1 State description

If this state is entered from the ST_TTS3:Prepare_Data_In state for transmission of a read DATA frame, then this state shall send a Transmit Frame (Non-Interlocked) request to the port layer.

If this state is entered from the ST_TTS4:Prepare_Xfer_Rdy state for transmission of an XFER_RDY frame, then this state shall send a Transmit Frame (Interlocked) request to the port layer.

If this state is entered from the ST_TTS6:Prepare_Response state for transmission of a RESPONSE frame, then this state shall send a Transmit Frame (Interlocked) request to the port layer.

All Transmit Frame requests from this state shall include the read DATA frame from the ST_TTS3:Prepare_Data_In state, the XFER_RDY frame from the ST_TTS4:Prepare_Xfer_Rdy state, or the RESPONSE frame from the ST_TTS6:Prepare_Response state and the following arguments to be used for

- a) initiator port bit set to zero;
- b) protocol set to SSP:

any OPEN address frame:

- c) Connection Rate argument;
- d) Initiator Connection Tag argument;
- e) Destination SAS Address argument; and
- f) Source SAS Address argument.

After sending a Transmit Frame request this state shall wait to receive a Transmission Status confirmation.

If the confirmation or argument is Transmission Status (I_T Nexus Loss), then this state shall send a Transmission Complete (I_T Nexus Loss) message to the ST_TFR state machine. The Transmission Complete message shall include the tag as an argument.

Working Draft Serial Attached SCSI - 2 (SAS-2)

489

Page: 489

after receiving

after receiving

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

after this state receives
s/b

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

after this state receives

If the confirmation or argument is not Transmission Status (Frame Transmitted) or Transmission Status (I_T Nexus Loss), then this state shall send the Transmission Complete message defined in table 187 to the ST_TFR state machine. The message shall include the following arguments:

- a) tag; and
- b) arguments received with the Transmission Status confirmation.

If the confirmation is Transmission Status (Frame Transmitted) and the Transmit Frame request was for:

- a) an XFER RDY frame; or
- b) a RESPONSE frame,

then this state shall wait to receive one of the following confirmations:

- a) Transmission Status (ACK Received);
- b) Transmission Status (NAK Received);
- c) Transmission Status (ACK/NAK Timeout); or
- d) Transmission Status (Connection Lost Without ACK/NAK).

If the confirmation is Transmission Status (Frame Transmitted) and the Transmit Frame request was for a read DATA frame, then this state shall:

- a) increment the Read Data Frames Transmitted state machine variable by one; and
- b) set the Read Data Offset state machine variable to the current Read Data Offset state machine variable plus the number of read data bytes transmitted in the DATA frame associated with the Transmission Status (Frame Transmitted) confirmation.

If the confirmation is Transmission Status (ACK Received) and the Transmit Frame request was for a read DATA frame, then this state shall increment the Read Data Frames ACKed state machine variable by one.

If the confirmation is Transmission Status (Frame Transmitted), the Transmit Frame request was for a read DATA frame, and the Read Data Offset state machine variable is equal to the Read Data Buffer End state machine variable, then this state shall wait to receive:

- Transmission Status (ACK Received) confirmations or arguments for each outstanding read DATA frame (i.e., Read Data Frames Transmitted state machine variable equals the Read Data Frames ACKed state machine variable); or
- b) one of the following:
 - A) Transmission Status (NAK Received);
 - B) Transmission Status (ACK/NAK Timeout); or
 - C) Transmission Status (Connection Lost Without ACK/NAK).

NOTE 96 - If the number of data bytes that have been transmitted for a Request (Send Data-In) message are fewer than the Request Byte Count Data-In state machine argument, then this state transitions to the ST_TTS3:Prepare_Data_In state to construct the additional read DATA frames for the request before receiving a Transmission Status (ACK Received), Transmission Status (NAK Received), Transmission Status (ACK/NAK Timeout), or Transmission Status (Connection Lost Without ACK/NAK) confirmation.

When the Read Data Frames Transmitted state machine variable equals the Read Data Frames ACKed state machine variable and the Transmit Frame request was for a read DATA frame, this state shall:

- a) not modify the Balance Point Read Data Offset state machine variable (i.e., the balance point remains at the last point at which balance occurred); or
- set the Balance Point Read Data Offset state machine variable to the current Read Data Offset state machine variable.

If the Transmit Frame request was for a RESPONSE frame, the vendor-specific number of retries has not been reached, and this state receives one of the following confirmations:

- a) Transmission Status (NAK Received);
- b) Transmission Status (ACK/NAK Timeout); or
- c) Transmission Status (Connection Lost Without ACK/NAK),

Page: 490

Author: RElliott
Subject: Highlight
Date: 8/30/2008 10:05:16 AM -07'00'
TACCEPT - DONE
the following

the following confirmations

per 08-343

then this state shall:

- a) set the RETRANSMIT bit to one;
- b) set the other fields to the same values as contained in the failed RESPONSE frame; and
- c) resend a Transmit Frame (Interlocked) request to the port layer for the failed RESPONSE frame.

If transport layer retries are enabled, the Transmit Frame request was for a XFER_RDY frame, the vendor-specific number of retries has not been reached, and this state receives one of the following confirmations:

- a) Transmission Status (NAK Received);
- b) Transmission Status (ACK/NAK Timeout); or
- c) Transmission Status (Connection Lost Without ACK/NAK),

then this state shall:

- a) set the RETRANSMIT bit to one;
- b) set the TARGET PORT TRANSFER TAG field to a value that is different than the target port transfer tag in the previous XFER_RDY frame associated with the Data-Out state machine arguments and is different than any other target port transfer tag currently in use. If write data is received for a subsequent XFER_RDY frame for a command, then all target port transfer tags used for previous XFER_RDY frames for the command are no longer in use;
- c) set the other fields to the same values contained in the failed XFER_RDY frame; and
- d) resend a Transmit Frame (Interlocked) request to the port layer for the failed XFER_RDY frame.

This page contains no comments

Table 187 defines messages that this state shall send to the ST_TFR state machine upon receipt of the listed confirmations and arguments, based on the conditions under which each confirmation or argument was received.

Table 187 — Messages sent to the ST_TFR state machine

Confirmation received from the port layer or argument received from ST_TTS3:Prepare_Data_In	Conditions under which confirmation was received	Message sent to the ST_TFR state machine
	The Transmit Frame request was for an XFER_RDY frame.	Transmission Complete (Xfer_Rdy Delivered) with a Target Port Transfer Tag argument
	Transmit Frame request was for a RESPONSE frame	Transmission Complete (Response Delivered)
Transmission Status (ACK Received)	The Transmit Frame request was for a read DATA frame and: a) the Read Data Offset state machine variable is equal to the Read Data Buffer End state machine variable; and b) the Read Data Offset state machine variable is equal to the Balance Point Read Data Offset state machine variable.	Transmission Complete (Data-In Delivered)
Transmission Status (NAK Received), Transmission Status (ACK/NAK Timeout), or Transmission Status (Connection Lost Without ACK/ NAK)	The Transmit Frame request was for a RESPONSE frame and the vendor-specific number of retries has been reached.	Transmission Complete (Response Failed)
Transmission Status (NAK Received)	The Transmit Frame request was for an XFER_RDY frame and: a) if transport laver retries are disabled: or	Transmission Complete (Xfer_Rdy Failed, NAK Received)
Transmission Status (ACK/NAK Timeout) or Transmission Status (Connection Lost Without ACK/NAK)	 a) if transport layer retries are disabled; or b) if transport layer retries are enabled and the vendor-specific number of retries has been reached. 	Transmission Complete (Xfer_Rdy Failed, Connection Failed)
Transmission Status (NAK Received)	The Transmit Frame request was for a read DATA frame and: a) if transport layer retries are disabled; or	Transmission Complete (Data-In Failed, NAK Received)
Transmission Status (ACK/NAK Timeout) or Transmission Status (Connection Lost Without ACK/NAK)	b) if transport layer retries are enabled and the vendor-specific number of retries has been reached.	Transmission Complete (Data-In Failed, Connection Failed)

492

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 492

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07-50 PM -07'00' TACCEPT - DONE (also added "The" at the beginning)

Change << RESPONSE frame >> to << RESPONSE frame. >>. Period added.

Table 188 defines messages that this state shall send to the ST_TFR state machine upon receipt of the listed confirmations and arguments.

Table 188 — Additional messages sent to the ST TFR state machine

Confirmation received from the port layer or argument received from ST_TTS3:Prepare_Data_In	Message sent to the ST_TFR state machine	
Transmission Status (Bad Destination)	Transmission Complete (Connection Failed)	
Transmission Status (Connection Rate Not Supported)	Transmission Complete (Connection Failed)	
Transmission Status (Protocol Not Supported)	Transmission Complete (Connection Failed)	
Transmission Status (Reserved Abandon 1)	Transmission Complete (Connection Failed)	
Transmission Status (Reserved Abandon 2)	Transmission Complete (Connection Failed)	
Transmission Status (Reserved Abandon 3)	Transmission Complete (Connection Failed)	
Transmission Status (STP Resources Busy)	Transmission Complete (Connection Failed)	
Transmission Status (Wrong Destination)	Transmission Complete (Connection Failed)	
Transmission Status (Zone Violation)	Transmission Complete (Convection Failed)	
Transmission Status (Break Received)	Transmission Complete (Data Transfer Terminated)	

If this state receives a Cancel message or a Cancel argument and this state has received confirmations for all Transmit Frame requests sent to the port layer, then this state shall send a Transmission Complete (Data Transfer Terminated) message to the ST_TFR state machine.

If this state receives a Cancel message or a Cancel argument and this state has not received confirmations for all Transmit Frame requests sent to the port layer, then this state shall send a Cancel request to the port layer to cancel previous Transmit Frame requests. The Cancel request shall include the following arguments:

- a) destination SAS address; and
- b) tag.

Upon receipt of a Transmission Status (Cancel Acknowledged) confirmation or arguryent this state shall send a Transmission Complete (Data Transfer Terminated) message to the ST_TFR state machine.

A Transmission Complete message to the ST_TFR state machine shall include the following arguments:

- a) destination SAS address; and
- b) ta

9.2.6.3.3.3.2 Transition ST_TTS2:Target_Send_frame to ST_T/S1:Target_Start

This transition shall occur after this state sends a Transmission Complete message other than Transmission Complete (Xfer_Rdy Delivered) to the ST_TFR state machine.

9.2.6.3.3.3 Transition ST_TTS2:Target_Send_Frane to ST_TTS3:Prepare_Data_In

This transition shall occur after this state receives a Transmission Status (Frame Transmitted) confirmation for a read DATA frame if the Read Data Offset state machine variable is less than the Read Data Buffer End state machine variable (i.e., there is more read that to transfer).

If transport layer retries are enabled and the vendor-specific number of retries, if any, for the read DATA frame has not been reached, this transition shall occur and include a Retry argument after this state receives one of the following confirmations for a read DATA frame:

- a) Transmission Status (NAK Received);
- b) Transmission Status (ACK/NAK Timeout); or

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 493

Author: RElliott

```
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    after this state sends
    after sending
Author: RElliott
Subject: Highlight
Date: 8/30/2008 10:07:07 AM -07'00'
 ACCEPT - DONE
    Transmission Complete (Xfer_Rdy Delivered)
    add the and message
    per 08-343
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
    after this state receives
    after receiving
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    after this state receives
    after receiving
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    this
    s/b
    then this
```

c) Transmission Status (Connection Lost Without ACK/NAK).

9.2.6.3.3.4 Transition ST_TTS2:Target_Send_Frame to ST_TTS5:Receive Data_Out

This transition shall occur after this state sends a Transmission Complete (Xfer Rdy Delivered) message to the ST TFR state machine.

9.2.6.3.3.4 ST_TTS3:Prepare_Data_In state

9.2.6.3.3.4.1 State description

This state retrieves the data from the Device Server Buffer Data-In state machine argument and constructs a read DATA frame.

This state shall construct a read DATA frame using the Data-In state machine arguments as follows:

- a) FRAME TYPE field set to 01h (i.e., DATA frame);
- HASHED DESTINATION SAS ADDRESS field set to the hashed value of the Destination SAS Address Data-In state machine argument;
- c) HASHED SOURCE SAS ADDRESS field set to the hashed value of the SSP target port's SAS address;
- d) RETRY DATA FRAMES bit set to zero;
- e) RETRANSMIT bit set to zero;
- f) CHANGING DATA POINTER set as specified in this subclause;
- g) NUMBER OF FILL BYTES field set to the number of fill bytes needed for the specified read data;
- h) TAG field set to the Tag Data-In state machine argument:
- TARGET PORT TRANSFER TAG field set to a vendor-specific value;
- i) DATA OFFSET field set as specified in this subclause:
- in the information unit, DATA field set as specified in this subclause; and
- l) fill bytes, if required.

If this state is entered without a Retry argument then this state shall:

- a) set the CHANGING DATA POINTER bit set to zero;
- b) set the DATA OFFSET field to the Read Data Offset state machine variable; and
- c) in the information unit, set the DATA field to the information in the Device Server Buffer argument that corresponds to the read data to be transferred. If the Read Data Buffer End state machine variable minus the Read Data Offset state machine variable is equal to the maximum size of the read Data information unit, the amount of data shall be the maximum size of the read Data information unit. Otherwise, the amount of data shall be the lesser of:
 - A) the Read Data Buffer End state machine variable minus the Read Data Offset state machine variable: and
- B) the maximum size of the read Data information unit for this Data-In request.

If this state is entered with a Retry argument then this state shall either:

- a) set the CHANGING DATA POINTER bit in the frame to one:
- b) set the DATA OFFSET field to the Balance Point Read Data Offset state machine variable;
- set the Read Data Offset state machine variable to the Balance Point Read Data Offset state machine
- d) set the Read Data Frames Transmitted state machine variable to zero;
- e) set the Read Data Frames ACKed state machine variable to zero; and
- f) in the information unit, set the DATA field to the information in the Device Server Buffer argument that corresponds to the read data to be transferred. If the Read Data Buffer End state machine variable minus the Read Data Offset state machine variable is equal to the maximum size of the read Data information unit, the amount of data shall be the maximum size of the read Data information unit. Otherwise, the amount of data shall be the lesser of:
 - A) the Read Data Buffer End state machine variable minus the Balance Point Read Data Offset state machine variable; and
- B) the maximum size of the read Data information unit for this Data-In reque

or:

a) set the CHANGING DATA POINTER bit in the frame to one;

Page: 494

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE after this state sends

Author: wdc-mevans Subject: Highlight

after sending

Date: 6/27/2008 3:40:28 PM -07'00'

REJECT (this is the state machine, so referring to the state machine variables is appropriate)

If the Read Data Buffer End state machine variable minus the Read Data Offset state machine variable is equal to the maximum size of the read Data information unit, the amount of data shall be the maximum size of the read Data information unit. Otherwise, the amount of data shall be the lesser of:

A) the Read Data Buffer End state machine variable minus the Read Data Offset state machine variable: and

B) the maximum size of the read Data information unit for this Data-In request.

The number of bytes in the DATA field shall be less than or equal to the maximum number of bytes of the field. If the DATA frame does not contain the last data for the transfer, then the number of bytes contained in the DATA field shall be a multiple of four. If the DATA frame contains the last data for the transfer, then the number of bytes contained in the DATA field may not be a multiple

Author: RElliott

Subject: Note Date: 8/30/2008 10:07:59 AM -07'00'

ACCEPT - DONE

Data-In request

Send Data-In request

per 08-343

Author: wdc-mevans

Subject: Highlight Date: 6/27/2008 3:40:33 PM -07'00'

PREJECT (this is the state machine, so referring to the state machine variables is appropriate)

If the Read Data Buffer End state machine variable minus the Read Data Offset state machine variable is equal to the maximum size of the read Data information unit, the amount of data shall be the maximum size of the read Data information unit. Otherwise, the amount of data shall be the lesser of:

A) the Read Data Buffer End state machine variable minus the Balance Point Read Data Offset state machine variable: and

B) the maximum size of the read Data information unit for this Data-In request

The number of bytes in the DATA field shall be less than or equal to the maximum number of bytes of the field. If the DATA frame does not contain the last data for the transfer, then the number of bytes contained in the DATA field shall be a multiple of four. If the DATA frame contains the last data for the transfer, then the number of bytes contained in the DATA field may not be a multiple of four.

Author: RElliott Subject: Note Date: 8/30/2008 10:08:07 AM -07'00'
—ACCEPT - DONE

Comments from page 494 continued on next page

T10/1760-D Revision 14 28 January 2008

c) Transmission Status (Connection Lost Without ACK/NAK).

9.2.6.3.3.3.4 Transition ST_TTS2:Target_Send_Frame to ST_TTS5:Receive_Data_Out

This transition shall occur after this state sends a Transmission Complete (Xfer_Rdy Delivered) message to the ST TFR state machine.

9.2.6.3.3.4 ST_TTS3:Prepare_Data_In state

9.2.6.3.3.4.1 State description

This state retrieves the data from the Device Server Buffer Data-In state machine argument and constructs a read DATA frame.

This state shall construct a read DATA frame using the Data-In state machine arguments as follows:

- a) FRAME TYPE field set to 01h (i.e., DATA frame);
- b) HASHED DESTINATION SAS ADDRESS field set to the hashed value of the Destination SAS Address Data-In state machine argument;
- c) HASHED SOURCE SAS ADDRESS field set to the hashed value of the SSP target port's SAS address;
- d) RETRY DATA FRAMES bit set to zero;
- e) RETRANSMIT bit set to zero;
- f) CHANGING DATA POINTER set as specified in this subclause;
- g) NUMBER OF FILL BYTES field set to the number of fill bytes needed for the specified read data;
- h) TAG field set to the Tag Data-In state machine argument:
- i) TARGET PORT TRANSFER TAG field set to a vendor-specific value;
- j) DATA OFFSET field set as specified in this subclause;
- k) in the information unit, DATA field set as specified in this subclause; and
- l) fill bytes, if required.

If this state is entered without a Retry argument then this state shall:

- a) set the CHANGING DATA POINTER bit set to zero;
- b) set the DATA OFFSET field to the Read Data Offset state machine variable; and
- c) in the information unit, set the DATA field to the information in the Device Server Buffer argument that corresponds to the read data to be transferred. If the Read Data Buffer End state machine variable minus the Read Data Offset state machine variable is equal to the maximum size of the read Data information unit, the amount of data shall be the maximum size of the read Data information unit. Otherwise, the amount of data shall be the lesser of:
 - A) the Read Data Buffer End state machine variable minus the Read Data Offset state machine variable: and
 - B) the maximum size of the read Data information unit for this Data-In request.

If this state is entered with a Retry argument then this state shall either:

- a) set the CHANGING DATA POINTER bit in the frame to one:
- b) set the DATA OFFSET field to the Balance Point Read Data Offset state machine variable;
- c) set the Read Data Offset state machine variable to the Balance Point Read Data Offset state machine
- d) set the Read Data Frames Transmitted state machine variable to zero;
- e) set the Read Data Frames ACKed state machine variable to zero; and
- f) in the information unit, set the DATA field to the information in the Device Server Buffer argument that corresponds to the read data to be transferred. If the Read Data Buffer End state machine variable minus the Read Data Offset state machine variable is equal to the maximum size of the read Data information unit, the amount of data shall be the maximum size of the read Data information unit. Otherwise, the amount of data shall be the lesser of:
 - A) the Read Data Buffer End state machine variable minus the Balance Point Read Data Offset state machine variable; and
- B) the maximum size of the read Data information unit for this Data-In request;

or:

494

a) set the CHANGING DATA POINTER bit in the frame to one;

Working Draft Serial Attached SCSI - 2 (SAS-2)

Data-In request Send Data-In request per 08-343

- b) set the DATA OFFSET field to the Application Client Buffer Offset Data-In state machine argument;
- c) set the Read Data Offset state machine variable to the Application Client Buffer Offset Data-In state machine argument:
- d) set the Read Data Frames Transmitted state machine variable to zero;
- e) set the Read Data Frames ACKed state machine variable to zero; and
- f) in the information unit, set the DATA field to the information in the Device Server Buffer argument that corresponds to the read data to be transferred. If the Request Byte Count Data-In state machine argument is equal to the maximum size of the read Data information unit, the amount of data shall be the maximum size of the read Data information unit. Otherwise, the amount of data shall be the lesser of:
 - A) the Request Byte Count Data-In state machine argument; and
- B) the maximum size of the read Data information unit for this Data-In request.

9.2.6.3.3.4.2 Transition ST_TTS3:Prepare_Data_In to ST_TTS2:Targec_Send_Frame

This transition shall occur after this state:

- a) constructs a read DATA frame; or
- b) receives a Cancel message.

This transition shall include the received Transmission Status, if any, as an argument and the:

- a) read DATA frame as an argument; or -
- b) if a Cancel message was received, then a Cancel argument

9.2.6.3.3.5 ST_TTS4:Prepare_Xfer_Rdy state

9.2.6.3.3.5.1 State description

This state shall construct an XFER RDY frame using the Data-Out state machine arguments.

- a) FRAME TYPE field set to 05h (i.e., XFER RDY frame);
- b) HASHED DESTINATION SAS ADDRESS field set to the hashed value of the Destination SAS Address
 Data-Out state machine argument;
- c) HASHED SOURCE SAS ADDRESS field set to the hashed value of the SSP target port's SAS address;
- RETRY DATA FRAMES bit set to one if transport layer retries are enabled and zero if transport layer retries are disabled:
- e) RETRANSMIT bit set to zero;
- f) CHANGING DATA POINTER bit set to zero;
- g) NUMBER OF FILL BYTES field set to zero;
- h) TAG field set to the Tag Data-Out state machine argument:
- i) if transport layer retries are disabled, TARGET PORT TRANSFER TAG field set to a vendor-specific value
- if transport layer retries are enabled, TARGET PORT TRANSFER TAG field set to a vendor-specific value that is different from:
 - A) the target port transfer tag in the previous XFER_RDY frame associated with the Data-Out state machine arguments; and
 - B) any other target port transfer tag currently in use.

If write data is received for a subsequent XFER_RDY frame for a command, then all target port transfer tags used for previous XFER_RDY frames for the command are no longer in use;

- k) DATA OFFSET field set to zero; and -
- i) in the information unit, REQUESTED OFFSET field set to the Requested Write Data Offset state machine
- m) in the information unit, WRITE DATA LENGTH field set as specified in this subclause; and
- n) no fill bytes.

If the SSP target port has the resources available to receive all of the write data as indicated by the Requested Write Data Length state machine variable, then this state shall set the WRITE DATA LENGTH field in the XFER_RDY information unit to the Requested Write Data Length state machine variable.

Page: 495 Author: wdc-mevans Subject: Highlight Date: 6/27/2008 3:39:57 PM -07'00' REJECT (this is a state machine, so referring to the state machine variables is appropriate) If the Request Byte Count Data-In state machine argument is equal to the maximum size of the read Data information unit, the amount of data shall be the maximum size of the read Data information unit. Otherwise, the amount of data shall be the lesser of: A) the Request Byte Count Data-In state machine argument; and B) the maximum size of the read Data information unit for this Data-In request. The number of bytes in the DATA field shall be less than or equal to the maximum number of bytes of the field. If the DATA frame does not contain the last data for the transfer, then the number of bytes contained in the DATA field shall be a multiple of four. If the DATA frame contains the last data for the transfer, then the number of bytes contained in the DATA field may not be a multiple Author: RElliott Date: 8/30/2008 10:08:15 AM -07'00' ACCEPT - DONE Data-In request Send Data-In request per 08-343 Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE read DATA frame if a Cancel message was not received, then the read DATA frame Author: Isi-gpenokie Subject: Highlight Date: 6/27/2008 3:25:11 PM -07'00' REJECT (no, only one is included. The "and" before the list is purposely different. See added comment.) This << or >> should be a << and >>. Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE zero s/b 00b Author: Isi-gpenokie Subject: Cross-Out Date: 5/6/2008 1:07:50 PM -07'00' ACCEPT - DONE

Comments from page 495 continued on next page

Delete extra << and >>

Author: RElliott

Subject: Highlight

b) set the DATA OFFSET field to the Application Client Buffer Offset Data-In state machine argument;

- set the Read Data Offset state machine variable to the Application Client Buffer Offset Data-In state machine argument;
- d) set the Read Data Frames Transmitted state machine variable to zero;
- e) set the Read Data Frames ACKed state machine variable to zero; and
- f) in the information unit, set the DATA field to the information in the Device Server Buffer argument that corresponds to the read data to be transferred. If the Request Byte Count Data-In state machine argument is equal to the maximum size of the read Data information unit, the amount of data shall be the maximum size of the read Data information unit. Otherwise, the amount of data shall be the lesser of
 - A) the Request Byte Count Data-In state machine argument; and
 - B) the maximum size of the read Data information unit for this Data-In request.

9.2.6.3.3.4.2 Transition ST TTS3:Prepare Data In to ST TTS2:Targer Send Frame

This transition shall occur after this state:

- a) constructs a read DATA frame; or
- b) receives a Cancel message.

This transition shall include the received Transmission Status, if any, as an argument and the:

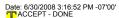
- a) read DATA frame as an argument; or
- b) if a Cancel message was received, then a Cancel argument.

9.2.6.3.3.5 ST_TTS4:Prepare_Xfer_Rdy state

9.2.6.3.3.5.1 State description

This state shall construct an XFER_RDY frame using the Data-Out state machine arguments:

- a) FRAME TYPE field set to 05h (i.e., XFER RDY frame);
- b) HASHED DESTINATION SAS ADDRESS field set to the hashed value of the Destination SAS Address Data-Out state machine argument;
- c) HASHED SOURCE SAS ADDRESS field set to the hashed value of the SSP target port's SAS address;
- RETRY DATA FRAMES bit set to one if transport layer retries are enabled and zero if transport layer retries are disabled;
- e) RETRANSMIT bit set to zero;
- f) CHANGING DATA POINTER bit set to zero;
- g) NUMBER OF FILL BYTES field set to zero;
- h) TAG field set to the Tag Data-Out state machine argument;
- i) if transport layer retries are disabled, TARGET PORT TRANSFER TAG field set to a vendor-specific value;
- j) if transport layer retries are enabled, TARGET PORT TRANSFER TAG field set to a vendor-specific value that is different from:
 - A) the target port transfer tag in the previous XFER_RDY frame associated with the Data-Out state machine arguments; and
 - B) any other target port transfer tag currently in use.


If write data is received for a subsequent XFER_RDY frame for a command, then all target port transfer tags used for previous XFER_RDY frames for the command are no longer in use;

- k) DATA OFFSET field set to zero; and
- in the information unit, REQUESTED OFFSET field set to the Requested Write Data Offset state machine variable;
- m) in the information unit, WRITE DATA LENGTH field set as specified in this subclause; and
- n) no fill bytes.

If the SSP target port has the resources available to receive all of the write data as indicated by the Requested Write Data Length state machine variable, then this state shall set the WRITE DATA LENGTH field in the XFER_RDY information unit to the Requested Write Data Length state machine variable.

Working Draft Serial Attached SCSI - 2 (SAS-2)

495

zero s/b 00000000h T10/1760-D Revision 14 28 January 2008

If the SSP target port does not have the resources available to receive all of the write data as indicated by the Requested Write Data Length state machine variable (e.g., the SSP target port has a vender specific limit. to how much write data may be received during one operation), then this state shall set the WRITE DATA LENGTH field in the XFER_RDY information unit and the Requested Write Data Length state machine variable to a value representing the amount of write data for which the SSP target port has available resources to receive.

9.2.6.3.3.5.2 Transition ST_TTS4:Prepare_Xfer_Rdy to ST_TTS2:Target_Send_Frame

This transition shall occur after this state:

- a) constructs an XFER_RDY frame; or
- b) receives a Cancel message.

This transition shall include the:

if a Cancel message was received, then a Cancel argument; or

9.2.6.3.3.6 ST_TTS5:Receive_Data_Out state

9.2.6.3.3.6.1 State description

Upon entry into this state, the Write Data Offset state machine variable is set to the Requested Write Data Offset state machine variable.

If this state receives a Data-Out Arrived message, then this state shall verify the write DATA frame received with the Data-Out Arrived values as specified in table 189. If the verification test fails, then this state sends the message specified in table 189 to the ST_TFR state machine.

Table 189 — Reception Complete message for write DATA frame verification failures

Message sent to ST_TFR a	Condition
	Transport layer retries are disabled, and the DATA OFFSET field is not equal to the Write Data Offset state machine variable.
Reception Complete (Data Offset Error)	The DATA OFFSET field is: a) less than the Requested Write Data Offset state machine variable; or b) greater than or equal to the Requested Write Data Offset state machine variable plus the Requested Write Data Length state machine variable.
Reception Complete (Too Much Write Data)	The number of bytes in the DATA field in the write Data information unit plus the Write Data Offset state machine variable is greater than the Request Byte Count Data-Out state machine argument.
Reception Complete (Information Unit Too Short)	The number of bytes in the DATA field is zero.

- ^a If more than one condition is true, then this state shall select which message to send to the ST_TFR state machine using the following order:
- 1) Reception Complete (Data Offset Error);
- 2) Reception Complete (Too Much Write Data); or
- 3) Reception Complete (Information Unit Too Short).

If:

- a) transport layer retries are enabled;
- b) the CHANGING DATA POINTER bit is set to zero; and
- c) the value in the DATA OFFSET field is not equal to the Write Data Offset state machine variable,

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 496

Author: hpq-relliott Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' ACCEPT - DONE

> vender s/b vendor

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

move "the" into b)

Author: Isi-gpenokie Subject: Highlight Date: 6/27/2008 3:25:57 PM -07'00'

REJECT (no, only one is included. See added comment)

This << or >> should be a << and >>.

Author: RElliott Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE reorder a) and b) to match other sections

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

XFER_RDY frame

if a Cancel message was not received, then the XFER_RDY frame

Author: wdc-mevans

Subject: Highlight Date: 8/27/2008 4:59:38 PM -07'00'

ACCEPT - DONE (7/17 TFR normally handles Invalid Frame on its own; TTS is not suited to do that. Incorporate as Mark suggests, but changing "read" to "write")

7/14 make this return Invalid Frame, not Information Unit Too Short)

The number of bytes in the DATA field is zero.

a) The number of bytes in the DATA field in the read Data information unit is zero; or

b) This is not the last DATA frame for the transfer and the NUMBER OF FILL BYTES field in the frame is not set to zero.

496

then this state should discard all Data-Out Arrived messages until the CHANGING DATA POINTER bit is set to one. This state shall resume processing additional Data-Out Arrived messages when it receives a Data-Out Arrived message with the CHANGING DATA POINTER bit set to one.

If the WRITE data frame verification is successful and the Data-Out Arrived message in not discarded, then this state shall:

- a) process the write data as indicated in the Data-Out state machine arguments using the Device Server Buffer (e.g., logical block address) to which the write data is to be transferred; and
- set the Write Data Offset state machine variable to the current Write Data Offset state machine variable plus the number of bytes received in the DATA field of the write Data information unit.

If the WRITE data frame verification is successful and the CHANGING DATA POINTER bit set to one, then this state shall:

- a) set the Write Data Offset state machine variable to the Requested Write Data Offset state machine variable plus the number of bytes received in the DATA field of the write Data information unit; and
- b) process the write data as indicated in the Data-Out state machine arguments using the Device Server Buffer (e.g., logical block address) to which the write data is to be transferred.

If data received in the write DATA frame overlaps data previously received and verified successfully, this state may either discard the overlapping data, or replace the previously received data with the new data.

If the Initiator Response Timeout timer is implemented, then this state shall initialize and start the Initiator Response Timeout timer:

- a) upon entry into this state; and
- b) when this state receives and verifies the write DATA frame received with the Data-Out Arrived values (i.e., Data-Out data was received and processed).

If the Initiator Response Timeout timer is running, then this state shall stop the timer before transitioning from this state.

If the Initiator Response Timeout timer expires, then this state shall send a Reception Complete (Initiator Response Timeout) message to the ST TFR state machine.

If the Write Data Offset state machine variable equals the Request Byte Count Data-Out state machine argument plus the Application Client Buffer Offset Data-Out state machine argument, then this state shall send a Reception Complete (Data-Out Received) message to the ST_TFX state machine after a Reception Complete (ACK Transmitted) confirmation is received for each write DMTA frame previously received.

If this state receives a Cancel message, then this state shall send a Reception Complete (Data Transfer Terminated) message to the ST_TFR state machine.

If this state receives Transmission Status (Break Received) confirmation, then this state shall send a Reception Complete (Data Transfer Terminated) to the ST /FR state machine.

The Reception Complete message, if any, shall include the tag as an argument.

9.2.6.3.3.6.2 Transition ST_TTS5:Receive_Data_out to ST_TTS1:Target_Start

This transition shall occur after this state sends a Reception Complete message to the ST_TFR state machine.

9.2.6.3.3.6.3 Transition ST TTS5:Receive Data Out to ST TTS4:Prepare X/er Rdy

This transition shall occur:

- 1) if the Write Data Offset state machine variable is less than Request byte Count Data-Out state machine argument plus the Application Client Buffer Offset Data-Out state machine argument and equal to the Requested Write Data Offset state machine variable plus the Requested Write Data Length state machine variable;
- after a Reception Complete (ACK Transmitted) confirmation is received for each write DATA frame previously received;

Working Draft Serial Attached SCSI - 2 (SAS-2)

497

Page: 497

an ACK Transmitted confirmation

per 08-343

Author: REliott
Subject: Highlight
Date: 8/30/2008 10:11:26 AM -07'00'

ACCEPT - DONE

a Reception Complete (ACK Transmitted) confirmation
s/b
an ACK Transmitted confirmation
per 08-343

Author: REliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE
after this state sends
s/b
after sending

Author: REliott
Subject: Highlight
Date: 8/30/2008 10:11:35 AM -07'00'

ACCEPT - DONE

a Reception Complete (ACK Transmitted) confirmation

T10/1760-D Revision 14 28 January 2008

 after determining the amount of write data already transferred by subtracting the Application Client Buffer Offset Data-Out state machine argument from the Write Data Offset state machine variable;

- 4) after setting the Requested Write Data Length state machine variable to the Request Byte Count Data-Out state machine argument minus the amount of write data already transferred; and
- after setting the Requested Write Data Offset state machine variable to the Write Data Offset state machine variable.

9.2.6.3.3.7 ST_TTS6:Prepare_Response state

9.2.6.3.3.7.1 State description

This state shall construct a RESPONSE frame using the received Application Response arguments or the received Transport Response arguments as follows:

- a) FRAME TYPE field set to 07h (i.e., RESPONSE frame);
- b) HASHED DESTINATION SAS ADDRESS field set to the hashed value of the Application Response or Transport Response destination SAS address argument;
- c) HASHED SOURCE SAS ADDRESS field set to the hashed value of the SSP target port's SAS address;
- d) RETRY DATA FRAMES bit set to zero;
- e) RETRANSMIT bit set to zero;
- f) CHANGING DATA POINTER bit set to zero;
- g) TAG field set to the Tag Application Response argument or the Tag Transport Response argument;
- h) TARGET PORT TRANSFER TAG field set to a vendor-specific value;
- i) DATA OFFSET field set to zero;

498

- information unit set as specified in this subclause; and
- k) fill bytes, if needed as specified in this subclause.

If this state was entered with the Transport Response arguments, then this state shall set the fields as follows:

- NUMBER OF FILL BYTES field set to the number of fill bytes, based on the length of the response data, if any:
- b) in the information unit, set the DATAPRES field to RESPONSE DATA;
- c) in the information unit, set the STATUS field to zero;
- d) in the information unit, set the SENSE DATA LENGTH field to zero;
- e) in the information unit, set the RESPONSE DATA LENGTH field to 00000004h;
- f) in the information unit, set the RESPONSE DATA field as specified in table 190;
- g) in the information unit, do not include the SENSE DATA field; and
- h) NUMBER-OF-FILL BYTES field set to the number of fill bytes, based on the length of the response data, if needed.

Table 190 defines how the RESPONSE DATA field shall be set based on the arguments received with the Request (Send Transport Response) message.

Table 190 — Request argument to RESPONSE frame response data field mapping

Request argument	RESPONSE frame response data field
Invalid Frame	INVALID FRAME
Function Complete	TASK MANAGEMENT FUNCTION COMPLETE
Function Succeeded	TASK MANAGEMENT FUNCTION SUCCEEDED
Function Not Supported	TASK MANAGEMENT FUNCTION NOT SUPPORTED
Function Failed	TASK MANAGEMENT FUNCTION FAILED
Incorrect Logical Unit Number	INCORRECT LOGICAL UNIT NUMBER
Overlapped Tag Attempted	OVERLAPPED TAG ATTEMPTED

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 498

```
Author: REliiotic State State
```

Author: RElliott Subject: Cross-Out Date: 8/27/2008 4:57:10 PM -07'00'

Delete

h) NUMBER OF FILL BYTES field set to the number of fill bytes, based on the length of the response data, if needed.

which duplicates a)

28 January 2008

If this state was entered with the Application Response arguments, then this state shall set the fields as follows:

 a) in the information unit, set the DATAPRES field to SENSE_DATA if sense data is to be included in the information unit or NO_DATA if sense data is not to be included in the information unit:

T10/1760-D Revision 14

- b) in the information unit, set the STATUS field to the status;
- c) in the information unit, set the SENSE DATA LENGTH field to the length of the sense data, if any
- d) in the information unit, set the RESPONSE DATA LENGTH field to zero;
- e) in the information unit, do not include the RESPONSE DATA field;
- f) in the information unit, set the SENSE DATA field to the sense data, if any; and
- g) NUMBER OF FILL BYTES field set to the number of fill bytes, based on the length of the sense data, if needed.

9.2.6.3.3.7.2 Transition ST_TTS6:Prepare_Response to ST_TTS2:Target_Send_Frame

This transition shall occur after this state constructs a RESPONSE frame

This transition shall include:

- a) the RESPONSE frame;
- b) if a Cancel message was received, then a Cancel argument.

9.3 STP transport layer

9.3.1 Initial FIS

A SATA device phy transmits a Register - Device to Host FIS after completing the tink reset sequence (see G.5 for exceptions to this). The expander device shall update a set of shadow registers with the contents of this FIS and shall not deliver to the say STP initiator port. SMP initiator ports may read the shadow register contents using the SMP REPORT PHY SATA function (see 10.4.3.12). The expander device originates a Broadcast (Change) after receiving the Register - Device to Host FIS (see 7.11).

9.3.2 BIST Activate FIS

STP initiator ports and STP target ports shall not generate BIST Activate FISes and shall process any BIST Activate FISes received as frames having invalid FIS types (i.e., have the link layer generate SATA_R_ERR in response).

9.3.3 TT (transport layer for STP ports) state machines

The STP transport layer uses the transport layer state machines defined in SATA, modified to communicate with the port layer rather than directly with the link layer. These modifications are not described in this standard.

Page: 499

if a Cancel message was not received, then the RESPONSE frame

Author: Isi-gpenokie
Subject: Highlight
Date: 6/27/2008 3:26:49 PM -07'00'
TREJECT (no, only one is included. See added comment)
This << or >> should be a << and >>.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

frame s/b frame as an argument

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
TACCEPT - DONE ("except for the cases described in G.5")

This << link reset sequence (see G.5 for exceptions to this). >> should be << link reset sequence except as defined in G.5. >>

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' TACCEPT - DONE (this FIS) it s/b the FIS

9.4 SMP transport layer

9.4.1 SMP transport layer overview

Table 191 defines the SMP frame format.

Table 191 — SMP frame format

Byte\Bit	7	6	5	4	3	2	1	0
0		SMP FRAME TYPE						
1			Fra	me-type de	pendent by	tes		
		Fill bytes, if needed						
n - 3	(MSB)			CF	00			
n				Cr				(LSB)

Table 192 defines the SMP FRAME TYPE field, which defines the format of the frame-type dependent bytes

Table 192 — SMP FRAME TYPE field

Code	Name	Name Frame type		Reference
40h	SMP_REQUEST	SMP function request	SMP initiator port	9.4.2
41h	SMP_RESPONSE	SMP function response	SMP target port	9.4.3
All others	Reserved.			

The SMP target port in an expander device shall support the SMP_REQUEST and SMP_RESPONSE frames. Other SMP target ports may support these frames.

Fill bytes shall be included after the frame-type dependent bytes so the CRC field is aligned on a four byte boundary. The contents of the fill bytes are vendor specific.

The CRC field contains a CRC value (see 7.5) that is computed over the entire SMP frame prior to the CRC field, and shall begin on a four-byte boundary. The CRC field is checked by the SMP link layer (see 7.18).

Page: 500

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

Delete "fill bytes" concept for SMP. SMP. Replace with:

"The number of frame-type dependent bytes shall be either:

a) three bytes; or

b) three bytes plus an integer multiple of four bytes,

so the crc field is aligned on a four byte boundary."

Author: Isi-bday
Subject: Cross-Out
Date: 5/26/2008 8:40:46 AM -07'00'
DATE: 5/26/2008 (Subject Cross-Out)
DATE: 5/26/2008 (Subject Cross-

in an expander device

Author: Isi-bday

The SMP target port

suggest

SMP ports

These frames are required by all SMP ports, regardless of initiator / target, and regardless of expander / end device.

Author: Isi-bday Subject: Cross-Out Date: 5/26/2008 8:40:41 AM -07'00'

ACCEPT - DONE (just deleted the whole paragraph, which should solve the problem.)

Other SMP target ports may support these frames.

Author: wdc-mevans

Autnor: wac-mevans
Subject: Highlight
Date: 5/27/2008 2:02:42 PM -07'00'
REJECT (deleting all references to fill bytes instead)

Fill bytes s/b

If required, fill bytes

9.4.2 SMP REQUEST frame

The SMP_REQUEST frame is sent by an SMP initiator port to request an SMP function be performed by a management device server. Table 193 defines the SMP_REQUEST frame format.

Table 193 — SMP REQUEST frame format

Byte\Bit	7	6	5	4	3	2	1	0		
0		SMP FRAME TYPE (40h)								
1				DEQUE	- D					
		- REQUEST BYTES								
		Fill bytes, if needed								
n - 3	(MSB)			CR	0			/		
n				CR				(LSB)		

The SMP FRAME TYPE field shall be set to 40h indicating this is an SMP_REQUEST frame.

The REQUEST BYTES field definition and length is based on the SMP function (see 10.4.3.2). The maximum size of the REQUEST BYTES field is 1 024 bytes, making the maximum size of the frame 1 032 bytes (i.e., 1 024 bytes of data + 4 bytes of header + 4 bytes of CRC).

Fill bytes shall be included after the ADDITIONAL-REQUEST BYTES field so the CRC field is aligned on a four byte boundary. The contents of the fill bytes are vendor specific.

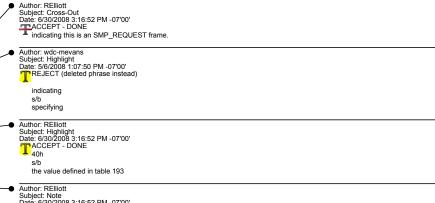
The CRC field is defined in 9.4.1

9.4.3 SMP_RESPONSE frame

The SMP_RESPONSE frame is sent by an SMP target port in response to an SMP_REQUEST frame. Table 194 defines the SMP_RESPONSE frame format.

Table 194 — SMP_RESPONSE in sme for inat

Byte\Bit	7	6	5	4	3	27	1	0	
0		SMP FRAME TYPE (41h)							
1		RESPONSE BYTES							
		Fill bytes, if needed							
n - 3	(MSB)	· CRC							
n				CR	C			(LSB)	


The SMP FRAME TYPE field shall be set to 41h indicating this is an SMP_RESPONSE frame.

The RESPONSE BYTES field definition and length is based on the SMP function (see 10.4.3.3). The maximum size of the RESPONSE BYTES field is 1 024 bytes, making the maximum size of the frame 1 032 bytes (i.e., 1 024 bytes of data + 4 bytes of header + 4 bytes of CRC)

Fill bytes shall be included after the ADDITIONAL RESPONSE BYTES field so the CRC field is aligned on a four byte boundary. The contents of the fill bytes are vendor specific.

Page: 501

Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

Change to:

The format and length of the request bytes is defined by the SMP function description (see 10.4.3.2).

The number of request bytes are either

a) three bytes; or

b) three bytes plus an integer multiple of four bytes,

so the crc field is aligned on a four byte boundary.

The maximum number of request bytes is 1 023, making the maximum size of the frame 1 028 bytes (i.e., 1 byte header + 1 023 request bytes + 4 bytes of CRC).

NOTE: Management application clients compliant with previous versions of this standard may send a vendor-specific SMP request frame containing 1 027 request bytes. The SMP TP state machine discards SMP request frames that exceed 1 023 request bytes (see 7.18.5.4.2.2).

SMP request frames defined in those versions of this standard did not have more than 39 request bytes.

Author: Isi-bbesmer Subject: Highlight Date: 5/27/2008 2:39:57 PM -07'00' ACCEPT - DONE (backed down to 1024)

Not possible to describe. See comment in 10.4.3.2.5.

Subject: Highlight
Date: 5/27/2008 2:40:28 PM -07'00'

PREJECT (eliminated fill byte concept for SMP instead) Fill bytes If required, fill bytes

Author: wdc-mevans

Author: Isi-bday Subject: Cross-Out Date: 5/27/2008 2:40:43 PM -07'00'

Comments from page 501 continued on next page

9.4.2 SMP REQUEST frame

The SMP_REQUEST frame is sent by an SMP initiator port to request an SMP function be performed by a management device server. Table 193 defines the SMP_REQUEST frame format.

Table 193 — SMP REQUEST frame format

Byte\Bit	7	6	5	4	3	2	1	0
0		SMP FRAME TYPE (40h)						
1		REQUEST BYTES						
		Fill bytes, if needed						
n - 3	(MSB) CRC							
n				CR				(LSB)

The SMP FRAME TYPE field shall be set to 40h indicating this is an SMP_REQUEST frame.

The REQUEST BYTES field definition and length is based on the SMP function (see 10.4.3.2). The maximum size of the REQUEST BYTES field is 1 024 bytes, making the maximum size of the frame 1 032 byte (i.e., 1 024 bytes of data + 4 bytes of header + 4 bytes of CRC).

Fill bytes shall be included after the ADDITIONAL REQUEST BYTES field so the CRC field is aligned on a four byte, boundary. The contents of the fill bytes are vendor specific.

The CRC field is defined in 9.4.1.

9.4.3 SMP_RESPONSE frame

The SMP_RESPONSE frame is sent by an SMP target port in response to an SMP_REQUEST frame. Table 194 defines the SMP_RESPONSE frame format.

Table 194 — SMP_RESPONSE frame format

				/		/		
Byte\Bit	7	6	5	4	3 /	2	1	9
0			/ 5	MP FRAME	TYPE (/.1h)			
1				DECDONO	E OVTES			
		RESPONSE/BYTES						
				Fill bytes,	if needed			
n - 3	(MSB)			CB				
'n								(LSB)

The SMP FRAME TYPE field shall be set to Annicating this is an SMP_RESPONSE frame.

The RESPONSE BYTES field definition and length is based on the SMP function (see 10.4.3.3). The maximum size of the RESPONSE BYTES field is 1 024 bytes, making the maximum size of the frame 1 032 bytes (i.e., 1 024 bytes of data + 4 bytes of header + 4 bytes of CRC)

Fill bytes shall be included after the ADDITIONAL-RESPONSE BYTES field so the CRC field is aligned on a four byte boundary. The contents of the fill bytes are vendor specific.

Working Draft Serial Attached SCSI - 2 (SAS-2)

ACCEPT - DONE (but moot as this sentence was deleted)

ADDITIONAL

Author: RElliott
Subject: Cross-Out
Date: 6/30/2008 3:16:52 PM -07'00'
TD-ACCEPT - DONE
indicating this is an SMP_RESPONSE frame.

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

TAUL 41h

the value defined in table 194

Author: RElliott Subject: Note

Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Change to:

The format and length of the request bytes is defined by the SMP function description (see 10.4.3.3).

The number of response bytes are either:

a) three bytes; or

b) three bytes plus an integer multiple of four bytes,

so the crc field is aligned on a four byte boundary.

The maximum number of response bytes is 1 023, making the maximum size of the frame 1 028 bytes (i.e., 1 byte header + 1 023 request bytes + 4 bytes of CRC).

NOTE: Management device servers compliant with previous versions of this standard may send a vendor-specific SMP response frame containing 1 027 response bytes. The SMP_IP state machine discards SMP response frames that exceed 1 023 request bytes (see 7.18.5.3.4).

SMP response frames defined in those versions of this standard did not have more than 59 request bytes.

Author: Isi-bbesmer

Subject: Highlight
Date: 5/27/2008 2:40:03 PM -07'00'

CACCEPT - DONE (backed down to 1024)

Not possible to describe. See comment in 10.4.3.2.4.

Author: wdc-mevans

Subject: Highlight Date: 5/27/2008 2:40:24 PM -07'00'

REJECT (eliminated fill byte concept for SMP instead)

Fill bytes

If required, fill bytes

Author: Isi-bday
Subject: Cross-Out
Date: 5/27/2008 2:40:47 PM -07'00'
DACCEPT - DONE (but moot as this sentence was deleted)

ADDITIONAL

T10/1760-D Revision 14

28 January 2008

The CRC field is defined in 9.4.1.

9.4.4 Sequence of SMP frames

Inside an SMP connection, the source phy transmits a single SMP_REQUEST frame and the destination phy replies with a single SMP_RESPONSE frame.

Figure 217 shows the sequence of SMP frames.

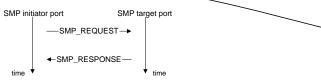


Figure 217 — Sequence of SMP frames

9.4.5 MT (transport layer for SMP ports) state machines

9.4.5.1 SMP transport layer state machines overview

The SMP transport layer container state machines that process requests from the management application layer and returns confirmations to the management application layer. The SMP transport state machines are as follows:

- a) MT IP (transport layer for SMP initiator ports) state machine (see 9.4.5.2); and
- b) MT_TP (transport layer for SMP target ports) state machine (see 9.4.5.3).

9.4.5.2 MT_IP (transport layer for SMP initiator ports) state machine

9.4.5.2.1 MT IP state machine overview

The MT_IP state machine processes requests from the management application layer. These management requests are sent to the port layer and the resulting SMP frame or error condition is sent to the management application layer as a confirmation.

This state machine consists of the following states:

- a) MT IP1:Idle (see 9.4.5.2.2)(initial state):
- b) MT_IP2:Send (see 9.4.5.2.3); and
- c) MT_IP3:Receive (see 9.4.5.2.4).

This state machine shall start in the MT_IP1:Idle state.

Page: 502

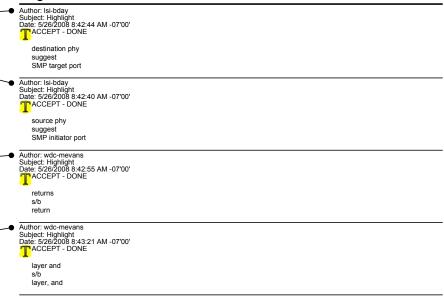


Figure 218 describes the MT_IP state machine.

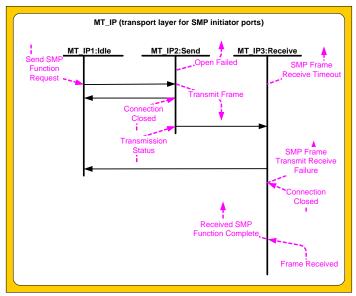


Figure 218 — MT_IP (transport layer for SMP initiator ports) state machine

9.4.5.2.2 MT_IP1:Idle state

9.4.5.2.2.1 State description

This state is the initial state of the MT_IP state machine.

This state waits for a Send SMP Function Request request, which includes the following arguments:

- a) connection rate;
- b) destination SAS address; and
- c) request bytes.

9.4.5.2.2.2 Transition MT_IP1:Idle to MT_IP2:Send

This transition shall occur after a Send SMP Function Request request is received. This transition shall include the following arguments:

- a) connection rate;
- b) destination SAS address; and
- c) request bytes.

This page contains no comments

9.4.5.2.3 MT_IP2:Send state

9.4.5.2.3.1 State description

This state constructs an SMP_REQUEST frame using the following arguments received in the transition into this state:

a) request bytes;

and sends a Transmit Frame request to the port layer with the following arguments:

- a) initiator port bit set to one;
- b) protocol set to SMP;
- c) connection rate;
- d) initiator connection tag set to FFFFh;
- e) destination SAS address;
- f) source SAS address set to the SAS address of the SMP initiator port; and
- g) request bytes.

9.4.5.2.3.2 Transition MT_IP2:Send to MT_IP1:Idle

This transition shall occur after receiving either a Connection Closed confirmation or a Transmission Status confirmation other than a Transmission Status (Frame Transmitted) confirmation, and after sending an Open Failed confirmation to the management application layer.

9.4.5.2.3.3 Transition MT IP2:Send to MT IP3:Receive

This transition shall occur after receiving a Transmission Status (Frame Transmitted) confirmation.

9.4.5.2.4 MT IP3:Receive state

9.4.5.2.4.1 State description

This state waits for a confirmation from the port layer that either an SMP frame has been received or a failure occurred.

If a Frame Received confirmation is received and the SMP frame type is equal to 41h, this state shall send a Received SMP Function Complete confirmation to the management application layer.

If a Frame Received confirmation is received and the SMP frame type is not equal to 41h, this state shall send a SMP Frame Transmit Receive Failure confirmation to the management application layer.

If a Connection Closed or Frame Received (SMP Failure) confirmation is received, this state shall send an SMP Frame Transmit Receive Failure confirmation to the management application layer.

9.4.5.2.4.2 Transition MT IP3:Receive to MT IP1:Idle

This transition shall occur after one of the following:

- a) sending a Received SMP Function Complete confirmation; or
- b) sending an SMP Frame Transmit Receive Failure confirmation.

9.4.5.3 MT_TP (transport layer for SMP target ports) state machine

9.4.5.3.1 MT TP state machine overview

The MT TP state machine informs the management application layer of the receipt of an SMP frame. Confirmation of the receipt of an SMP frame is sent to the management application layer. The management application layer creates the corresponding SMP_RESPONSE frame and this state sends it to the port layer.

This state machine consists of the following states:

- a) MT_TP1:Idle (see 9.4.5.3.2)(initial state); and
- b) MT_TP2:Respond (see 9.4.5.3.3).

Page: 504 Author: RElliott

Subject: Underline
Date: 9/3/2008 5:04-12 PM -07'00'
TACCEPT - DONE
Frame Received
s/b
Frame Received (SMP Successful)
to parallel SSP names
prompted by 08-343

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
this

s/b then this

Author: RElliott Subject: Underline Date: 9/3/2008 5:04:18 PM -07'00'

Frame Received s/b Frame Received (SMP Successful) to parallel SSP names

prompted by 08-343

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

this s/b then this

Author: wdc-mevans Subject: Highlight Date: 5/26/2008 8:43:38 AM -07'00'

a SMP s/b an SMP

Comments from page 504 continued on next page

T10/1760-D Revision 14 28 January 2008

9.4.5.2.3 MT_IP2:Send state

9.4.5.2.3.1 State description

This state constructs an SMP_REQUEST frame using the following arguments received in the transition into this state:

a) request bytes;

and sends a Transmit Frame request to the port layer with the following arguments:

- a) initiator port bit set to one;
- b) protocol set to SMP;
- c) connection rate;
- d) initiator connection tag set to FFFFh;
- e) destination SAS address;
- f) source SAS address set to the SAS address of the SMP initiator port; and
- g) request bytes.

9.4.5.2.3.2 Transition MT_IP2:Send to MT_IP1:Idle

This transition shall occur after receiving either a Connection Closed confirmation or a Transmission Status confirmation other than a Transmission Status (Frame Transmitted) confirmation, and after sending an Open Failed confirmation to the management application layer.

9.4.5.2.3.3 Transition MT IP2:Send to MT IP3:Receive

This transition shall occur after receiving a Transmission Status (Frame Transmitted) confirmation.

9.4.5.2.4 MT IP3:Receive state

9.4.5.2.4.1 State description

This state waits for a confirmation from the port layer that either an SMD frame has been received or a failure occurred.

If a <u>Frame Received</u> confirmation is received and the SMP frame type is equal to 41h, this staty shall send a Received SMP Function Complete confirmation to the management application layer.

If a Frame Received confirmation is received and the SMP frame type is not equal to 41h, thys state shall send a SMP Frame Transmit Receive Failure confirmation to the management application layer.

If a Connection Closed or Frame Received (SMP Failure) confirmation is received, this state shall send an SMP Frame Transmit Receive Failure confirmation to the management application layer.

9.4.5.2.4.2 Transition MT IP3:Receive to MT IP1:Idle

This transition shall occur after one of the following:

- a) sending a Received SMP Function Complete confirmation; or
- b) sending an SMP Frame Transmit Receive Failure confirmation.

9.4.5.3 MT_TP (transport layer for SMP target ports) state machine

9.4.5.3.1 MT TP state machine overview

The MT_TP state machine informs the management application layer of the receipt of an SMP t/ame. Confirmation of the receipt of an SMP frame is sent to the management application layer. The management application layer creates the corresponding SMP_RESPONSE frame and this state sends it to the port layer.

This state machine consists of the following states:

- a) MT_TP1:Idle (see 9.4.5.3.2)(initial state); and
- b) MT_TP2:Respond (see 9.4.5.3.3).

Subject: Underline
Date: 9/3/2008 5:03:11 PM -07'00'
ACCEPT - DONE Frame Received (SMP Failure) Frame Received (SMP Unsuccessful) to parallel SSP names prompted by 08-343 Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' this s/b then this Author: RElliott Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE The MT_TP state machine informs the management application layer of the receipt of an SMP frame. Confirmation of the receipt of an SMP frame is sent to the management application layer. The management application layer creates the corresponding SMP_RESPONSE frame and this state sends it to the port layer. The MT_TP state machine informs the management application layer of the receipt of an SMP frame, and sends the resulting SMP frame to the port layer. to parallel wording in MT_IP Author: wdc-mevans Subject: Highlight: 0.3::08 AM -07'00'

"The ELECT (but changed the whole paragraph to parallel the MT_IP paragraph; see other comment)

Author: RElliott

s/b the frame This state machine shall start in the MT TP1:Idle state.

Figure 219 describes the MT_TP state machine.

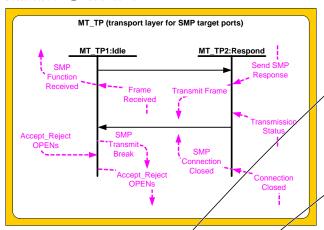


Figure 219 — MT_TP (transport layer for SMP target ports) state machine

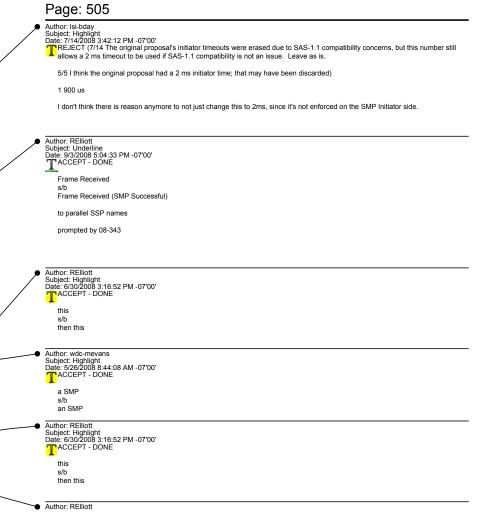
The MT_TP state machine shall comply with the time limits listed in table 195

Table 195 — MT TP time limits

Time limit Value Description SMP Response time limit 1 900 µs Maximum time from receiving an SMP_REQUEST frame to transmitting an SMP_RESPONSE frame

9.4.5.3.2 MT_TP1:Idle state

9.4.5.3.2.1 State description


This state is the initial state of the MT_TP state machine

This state waits for a Frame Received confirmation. If the SMP frame type is not equal to 40h, this state shall discard the frame and send a SMP Frammit Break request to the port layer. Otherwise, this state shall send an SMP Function Received confirmation to the management application layer.

If an Accept_Reject OPENs (Accept SMP) or Accept_Reject OPENs (Reject SMP) request is received, this state shall send an Accept_Reject OPENs request with the same arguments to the port layer.

9.4.5.3.2.2 Transition MT TP1:Idle to MT TP2:Respond

This transition shall occur after sending an SMP Function Received confirmation.

Comments from page 505 continued on next page

This state machine shall start in the MT_TP1:Idle state.

Figure 219 describes the MT_TP state machine.

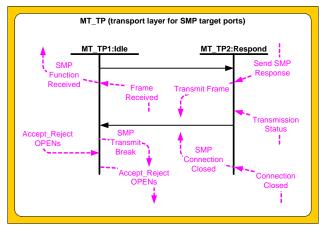


Figure 219 — MT_TP (transport layer for SMP target ports) state machine

The MT_TP state machine shall comply with the time limits listed in table 195.

Table 195 — MT_TP time limits

Time limit	Value	Description
SMP Response time limit	1 900 µs	Maximum time from receiving an SMP_REQUEST frame to transmitting an SMP_RESPONSE frame

9.4.5.3.2 MT_TP1:Idle state

9.4.5.3.2.1 State description

This state is the initial state of the MT_TP state machine.

This state waits for a <u>Frame Received</u> confirmation. If the SMP frame type is not equal to 40h, this state shall discard the frame and send a <u>SMP</u> Transmit Break request to the port layer. Otherwise, this state shall send an SMP Function Received confirmation to the management application layer.

If an Accept_Reject OPENs (Accept SMP) or Accept_Reject OPENs (Reject SMP) request is received, this state shall send an Accept_Reject OPENs request with the same arguments to the port layer.

505

9.4.5.3.2.2 Transition MT_TP1:Idle to MT_TP2:Respond

This transition shall occur after sending an SMP Function Received confirmation.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Subject: Highlight Date: 8/30/2008 12:14:33 PM -07'00'

Accept_Reject OPENs (Accept SMP) or

add request in the spirit of 08-343

28 January 2008

9.4.5.3.3 MT_TP2:Respond state

9.4.5.3.3.1 State description

This state waits for a Send SMP Response request, which includes the following arguments.

a) response bytes.

After receiving a Send SMP Response request, this state shall construct an SMP_RESPONSE frame using the arguments from the Send SMP Response request and send a Transmit Frame request to the port layer within the SMP Response time limit specified in table 195 (see 9.4.5.3.1).

If this state receives a Connection Closed confirmation, this state shall send an SMP Connection Closed confirmation to the management application layer.

9.4.5.3.3.2 Transition MT_TP2:Respond to MT_TP1:Idle

This transition shall occur after one of the following:

- a) receiving a Transmission Status (Frame Transmitted) confirmation; or
- b) sending an SMP Connection Closed confirmation.

Page: 506

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

This << the following arguments >> should be << the following argument >>

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
this state

s/b then this state

10 Application layer

10.1 Application layer overview

The application layer defines SCSI, ATA, and management specific features.

10.2 SCSI application layer

10.2.1 SCSI transport protocol services

10.2.1.1 SCSI transport protocol services overview

An application client requests the processing of a SCSI command by invoking SCSI transport protocol services, the collective operation of which is conceptually modeled in the following remote procedure call (see SAM.4):

Service response = Execute Command (*!\(!\) (I_T_L_Q Nexus, CDB, Task Attribute, [Data-In Buffer Size], [Data-Out Buffer Size], [Task Priority]), OUT ([Data-In Buffer], [Sense Data], [Sense Data Length], Status)

An application client requests the processing of a SCSI task management section by invoking SCSI transport protocol services, the collective operation of which is conceptually modeled in the sellowing remote procedure calls (see SAM-4):

- a) Service Response = ABORT TASK (IN (Nexus));
- b) Service Response = ABORT TASK SET (IN (Nexus));
- c) Service Response = CLEAR ACA (IN (Nexus));
- d) Service Response = CLEAR TASK SET (IN (Nexus));
- e) Service Response = I_T NEXUS RESET (IN (Nexus));
- f) Service Response = LOGICAL UNIT RESET (IN (Nexus));
- g) Service Response = QUERY TASK (IN (Nexus));
- h) Service Response = QUERY TASK SET (IN (Nexus)); and
- Service Response = QUERY UNIT ATTENTION (IN (Nexus), OUT([Additional Response Information])).

SSP defines the transport protocol services required by SAM-4 in sepport of these remote procedure calls.

Page: 507

Author: ibm-ted-vojnovich

Subject: Note Date: 5/26/2008 8:44:39 AM -07'00'

REJECT (5/5 that's probably just an implementation issue. Specific proposals for text are welcome, but the WG doesn't want to invent something right now.)

Section 10: This might be more an implementation point but from what I have seen (and in no way have I seen alot), the queing approach for a SAS 4X link seems to have HOL blocking issues. I believe the following has been done and illustrates the problem. Assume 5 IOs outbound from initiator and initiator has a SAS 4X link. IO1 to link 1, IO2 to link 2, etc

Now IO5 appears, in some implementation pinned to link 1. However, if IO 1 is moving 1KB and IO 2,IO3,IO4 are moving 100 bytes, link 2, 3, 4 are freed up quickly. However since IO 5 is pinned to link 1, it needs to wait for link 1 to finish transmitting IO 1 even though links 2,3,4 are freed up way earlier. This becomes an even bigger issue when the target is a RAID controller with lots of disk behind (ie it could potentially receive that much more traffic and better utilize the 4X link). Obviously, 4 SAS 1X links tied to a common target need to be treated as separate links and, thus, this optimization would not apply. Perhaps some discussion on the queuing model that should be used with any nX SAS ports might be in order.

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

Delete

remote

as it was stricken from SAM-4

Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

REJECT (they are lined up after the parenthesis, which looks better)

= Execute Command

s/b

Move all of the text after the equal sign to have the same indentation.

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

Status)

Add [Status Qualifier] as an argument to the Execute Command "OUT" portion

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

Delete remote

as it was removed from SAM-4

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE QUERY UNIT ATTENTION

Comments from page 507 continued on next page

10.1 Application layer overview

The application layer defines SCSI, ATA, and management specific features.

10.2 SCSI application layer

10.2.1 SCSI transport protocol services

10.2.1.1 SCSI transport protocol services overview

An application client requests the processing of a SCSI command by invoking SCSI transport protocol services, the collective operation of which is conceptually modeled in the following-remote procedure call (see

Service response = Execute Command (IN (I_T_L_Q Nexus, CDB, Task Attribute, [Data-In_Duffer Size], [Data-Out Buffer], [Data-Out Buffer Size], [Task Priority]), OUT ([Data-In Buffer], [Sense Data], [Sense Data Length], Status)

An application client requests the processing of a SCSI task management function by invoking SCSI transport protocol services, the collective operation of which is conceptually modeled in the following remote procedure calls (see SAM-4):

- a) Service Response = ABORT TASK (IN (Nexus));
- Service Response = ABORT TASK SET (IN (Nexus));
- c) Service Response = CLEAR ACA (IN (Nexus)); d) Service Response = CLEAR TASK SET (IN (Nexus));
- e) Service Response = _T NEXUS PESET (IN (Nexus)); f) Service Response = LOGICAL UNIT RESET (IN (Nexus));
- g) Service Response = QUERY TASK (IN (Nexus)); h) Service Response = QUERY TASK SET (IN (Nexus)); and
- Service Response = QUERY UNIT ATTENTION (IN (Nexus), OUT([Additional Response Information)).

SSP defines the transport protocol services required by SAM-4 in support of these remote procedure calls.

QUERY ASYNCHRONOUS EVENT

to match sam4r14h

Author: RElliott
Subject: Cross-Out
Date: 6/30/2008 3:16:52 PM -07'00' as it was removed from SAM-4

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

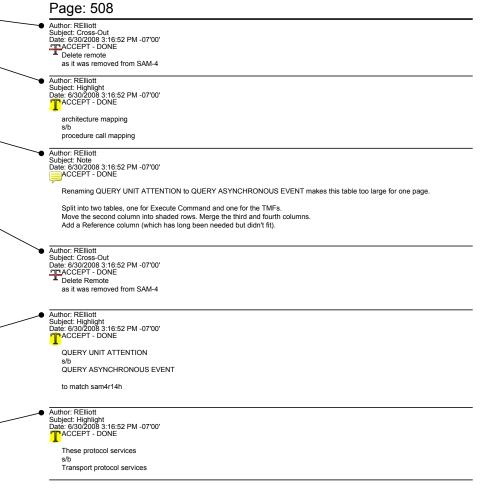

SSP defines This standard defines Table 196 describes the mapping of the remote procedure salls to transport protocol services and the SSP implementation of each transport protocol service.

Table 196 — SCSI architecture mapping -

Remote procedure call	Type of transport	Transport protocol service	Transport protocol service	I/T ^a	SSP implementation
•	service	interaction			
		Request	Send SCSI Command	1	COMMAND frame
		Indication	SSI Command Received	Т	Receipt of the COMMAND frame
	Request/ Confirmation	Response	Send Command Complete	T/	RESPONSE frame
Execute		Confirmation	Command Complete Received	ı	Receipt of the RESPONSE frame of problem transmitting the COMMAND frame
Command	Data-In	Request	Send Data-In	Т	Read DATA frames
	Transfer b	Confirmation	Data-In Delivered	Т	Receipt of ACKs for the read DATA frames
	Data-Out	Request	Receive Data-Out	Т	XFER_RDY frame
	Transfer b	Confirmation	Data-Out Received	Т	Receipt of write DATA frames
	Terminate Data	Request	Terminate Data Transfer	Т	
	Transfer ^b	Confirmation	Data Transfer Terminated	Т	
ABORT TASK, ABORT TASK SET,		Request	Send Task Management Request	ı	TASK frame
CLEAR ACA, CLEAR TASK SET,		Indication	Task Management Request Received	T	Receipt of the TASK frame
I_T NEXUS RESET,	Request/ Confirmation	Response	Task Management Function Executed	Т	RESPONSE frame
LOGICAL UNIT RESET, QUERY TASK, QUERY TASK SET, and QUERY UNIT ATTENTION		Confirmation	Received Task Management Function Executed	-	Receipt of the RESPONSE frame or problem transmitting the TASK frame

a I/T indicates whether the SSP initiator port (I) or the SSP target port (T) implements the transport protocol service.

These protocol services are used as the requests and confirmations to the SSP transport layer state machines (see 9.2.6) from the SCSI application layer.

b Data transfer transport protocol services for SCSI initiator ports are not specified by SAM-4.

10.2.1.2 Send SCSI Command transport protocol service

An application client uses the Send SCSI Command transport protocol service request to request that an SSP initiator port transmit a COMMAND frame.

Send SCSI Command (IN (I T L Q Nexus, CDB, Task Attribute, [Data-In Buffer Size], [Data-Out Buffer], [Data-Out Buffer Size], [Task Priority], [Command Reference Number]; [First Burst Enabled], [Request Fence]))

Table 197 shows how the arguments to the Send SCSI Command transport protocol service are used.

Table 197 — Send SCSI Command transport protocol service arguments

Argument	SAS SSP implementation
I_T_L_Q nexus	I_T_L_Q nexus, where: a) I specifies the initiator port to send the COMMAND frame; b) T specifies the target port to which the COMMAND frame is to be sent; c) L specifies the LOGICAL UNIT NUMBER field in the COMMAND frame header; and d) Q specifies the TAG field in the COMMAND frame header.
CDB	Specifies the CDB field in the COMMAND frame.
Task Attribute	Specifies the TASK ATTRIBUTE field in the COMMAND frame.
[Data-In Buffer Size]	Maximum of 2 ³²
[Data-Out Buffer]	Internal to the SSP initiator port.
[Data-Out Buffer Size]	Maximum of 2 ³²
[Task Priority]	Specifies the TASK PRIORITY field in the COMMAND frame.
[First Burst Enabled]	Specifies the ENABLE FIRST BURST flext in the COMMAND frame and to cause the SSP initiator port to transmit the number of bytes indicated by the FIRST BURST SIZE field in the Disconnect-Reconnect mode page (see 10.2.7.2.5) for the SCSI target port without waiting for an XFER_RDY trame.
[Request Fence]	If included, specifies an I_T nexus, I_T_L nexus, on T_L_Q nexus for which the COMMAND frame is fenced.

The application client shall set the Request Fence argument to the nexus containing any commands or task management functions that the command affects (e.g., for a PERSISTENT RESERVE OUT command PREEMPT AND ABORT service action, set the Response Fence argument to the I T L nexus or upon which the command depends (e.g., when the Task Attribute argument is set to ORDERED, set the Response Fence argument to the I_T_L_Q nexus of the previous command). If the application client is not able to determine the nexus affected by the command or upon which the command depends, then it should set the Request Fence argument to the I T nexus.

10.2.1.3 SCSI Command Received transport protocol service

An SSP target port uses the SCSI Command Received transport protocol service indication to notify a device server that it has received a COMMAND frame.

SCSI Command Received (IN (I T L Q Nexus, CDB, Task Attribute, [Task Priority], [Command Reference Number], [First Burst Enabled]))

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE Command Reference Number

Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

REJECT (The application client is much more likely to use an internal identifier to select the initiator port it wants to send the command; it's unlikely to use the "initiator port identifier" visible on the SAS wire. It's typically an internal relative port number 0..n. Also, "sending" is the wrong word; this service is made to request that the frame be sent; the sending action has not yet begun)

Global

s/b

CRN to match sam4r14

initiator port to send

initiator port identifier (see table 9) of the SAS initiator port sending

Author: wdc-meyans

Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

REJECT (see comment about I and initiator)

target port to which the COMMAND frame is to be sent;

target port identifier (see table 9) of the SAS target port to which the frame is sent

Author: stx-ghoulder
Subject: Highlight
Date: 6/20/2008 8:00:29 AM -07'00'
PREJECT (The Data Offset field in the SSP frame header is only 4 bytes long and expresses a byte offset value, so the maximum byte that could be accessed is FFFFFFCh (the maximum Data Offset allowed) + 400h (the maximum frame size of 1024 bytes) =

Rules will be added to the DATA and XFER_RDY IU descriptions to restrict transfers to not go past offset FFFFFFF (i.e., the Data Offset + the number of bytes transferred must not exceed 1_00000000h). Exceeding the 32-bit boundary could break hardware implementations using 32-bit registers for data pointers. After discussion, the limit is being kept at 2^32 rather than

As you note, there are numerous commands whose CDBs can request larger transfer sizes than that - OSD in particular has 8-byte Length fields. However, no SCSI transport protocol to date supports more than 2^32 bytes per command, as they all have 32-bit fields like Data Offset.

The SCSI Initiator Port and Target Port attributes annex recently added to SAM-4 highlights this fact (listing the maximum Buffer Sizes per transport protocol). Application clients are expected to understand the restrictions placed by the transport protocol and only send CDBs that are possible to service - don't send a block command or OSD command asking for more than 2/32 bytes on these transport protocols.)

Why this maximum? The maximum length specifiable in SCSI SDB is 2^32 blocks (not bytes), so can be larger than this.

Author: wdc-mevans Subject: Highlight Date: 6/20/2008 8:31:31 AM -07'00'

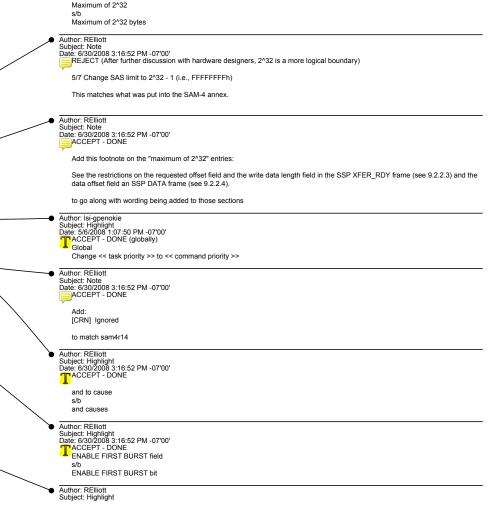
10.2.1.2 Send SCSI Command transport protocol service

An application client uses the Send SCSI Command transport protocol service request to request that an SSP initiator port transmit a COMMAND frame.

Send SCSI Command (IN (L_T_L_Q Nexus, CDB, Task Attribute, [Data-In Buffer Size], [Data-Out Buffer], [Data-Out Buffer Size], [Task Priority], [Command Reference Number], [First Burst Enabled], [Request Fence]))

Table 197 shows how the arguments to the Send SCSI Command transport protocol service are used.

Table 197 — Send SCSI Command transport protocol service arguments


Argument	SAS SSP implementation
I_T_L_Q nexus	I_T_L_Q nexus, where: a) I specifies the initiator port to send the COMMAND frame. b) T specifies the target port to which the COMMAND frame is to be sent; c) L specifies the LOGICAL UNIT NUMBER field in the COMMAND frame header; and d) Q specifies the TAG field in the COMMAND frame header.
CDB	Specifies the CDB field in the COMMAND frame.
Task Attribute	Specifies the TASK ATTRIBUTE field in the COMMAND frame.
[Data-In Buffer Size]	Maximum of 2 ³²
[Data-Out Buffer]	Internal to the SSP initiator port.
[Data-Out Buffer Size]	Maximum of 2 ³²
[Task Priority]	Specifies the TASK PRIORITY field in the COMMAND frame.
[First Burst Enabled]	Specifies the ENABLE FIRST BURST field in the COMMAND frame and to cause the SSP initiator port to transmit the number of bytes indicated by the FIRST BURST SIZE field in the Disconnect-Reconnect mode page (see 10.2.7.2.5) for the SCSI target port without waiting for an XFER_RDY frame.
[Request Fence]	If included, specifies an I_T nexus, I_T_L nexus, or I_T_ Q nexus for which the COMMAND frame is fenced.

The spolication client shall set the Request Fence argument to the nexus containing any commods or task management functions that the command affects (e.g., for a PERSISTENT RESERVE OUT commod PREEMPT AND ABORT service action, set the Response Fence argument to the L_TL nexus) or upon which the command depends (e.g., when the Task Attribute argument is set to ORDERED, set the Response Fence argument to the L_TL_Q nexus of the previous command). If the application client is not able to determine the nexus affected by the command or upon which the command depends, then it should set the Request Fence argument to the L_T nexus.

10.2.1.3 SCSI Command Received transport protocol service

An SSP target port uses the SCSI Command Received transport protocol service indication to notify a device server that it has received a COMMAND frame.

SCSI Command Received (IN (L_T_L_Q Nexus, CDB, Task Attribute, [Task Priority], [Command Reference Number], [First Burst Enabled]))

TACCEPT - DONE

Global

10.2.1.2 Send SCSI Command transport protocol service

An application client uses the Send SCSI Command transport protocol service request to request that an SSP initiator port transmit a COMMAND frame.

Send SCSI Command (IN (I_T_L_Q Nexus, CDB, Task Attribute, [Data-In Buffer Size], [Data-Out Buffer], [Data-Out Buffer Size], [Task Priority], [Command Reference Number], [First Burst Enabled], [Request Fence]))

Table 197 shows how the arguments to the Send SCSI Command transport protocol service are used.

Table 197 — Send SCSI Command transport protocol service arguments

Argument	SAS SSP implementation
I_T_L_Q nexus	I_T_L_Q nexus, where: a) I specifies the initiator port to send the COMMAND frame; b) T specifies the target port to which the COMMAND frame is to be sext; c) L specifies the LOGICAL UNIT NUMBER field in the COMMAND frame header; and d) Q specifies the TAG field in the COMMAND frame header.
CDB	Specifies the CDB field in the COMMAND frame.
Task Attribute	Specifies the TASK ATTRIBUTE field in the COMMAND frace.
[Data-In Buffer Size]	Maximum of 2 ³²
[Data-Out Buffer]	Internal to the SSP initiator port.
[Data-Out Buffer Size]	Maximum of 2 ³²
[Task Priority]	Specifies the TASK PRIORITY field in the COMMAND frame.
[First Burst Enabled]	Specifies the ENABLE FIRST BURST field in the COMMAND frame and to cause the SSP initiator port to transmit the number of bytes indicated by the FIRST BURST SIZE field in the Disconnect-Reconnect mode page (see 10.2.7.2.5) for the SCSI target port without waiting for an XFER_RDY frame.
[Request Fence]	If included, specifies an _T nexus, I_T_L nexus, or I_T_L_Q nexus for which the COMMAND frame is renced.

The application client shall set the Request Fence argument to the nexus containing any commands or task management functions that the commany affects (e.g., for a PERSISTENT RESERVE OUT command PREEMPT AND ABORT service action, set the Response Fence argument to the I_T_L nexus) or upon which the command depends (e.g., when the Task Attribute argument is set to ORDERED, set the Response Fence argument to the I_T_L_Q nexus of the previous command). If the application client is not able to determine the nexus affected by the command or upon which the command depends, then it should set the Request Fence argument to the I_T nexus.

10.2.1.3 SCSI Command Received transport protocol service

An SSP target port uses the SCSI Command Received transport protocol service indication to notify a device server that it has received a COMMAND frame.

SCSI Command Received (IN (I T L Q Nexus, CDB, Task Attribute, [Task Priority], [Command Reference Number], [First Burst Enabled]))

Working Draft Serial Attached SCSI - 2 (SAS-2)

509

Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

The s/b An

Author: RElliott

Subject: Highlight Date: 7/14/2008 3:49:46 PM -07'00'

**REJECT ("SSP target port" includes a task router since it equates to a SCSI target port that according to SAM-4 includes a task router. Leave this wording as is; no need to mention the specific object inside the SSP target port that uses this transport protocol

SSP target port

s/b

task router

In SAM-4, the task router does this, not the SCSI target port. Perhaps SSP target port = SCSI target port + task router? Otherwise, chapter 9 is also affected.

Author: RElliott

Subject: Highlight Date: 8/27/2008 5:00:28 PM -07'00'

ACCEPT - DONE (7/14 do it)

device server

s/b

task manager

In SAM-4, the task manager is now the one that puts the command into the task set; the device server takes it out.

T10/1760-D Revision 14

Table 198 shows how the arguments to the SCSI Command Received transport protocol service are determined.

Table 198 — SCSI Command Received transport protocol service arguments

Argument	SAS SSP implementation
I_T_L_Q nexus	I_T_L_Q nexus, where: a) I indicates the initiator port that sent the COMMAND frame; b) T indicates the target port that received the COMMAND frame; c) L indicates the value of the LOGICAL UNIT NUMBER field in the COMMAND frame header; and d) Q indicates the value of the TAC field in the COMMAND frame header.
CDB	Indicates the value of the CDB field in the COMMAND frame.
Task Attribute	Indicates the value of the TASK ATTRIBUTE field in the COMMAND frame.
[Task Priority]	Indicates the value of the TASK PRIORITY field in the COMMAND frame.
[Command Reference Number]	Ignored
[First Burst Enabled]	Indicates that first burst data is being delivered based on the ENABLE / FIRST BURST field in the COMMAND frame and the FIRST BURST SIZE field in the Disconnect-Reconnect mode page (see 10.2.7.2.5).

10.2.1.4 Send Command Complete transport protocol service

A device server uses the Send Command Complete transport protocol service response to request that an SSP target port transmit a RESPONSE frame.

Send Command Complete (IN (I_T_L_Q Nexus, [Sense Data], [Sense Data Length], Status, Service Response, [Response Fence]))

A device server shall only call Send Command Complete () after receiving SCSI Command Received ().

A device server shall not call Send Command Complete () for a given I_T_L_Q nexus until all its outstanding Receive Data-Out () calls have been responded to with Data-Out Received () and all its outstanding Send Data-In () calls have been responded to with Data-In Delivered ().

Page: 510

28 January 2008

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' Command Reference Number s/b CRN to match sam4r14 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ENABLE FIRST BURST field ENABLE FIRST BURST bit Author: RElliott Aution Reliioti
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE Add [Status Qualifier] Author: wdc-mevans Subject: Highlight Pater State Pater Pate its outstanding Receive Data-Out () calls all outstanding Receive Data-Out () calls for the nexus Author: wdc-mevans Aution. wac-mevans
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
REJECT ("its" is crucial and must remain. Adding "for that I_T_L_Q nexus, though. Changing to an a)b) list too.) its outstanding Send Data-In () calls have been responded to with Data-In Delivered ()

outstanding Send Data-In () calls have been responded to with Data-In Delivered () calls for the nexus

28 January 2008

T10/1760-D Revision 14

Table 199 shows how the arguments to the Send Command Complete transport protocol service are used.

Table 199 — Send Command Complete transport protocol service arguments

Argument	SAS SSP implementation
I_T_L_Q nexus	I_T_L_Q nexus, where: a) I specifies the initiator port to which the RESPONSE frame is to be sent; b) T specifies the target port to send the RESPONSE frame; c) L specifies the LOGICAL UNIT NUMBER field in the RESPONSE frame header; and d) Q specifies the TAG field in the RESPONSE frame header.
[Sense Data]	Specifies the SENSE DATA field in the RESPONSE frame.
[Sense Data Length]	Specifies the SENSE DATA LENGTH field in the RESPONSE frame.
Status	Specifies the STATUS field in the RESPONSE frame.
Service Response	Specifies the DATAPRES field and STATUS field in the RESPONSE frame: a) TASK COMPLETE: The DATAPRES field is set to NO DATA or SENSE_DATA; or b) SERVICE DELIVERY OR TARGET FAILURE: The DATAPRES field is set to RESPONSE_DATA and the RESPONSE CODE field is set to INVALID FRAME or OVERLAPPED TAG ATTEMPTED.
[Response Fence]	If included, specifies an I_T nexus, I_T_L nexus, or I_T_L_Q nexus for which the RESPONSE frame is fenced.

The device server shall set the Response Fence argument to the nexus containing any commands or task management functions that the command affects (e.g., for a PERSISTENT RESERVE OUT command PREEMPT AND ABORT service action, set the Response Fence argument to the LT_L nexus) or upon which the command completion depends (e.g., when returning a upit affention condition with an additional sense code set to COMMANDS CLEARED BY ANOTHER INFATOR, set the Response Fence argument of the LT_L nexus). If the device server is not able to defermine the nexus affected by the command or upon which the command depends, then it should set the Response Fence argument to the LT nexus.

10.2.1.5 Command Complete Received transport protocol service

An SSP initiator portuses the Command Complete Received transport protocol service confirmation to notify an application effent that it has received a response for its COMMAND frame (e.g., a RESPONSE frame or a NAK) or reminated a command because of an error.

Command Complete Received (IN (L_T_L_Q Nexus, [Data-In Buffer], [Sense Data], Status, Service Response))

Page: 511

Author: RElliott

Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

to match table 200 and sam4r14

ACCEPT - DONE
Add "[Sense Data Length]"

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TASC COMPLETE
s/b
COMMAND COMPLETE
to match sam4r14g

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

The
s/b
A

Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Add [Status Qualifier]
```

T10/1760-D Revision 14

Table 200 shows how the arguments to the Command Complete Received transport protocol service are determined.

Table 200 — Command Complete Received transport protocol service arguments

Argument	SAS SSP implementation
I_T_L_Q nexus	I_T_L_Q nexus, where: a) I indicates the initiator port that received the RESPONSE frame; b) T indicates the target port that sent the RESPONSE frame; c) L indicates the value of the LOGICAL UNIT NUMBER field in the RESPONSE frame header or COMMAND frame header; and d) Q indicates the value of the TAG field in the RESPONSE frame header or COMMAND frame header.
[Data-In Buffer]	Internal to the SSP initiator port.
[Sense Data]	Indicates the value of the SENSE DATA field in the RESPONSE frame.
[Sense Data Length]	The smaller of the value of the SENSE DATA LENGTH field in the RESPONSE fraction and the actual number of sense data bytes received by the SSP initiator port
Status	Indicates the value of the STATUS field in the RESPONSE frame.
Service Response	From the DATAPRES field and STATUS field in the PESPONSE frame, er-from a NAK on the COMMAND frame, or from the ATTIFR state machine detecting an error: a) TASK COMPLETE: THE RESPONSE frame contains a DATAPRES field set to NO_DATA or SENSE_DATA; or b) SERVICE DELIVERY OR TARGET FAILURE: The RESPONSE frame contains a DATAPRES field set to RESPONSE_DATA and a RESPONSE CODE field set to INVALID FRAME or OVERLAPPED TAG ATTEMPTED, or a MAKK was received for the COMMAND frame, or the length of the RESPONSE frame is incorrect, or the ST_IFR state machine detects an error as described in 9.2.6.2.2.3 and 9.2.6.2.2.4.

10.2.1.6 Send Data-In transport protocol service

A device server uses the Send Data-In transport protocol service request to request that an SSP target port transmit a read DATA frame.

Send Data-In (IN (I_T_L_Q Nexus, Device Server Buffer, Application Client Buffer Offset, Request Byte

A device server shall only call Send Data-In () during a read or bidirectional command.

A device server shall not call Send Data-In () for a given I_T_L_Q nexus after it has called Send Command Complete () for that I_T_L_Q nexus (e.g., a RESPONSE frame with for that I_T_L_Q nexus) accalled Task Management Function Executed for a task management function that terminates that task (e.g., an ASQRT TASK).

Page: 512

s/b device server

28 January 2008

```
Author: Isi-gpenokie
    Subject: Cross-Out
Date: 5/6/2008 1:07:50 PM -07'00'
    TACCEPT - DONE
There is no need to this extra << or >>

    Author: RElliott

    Subject: Highlight
Date: 9/3/2008 1:13:21 PM -07'00'
     ACCEPT - DONE
        From the DATAPRES field and STATUS field in the RESPONSE frame, or from a NAK
        on the COMMAND frame, or from the ST_IFR state machine detecting an error
        Either
        No need for the details, which are repeated in the a)b) list. STATUS is not pertinent, either.
    Author: RElliott
    Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
     ACCEPT - DONE
        TASK COMPLETE
        COMMAND COMPLETE
        to match sam4r13g

    Author: Isi-gpenokie

    Subject: Cross-Out
Date: 5/6/2008 1:07:50 PM -07'00'
TACCEPT - DONE (restructured this whole b) entry as an A)B)C)D) list)
        There is no need to this extra << or >>
   Author: hop-relliott
Subject: Highlight
Date: 9/3/2008 1:13:58 PM -07'00'
Date: 9/3/2008 1:13:58 PM -07'00'
Date: 9/3/2008 1:13:58 PM -07'00'
TACCEPT - DONE (7/14 point to the state machines for normative text, include some of the important reasons as an e.g. list. note the wording above the list too)
        Consider deleting "NAK was received" since it's covered by the ST_IFR reference.
    Author: RElliott
    Subject: Note
Date: 9/3/2008 1:09:44 PM -07'00'
        ACCEPT - DONE (7/17 change b) to include an A)B) list and have the NAK received, etc. in front rather than at the end)
    Author: wdc-mevans
    Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
```

Table 201 shows how the arguments to the Send Data-In transport protocol service are used.

Table 201 — Send Data-In transport protocol service arguments

Argument	SAS SSP implementation
I_T_L_Q nexus	I_T_L_Q nexus, where: a) I specifies the initiator port to which the read DATA frame is to be sent; b) T specifies the target port to send the read DATA frame; c) L specifies the LOGICAL UNIT NUMBER field in the read DATA frame header; and d) Q specifies the TAG field in the read DATA frame header.
Device Server Buffer	Internal to the device server.
Application Client Buffer Offset	Specifies the DATA OFFSET field in the read DATA frame.
Request Byte Count	Specifies the size of the read DATA frame.

10.2.1.7 Data-In Delivered transport protocol service

An SSP target port uses the Data-In Delivered transport protocol service indication to notify a device server of the results of transmitting a read DATA frame.

Data-In Delivered (IN (I T L Q Nexus, Delivery Result))

Table 202 shows how the arguments to the Data-In Delivered transport protocol service are determined.

Table 202 — Data-In Delivered transport protocol service arguments

Argument	SAS SSP implementation
I_T_L_Q nexus	I_T_L_Q nexus, where: a) I indicates the initiator port that sent the read DATA frame; b) T indicates the target port that received the read DATA frame; c) L indicates the value of the LOGICAL UNIT NUMBER field in the yead DATA frame header; and d) Q indicates the value of the TAG field in the read DATA frame header.
Delivery Result	From the response to the outgoing read DATA frame: a) DELIVERY SUCCESSFUL: The read DATA frame received an ACK; or b) DELIVERY FAILURE: The read DATA frame received a NAK or no response.

10.2.1.8 Receive Data-Out transport protocol service

A device server uses the Receive Data-Out transport protocol service request that an SSP target port transmit an XFER_RDY frame.

Receive Data-Out (IN (I_T_L_Q Nexus, Application Client Buffer offset, Request Byte Count, Device Server Buffer))

A device server shall only call Receive Data-Out () during a write or bidirectional command.

A device server shall not call Receive Data-Out () for a given LT_\(\frac{1}{2} \) Q nexus until Data-Out Received () has completed successfully for the previous Receive Data-Out () \(\frac{call}{call} \) (i.e., no XFER_RDY frame until all write DATA frames for the previous XFER_RDY frame, if any, and has provided link layer acknowledgement for all of the previous write DATA frames for that I T L Q nexus).

A device server shall not call Receive Data-Out () for a given I_T_L_Q nexus after a Send Command Complete () has been called for that I_T_L_Q nexus or after a Task Management Function Executed () has been called for a task management function that terminates that task (e.g., an ABORT TASK).

513

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 513

```
Author: Relliott
Subject: Highlight
Date: 6/3/2008 3:16:52 PM -07'00'
TACCEPT - DONE
call
s/b
call for that I_T_L_Q nexus
(to mesh with a Mark Evans comment in 10.2.1.4)
```

T10/1760-D Revision 14 28 January 2008

Table 203 shows how the arguments to the Receive Data-Out transport protocol service are used.

Table 203 — Receive Data-Out transport protocol service arguments

Argument	SAS SSP implementation
I_T_L_Q nexus	I_T_L_Q nexus, where: a) I specifies the initiator port to which the XFER_RDY frame is to be sent; b) T specifies the target port to send the XFER_RDY frame; c) L specifies the LOGICAL UNIT NUMBER field in the XFER_RDY frame header; and d) Q specifies the TAG field in the XFER_RDY frame header.
Application Client Buffer Offset	Specifies the REQUESTED OFFSET field in the XFER_RDY frame.
Request Byte Count	Specifies WRITE DATA LENGTH field in the XFER_RDY frame.
Device Server Buffer	Internal to the device server.

10.2.1.9 Data-Out Received transport protocol service

An SSP target port uses the Data-Out Received transport protocol service indication to notify a device server of the result of transmitting an XFER_RDY frame (e.g., receiving write DATA frames in response).

Data-Out Received (IN (I_T_L_Q Nexus, Delivery Result))

Table 204 shows how the arguments to the Data-Out Received transport protocol service are determined.

Table 204 — Data-Out Received transport protocol service arguments

Argument	SAS SSP implementation
I_T_L_Q nexus	I_T_L_Q nexus, where: a) I indicates the initiator port to which the XFER_RDY frame was sent; b) T indicates the target port that sent the XFER_RDY frame; c) L indicates the value of the LOGICAL UNIT NUMBER field in the XFER_RDY frame header; and d) Q indicates the value of the TAG field in the XFER_RDY frame header.
Delivery Result	From the response to the XFER_RDY: a) DELIVERY SUCCESSFUL: The XFER_RDY frame was successfully transmitted and all the write DATA frames for the requested write data were received; or b) DELIVERY FAILURE: The XFER_RDY frame received a NAK or no response.

10.2.1.10 Terminate Data Transfer transport protocol service

A device server uses the Terminate Data Transfer transport protocol service request to request that an SSP target port terminate any Send Data-In () or Receive Data-Out () transport protocol services, if any, being processed using the specified nexus.

Terminate Data Transfer (IN (Nexus))

514

 ${\it Table 205 shows how the arguments to the Terminate Data\ Transfer\ transport\ protocol\ service\ are\ used.}$

 ${\it Table~205-Terminate~Data~Transfer~transport~protocol~service~arguments}$

Argument	SAS SSP implementation
Nexus	I_T nexus, I_T_L nexus, or I_T_L_Q nexus, specifying the scope of the data transfer(s) to terminate.

Working Draft Serial Attached SCSI - 2 (SAS-2)

This page contains no comments

10.2.1.11 Data Transfer Terminated transport protocol service

An SSP target port uses the Data Transfer Terminated transport protocol service indication to notify a device server that all data transfers for the indicated nexus have been terminated.

Data Transfer Terminated (IN (Nexus))

Table 206 shows how the arguments to the Data Transfer Terminated transport protocol service are determined.

Table 206 — Data Transfer Terminated transport protocol service arguments

Argument	SAS SSP implementation	/
Nexus	I_T nexus, I_T_L nexus, or I_T_L_Q nexus indicated by the preceding Terminate Des Transfer () call.	ata

10.2.1.12 Send Task Management Request transport protocol service

An application client uses the Send Task Management Request transport protocol service request that an SSP initiator port transmit a TASK frame.

Send Task Management Request (IN (Nexus, Function Identifier, [Association], [Request Fence])

Table 207 shows how the arguments to the Send Task Management Request transport protectol service are used.

Table 207 — Send Task Management Request transport protocol service arguments

Argument	SAS SSP implementation
Nexus	I_T_L nexus or I_T_L_Q nexus (depending on the Function Identifier), where:
Function Identifier	Specifies the TASK MANAGEMENT FUNCTION field in the TASK frame. Only these task management functions are supported: a) ABORT TASK (Nexus argument specifies an L_T_L Q Nexus); b) ABORT TASK SET (Nexus argument specifies an I_T_L Nexus); c) CLEAR ACA (Nexus argument specifies an I_T_L Nexus); d) CLEAR TASK SET (Nexus argument specifies an I_T_L Nexus); e) LT NEXUS RESET (Nexus argument specifies an I_T Nexus); f) LOGICAL UNIT RESET (Nexus argument specifies an I_T_L Nexus); g) QUERY TASK (Nexus argument specifies an I_T_L Nexus); n) QUERY TASK SET (Nexus argument specifies an I_T_L Nexus); QUERY UNIT ATTENTION (Nexus argument specifies an I_T_L Nexus).
[Association]	Specifies the TAG field in the TASK frame header.
[Request Fence]	If included, specifies an I_T nexus, I_T_L nexus, or I_T_L Q nexus for which the TASK frame is fenced.

The application client shall set the Request Fence argument to the Nexus argument.

10.2.1.13 Task Management Request Received transport protocol service

An SSP target port uses the Task Management Request Received transport protocol service indication to notify a task manager that it has received a TASK frame.

Task Management Request Received (IN (Nexus, Function Identifier, [Association]))

s/b Association Since SAS-2 requires that each TMF have an Initiator Port Transfer Tag of its own, this is not an optional argument for the application client/task manager to provide. If SAM-nn ever includes the argument, it might be labeled optional there because it will be protocol-specific. For now, it is a SAS-specific argument that is always used by SAS. Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE Before: I_T_L nexus or I_T_L_Q nexus I_T nexus since the I_T NEXUS RESET function is I_T based Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE After: (for an I_T_L nexus or an I_T_L_Q nexus) since I_T NEXUS RESET is I_T based, the L is not always present Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' QUERY UNIT ATTENTION QUERY ASYNCHRONOUS EVENT to match sam4r13h Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE The s/b An

Page: 515

TACCEPT - DONE

[Association]

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Author: RElliott

Global:

10.2.1.11 Data Transfer Terminated transport protocol service

An SSP target port uses the Data Transfer Terminated transport protocol service indication to notify a device server that all data transfers for the indicated nexus have been terminated.

Data Transfer Terminated (IN (Nexus))

Table 206 shows how the arguments to the Data Transfer Terminated transport protocol service are determined.

Table 206 — Data Transfer Terminated transport protocol service arguments

Argument	SAS SSP implementation
Nexus	I_T nexus, I_T_L nexus, or I_T_L_Q nexus indicated by the preceding Terminats Data Transfer () call.

10.2.1.12 Send Task Management Request transport protocol service

An application client uses the Send Task Management Request transport protocol service request to request that an SSP initiator port transmit a TASK frame.

Send Task Management Request (IN (Nexus, Function Identifier, [Association], Kequest Fence]))

Table 207 shows how the arguments to the Send Task Management Request transport protocol service are used.

Table 207 — Send Task Management Request transport protogol service arguments

Argument	SAS SSP implementation	
Nexus	I_T_L nexus or I_T_L_Q nexus (depending on the Function Identifier), where: a) I specifies the initiator port to send the TASK frame; b) T specifies the target port to which the TASK frame is sent; c) L specifies the LOGICAL UNIT NUMBER field in the TASK frame header; and d) Q (for an I_T_L_Q nexus) specifies the TAG OF TASK TO BE MANAGED field in the TASK frame header.	
Function Identifier	Specifies the TASK MANAGEMENT FANCTION field in the TASK frame. Only these task management functions are supported: a) ABORT TASK (Nexus argument specifies an I_T_L Q Nexus); b) ABORT TASK SET (Nexus argument specifies an I_T_L Nexus); c) CLEAR ACA (Nexus argument specifies an I_T_L Nexus); d) CLEAR TASK SET (Nexus argument specifies an I_T_L Nexus); e) I_T NEXUS RESET (Nexus argument specifies an I_T Nexus); f) LOGICAL UNIT XESET (Nexus argument specifies an I_T_L Nexus); g) QUERY TASK (Nexus argument specifies an I_T_L Nexus); h) QUERY TASK SET (Nexus argument specifies an I_T_L Nexus); n) QUERY TASK SET (Nexus argument specifies an I_T_L Nexus); n) QUERY TASK SET (Nexus argument specifies an I_T_L Nexus);	
[Association]	Specifies the TAG field in the TASK frame header.	
[Request Fence]	If included, specifies an I_T nexus, I_T_L nexus, or I_T_L_Q nexus for which the TASK frame is fenced.	

The application client shalf set the Request Fence argument to the Nexus argument.

10.2.1.13 Task Management Request Received transport protocol service

An SSP target port uses the Task Management Request Received transport protocol service indication to notify a task manager that it has received a TASK frame.

Task Management Request Received (IN (Nexus, Function Identifier, [Association]))

Working Draft Serial Attached SCSI - 2 (SAS-2)

515

Author: RElliott
Subject: Highlight
Date: 7/14/2008 3:50:16 PM -07'00'
TREJECT (see SCSI Command Received comment)

SSP target port s/b task router

In SAM-4, the task router does this, not the SCSI target port. Perhaps SSP target port = SCSI target port + task router? Otherwise, chapter 9 is also affected.

T10/1760-D Revision 14

Table 208 shows how the arguments to the Task Management Request Received transport protocol service are determined.

Table 208 — Task Management Request Received transport protocol service arguments

Argument	SAS SSP implementation	
Nexus	T_L nexus or I_T_L Q nexus (depending on the Function Identifier), where: a) I indicates the initiator port that sent the TASK frame; b) T indicates the target port that received the TASK frame; c) Listingted by the LOGICAL UNIT NUMBER field in the TASK frame header; and d) Q (for an I_T_L Q nexus) indicated by the TASK TO BE MANAGED field in the TASK frame header.	
Function Identifier	Indicates the TASK MANAGEMENT FUNCTION field in the TASK frame. Only these task management functions are supported: a) ABORT TASK (Nexus argument indicates an L_T_L Nexus); b) ABORT TASK SET (Nexus argument indicates an L_T_L Nexus); c) CLEAR ACA (Nexus argument indicates an L_T_L Nexus); d) CLEAR TASK SET (Nexus argument indicates an L_T_L Nexus); e) L_T NEXUS RESET (Nexus argument indicates an L_T_L Nexus); f) LOGICAL UNIT RESET (Nexus argument indicates an L_T_L Nexus); g) QUERY TASK (Nexus argument indicates an L_T_L Nexus); h) QUERY TASK SET (Nexus argument indicates an L_T_L Nexus); and i) QUERY UNIT ATTENTION (Nexus argument indicates an L_T_L Nexus).	
[Association]	Indicates the TAG field in the TASK frame header.	

10.2.1.14 Task Management Function Executed transport protocol service

A task manager uses the Task Management Function Executed transport protocol service response to request that an SSP target port transmit a RESPONSE frame.

Task Management Function Executed (IN (Nexus, Service Response, [Additional Response Information], [Association], [Response Fence]))

A task manager shall only call Task Management Function Executed () after receiving Task Management Request Received ().

Page: 516

28 January 2008

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
     Before:
    I_T_L nexus or I_T_L_Q nexus
     add:
    I_T nexus
     since the I_T NEXUS RESET function is I_T based
 Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
    indicated by
     s/b
    indicates
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
    (for an I_T_L nexus or an I_T_L_Q nexus)
     since I_T NEXUS RESET is I_T based, the L is not always present
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
    indicated by
    indicates
 Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
    QUERY UNIT ATTENTION
    QUERY ASYNCHRONOUS EVENT
    to match sam4r13h
```

28 January 2008

T10/1760-D Revision 14

Table 209 shows how the arguments to the Task Management Function Executed transport protocol service

Table 209 — Task Management Function Executed transport protocol service arguments

Argument	SAS SSP implementation		
Nexus	I_T_L nexus or I_T_L_Q nexus (depending on the function), where: a) I specifies the initiator port to which the RESPONSE frame is sent; b) T specifies the target port to send the RESPONSE frame; c) L specifies the LOGICAL UNIT NUMBER field in the RESPONSE frame header; and d) Q (for an I_T_L_Q nexus) indirectly specifies the TAG field in the RESPONSE frame header.		
Service Response	Specifies the DATAPRES field and RESPONSE CODE field in the RESPONSE frame: a) FUNCTION COMPLETE: The RESPONSE trame DATAPRES field is set to RESPONSE_DATA and the RESPONSE_DATA and the RESPONSE CODE field is set to TASK MANAGEMENT FUNCTION COMPLETE; b) FUNCTION SUCCEEDED: The RESPONSE frame DATAPRES field is set to RESPONSE_DATA and the RESPONSE CODE field is set to TASK MANAGEMENT FUNCTION SUCCEEDED; c) FUNCTION REJECTED: The DATAPRES field is set to RESPONSE_DATA and the RESPONSE CODE field is set to TASK MANAGEMENT FUNCTION NOT SUPPORTED; d) INCORRECT LOGICAL UNIT NUMBER: The DATAPRES field is set to RESPONSE_DATA and the RESPONSE CODE field is set to INCORRECT LOGICAL UNIT NUMBER; or e) SERVICE DELIVERY OR TARGET FAILURE: The RESPONSE frame DATAPRES field is set to RESPONSE_DATA and the RESPONSE CODE field is set to: A) INVALID FRAME; B) TASK MANAGEMENT FUNCTION FAILED; or C) OVERLAPPED TAG ATTEMPTED.		
[Additional Response Information]	Specifies the ADDITIONAL RESPONSE INFORMATION field in the RESPONSE frame.		
[Association]	Specifies the TAG field in the RESPONSE frame header.		
[Response Fence]	If included, specifies an I_T nexus, I_T_L nexus, or I_T_L_Q nexus for which the RESPONSE frame is fenced.		

The device server shall set the Response Fence argument to the Nexus argument.

10.2.1.15 Received Task Management Function Executed transport protocol service

An SSP initiator port uses the Received Task Management Function Executed transport protocol service confirmation to notify an application client that it has received a response to a TASK frame (e.g., received a RESPONSE frame or a NAK).

Received Task Management Function Executed (IN (Nexus, Service Response, [Association]))

Page: 517

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' Before: I_T_L nexus or I_T_L_Q nexus add: I_T nexus since the I_T NEXUS RESET function is I_T based Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE
"the LOGICAL UNIT NUMBER field in the RESPONSE frame header;" is wrong; there is no such field. Change to: "specifies the logical unit that is sending the response frame" Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
After: (for an I_T_L nexus or an I_T_L_Q nexus) since I_T NEXUS RESET is I_T based, the L is not always present Author: wdc-mevans
Subject: Highlight
Date: 5/29/2008 7:52:26 AM -07'00'
PACCEPT - DONE (for this one, simplifying Q to:
"specifies the command that was managed by the task management function". Comments added to L above, and L and Q in table indirectly specifies the TAG field in the RESPONSE frame header. I'm not sure what this means. Doesn't the Q "directly" specify something? Author: RElliott Autior: KEIIIOtt Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Table 209 shows how the arguments to the Task Management Function Executed transport protocol service are used

Table 209 — Task Management Function Executed transport protocol service arguments

Argument	SAS SSP implementation		
Nexus	I_T_L nexus or I_T_L_Q nexus (depending on the function), where: a		
Service Response	Specifies the DATAPRES field and RESPONSE CODE field in the RESPONSE frame: a) FUNCTION COMPLETE: The RESPONSE frame DATAPRES field is set to RESPONSE_DATA and the RESPONSE coDE field is set to TASK MANAGEMENT FUNCTION COMPLETE; b) FUNCTION SUCCEEDED: The RESPONSE frame DATAPRES field is set to RESPONSE_DATA and the RESPONSE CODE field is set to TASK MANAGEMENT FUNCTION SUCCEEDED; c) FUNCTION REJECTED: The DATAPRES field is set to RESPONSE_DATA and the RESPONSE CODE field is set to TASK MANAGEMENT FUNCTION NOT SUPPORTED; d) INCORRECT LOGICAL UNIT NUMBER: The DATAPRES field is set to RESPONSE_DATA and the RESPONSE CODE field is set to INCORRECT LOGICAL UNIT NUMBER; or e) SERVICE DELIVERY OR TARGET FAILURE: The RESPONSE frame DATAPRES field is set to RESPONSE_DATA and the RESPONSE CODE field is set to: A) INVALID FRAME; B) TASK MANAGEMENT FUNCTION FAILED; or C) OVERLAPPED TAG ATTEMPTED.		
[Additional Response Information]	Specifies the ADDITIONAL RESPONSE INFORMATION field in the RESPONSE frame.		
[Association]	Specifies the TAG field in the RESPONSE frame header.		
[Response Fence]	If included, specifies an I_T nexus, I_T_L nexus, or I_T_L_Q nexus for which the RESPONSE frame is fenced.		

The device server shall set the Response Fence argument to the Nexus argument.

10.2.1.15 Received Task Management Function Executed transport protocol service

An SSP initiator port uses the Received Task Management Function Executed transport protocol service confirmation to notify an application client that it has received a response to a TASK frame (e.g., received a RESPONSE frame or a NAK).

Received Task Management Function Executed (IN (Nexus, Service Response, [Association]))

517

Working Draft Serial Attached SCSI - 2 (SAS-2)

materi

[Additional Response Information]

to match table 210 and sam4r14

T10/1760-D Revision 14 28 January 2008

Table 210 shows how the arguments to the Received Task Management Function Executed transport protocol service are determined.

Table 210 — Received Task Management Function Executed transport protocol service arguments

Argument	SAS SSP implementation	
Nexus	L_T_L nexus or L_T_L_Q nexus (depending on the function), where: a) I indicates the initiator port that received the RESPONSE frame; b) T indicates the target port that sent the RESPONSE frame; c) L indicates the LOGICAL UNIT NUMBER field in the RESPONSE frame header or TASK frame header; and d) Q (for an L_T_L_Q nexus) indirectly indicates the TAG field in the RESPONSE frame header, or indicates the TAG OF TASK TO BE MANAGED field TASK frame header.	
Service Response	Indicates the response to the TASK frame: a) FUNCTION COMPLETE: The RESPONSE frame contains a DATAPRES field set to RESPONSE DATA and a RESPONSE CODE field set to TASK MANAGEMENT FUNCTION COMPLETE; b) FUNCTION SUCCEEDED: The RESPONSE frame contains a DATAPRES field set to RESPONSE_DATA and a RESPONSE CODE field set to TASK MANAGEMENT FUNCTION SUCCEEDED; c) FUNCTION REJECTED: The RESPONSE frame contains a DATAPRES field set to RESPONSE_DATA and a RESPONSE CODE field set to TASK MANAGEMENT FUNCTION NOT SUPPORTED; d) INCORRECT LOGICAL UNIT NUMBER: The RESPONSE frame contains a DATAPRES field set to RESPONSE_DATA and a RESPONSE CODE field set to INCORRECT LOGICAL UNIT NUMBER; or e) SERVICE DELIVERY OR TARGET FAILURE: The RESPONSE frame contains a DATAPRES field set to RESPONSE_DATA and a RESPONSE CODE field set to: A) INVALID FRAME; B) TASK MANAGEMENT FUNCTION FAILED; or C) OVERLAPPED TAG ATTEMPTED, or a NAK was received for the TASK frame, or the length of the RESPONSE frame is incorrect.	
[Additional Response Information]	Indicates the ADDITIONAL RESPONSE INFORMATION field in the RESPONSE frame.	
[Association]	Indicates the TAG field in the RESPONSE frame header or the TASK frame header.	

10.2.2 Application client error handling

If an SSP initiator port calls Command Complete Received () with a Service Response of:

- a) Service Delivery or Target Failure XFER_RDY Information Unit Too Short;
- b) Service Delivery or Target Failure XFER RDY Information Unit Too Long:
- c) Service Delivery or Target Failure XFER_RDY Incorrect Write Data Length;
- d) Service Delivery or Target Failure XFER_RDY Requested Offset Error;
- e) Service Delivery or Target Failure XFER_RDY Not Expected;
- Service Delivery or Target Failure DATA Information Unit Too Shor
- Service Delivery or Target Failure DATA Too Much Read Data; h) Service Delivery or Target Failure - DATA Data Offset Error;
- Service Delivery or Target Failure DATA Not Expected; or
- Service Delivery or Target Failure NAK Received,

then the application client shall abort the command (e.g., by sending an ABORT TASK task management function).

Page: 518

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

"indicates the LOGICAL UNIT NUMBER field in the RESPONSE frame header or

TASK frame header;"

is wrong, as there is no such field in the RESPONSE frame header.

Change to:

"indicates the logical unit that sent the response frame, and is indicated by the logical unit number field of the TASK frame with an initiator port transfer tag field equal to the initiator port transfer tag field in the RESPONSE frame header"

Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

"indirectly indicates the TAG field in the RESPONSE frame header, or indicates the TAG OF TASK TO BE MANAGED field TASK header '

Per wdc-mevans comment on table 209, expand what "indirectly" means.

Change to:

indicates the command that was managed by the task management function, and is indicated by the initiator port transfer tag field of the COMMAND frame with an initiator port transfer tag field equal to the initiator port transfer tag to manage field in the TASK frame with an initiator port transfer tag field equal to the initiator port transfer tag field in the RESPONSE frame header

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

> field TASK frame field in the TASK frame

Author: Isi-gpenokie

Subject: Highlight Date: 9/3/2008 1:07:06 PM -07'00'

ACCEPT - DONE (7/17 move the extra items before the A)B)C) list to avoid any confusion.

this text is inside item e), not outside)

This statement << or a NAK was received for the TASK frame, or the length of the RESPONSE frame is incorrect. >> should be before the list and stated as << Indicates the response to the TASK frame, a NAK was received for the TASK frame, or the length of the RESPONSE frame is incorrect:. >>

Author: RElliott Subject: Highlight Date: 8/29/2008 4:00:07 PM -07'00' ACCEPT - DONE (changed to Incorrect Data Length)

Service Delivery or Target Failure - DATA Information Unit Too Short;

when ST_IFS receives a data offset of 0 (or number of fill bytes non-zero too early), it returns DATA Incorrect Data Length.) Either that name needs to change, or another set of names needs to be added.

Comments from page 518 continued on next page

T10/1760-D Revision 14 28 January 2008

After an application client calls Send SCSI Command (), if Command Complete Received () returns a Service Response of Service Delivery or Target Failure - ACK/NAK Timeout, the application client shall send a QUERY TASK task management function with Send Task Management Request () to determine whether the command was received successfully. If Received Task Management Function Executed () returns a Service Response of FUNCTION SUCCEEDED, the application client shall assume the command was delivered successfully. If Received Task Management Function Executed () returns a Service Response of FUNCTION COMPLETE, and Command Complete Received () has not yet been invoked a second time for the command in question (e.g., indicating a RESPONSE frame arrived for the command before the QUERY TASK was processed), the application client shall assume the command was not delivered successfully and may reuse the tag. The application client should call Send SCSI Command () again with identical arguments.

After a Received Task Management Function Executed () call with a Service Response of Service Delivery or Target Failure - ACK/NAK Timeout, an application client should call Send Task Management Request () with identical arguments, including the same tag.

After a Command Complete Received () or Received Task Management Function Executed () call returns a Service Response other than Service Delivery or Target Failure - ACK/NAK Timeout, an application client shall not reuse the tag until it determines the tag is no longer in use by the logical unit (e.g., the ACK for the RESPONSE frame was seen by the SSP target port). Examples of ways the application client may determine that a tag may be used are:

- a) receiving another frame in the same connection;
- b) receiving a DONE (NORMAL) or DONE (CREDIT TIMEOUT) in the same connection; or
- c) receiving a DONE (ACK/NAK TIMEOUT) in the earne connection, then running a QUERY TASK task management function to confirm that the tag is no longer active in the logical unit.

10.2.3 Device server error handling

If the SCSI target device performs tag checking and an SSP target port calls SCSI Command Received () with a tag already in use by another SCSI command (i.e., an overlapped command) in any logical unit, the task router and device server(s) shall abort all task management functions received on that I_T nexus and shall respond to the overlapped command as defined in SAM-4.

If an SSP target port calls Data-Out Received () with a Delivery Result set to salue in table 211, the device server shall terminate the command with CHECK CONDITION status with the sense key set to ABORTED COMMAND and the additional sense code set as indicated in table 211.

Table 211 — Delivery Result to additional sense code mapping

Delivery Result	Additional sense code
DELIVERY FAILURE - DATA OFFSET ERROR	DATA OFFSET ERROR
DELIVERY FAILURE - TOO MUCH WRITE DATA	TOO MUCH WRITE DATA
DELIVERY FAILURE - INFORMATION UNIT TOO SHORT	INFORMATION UNIT TOO SHORT
DELIVERY FAILURE - ACK/NAK TIMEOUT	ACK/NAK TIMEOUT
DELIVERY FAILURE - NAK RECEIVED	NAK RECEIVED
DELIVERY FAILURE - INITIATOR RESPONSE TIMEOUT	INITIATOR RESPONSE TIMEOUT

10.2.4 Task router and task manager error handling

If the SCSI target device performs tag checking and:

- a) an SSP target port calls SCSI Command Received () with a tag already in use by a SCSI task management function in any logical unit; or
- b) an SSP target port calls Task Management Request Received () with a tag already in use by a SCSI command or SCSI task management function in any logical unit,

Page: 519 Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' CACCEPT - DONE This << Timeout, the application client >> should be << Timeout, then the application client Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' ACCEPT - DONE This << SUCCEEDED, the application >> should be << SUCCEEDED, then the application >> Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' ACCEPT - DONE This << processed), the application >> should be << processed), then the application >> Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b а Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE In SAM-4, the task router/task manager are now the ones that do overlapped command checking. The task manager puts the command into the task set; the device server takes it out. Move this paragraph into 10.2.4, and change "device server" to "task router and task manager(s)" Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' This << in any logical unit, the task >> should be << in any logical unit, then the task >> Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE SCSI command s/h command Other uses in this section don't include "SCSI" Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

Comments from page 519 continued on next page

Convert the second part of this sentence into an a)b) list.

TACCEPT - DONE

After an application client calls Send SCSI Command (), if Command Complete Received () returns a Service Response of Service Delivery or Target Failure - ACK/NAK Timeout, the application client (shall send a QUERY TASK task management function with Send Task Management Request () to determine whether the command was received successfully. If Received Task Management Function Executed () returns a Service Response of FUNCTION SUCCEEDED, the application client shall assume the command was delivered successfully. If Received Task Management Function Executed () returns a Service Response of FUNCTION COMPLETE, and Command Complete Received () has not yet been invoked a second time for the command in question (e.g., indicating a RESPONSE frame arrived for the command before the QUERY TASK was processed), the application client shall assume the command was not delivered successfully and may reuse the tag. The application client should call Send SCSI Command () again with identical arguments.

After a Received Task Management Function Executed () call with a Service Response of Service Delivery or Target Failure - ACK/NAK Timeout, an application client should call Send Task Management Request () with identical arouments, including the same tag.

After a Command Complete Received () or Received Task Management Function Executed () call returns a Service Response other than Service Delivery or Target Failure - ACK/NAK Timeout, an application client shall not reuse the tag until it determines the tag is no longer in use by the logical unit (e.g., the ACK for the RESPONSE frame was seen by the SSP target port). Examples of ways the application client may determine that a tag may be used are:

- a) receiving another frame in the same connection;
- b) receiving a DONE (NORMAL) or DONE (CREDIT TIMEOUT) in the same connection; or
- c) receiving a DONE (ACK/NAK TIMEOUT) in the same connection, then running a QUERY ASK task management function to confirm that the tag is no longer active in the logical unit.

10.2.3 Device server error handling

If the SCSI target device performs tag checking and an SSP target port calls SCSI command Received () with a tag already in use by another SCSI command (i.e., an overlapped command in any logical unit, the task router and device server(s) shall abort all task management functions received on that I_T nexus and shall respond to the overlapped command as defined in SAM-4.

If an SSP target port calls Data-Out Received () with a Delivery Result set to a value in table 211, the device server shall terminate the command with CHECK CONDITION status with the sense key set to ABORTED COMMAND and the additional sense code set as indicated in table 211.

Table 211 — Delivery Result to additional sense code mapping

- /	•
Delivery Result	Additional sense code
DELIVERY FAILURE - DATA OFFSET ERROR	DATA OFFSET ERROR
DELIVERY FAILURE - TOO MUCH WRITE DATA	TOO MUCH WRITE DATA
DELIVERY FAILURE - INFORMATION UNIT TOO SHORT	INFORMATION UNIT TOO SHORT
DELIVERY FAILURE ACK/NAK TIMEOUT	ACK/NAK TIMEOUT
DELIVERY FAILLINE - NAK RECEIVED	NAK RECEIVED
DELIVERY FAILURE - INITIATOR RESPONSE TIMEOUT	INITIATOR RESPONSE TIMEOUT

10.2.4 Task router and task manager error handling

If the SCSI target device performs tag checking and:

- a) an SSP target port calls SCSI Command Received () with a tag already in use by a SCSI task management function in any logical unit; or
- an SSP target port calls Task Management Request Received () with a tag already in use by a SCSI command or SCSI task management function in any logical unit,

Working Draft Serial Attached SCSI - 2 (SAS-2)

519

Author: stx-ghoulder Subject: Highlight
Date: 6/27/2008 6:3647 AM -07'00'

"REJECT (SAM-4 covers the rules for commands, so they are covered by "and respond to the overlapped command as defined in SAM-4". SAM-4 does not cover the rules for TMFs, since it doesn't recognize that they might share tags with commands, so only TMFs rules are directly mentioned here.) abort all task management functions received on that I_T nexus Overlapped commands should result in both commands (or maybe all commands) being aborted, not task management functions aborted. If a Task management function overlaps a command some different rules might apply. Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' This << in table 211, the device >> should be << in table 211, then the device >> Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' the s/h а Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE SCSI task management function task management function Other uses in this section don't use "SCSI" Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

SCSI command or SCSI task management function s/b command or task management function

Most other uses do not include "SCSI" in this section

T10/1760-D Revision 14 28 January 2008

then the task router and task manager(s) shall

- a) abort all commands received on that I T nexus:
- b) abort all task management functions received on that I_T nexus; and
- c) call Task Management Function Executed () with the Service Response set to FUNCTION REJECTED - Overlapped Tag Attempted (i.e., requesting that the target port set the DATAPRES field to RESPONSE_DATA and the RESPONSE CODE field set to OVERLAPPED TAG ATTEMPTED).

10.2.5 SCSI transport protocol event notifications

Table 212 lists the SCSI transport protocol event notifications supported by this standard.

Table 212 — SCSI transport protocol events

	Event notification	SAS SSP implementation
	Transport Reset	Receipt of a fraid reset sequence (see 4.4.2)
	Nexus Less	Receipt of specific OPEN_REJECTs for a specific time period (see 4.5).
1	Power Loss Expected	Receipt of a NOTIFY (POWER LOSS EXPECTED)(see 7.2.5.3.3)

10.2.6 SCSI commands

10.2.6.1 INQUIRY command

The vital product data returned by the INQUIRY command (see SPC-4) that shall be returned by a logical unit in a SAS device is described in 10.2.11.

10.2.6.2 MODE SELECT and MODE SENSE commands

SAS-specific mode pages accessed with the MODE SELECT and MODE SENSE commands (see SPC-4) are described in 10.2.7.

10.2.6.3 LOG SELECT and LOG SENSE commands

SAS-specific log pages accessed with the LOG SELECT and LOG SENSE commands (see SPC-4) are described in 10.2.8.

10.2.6.4 SEND DIAGNOSTIC and RECEIVE DIAGNOSTIC RESULTS commands

SAS-specific diagnostic pages accessed with the SEND DIAGNOSTIC and RECEIVE DIAGNOSTIC RESULTS commands (see SPC-4) are described in 10.2.9.

Zoning (see 4.9) is applied to SES-2 diagnostic pages as described in 10.2.9.

10.2.6.5 START STOP UNIT command

The power condition states controlled by the START STOP UNIT command (see SBC-3) for a SAS device are described in 10.2.10.

Page: 520

Author: stx-ghoulder

Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

REJECT (SAM-4 only covers what happens when a command is received that overlaps another command. SAS has to define what happens when a command is received that overlaps a TMF, or when a TMF is received that overlaps a command or a TMF.)

task router and task manager(s) shall:

The previous clause says this error shall be handled as defined in SAM-4, but this clause specifies a particular handling that could be different than what SAM-4 says. Need to resolve this contradiction.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

make left column of table 212 wider to avoid wrapping

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

ACCEPT - DONE (as "The vital product data that shall be returned by a logical unit in a SAS device by the INQUIRY command")

<< The vital product data returned by the INQUIRY command (see SPC-4) that shall be returned by a logical unit in a SAS device is described in 10.2.11. >> should be

<< The vital product data that shall be returned as a result of an INQUIRY command (see SPC-4) to a logical unit in a SAS device is described in 10.2.11. >>

10.2.7 SCSI mode parameters

10.2.7.1 SCSI mode parameters overview

Table 213 defines mode pages supported by logical units in SCSI target devices in SAS domains (i.e., with SSP target ports) that support the MODE SELECT or MODE SENSE commands.

Table 213 — SSP target port mode pages

Mode page code	Subpage code	Description	Reference				
02h	00h	Disconnect-Reconnect mode page	10.2.7.2				
	00h	Protocol-Specific Logical Unit mode page	10.2.7.3				
18h	01h - DFh	Reserved					
1011	E0h - FEh	Vendor specific					
	FFh	Return all subpages for this mode page code	SPC-4				
	00h	Protocol-Specific Port mode page	10.2.7.4				
	01h	Phy Control And Discover mode page	10.2.7.5				
	02h	Shared Port Control mode page	10.2.7.6				
19h	03h	SAS-2 Phy mode page	10.2.7.7				
	04h - DFh	Reserved					
	E0h - FEh	Vendor specific					
	FFh	Return all subpages for this mode page code	SPC-4				

If any field in an implemented mode page is not implemented, the value assumed for the functionality of the field shall be zero (i.e., as if the field is set to zero) (see SPC-4).

If a mode page defined by this standard is

- a) allowed by this standard to be changeable; and
- b) is not used solely to define the mode page structure (e.g., the NUMBER OF PHYS field in the Phy Control And Discover mode page) or ecordinate access to the mode page (e.g., the GENERATION CODE field in the Phy Control And Discover mode page), shall be zero (1.2-3s if the mode page the field is set to zero).

10.2.7.2 Disconnect-Reconnect mode page

10.2.7.2.1 Disconnect-Reconnect mode page overview

The Disconnect-Reconnect mode page (see SPC-4) provides the application client the means to tune the performance of a service delivery subsystem. Table 214 defines the parameters which are applicable to SSP.

The application client sends the values in the fields to be used by the device server to control the SSP connections by means of a MODE SELECT command. The device server shall then communicate the field values to the SSP target port. The field values are communicated from the device server to the SSP target port in a vendor-specific manner.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 521

T10/1760-D Revision 14

Author: Isi-gpenokie

Subject: Highlight Date: 6/2/2008 6:41:11 AM -07'00'

ACCEPT - DONE (adding "then" too)

This << not implemented, the value assumed for the functionality of the field shall be zero (i.e., as if the field is set to zero) >> should be << not implemented, the value of the field shall be assumed to be zero (i.e., as if the field is set to zero) >>

Author: wdc-mevans

Subject: Cross-Out Date: 6/2/2008 6:40:48 AM -07'00'

TREJECT (This standard defines fields as not changeable or may be changeable. It does not mandate that any fields be changeable, though. So, we must say "allowed by this standard to be changeable." In a), added "(e.g., not defined as a read only

For b), there are already e.g.'s showing that fields like NUMBER OF PHYS fields are the ones being referred to. Those are not assumed to be zero by this rule; they're irrelevant.)

If a mode page defined by this standard is not implemented, the value assumed for the functionality of each field in that mode page

a) allowed by this standard to be changeable; and

b) is not used solely to define the mode page structure (e.g., the NUMBER OF PHYS field in the Phy Control And Discover mode page) or coordinate access to the mode page (e.g., the GENERATION CODE field in the Phy Control And Discover mode page). shall be zero (i.e., as if the mode page is implemented and the field is set to zero).

[I recommend deleting this because I don't understand it at all. How can a field in a mode page that isn't implemented be changeable? How does a field define the mode page structure or coordinate access to the page? And, ultimately, though the conjunction has been omitted, the field shall be set to zero.]

Author: stx-ahoulder

Subject: Highlight Date: 6/2/2008 6:41:26 AM -07'00'

TREJECT (see replies to wdc-mevans)

Rules a) and b) below make no sense to me for an unimplemented mode page. How can an unimplemented value be changable? how can a mode page structure exist if it isn't implemented?

Author: Isi-gpenokie

Subject: Highlight Date: 6/2/2008 6:36:42 AM -07'00'

ACCEPT - DONE (although the grammar is spread out before/after the a)b) list, so not exactly as suggested)

This << not implemented, the value assumed for the functionality of each field in that mode page that is: >> should be << not implemented, the value for each field in that mode page shall be assumed to be: >>

Author: Isi-apenokie

Subject: Cross-Out Date: 5/6/2008 1:07:50 PM -07'00'

ACCEPT - DONE

This << is >> seems to be an extra word.

Author: ibm-steve-wallace

Subject: Highlight

Date: 5/6/2008 1:07:50 PM -07'00' TACCEPT - DONE

This text should probably be on the next line (not part of item b).

T10/1760-D Revision 14 28 January 2008

SAS devices shall only use the parameter fields defined below in this subclause. If any other fields within the Disconnect-Reconnect mode page of the MODE SELECT command contain a non-zero value, the device server shall terminate the MODE SELECT command with CHECK CONDITION status with the sense key server shall terminate the MODE SELECT command with CHECK CONDITION status with the sense key server to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

Table 214 — Disconnect-Reconnect mode page for SSP

Byte\Bit	7	6	5	4	3	2	1	0			
0	PS	SPF (0b)			PAGE C	ODE (02h)					
1				PAGE LEN	gтн (0Eh)						
2				Rese	erved						
3				Rese	erved						
4	(MSB)		BUS INACTIVITY TIME LIMIT								
5											
6											
7				Rese	iveu						
8	(MSB)		MAX	XIMUM CONN	ECT TIME I IN	AIT					
9			IVIA	KINION CONN	LOT TIME LIN	AII I		(LSB)			
10	(MSB)			MAXIMUM B	LIDST SIZE						
11				WAXIWOW	OKST SIZE			(LSB)			
12				Rese	nyed						
13				Neserveu							
14	(MSB)			EXIST BURST SIZE							
15				1,51 601	NOT SIZE			(LSB)			

The PARAMETERS SAVEABLE (PS) bit is defined in SPC-4.

The SUBPAGE FORMAT (SPF) bit is defined in SPC-4 and shall be set to the value defined in table 214.

The PAGE CODE (PS) field is defined in SPC-4 and shall be set to the value defined in table 214.

The PAGE LENGTH field is defined in SPC-4 and shall be set to the value defined in table 214.

The BUS INACTIVITY TIME LIMIT field is defined in SPC-4 and 10.2.7.2.2.

The MAXIMUM CONNECT TIME LIMIT field is defined in SPC-4 and 10.2.7.2.3.

The MAXIMUM BURST SIZE field is defined in SPC-4 and 10.2.7.2.4.

The FIRST BURST SIZE field is defined in SPC-4 and 10.2.7.2.5.

10.2.7.2.2 BUS INACTIVITY TIME LIMIT field

The value in the BUS INACTIVITY TIME LIMIT field contains the maximum time in 100 μs increments that an SSP target port is permitted to maintain a connection (see 4.1.12) without transferring a frame to the SSP initiator port. When this time is exceeded, the SSP target port shall prepare to close the connection (i.e., by requesting to have the link layer transmit DONE). This value may be rounded as defined in SPC-4. A value of 0000h in

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 522 Author: Isi-gpenokie Subject: Highlight Date: 56/2008 1:07:50 PM -07:00' TACCEPT - DONE This << shall only use the parameter fields defined below in this subclause. If a >> should be << shall only the parameter fields defined in table 214. If a >> Author: Isi-gpenokie Subject: Highlight Date: 56/2008 1:07:50 PM -07:00' TACCEPT - DONE This << non-zero value, the device >> should be << non-zero value, then the device >> Author: stx-ghoulder Subject: Highlight Date: 56/2008 1:07:50 PM -07:00' TREJECT (that is what defines that this bit is set to 0 rather than 1 in this page. This is the convention recently adopted in SBC-3 and SES-2 for describing fields like this.) and shall be set to the value defined in table 214. This phrase in this sentence and the next 2 sentences can be deleted. Author: REllicit Subject: Cross-Out Date: 6/30/208 3:16:52 PM -07:00' DACCEPT - DONE

(PS)

this field specifies that there is no bus inactivity time limit. The bus inactivity time limit is enforced by the port layer (see 8.2.3).

10.2.7.2.3 MAXIMUM CONNECT TIME LIMIT field

The value in the MAXIMUM CONNECT TIME LIMIT field contains the maximum duration of a connection (see 4.1.12) in 100 µs increments (e.g., a value of 0001h in this field means that the time is less than or equal to 100 µs and a value of 0002h in this field means that the time is less than or equal to 200 µs). When this time is exceeded, the SSP target port shall prepare to close the connection. The SSP target port is transferring a frame when the maximum connection time limit is exceeded, the SSP target port shall complete transfer of the frame before preparing to close the connection. This value may be rounded as defined in SPC-4. A value of 0000h in this field specifies that there is no maximum connection time limit. The maximum connection time limit is enforced by the port layer (see 8.2.3).

10.2.7.2.4 MAXIMUM BURST SIZE field

For read data, the value in the MAXIMUM BURST SIZE field contains the maximum amount of data what is transferred during a connection by an SSP target port per I_T_L_Q nexus without transferring at least one frame for a different I_T L_Q nexus. If the SSP target port:

- a) has read data to transfer for only one I T L Q nexus, and
- b) has no requests to transfer write data for any I T L Q nexus,

then the SSP target port shall prepare to close the connection after the amount of data specified by the MAXIMUM BURST SIZE field is transferred to the SSP initiator port.

For write data, the value shall specify the maximum amount of data that an SSP target port requests via a single XFER RDY frame (see 9.2.2.3).

This value shall be specified in 512-byte increments (e.g., a value of one in this field means that the number of bytes transferred to the SSP initiator port for the nexus is less than or equal to 512 and a value of two in this field means that the number of bytes transferred to the SSP initiator port for the nexus is less than or equal to 1024). A value of zero in this field shall specify that there is no maximum burst size.

In terms of the SCSI transport protocol services (see 10.2.1), the device server shall limit the Request Byte Count argument to the Receive Data-Out () protocol service and the Send Data-In () protocol service to the amount specified in this field.

10.2.7.2.5 FIRST BURST SIZE field

If the ENABLE FIRST BURST field in the COMMAND frame is set to zero, the FIRST BURST SIZE field is ignored

If the ENABLE FIRST BURST field in the COMMAND frame is set to one, the value in the FIRST BURST SIZE field contains the maximum amount of write data in 512-byte increments that may be sent by the SSP initiator port to the SSP target port without having to receive an XFER_RDY frame (see 9.2.2.3) from the SSP target port (e.g., a value of one in this field means that the number of bytes transferred by the SSP initiator port is less than or equal to 512 and a value of two in this field means that the number of bytes transferred by the SSP initiator port is less than or equal to 1024).

Specifying a non-zero value in the FIRST BURST SIZE field is equivalent to an implicit XFER_RDY frame for each command requiring write data where the WRITE DATA LENGTH field of the XFER_RDY frame is set to 512 times the value of the FIRST BURST SIZE field.

The rules for data transferred using the value in the FIRST BURST SIZE field are the same as those used for data transferred for an XFER_RDY frame (i.e., the number of bytes transferred using the value in the FIRST BURST SIZE field is as if that number of bytes was requested by an XFER_RDY frame).

If the amount of data to be transferred for the command is less than the amount of data specified by the FIRST BURST SIZE field, the SSP target port shall not transmit an XFER_RDY frame for the command. If the amount of data to be transferred for the command is greater than the amount of data specified by the FIRST BURST SIZE field, the SSP target port shall transmit an XFER_RDY frame after it has received all of the data specified by the FIRST BURST SIZE field from the SSP initiator port. All data for the command is not required to be transferred during the same connection in which the command is transferred.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE data data in 512-byte increments Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE nexus. If Paragraph break in between Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE one s/b 0001h Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE shall be s/b is

This is a statement of fact. There is no possibility of any other interpretation (there's no "units" field that is required to be set to

Page: 523

Author: RElliott

two

s/b 0002h

523

Author: RElliott

TACCEPT - DONE

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Comments from page 523 continued on next page

this field specifies that there is no bus inactivity time limit. The bus inactivity time limit is enforced by the port layer (see 8.2.3).

10.2.7.2.3 MAXIMUM CONNECT TIME LIMIT field

The value in the MAXIMUM CONNECT TIME LIMIT field contains the maximum duration of a connection (see 4.1.12) in 100 μ s increments (e.g., a value of 0001h in this field means that the time is less than or equal to 100 μ s and a value of 0002h in this field means that the time is less than or equal to 200 μ s). When this time is exceeded, the SSP target port shall prepare to close the connection. If an SSP target port is transferring a frame when the maximum connection time limit is exceeded, the SSP target port shall complete transfer of the frame before preparing to close the connection. This value may be rounded as defined in SPC-4. A value of 0000h in this field specifies that there is no maximum connection time limit. The maximum connection time limit is enforced by the port layer (see 8.2.3).

10.2.7.2.4 MAXIMUM BURST SIZE field

For read data, the value in the MAXIMUM BURST SIZE field contains the maximum amount of transferred during a connection by an SSP target port per I_T__Q nexus without transferring at least one frame for a different I_T L_Q nexus. If the SSP target port:

- a) has read data to transfer for only one I_T_L_Q nexus, and
- b) has no requests to transfer write data for any I T L Q nexus,

then the SSP target port shall prepare to close the connection after the amount of data specified by the MAXIMUM BURST SIZE field is transferred to the SSP initiator port.

For write data, the value shall specify the maximum amount of data that an SSP target port requests via a single XFER RDY frame (see 9.2.2.3).

This value shall be specified in 512-byte is fements (e.g., a value of one in this field means that the number of bytes transferred to the SSP initiator port for the nexus is less than or equal to 512 and a value of two in this field means that the number of bytes transferred to the SSP initiator port for the nexus is less than or equal to 1024). A value of zero in this field shall specify mat there is no maximum burst size.

In terms of the SCSI transport protocol services (see 10.2.1), the device server shall limit the Request Byte Count argument to the Receive Data-Out () protocol service and the Send Data-In () protocol service to the amount specified in this field.

10.2.7.2.5 FIRST BURST SIZE field

If the ENABLE FIRST BURST field in the COMMAND frame is set to zero, the FIRST BURST SIZE field is ignored.

If the ENABLE FIRST BURST field in the COMMAND frame is set to one, the value in the FIRST BURST SIZE field contains the maximum amount of write data in 512-byte increments that may be sent by the SSP initiator port to the SSP target port without having to receive an XFER_RDY frame (see 9.2.2.3) from the SSP target port (e.g., a value of one is this field means that the number of bytes transferred by the SSP initiator port is less than or equal to 512 and a value of two in this field means that the number of bytes transferred by the SSP initiator port is less than or equal to 1024).

Specifying a non-zero value in the FIRST BURST SIZE field is equivalent to an implicit XFER_RDY frame for each command requiring write data where the WRITE DATA LENGTH field of the XFER_RDY frame is set to 512 times the value of the FIRST BURST SIZE field.

The rules for data transferred using the value in the FIRST BURST SIZE field are the same as those used for data transferred for an XFER_RDY frame (i.e., the number of bytes transferred using the value in the FIRST-SURST SIZE field is as if that number of bytes was requested by an XFER_RDY frame).

If the amount of data to be transferred for the command is less than the amount of data specified by the FIRST BURST SIZE field, the SSP target port shall not transmit an XFER_RDY frame for the command. If the amount of data to be transferred for the command is greater than the amount of data specified by the FIRST BURST SIZE field, the SSP target port shall transmit an XFER_RDY frame after it has received all of the data specified by the FIRST BURST SIZE field from the SSP initiator port. All data for the command is not required to be transferred during the same connection in which the command is transferred.

Working Draft Serial Attached SCSI - 2 (SAS-2)

TACCEPT - DONE 512 and 512, and Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE shall specify s/b specifies This is a statement of fact, not a requirement on any entity Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE zero 0000h Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/h then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE ENABLE FIRST BURST field ENABLE FIRST BURST bit Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE ENABLE FIRST BURST field ENABLE FIRST BURST bit Author: RElliott

Comments from page 523 continued on next page

Date: 6/30/2008 3:16:52 PM -07'00'

523

this field specifies that there is no bus inactivity time limit. The bus inactivity time limit is enforced by the port layer (see 8.2.3).

10.2.7.2.3 MAXIMUM CONNECT TIME LIMIT field

The value in the MAXIMUM CONNECT TIME LIMIT field contains the maximum duration of a connection (see 4.1.12) in 100 µs increments (e.g., a value of 0001h in this field means that the time is less than or equal to 100 µs and a value of 0002h in this field means that the time is less than or equal to 200 µs). When this time is exceeded, the SSP target port shall prepare to close the connection. If an SSP target port is transferring a frame when the maximum connection time limit is exceeded, the SSP target port shall complete transfer of the frame before preparing to close the connection. This value may be rounded as defined in SPC-4. A value of 0000h in this field specifies that there is no maximum connection time limit. The maximum connection time limit is enforced by the port layer (see 8.2.3).

10.2.7.2.4 MAXIMUM BURST SIZE field

For read data, the value in the MAXIMUM BURST SIZE field contains the maximum amount of data that is transferred during a connection by an SSP target port per I_T_L_Q nexus without transferring at least one frame for a different I_T_L_Q nexus. If the SSP target port:

- a) has read data to transfer for only one I T L Q nexus, and
- b) has no requests to transfer write data for any I T L Q nexus,

then the SSP target port shall prepare to close the connection after the amount of data specified by the MAXIMUM BURST SIZE field is transferred to the SSP initiator port.

For write data, the value shall specify the maximum amount of data that an SSP arget port requests via a single XFER_RDY frame (see 9.2.2.3).

This value shall be specified in 512-byte increments (e.g., a value of one in this field means that the number of bytes transferred to the SSP initiator port for the nexus is less than or equal to 512 and a value of one in this field means that the number of bytes transferred to the SSP initiator port for the poxus is less than or equal to 1024). A value of zero in this field shall specify that there is no maximum burst size.

In terms of the SCSI transport protocol services (see 10.2.1), the device server shall limit the Request Byte Count argument to the Receive Data-Out () protocol service and the Send Data-In () protocol service to the amount specified in this field.

10.2.7.2.5 FIRST BURST SIZE field

If the ENABLE FIRST BURST field in the COMMAND frame is set to zero, the FIRST BURST SIZE field is ignored.

If the ENABLE FIRST BURST field in the COMMAND frame is set to one, the value in the FIRST BURST SIZE field contains the maximum amount of write data in \$12-byte increments that may be sent by the SSP initiator port to the SSP target port without having to receive an AFER_RDY frame (see 9.2.2.3) from the SSP target port (e.g., a value of one in this field means that the purpose of bytes transferred by the SSP initiator port is less than or equal to 512 and a value of two in this field means that the number of bytes transferred by the SSP initiator port is less than or equal to 1024).

Specifying a non-zero value in the FIRST JURST SIZE field is equivalent to an implicit XFER_RDY frame for each command requiring write data where the WRITE DATA LENGTH field of the XFER_RDY frame is set to 512 times the value of the FIRST BURST JURST FIEld.

The rules for data transferred doing the value in the FIRST BURST SIZE field are the same as those used for data transferred for an XFER_BUY frame (i.e., the number of bytes transferred using the value in the FIRST BURST SIZE field is as if that number of bytes was requested by an XFER_RDY frame).

If the amount of data to be transferred for the command is less than the amount of data specified by the FIRST BURST SIZE field, the SSP target port shall not transmit an XFER_RDY frame for the command. If the amount of data to be transferred for the command is greater than the amount of data specified by the FIRST BURST SIZE field, the SSP target port shall transmit an XFER_RDY frame after it has received all of the data specified by the FIRST BURST SIZE field from the SSP initiator port. All data for the command is not required to be transferred during the same connection in which the command is transferred.

Working Draft Serial Attached SCSI - 2 (SAS-2)

TACCEPT - DONE one

one s/b 0001h

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

- tw

s/b 0002h

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

CACCEPT - DONE

the s/b

s/b then the

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

e/h

523

then the

A value of zero is this field shall specify that there is no first burst size (i.e., an SSP initiator port shall transmit no write DATA frames to the SSP target port before receiving an XFER_RDY frame).

The first burst size is handled by the SCSI transport protocol services (see 10.2.1) and the SSP transport layer (see 9.2.6).

10.2.7.3 Protocol-Specific Logical Unit mode page

The Protocol-Specific Logical Unit mode page (see SPC-4) contains parameters that affect SSP target point operation on behalf of the logical unit.

The mode page policy (see SPC-4) for this mode page shall be either shared or bectarget port. If the SAS target device has multiple SSP target ports, the mode page policy should be per target port.

- a) shall affect all phys in the SSP target port if the mode page policy is per target port; or
- b) shall affect all SSP target ports in the SAS target device if the mode page policy is shared.

Table 215 defines the format of the page for SAS SSP.

Table 215 — Protocol-Specific Logical Unit mode page for SAS SSP

Byte\Bit	7	6	5	4	3	2	1	2		
0	PS	SPF (0b)	PAGE CODE (18h)							
1		PAGE LENGTH (06h)								
2	1	Reserved		TRANSPORT LAYER RETRIES		PROTOCOL IDENTIFIER (6h)				
3		Poponyod								
7		Reserved								

The PARAMETERS SAVEABLE (PS) bit is defined in SPC-4.

The SUBPAGE FORMAT (SPF) bit is defined in SPC-4 and shall be set to the value defined in table 215

The PAGE CODE field is defined in SPC-4 and shall be set to the value defined in table 215.

The PAGE LENGTH field is defined in SPC-4 and shall be set to the value defined in table 215.

A TRANSPORT LAYER RETRIES bit set to one specifies that, for commands received in COMMAND frames with the TLR CONTROL field set to 00b or 11b (see 9.2.1), the target port shall support transport layer retries for XFER RDY and DATA frames for the logical unit as described in 9.2.4 (i.e., transport layer retries are enabled). A TRANSPORT LAYER RETRIES bit set to zero specifies that, for commands received in COMMAND frames with the TLR CONTROL field set to 00b or 11b (see 9.2.1), transport layer retries shall not be used (i.e., transport layer retries are disabled).

NOTE 97 - The TRANSPORT LAYER RETRIES bit may become obsolete in a future version of this standard.

The PROTOCOL IDENTIFIER field is defined in SPC-4 and shall be set to the value defined in table 21% indicating that this is a SAS SSP specific mode page.

10.2.7.4 Protocol-Specific Port mode page

The Protocol-Specific Port mode page (see SPC-4) contains parameters that affect SSP target port operation. If the mode page is implemented by one logical unit in a SCSI target device, it shall be implemented by all logical units in the SCSI target device that support the MODE SELECT or MODE SENSE commands.

Page: 524

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

> shall transmit s/b transmits

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

shall specify that s/b specifies that

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

> zero s/b 0000h

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

 the s/b

then the

Author: stx-ahoulder Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

and shall be set to the value defined in table 215.

This phrase in this sentence and the next 2 sentences should be deleted. SPC-4 correctly and fully defines these fields and SAS should usurp those definitions.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

it s/b

then it

The mode page policy (see SPC-4) for this mode page shall be either shared or per target port. If a SAS target device has multiple SSP target ports, the mode page policy should be per target por

Parameters in this mode page:

- a) shall affect all phys in the SSP target port if the mode page policy is per target port; or
- b) shall affect all SSP target ports in the SAS target device if the mode page policy is shared.

Table 216 defines the format of the page for SAS SSP.

Table 216 — Protocol-Specific Port mode page for SAS SSP

Byte\Bit	7	6	5	4	3	2	1	0		
0	PS	SPF (0b)			PAGE CODE	(19h)				
1				PAGE LENGT	Ή <mark>(0Dh)</mark>					
2	Reserved	CONTINUE	UE BROADCAST ASYNCHRONOUS EVENT READY LED MEANING PROTOCOL IDENTIFIER (6h)							
3				Reserv	/ed					
4	(MSB)			I T NEXUS LO	CC TIME					
5				I_I NEXUS LO	SS TIME			(LSB)		
6	(MSB)		INITI	ATOR RESPON	ISE TIMEOUT	_				
7		=	IINITI	ATOK KESPON	ISE TIMEOUT			(LSB)		
8	(MSB)			DE IECT TO OR	ENLIMIT					
9		=	REJECT TO OPEN LIMIT (LSB)							
10				Reserve	ad					
15				i vesei vi	5u					

The PARAMETERS SAVEABLE (PS) bit is defined in SPC-4.

The SUBPAGE FORMAT (SPF) bit is defined in SPC-4 and shall be set to the value defined in table 216

The PAGE CODE field is defined in SPC-4 and shall be set to the value defined in table 216.

The PAGE LENGTH field is defined in SPC-4 and shall be set to the value defined in table 216.

A CONTINUE AWT bit set to one specifies that the SAS port shall not step the Arbitration Wait Time timer and set the Arbitration Wait Time timer to zero when the SAS perfeceives an OPEN_REJECT (RETRY). A CONTINUE AWT bit set to zero specifies that the SAS peri shall stop the Arbitration Wait Time timer and set the Arbitration Wait Time timer to zero when it receives an OPEN REJECT (RETRY).

A BROADCAST ASYNCHRONOUS EVENT bit set to one specifies that the device server shall enable origination of Broadcast (Asynchronous Event) (see 4.1.13). A BROADCAST ASYNCHRONOUS EVENT bit set to zero specifies that the device server shall disable origination of Broadcast (Asynchronous Event).

The READY LED MEANING bit specifies the READY LED signal behavior (see 10.4.1). Regardless of the mode page policy (see SPC-4) for this mode page, the shared mode page policy shall be applied to the READY LED MEANING bit

The PROTOCOL IDENTIFIER field is defined in SPC-4 and shall be set to the value defined in table 216 indicating that this is a SAS SSP specific mode page.

Working Draft Serial Attached SCSI - 2 (SAS-2)

ACCEPT - DONE the s/b

Page: 525

Author: RElliott

then the Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

s/h 0Eh

Author: hpq-relliott

Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

ACCEPT - DONE PAGE LENGTH (0Dh) [13]

PAGE LENGTH (0Eh) [14]

Author: stx-ghoulder

Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

REJECT and shall be set to the value defined in table 216.

Same comment as in earlier mode pages

Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

CCEPT - DONE (the current wording means "shall not (A and B)". Agree the new wording is clearer ("shall not A and shall not B") though.)

and set the Arbitration Wait Time timer to zero

and shall not set the Arbitration Wait Time timer to zero

Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

REJECT

the SAS port

T10/1760-D Revision 14

28 January 2008

The I_T NEXUS LOSS TIME field contains the minimum time that the SSP target port shall retry connection requests to an SSP initiator port that are rejected with certain responses indicating that the SSP initiator port may no longer be present (see 8.2.2) before recognizing sall T nexus loss (see 4.5). Table 217 defines the values of the I_T NEXUS LOSS TIME field. This value is enforced by the port layer (see 8.2.2).

Table 217 - I T NEXUS LOSS TIME field

Code	Description
0000h	Vendor-specific amount of time.
0001h to FFFEh	Time in milliseconds.
FFFFh	The SSP target port shall never recognize an I_T nexus loss (i.e., it shall retry the connection requests forever).

NOTE 98 - If this mode page is implemented, the default value of the I_T NEXUS LOSS TIME field should be non-zero. It is recommended that this value be 2 000 ms.

NOTE 99 - An SSP initiator port should retry connection requests for at least the time indicated by the I_T NEXUS LOSS TIME field in the Protocol-Specific Port mode page for the SSP target port to which it is trying to establish a connection (see 4.5).

The INITIATOR RESPONSE TIMEOUT field contains the minimum time in milliseconds that the SSP target port shall wait for the receipt of a frame (e.g., a write DATA frame) before aborting the command associated with that frame. An INITIATOR RESPONSE TIMEOUT field set to 0000h indicates that the SSP target port shall disable the initiator response timeout timer. This value is enforced by the transport layer (see 9.2.6.3).

The REJECT TO OPEN LIMIT field contains the minimum time in 10 µs increments that the target port shall wait to establish a connection request with an initiator port on an L_T nexus after receiving an OPEN_REJECT (RETRY), OPEN_REJECT (CONTINUE 0), or OPEN_REJECT (CONTINUE 1). This value may be rounded as defined in SPC-4. A REJECT TO OPEN LIMIT field set to 0000h indicates that the minimum time is vendor specific. This minimum time is enforced by the port layer (see 8.2.3).

10.2.7.5 Phy Control And Discover mode page

The Phy Control And Discover mode page contains parameters that affect SSP arget phy operation. If the mode page is implemented by one logical unit in a SCSI target device, it shall be implemented by all logical units in the SCSI target device that support the MODE SELECT or MODE SENSE commands.

The mode page policy (see SPC-4) for this mode page shall be shared. Parameters in this mode page shall affect only the referenced phy.

Page: 526

Author: wdc-mevans Subject: Highlight Date: 5/29/2008 8:02:38 AM -07'00'

> that s/b

when connection requests from the SSP target port

Author: wdc-mevans Subject: Highlight Date: 5/29/2008 8:02:06 AM -07'00'

TREJECT ("recognizing" also used in table 217. This is not something that is "processed". The application layer might "process" the Nexus Loss event notification, but want to stick with using the term "I_T nexus loss" here rather than Nexus Loss.)

recognizing

the SSP target port processes

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b

then the

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

it s/b

Table 218 defines the format of this mode page.

Table 218 — Phy Control And Discover mode page

Byte\Bit	7	6	5	4	3	2	1	0			
0	PS	SPF (1b) PAGE CODE (19h)									
1		SUBPAGE CODE (01h)									
2	(MSB)	(MSB) PAGE LENGTH (n - 3)									
3		(LSB)									
4		Reserved									
5	Reserved PROTOCOL IDENTIFIER (6h)										
6		GENERATION CODE									
7				NUMBER	OF PHYS						
			SAS ph	ny mode desc	riptor list						
8		S	AS phy m	node descript	or (first)(se	e table 219)					
55			, to p.i., i.		o. (o.)(oo.	2 (42.0 2 (0)					
n - 47		9	AS nhv m	node descript	or (last)(se	table 21%	/				
n			, to pily if	iodo descript	01 (1031)(301	. (10.10 2 70)					

The PARAMETERS SAVEABLE (PS) bit is defined in SPC-4.

The SUBPAGE FORMAT (SPF) bit is defined in SPC-4 and shall be set to the value defined in table 2/18.

The PAGE CODE field is defined in SPC-4 and shall be set to the value defined in table 218.

The SUBPAGE CODE field is defined in SPC-4 and shall be set to the value defined in table 218.

The PAGE LENGTH field is defined in SPC-4 and shall be set to the value defined in Able 218 (i.e., 4 + (the value of the NUMBER OF PHYS field) x (the length in bytes of the SAS phy mode descriptor)).

The PROTOCOL IDENTIFIER field is defined in SPC-4 and shall be set to the value defined in table 218 indicating that this is a SAS SSP specific mode page.

The GENERATION CODE field is a one-byte counter that shall be incremented by one by the device server every time the values in this mode page or the SAS-2 Phy mode page (see 10.2.7.7) field-values are changed. A GENERATION CODE field set 15 00h indicates the generation code is unknown. The device server shall wrap this field to 01h as the next increment after reaching its maximum value (i.e., FFh). The GENERATION CODE field is also contained in the protocol-Specific Port log page and may be used to correlate phy settings across mode page and log page accesses.

NOTE 100 - Device servers compliant with previous versions of this standard set the GENERATION CODE field to 00b

The NUMBER OF PHYS field contains the number of phys in the SAS target device and indicates the number of SAS phy mode descriptors that follow. This field shall not be changeable with the MODE SELECT command.

The SAS phy mode descriptor list contains a SAS phy mode descriptor for each phy in the SAS target device, not just the SAS target port, starting with the lowest numbered phy and ending with the highest numbered phy.

Working Draft Serial Attached SCSI - 2 (SAS-2)

527

Page: 527

```
Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
TACCEPT - DONE (per 4th grade math, it doesn't NEED any more parenthesis)

This << (i.e., 4 + (the value of the NUMBER OF PHYS field) × (the length in bytes of the SAS phy mode descriptor)). >> needs another set of () so it is clear whether the + operation or the x operation is done first.

Author: wdc-mevans
Subject: Cross-Out
Date: 5/6/2008 1:07:50 PM -07'00'
TACCEPT - DONE

field values
[Delete the redundant words.]

Author: wdc-mevans
Subject: Highlight
Date: 5/29/2008 8:04:21 AM -07'00'
TACCEPT - DONE

the
s/b
the SAS-2 Phy mode page and the

Author: RElliott
Subject: Cross-Out
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

that follow.
(matching Isi-gpenokie comment elsewhere)
```

T10/1760-D Revision 14

28 January 2008

Table 219 defines the SAS phy mode descriptor.

Table 219 — SAS phy mode descriptor

Byte\Bit	7	6	5	4	3	2	1	0				
0		Reserved										
1				PHY IDE	ENTIFIER							
2		Reserved										
3												
4	Reserved	ATTACH	HED DEVICE	E TYPE		ATTACHE	D REASON					
5		REASO	NC		NE	GOTIATED LO	GICAL LINK R	ATE				
6		Reserv	ved		ATTACHED SSP INITIATOR PORT	ATTACHED STP INITIATOR PORT	ATTACHED SMP INITIATOR PORT	Reserved				
7		Reserv	ved		ATTACHED SSP TARGET PORT	ATTACHED STP TARGET PORT	ATTACHED SMP TARGET PORT	Reserved				
8				040.41	200	l	l					
15				SAS AL	DDRESS							
16				ATTACHED	SAS ADDRESS							
23				ATTACHED	ADDICESS							
24				ATTACHED P	HY IDENTIFIER	2						
25				Resi	erved							
31				1100	oi vou							
32	PROGRAM	MED MINIMUM	PHYSICAL	LINK RATE	HARDWA	ARE MINIMUM	PHYSICAL LI	NK RATE				
33	PROGRAMI	MED MAXIMUM	PHYSICAL	LINK RATE	HARDWA	ARE MAXIMUM	1 PHYSICAL LI	NK RATE				
34				Resi	erved							
41				1100								
42				Vendor	specific							
43				Veridor								
44				Res	erved							
47				1,63								

The PROGRAMMED MINIMUM PHYSICAL LINK RATE field and PROGRAMMED MAXIMUM PHYSICAL LINK RATE field are defined in the SMP PHY CONTROL function (see 10.4.3.28) for accesses with MODE SELECT commands and in the SMP DISCOVER function (see 10.4.3.10) for accesses with MODE SENSE commands.

This page contains no comments

The fields in the SAS phy mode descriptor not defined in this subclause are defined in the SMP DISCOVER response (see 10.4.3.10). These fields shall not be changeable with the MODE SELECT command.

10.2.7.6 Shared Port Control mode page

The Shared Port Control mode page contains parameters that affect SSP target port operation. If the mode page is implemented by one logical unit in a SCSI target device, it shall be implemented by all logical units in the SCSI target device that support the MODE SELECT or MODE SENSE commands.

The mode page policy (see SPC-4) for this mode page shall be shared.

Table 220 defines the format of this mode page.

Table 220 — Shared Port Control mode page

Byte\Bit	7	6	5	4	3	2	1	0			
0	PS	SPF (1b)	PF (1b) PAGE CODE (19h)								
1			SUBPAGE CODE (02h)								
2	(MSB)		PAGE LENGTH (000Ch)								
3											
4			Reserved								
5		Rese	rved		F	PROTOCOL II	DENTIFIZR (6	h)			
6	(MSB)			DOWED LOS	S TIMEOLIT						
7			POWER LOSS TIMEOUT (LSB)								
8			Reserved								
15				11030							

The PARAMETERS SAVEABLE (PS) bit is defined in SPC-4.

The SUBPAGE FORMAT (SPF) bit is defined in SPC-4 and shall be set to the value defined in table 220.

The PAGE CODE field is defined in SPC-4 and shall be set to the value defined in table 220.

The SUBPAGE CODE field is defined in SPC-4 and shall be get to the value defined in table 220.

The PAGE LENGTH field is defined in SPC-4 and shall be set to the value defined in table 220

The PROTOCOL IDENTIFIER field is defined in SPC-4 and shall be set to the value defined in table 220 in/licating that this is a SAS SSP specific mode page.

The POWER LOSS TIMEOUT field contains the maximum time, in one millisecond increments, that a target port shall respond to connection requests with OPEN_REJECT (RETRY) after receiving NOTIFY (POWER LOSS EXPECTED) (see 7.2.5.3.3). A POWER LOSS TIMEOUT field set to 0000h specifies that the maximum time is vendor-specific. The power loss timeout shall be restarted on each NOTIFY (POWER LOSS EXPECTED) that is received.

10.2.7.7 SAS-2 Phy mode page

The SAS-2 Phy mode page contains parameters that affect SSP target phy operation that were first defined in SAS-2. If the mode page is implemented by one logical unit in a SCSI target device, it shall be implemented by all logical units in the SCSI target device that support the MODE SELECT or MODE SENSE commands.

The mode page policy (see SPC-W) for this mode page shall be shared. Parameters in this mode page shall affect only the referenced phy.

Working Draft Serial Attached SCSI - 2 (SAS-2)

529

Page: 529

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

This << SCSI target device, it shall be implemented >> should be << SCSI target device, then it shall be implemented >>

Author: RElliott
Subject: Highlight
Date: 8/27/2008 5:05:17 PM -07'00'
TACCEPT - DONE (rename this globally. Also affects the mode descriptor name.)

SAS-2 Phy mode page

Author: Isi-gpenokie
Subject: Cross-Out
Date: 8/27/2008 5:05:42 PM -07'00'
¬¬ACCEPT - DONE (with the name change)

Enhanced Phy Control mode page

This << that were first defined in SAS-2 >> is not a relevant statement and should be deleted. If you insist that it be in the standard it would have to be a note.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

it
s/b
then it

Author: stx-ghoulder Subject: Highlight Date: 5/29/2008 8:05:08 AM -07'00' ACCEPT - DONE (deleted the sentence)

In general, this should be plural. Also the sentence should be obvious since each phy has its own descriptor. The sentence should be deleted.

T10/1760-D Revision 14 28 January 2008

Table 221 defines the format of this mode page.

Table 221 — SAS-2 Phy mode page

Byte\Bit	7	6	5	4	3	2	1	0			
0	PS	SPF (1b)	SPF (1b) PAGE CODE (19h)								
1		SUBPAGE CODE (03h)									
2	(MSB)	(MSB) PAGE LENGTH (n - 3)									
3		(LSB)									
4		Reserved									
5	Reserved PROTOCOL IDENTIFIER (6h)										
6		GENERATION CODE									
7				NUMBER	OF PHYS						
			SAS-2 p	hy mode des	criptor list						
8		SA	AS-2 phy i	mode descrip	tor (first)(se	e table 222)/				
27		G.	.о _ р, .	mode decemp		/	7				
n - 19		SAS-2 phy mode descriptor (last)(see/table 222)									
n			-c-z priy i	mode descrip	// // (IdSI)(SE	59 IADI6 222	-,				

The PARAMETERS SAVEABLE (PS) bit is defined in SPC-4.

The SUBPAGE FORMAT (SPF) bit is defined in SPC-4 and shall be set to the value defined in table 221.

The PAGE CODE field is defined in SPC-4 and shall be set to the value defined in table 221.

The SUBPAGE CODE field is defined in SPC-4 and shall be set to the value defined in table 221.

The PAGE LENGTH field is defined in SPC-4 and shall be set to the value defined in table 221 (i.e., 4 + (the value of the NUMBER OF PHYS field) \times (the length in bytes of the SAS phy mode descriptor)).

The PROTOCOL IDENTIFIER field is defined in SPC-4 and shall be set to the value defined in table 221 indicating that this is a SAS SSP specific mode page.

The GENERATION CODE field is defined in the Phy Control and Discover mode page (see 10.2.7.5).

The NUMBER OF PHYS field contains the number of phys in the SAS target device and indicates the number of SAS-2 phy mode descriptors-that follow: This field shall not be changeable with the MODE SELECT command.

The SAS-2 phy mode descriptor list contains a SAS-2 phy mode descriptor for each phy in the SAS target device, not just the SAS target port, starting with the lowest numbered phy and ending with the highest numbered phy.

Page: 530

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

that follow.

(matching lsi-gpenokie comment elsewhere)

Table 222 defines the SAS-2 phy mode descriptor.

Table 222 — SAS-2 phy mode descriptor

Byte\Bit	7	6	5	4	3	2	1	0			
0		Reserved									
1		PHY IDENTIFIER									
2	(MSB)										
3		DESCRIPTOR LENGTH (0010h) (LSB)									
4		PROGRAMMED PHY CAPABILITIES									
7											
8		CURRENT PHY CAPABILITIES									
11		-		CURRENT PH	r Capabilitie	5					
12				ATTACHED PH	V CARARII ITIS	-0					
15		-		ATTACHED PH	Y CAPABILITIE	:5					
16				Dee	erved						
17		_		Res	ervea			-			
18		Reserved NEGOTIATED NEGOTIATED PHYSICAL LINK RATE						RATE			
19		Reserved HARDWARE MUXING SUPPORTED									

The DESCRIPTOR LENGTH field contains the length in bytes that follow in the descriptor and shall be set to 10h.

The fields in the SAS-2 phy mode descriptor not defined in this subclause are defined in the SMP DISCOVER response (see 10.4.3.10). These fields shall not be changeable with the MODE SELECT command.

Page: 531

Author: RElliott
Subject: Underline
Date: 6730/2008 3:16:52 PM -07'00'
TACCEPT - DONE
shall be set to 10h.
s/b
shall be set to the value defined in table 222.

T10/1760-D Revision 14

10.2.8 SCSI log parameters

10.2.8.1 Protocol-Specific Port log page

The Protocol-Specific Port log page for SAS SSP defined in table 223 is used to return information about phy events concerning the SAS target device's phy(s).

Table 223 — Protocol-Specific Port log page for SAS SSP

Byte\Bit	7	6	5	4	3	2	1	0	
0	DS	SPF (0b)			PAGE CO	ODE (18h)		/	
1		SUBPAGE CODE (00h)							
2	(MSB)								
3			PAGE LENGTH (n - 3) (LSB)						
	Protocol-specific port log parameter list								
4		Protocol-specific port log parameter (first)(see table 224)							
		Protocol-specific port log parameter (Illst)(see table 224)							
		Protocol-specific port log parameter (/ast)(see table 224)							
n		1 10100	o. opcom	o po. 1.09 pui		ty(coo table	,		

The DISABLE SAVE (DS) bit is defined in SPC-4.

The SUBPAGE FORMAT (SPF) bit is defined in SPC-4 and shall be set to the value defined in table 223.

The PAGE CODE field is defined in SPC-4 and shall be set to the value defined in table 223.

The SUBPAGE CODE field is defined in SPC-4 and shall be set to the value defined in table 223.

The PAGE LENGTH field is defined in SPC-4and shall be set to the value defined in table 223.

The protocol-specific port log parameter list contains a protocol-specific port log parameter for each SCSI port in the SAS target device.

Page: 532

28 January 2008

Author: stx-ghoulder
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
PACCEPT - DONE
SPC-4and
Add a space before "and".

Table 224 defines the format for the Protocol-Specific Port log parameter for SAS. The SAS log parameter is a list parameter (i.e., not a data counter) and only has cumulative (i.e., not threshold) values (see SPC-4).

Table 224 — Protocol-Specific Port log parameter for SAS

Byte\Bit	7	6	5	4	3	2	1	0	
0	(MSB)	(MSB) PARAMETER CODE (relative target port identifier)							
1		· P	AKAMETER	CODE (relativ	re target po	it identilier)		(LSB)	
2				Parameter	control byte	1			
2	DU	Obsolete	TSD	ETC	TM	ИС	FORMAT A	ND LINKING	
3				PARAMETER L	ENGTH (y -	3)			
4		Reserved PROTOCOL IDENTIFIER (6h)						Sh)	
5		Reserved							
6		GENERATION CODE							
7		NUMBER OF PHYS							
			SAS p	hy log descri	ptor list				
8		SAS phy log descriptor (first)(see table 226)							
8 + m									
y - m		SAS phy log descriptor (last)(see table 226)							
у		•	одо риу	log descripto	(1831)(366	table 220)			

The PARAMETER CODE field is defined in SPC-4 and contains the relative target port identifier (see SPC-4) of the SSP target port that the log parameter describes.

This page contains no comments

T10/1760-D Revision 14 28 January 2008

Table 225 defines the values of the fields in the parameter control byte for the log parameter.

Table 225 — Parameter control byte in the Protocol-Specific Port log parameter for SAS

Field	Value for LOG SENSE	Value for LOG SELECT	Description
DU	0	0 or =	The וולו is not defined for list parameters, so shall be set to zero when read with the LOG SENSE command and shall be ignored when written with the LOG SELECT command.
TSD	0	0 or 1	The device server shall support implicitly saving the log parameter at vendor specific intervals.
ETC	0	0 or 1	The ETC bit is not defined for list parameters, so shall be set to zero when read with the LOG SENSE command and shall be ignored when written with the LOG SELECT command.
TMC	00b	any	The TMC field is not defined for list parameters, so shall be set to 00b when read with the LOG SENSE command and shall be ignored when written with the LOG SELECT command.
FORMAT AND LINKING	11b	11b	The log parameter is a binary format list parameter.

The PARAMETER LENGTH field is defined in SPC-4 and shall be set to the value defined in table 224.

The PROTOCOL IDENTIFIER field is defined in SPC-4 and shall be set to the value defined in table 224.

The GENERATION CODE field is defined in the Phy Control and Discover mode page see 10.2.7.5).

The NUMBER OF PHYS field contains the number of phys in the SAS target port (not in the entire SAS target device) and indicates the number of SAS phy log descriptors-that-follow:

The SAS phy log descriptor list contains SAS phy log descriptors.

Table 226 defines the SAS phy log descriptor.

534

Table 226 — SAS phy log descriptor (part 1 of 2)

Byte\Bit	7	6	5	4	3	2	1	0	
0		Reserved							
1		PHY IDENTIFIER							
2		Reserved							
3		SAS PHY LOG DESCRIPTOR LENGTH (M - 3)							
4	Reserved	Reserved ATTACHED DEVICE TYPE ATTACHED REASON							
5		REASON NEGOTIATED LOGICAL LINK RATE							
6	Reserved				ATTACHED SSP INITIATOR PORT	ATTACHED STP INITIATOR PORT	ATTACHED SMP INITIATOR PORT	Reserved	

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 534

(matching lsi-gpenokie comment elsewhere)

Author: stx-ghoulder
Subject: Highlight
Date: 5/26/2008 9:06:14 AM -07'00'
REJECT (seems clear enough as is. SBC-3 added "(i.e., ignored)" to similar tables, but that requires making the column wider and results in a longer table)

0 or 1
Replacing this with "any" would reinforce the idea that the value will be ignored.

Author: stx-ghoulder
Subject: Highlight
Date: 5/26/2008 9:06:35 AM -07'00'
REJECT (see response two rows above)

0 or 1
Replacing this with "any" would reinforce the idea that the value will be ignored.

Author: RElliott
Subject: Cross-Out
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
that follow.

Table 226 — SAS phy log descriptor (part 2 of 2)

Byte\Bit	7	6	5	4	3	2	1	0
7		Rese	erved		ATTACHED SSP TARGET PORT	ATTACHED STP TARGET PORT	ATTACHED SMP TARGET PORT	Reserved
8		SAS ADDRESS						
15				0/10 / 12	5511200			
16		<u>.</u>		ATTACHED S	SAS ADDRESS			
23				7117101125	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_/		
24				ATTACHED PH	HY IDENTIFIER			
25				Res	erved			
31								
32	(MSB)	<u>.</u>		INVALID DW	ORD COUNT			
35			INVALID DWORD COUNT					(LSB)
36	(MSB)	. /	RUNNING DISPARITY ERROR COUNT					
39					ב			(LSB)
40	(MSB)		LOS	S OF DWORD	SYNCHRONIZ/	ATION		
43								(LSB)
44	(MSB)			PHY RESE	T PROBLEM			
/si			(LSF					
48				Res	erved			
50								
51				BER OF PHY E		PTORS		/
			Phy	event descrip	otor list		/_	
52		- Ph	y event des	criptor (first)(see table 28	8 in 10.4.3.1	9.4)	-
63						/		
						/		
m - 11		. Ph	y event des	criptor (last)(see table 28	g in 10.4.3.1	4.4)	
m			Phy event descriptor (last)(see table 28% in 10.4.3.14.4)					

The SAS PHY LOG DESCRIPTOR LENGTH field indicates the number of bytes that follow in the SAS phy log descriptor. A SAS PHY LOG DESCRIPTOR LENGTH field set to zero indicates that there are 44 additional bytes.

NOTE 101 - Logical units compliant with SAS and SAS-1.1 only support a 48 byte SAS phy log descriptor.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 535

Author: RElliott Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Per 6/11 LB call, change byte 50 to a Phy Event Descriptor Length field. (this matches a change being made in SMP, which is also gaining a Length field outside the descriptor)

"The phy event descriptor length field indicates the number of bytes in the phy event descriptor (see 10.4.3.14.4)."

The units are in bytes rather than dwords to match the other length fields in log pages. (this differs from the length fields in SMP

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

After:

"indicates the number of bytes that follow in the SAS phy log descriptor"

add:

"and shall be set to the value defined in table 226"

 Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

> zero s/b

00h

535

T10/1760-D Revision 14 28 January 2008

The INVALID DWORD COUNT field, RUNNING DISPARITY ERROR COUNT field, LOSS OF DWORD SYNCHRONIZATION field, and PHY RESET PROBLEM COUNT field are each defined in the SMP REPORT PHY ERROR LOG response (see 10.4.3.11).

For the INVALID DWORD COUNT field, RUNNING DISPARITY ERROR COUNT field, LOSS OF DWORD SYNCHRONIZATION COUNT field, and PHY RESET PROBLEM COUNT field, the phy may maintain any size counter but should maintain a 32-bit counter. If it reaches its maximum value, the counter shall stop and the device server shall set the field to FFFFFFFFh in the SAS phy log descriptor.

The NUMBER OF PHY EVENT DESCRIPTORS field indicates how many phy event descriptors follow.

Each phy event descriptor follows the format defined for the SMP REPORT PHY EVENT function in table 288 (see 10.4.3.14.4).

The fields in the SAS phy log descriptor not defined in this subclause are defined in the SMP DISCOVER response (see 10.4.3.10). These fields shall not be changeable with the LOG SELECT command.

10.2.9 SCSI diagnostic parameters

10.2.9.1 SCSI diagnostic parameters overview

Table 227 defines diagnostic pages supported by logical units in SCSI target devices in SAS domains (i.e., with SSP target ports) that support the SEND DIAGNOSTIC or RECEIVE DIAGNOSTIC RESULTS commands.

Table 227 — SSP target port diagnostic pages

Diagnostic page code	Description	Reference
3Fh	Protocol-Specific diagnostic page	10.2.9.2

An enclosure services process (see SES-2) describing elements in a SAS domain that are attached to a zoning expander device with zoning enabled (see 4.5) shall apply the zone permission table when providing access to those elements. Element types that may be subject to zoning include:

- a) Device element;
- b) Array Device element;
- c) Enclosure Services Controller Electronics element;
- d) SCC Controller Electronics element;
- e) SCSI Port/Transceiver element;
- f) SCSI Target Port element:
- g) SCSI Initiator Port element;
- h) SAS Expander element; and
- i) SAS Connector element.

Table 228 defines SCSI enclosure services diagnostic pages supported by logical units in SCSI target devices in SAS domains (e.g., with SSP target ports) that are affected by zoning.

Table 228 — Diagnostic pages affected by zoning

Diagnostic page code	Description	Reference
02h	Enclosure Control diagnostic page	SES-2 and 10.2.9.3
0211	Enclosure Status diagnostic page	SES-2 and 10.2.9.4
0Ah	Additional Element Status diagnostic page	SES-2 and 10.2.9.5

10.2.9.2 Protocol-Specific diagnostic page

536

The Protocol-Specific diagnostic page for SAS SSP provides a method for an application client to enable and disable phy test functions (see 4.10) for selected phys. The diagnostic page format is specified in SPC-4.

Working Draft Serial Attached SCSI - 2 (SAS-2)

```
Page: 536
 Author: Isi-gpenokie
Subject: Cross-Out
Date: 5/6/2008 1:07:50 PM -07'00'
ACCEPT - DONE
    This tern << each >> adds nothing and should be deleted.
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
The
    then the
 Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE
     how many phy event descriptors follow
    the number of phy event descriptors in the phy event descriptor list.
 Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
    Device element
    Device Slot element
    to match SES-2 revision 20
 Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
    Array Device element
```

Array Device Slot element

to match SES-2 revision 20

The Protocol-Specific diagnostic page is transmitted using the SEND DIAGNOSTIC command. If the device server receives a RECEIVE DIAGNOSTIC RESULTS command with the PAGE CODE field set to 3Fh, it shell—terminate the command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN CDB Table 229 defines the Protocol-Specific diagnostic page for SAS SSP.

Table 229 — Protocol-Specific diagnostic page for SAS SSP

Byte\Bit	7	6	5	4	3	2	1	0	
0		PAGE CODE (3Fh)							
1		Reserved				PROTOCOL ID	ENTIFIER (6h	1)	
2	(MSB)	(MSB) PAGE LENGTH (001Ch)							
3				PAGE LENG	TH (00 TCII)			(LSB)	
4		PHY IDENTIFIER							
5		PHY TEST FUNCTION							
6		PHY TEST PATTERN							
7	Reserved	PHY TEST PATTERN SATA		ST PATTERN SSC	PHY TE	ST PATTERN	PHYSICAL LIF	NK RATE	
8			•	Res	erved				
10				1763	siveu				
11			PHY T	EST PATTERN	DWORDS CO	NTROL			
12		NIVE TOT DETTON DIVODO							
19		PHY TEST PATTERN DWORDS ——————							
20				Res	erved				
31		Reserved ————							

The PAGE CODE field is defined in SPC-4 and shall be set to the value defined in table 229.

The PROTOCOL IDENTIFIER field shall be set to the value defined in table 229 indicating this is a SAS SSP specific diagnostic page.

Editor's Note 6: That field should be defined in SPC-4 for all protocols. Once done, add "is define in SPC-4 and")

The PAGE LENGTH field is defined in SPC-4 and shall be set to the value defined in table 229.

The PHY IDENTIFIER field specifies the phy identifier (see 4.2.8) of the phy that is to perform or to stop performing a phy test function (i.e., the selected phy). If the PHY IDENTIFIER field specifies a phy that does not exist, then the device server shall terminate the SEND DIAGNOSTIC command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMMETER LIST.

537

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 537

Author: REliiott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

It
s/b
then it

Author: hpg-relliott
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

Author: hpg-relliott
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

Author: hpg-relliott
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

ACCEPT - DONE

global
change
PHY TEST PATTERN PHYSICAL LINK RATE to PHY TEST FUNCTION PHYSICAL LINK RATE,
PHY TEST PATTERN SATA to PHY TEST FUNCTION SATA, and

Other phy test functions in the future may also use these fields.

PHY TEST PATTERN TX SSC to PHY TEST FUNCTION TX SSC

Author: stx-ghoulder
Subject: Highlight
Date: 5/29/2008 10:49:22 AM -07'00'
 Date: 5/29/2008 10:49:22 AM -07'00'
 ACCEPT - DONE (5/7 SAS LB meeting agrees we should do this. T10 proposal 08-254r0 SPC-4 Protocol Specific diagnostic page posted.)

Editor's Note 6: That field should be defined in SPC-4 for all protocols. Once done, add "is defined in SPC-4 and"
This note must be resolved and deleted.

s/b

then the

The PHY TEST FUNCTION field specifies the phy test function to be performed and is defined in table 230. If the PHY TEST FUNCTION field specifies a phy test function that is not supported, then the device server shall terminate the SEND DIAGNOSTIC command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

Table 230 - PHY TEST FUNCTION field

Code	Name	Description
00h	STOP	If the selected phy is performing a phy test function, then the selected phy shall stop performing the phy test function and originate a link reset sequence. If the selected phy is not performing a phy test function, then this function has no effect on the selected phy. ^a
01h	TRANSMIT PATTERN	If the selected phy is not performing a pny test function, the selected phy shall be set to transmit the pny test pattern specified by the PHY TEST PATTERN field at the physical link rate specified by the PHY TEST PATTERN PHYSICAL LINK RATE field and set to ignore its receiver. If the selected phy receives data while transmitting the pattern, then the selected phy shall ignore the received data.
		If the selected phy is performing a phy test function, the sevice server shall terminate the SEND DIAGNOSTIC command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set to PHY TEST FUNCTION IN PROGRESS. ^a
02h - EFh	Reserved	
F0h - FFh	Vendor specif	ic

^a If there is no SSP target port available to receive a SEND DIAGNOSTIC command to stop a phy from performing a phy test function, then a power on may be required to cause the phy to stop performing the function and originate a phy reset sequence.

If the PHY TEST FUNCTION field is set to 01h (i.e., TRANSMIT_PATTERN), then the PHY TEST PATTERN field specifies the phy test pattern to be transmitted as defined by table 231. If the PHY TEST PATTERN field specifies a phy test pattern that is not supported by the specified SAS phy, then the device server shall terminate the

Page: 538 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the Author: hpq-relliott Subject: Highlight Date: 5/26/2008 9:07:17 AM -07'00' be set to transmit the perform the transmit pattern phy test function (see 4.10.2) using the [after adding section 4.10.2 per other comment] Author: hpq-relliott Subject: Cross-Out Date: 5/26/2008 9:07:27 AM -07'00' Delete: and set to ignore its receiver. If the selected phy receives data while transmitting the pattern, then the selected phy shall ignore the received data. after adding section 4.10.2, which will contain that rule (in more detail). Author: RElliott Author: Reliiott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the

28 January 2008

T10/1760-D Revision 14

SEND DIAGNOSTIC command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

Table 231 - PHY TEST PATTERN field

Code	Name	Description
00h	Reserved	
01h	JTPAT	The selected phy shall continuously transmit the JTPAT for RD+ and RD- (see A.1).
02h	CJTPAT	The selected phy shall continuously transmit the CJTPAT (see A.2).
03h - 0Fh	Reserved	
10h	TRAIN	The selected phy shall continuously transmit the TRAIN pattern (see 6.7.4.2.3.4).
11h	TRAIN_DONE	The selected phy shall continuously transmit the TRAIN_DONE pattern (see 6.7.4.2.3.4).
12h	IDLE	The selected phy shall continuously transmit idle dwords (see 7.4).
13h - 3Fh	Reserved	
40h	TWO_DWORDS	The selected phy shall continuously transmit the dwords specified by the PHY TEST PATTERN DWORDS CONTROL field and the PHY TEST PATTERN DWORDS field without scrambling. This pattern is only for use for characterization of the transmitter device and the passive interconnect. Phys are not required to support all patterns that may be specified.
41h - EFh	Reserved	
F0h - FFh	Vendor specific	

A PHY TEST PATTERN SATA bit set to one specifies that the phy shall transmit the phy test pattern as a SATA/phy. A PHY TEST PATTERN SATA bit set to zero specifies that the phy shall transmit the phy test pattern as a SATA/phy. If the PHY TEST PATTERN SATA bit is set to one and the phy does not support SATA, then the device structure shall terminate the SEND DIAGNOSTIC command with CHECK CONDITION status with the sense to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST

The PHY TEST PATTERN SSC field specifies the SSC modulation type (see 5.3.8.1) with which the pty test pattern shall be transmitted and is defined in table 232. If the SSC modulation type specified by the PHY TEST PATTERN SSC field is not supported (e.g., if the phy is a SAS phy, then it only supports to SSC and down-spreading SSC), then the device server shall terminate the SEND DIAGNOSTIC command with

Page: 539

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
Shall transmit the phy test pattern

Replace these 2 sentences with:

A phy test function sata bit set to one specifies that the phy shall transmit as a SATA phy during the phy test function. A phy test function sata bit set to zero specifies that the phy shall transmit as a SAS phy during the phy test function.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
with which the phy test
pattern shall be transmitted
s/b

that the phy shall use during transmission during the phy test function

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

no SSC
s/n

s/n no-spreading

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

REJECT (suggested change doesn't make sense - this is not a list of 3 things ANDed together)

This << a SAS phy, then it only supports no SSC and >> should be << a SAS phy, only supports no SSC, and>>

CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

Table 232 - PHY TEST PATTERN SSC field

Code	Description
00b	No SSC
01b	Center-spreading SSC ^a
10b	Down-spreading SSC
11b	Reserved
center CHEC	PHY TEST PATTERN SATA bit is set to the file., a SATA phy is requested to transmit spreading), the device server shall terminate the SEND DIAGNOSTIC command with K CONDITION status with the sense key set to ILLEGAL REQUEST and the additional code set to INVALID FIELD IN PARAMETER LIST.

The PHY TEST PATTERN PHYSICAL LINK RATE field specifies the physical link rate at which the phy test pattern shall be transmitted and is defined in table 233. If the physical link rate specified by the PHY TEST PATTERN PHYSICAL LINK RATE field is less than the hardware minimum physical link rate or greater than the hardware maximum physical link rate, then the device server shall terminate the SEND DIAGNOSTIC command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

Table 233 — PHY TEST PATTERN PHYSICAL LINK RATE field

Code	Description
0h - 7h	Reserved
8h	1.5 Gbps
9h	3 Gbps
Ah	6 Gbps
Bh - Fh	Reserved for future physical link rates

The PHY TEST PATTERN DWORDS CONTROL field and PHY TEST PATTERN DWORDS field are only used if the PHY TEST PATTERN field is set to 40h (i.e., TWO_DWORDS) (see table 231).

Page: 540

28 January 2008

T10/1760-D Revision 14

The PHY TEST PATTERN DWORDS CONTROL field defined in table 234 controls whether the bytes in the PHY TEST PATTERN DWORDS field are sent as control characters or data characters.

Table 234 — PHY TEST PATTERN DWORDS CONTROL field

Code	Description
00h	Each byte in the PHY TEST PATTERN DWORDS field shall be sent as a data character (i.e., Dxx,y)(see 6.3.3) without scrambling.
08h	The fifth byte in the PHY TEST PATTERN DWORDS field shall be sent as a control character (i.e., Kxx.y)(see 6.3.3); cach other byte shall be sent as a data character without scrambling.
80h	The first byte in the PHY TEST PATTERN DWORDS field shall be seet as a control character; each other byte shall be sent as a data character without scrambling.
88h	The first and fifth bytes in the PHY TEST PATTERN DWORDS field shall each be sent as a control character; each other byte shall be sent as a data character without scrambling.
All others	Reserved

The PHY TEST PATTERN DWORDS field contains the two dwords that are sent owing a TWO_DWORDS test pattern. Whether each byte in the dwords is sent as a control character or a data character is specified by the PHY TEST PATTERN DWORDS CONTROL field. A byte specifying a control character shall only specify a control character which is used in this standard (see table 85 in 6.3) and is supported by the phy (i.e., all phys support K28.5 (i.e., BCh)), but only phys supporting STP support K28.3 (i.e., TCh) or K28.6 (i.e., DCh)).

The device server shall terminate a SEND DIAGNOSTIC command specifying any unsupported combination with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

Page: 541

point to new section on control characters

```
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
    see 6.3.3)
    point to new section for data characters
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
    see 6.3.3)
    point to new section for data characters
Author: Isi-gpenokie
Subject: Highlight
Date: 5/29/2008 10:50:48 AM -07'00'
 ACCEPT - DONE (as two sentences, still using "each" so not create a plural/singular mismatch)
    This << Kxx.y)(see 6.3.3); each other byte shall be sent >> should be << Kxx.y)(see 6.3.3) and all other bytes shall be sent >>
Author: Isi-gpenokie
Subject: Highlight
Date: 5/29/2008 10:50:53 AM -07'00'
 ACCEPT - DONE (as two sentences, still using "each" so not create a plural/singular mismatch)
    This << character; each other byte shall be >> should be << character and all other bytes shall be >>
Author: Isi-gpenokie
Subject: Highlight
Date: 5/29/2008 10:50:58 AM -07'00'
 ACCEPT - DONE (as two sentences, still using "each" so not create a plural/singular mismatch)
    This << character; each other byte shall be >> should be << character and all other bytes shall be >>
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
   6.3)
```

T10/1760-D Revision 14 28 January 2008

Table 235 lists some examples of TWO_DWORDS phy test patterns.

Table 235 — TWO_DWORDS phy test pattern examples

	PHY TEST PATTERN DWORDS CONTROL field	PHY TEST PATTERN DWORDS field	Description
			D10.2 characters (see table 83 in 6.3.3). This high-frequency pattern
	00h	4A4A4A4A 4A4A4A4Ah	contains 01b repeating and has the highest possible frequency. This pattern may be used for measuring skew and rise/fall times (see table 58 in 5.3.6.2, table 59 in 5.3.6.3, and table 68 in 5.3.7.3).
	00h	B5B5B5B5 B5B5B5B5h	D21.5 characters (see table 83 in 6.3.3). This high-frequency pattern contains 10b repeating and has the highest possible frequency. This pattern may be used for measuring skew and rise/fall times (see table 58 in 5.3.6.2, table 59 in 5.3.6.3, and table 68 in 5.3.7.3).
	00h	78787878 78787878h	D24.3 characters (see table 83 in 6.3.3). This mid-frequency pattern contains 0011b or 1100b repeating (depending on starting disparity) and has half the highest possible frequency.
	00h	D926D926 D926D926h	Pairs of D25.6 and D6.1 characters (see table 83 in 6.3.3). This mid-frequency pattern contains 1001b repeating and has half the highest possible frequency.
	00h	7E7E7E7E 7E7E7E7Eh	D30.3 characters (see table 83 in 6.3.3). This low-frequency pattern contains four bits of one polarity, three bits of the other polarity and three bits of the first polarity (e.g., 1111000111b), followed by the inverse (e.g., 0000111000b).
	00h	EBF4EBF4 EBF4EBF4h	Pairs of these D11.7 and D20.7 characters (see table 83 in 6.3.3). This lone-bit pattern contains a single bit of one polarity after five bits of the other polarity (i.e., 0000010b and 1111101b).
	88h	BC4A4A7B BC4A4A7Bh	ALIGN (0) primitives (see table 112 in 7.2.2). This pattern appears during OOB bursts (see 6.6), the SATA speed regotiation sequence (see 6.7.2.2), and the SAS speed negotiation sequence (see 6.7.4.2).
	88h	BC070707 BC070707h	ALIGN (1) primitives (see table 1/2 in 7.2.3). This pattern appears during the SAS speed negotiation sequences (see 6.7.4.2).
	80h	BC4A4A7B 4A787E7Eh	Pairs of an ALIGN (0) primitive (see table 112 in 7.2.3) and a dword containing D10.2, D24.2, D30.3, and D30.3 characters (see table 83 in 6.3.3).

Editor's Note 7: there are several more tables using D10.2 now... should they all be listed?

10.2.9.3 Enclosure Control diagnostic page

542

If the SELECT bit is set to one for any element that represents a device attached to an expander phy for which the SAS initiator port performing the SEND DIAGNOSTIC command does not have access according to the zone permission table, the inclosure services process shall terminate the SEND DIAGNOSTIC command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 542

```
■ Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE
throughout this table, update 6.3.3 to the new section for data characters

Author: stx-ghoulder
Subject: Highlight
Date: 9/2/2008 5:09:01 PM -07'00'

ACCEPT - DONE (5/7 replace the specific references to a more global reference to 5.3 - or 5.2 and 5.3)

Editor's Note 7: there are several more tables using D10.2 now... should they all be listed?
Remove editors note.
```

Author: RElicit Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the

T10/1760-D Revision 14

10.2.9.4 Enclosure Status diagnostic page

The enclosure services process shall set the ELEMENT STATUS CODE field to 8h (i.e., No Access Allowed) for each element that represents a device attached to an expander phy for which the SAS initiator port performing the RECEIVE DIAGNOSTIC RESULTS command does not have access according to the zone permission

10.2.9.5 Additional Element Status diagnostic page

The enclosure services process shall set the INVALID bit to one in the Additional Element Status descriptor (see SES-2) for each element that represents a device attached to apexpander phy for which the SAS initiator port performing the RECEIVE DIAGNOSTIC RESULTS command does not have access according to the zone permission table.

10.2.10 SCSI power conditions

10.2.10.1 SCSI power conditions overview

The logical unit power condition states from the Power Condition mode page (see SPC-4) and START STOP UNIT command (see SBC-3), if implemented, shall interact with the NOTIFY (ENABLE SPINUP) primitive (see 7.2.5.3) to control temporary consumption of additional power (e.g., spin-up of rotating media) as described in this subclause.

The logical unit uses NOTIFY (ENABLE SPINUP) to:

- a) initiate spin-up after power on; and
- delay spin-ups requested by START STOP UNIT of

10.2.10.2 SA_PC (SCSI application layer power condition) state machine

10.2.10.2.1 SA_PC state machine overview

The SA_PC (SCSI application layer power condition) state machine describes how the SAS target device processes logical unit power condition state change requests and NOTIFY (ENABLE SPINUP) if it is a SCSI target device:

NOTE 102 - This state machines is an enhanced version of the logical unit power condition state machines described in SPC-4 and SBC-3.

This state machine consists of the following states:

- a) SA_PC_0:Powered_On (see 10.2.10.2.2)(initial state);
- b) SA_PC_1:Active (see 10.2.10.2.3);
- SA_PC_2:Idle (see 10.2.10.2.4);
- d) SA_PC_3:Standby (see 10.2.10.2.5);
- e) SA_PC_4:Stopped (see 10.2.10.2.6)(specific to SBC-3 logical units);
- f) SA_PC_5:Active_Wait (see 10.2.10.2.7)(specific to SAS devices); and
- g) SA_PC_6:Idle_Wait (see 10.2.16.2.8)(specific to SAS devices).

This state machine shall start in the SA_PC_0:Powered_On state after power on.

If the device server processes a START STOP UNIT command (see SBC-3) with the IMMED bit set to one, it may complete the command before completing the transition, if any, specified by the POWER CONDITION field

Page: 543

Author: stx-ghoulder

Subject: Highlight Date: 5/26/2008 9:09:31 AM -07'00'

REJECT (SAS builds on SBC, adding Active_Wait and Idle_Wait. SBC builds on SPC, adding Stopped. SPC defines Powered_On, Active, Idle, and Standby. Fibre Channel, USB, SRP, and iSCSI-based SBC readers wouldn't appreciate SAS material included in

10.2.10 SCSI power conditions

This entire clause seems to be written so that it is intended to be located in SBC (there are references to "SAS specific" and "SBC specific" states). If it were located in SBC and merged with requirements there, we would only have to manage two versions of power management instead of three versions like today.

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

spin-up of rotating media

to spin up rotating media

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

initiate spin-up

allow initial temporary consumption of additional power

Author: stx-ahoulder

Subject: Highlight Date: 5/30/2008 12:42:57 PM -07'00'

TACCEPT - DONE (as "delay temporary consumption of additional power after the Power Condition mode page standby condition timer expires.")

b) delay spin-ups requested by START STOP UNIT commands.

Add bullet "c) delay spinups requested for recovery from Standby power state."

Author: RElliott

Subject: Note

Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

spin-ups

temporary consumption of additional power

Author: RElliott

Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

Global in 10.2.10.2: change "SAS device" to "SAS target device"

Author: RElliott Subject: Note

Date: 9/24/2008 7:50:26 AM -07'00'

Comments from page 543 continued on next page

T10/1760-D Revision 14 28 January 2008

10.2.9.4 Enclosure Status diagnostic page

The enclosure services process shall set the ELEMENT STATUS CODE field to 8h (i.e., No Access Allowed) for each element that represents a device attached to an expander phy for which the SAS initiator port performing the RECEIVE DIAGNOSTIC RESULTS command does not have access according to the zone permission

10.2.9.5 Additional Element Status diagnostic page

The enclosure services process shall set the INVALID bit to one in the Additional Element Status descriptor (see SES-2) for each element that represents a device attached to an expander phy for which the SAS initiator port performing the RECEIVE DIAGNOSTIC RESULTS command does not have access according to the zone permission table.

10.2.10 SCSI power conditions

10.2.10.1 SCSI power conditions overview

The logical unit power condition states from the Power Condition mode page (see SPC-4) and START STOP UNIT command (see SBC-3), if implemented, shall interact with the NOTIFY (ENABLE SPINUP) primitive (see 7.2.5.3) to control temporary consumption of additional power (e.g., spin-up of rotating media) as described in this subclause.

The logical unit uses NOTIFY (ENABLE SPINUP) to:

10.2.10.2 SA_PC (SCSI application layer power condition) state machine

10.2.10.2.1 SA_PC state machine overview

The SA_PC (SCSI application layer power condition) state machine describes how the SAS target device processes logical unit power condition state change requests and NOTIFY (ENABLE SPINUP) if it is a SCSI target device.

NOTE 102 - This state machine is an enhanced version of the logical unit power condition state machines described in SPC-4 and SBC-3.

This state machine consists of the following states:

- a) SA_PC_0:Powered_On (see 10.2.10.2.2)(initial state);
- b) SA_PC_1:Active (see 10.2.10.2.3);
- c) SA_PC_2:Idle (see 10.2.10.2.4);
- d) SA_PC_3:Standby (see 10.2.10.2.5);
- e) SA_PC_4:Stopped (see 10.2.10.2.6)(specific to SBC-3 logical units);
- f) SA_PC_5:Active_Wait (see 10.2.10.2.7)(specific to SAS devices); and
- g) SA_PC_6:Idle_Wait (see 10.2.10.2.8)(specific to SAS devices).

This state machine shall start in the SA_PC_0:Powered_On state after power on.

If the device server processes a START STOP UNIT command (see SBC-3) with the IMMED bit set to one, it may complete the command before completing the transition, if any, specified by the POWER CONDITION field

Working Draft Serial Attached SCSI - 2 (SAS-2)

543

ACCEPT - DONE

(stemming from discussion in the 9/2008 CAP WG meetings)

It is unclear whether the command that causes a transition to Active_Wait or Idle_Wait is supposed to get CHECK CONDITION status with an additional sense code of LOGICAL UNIT NOT READY, NOTIFY (ENABLE SPINUP) REQUIRED. It would be inconsistent for that command to NOT get that result (and incur a long delay) when commands already in the queue or received afterwards do get that result.

If the system is providing NOTIFYs at a very fast rate, then the CHECK CONDITION should not be reported at all. A short filter would be appropriate.

To fix this:

Add a Notify Enable Spinup timer with a initial value of 1 ms.

In Active Wait and Idle Wait (which are only entered from Standby and Stopped), add: "Upon entry into this state, this state shall initialize and start the Notify Enable Spinup timer."

Modify the CHECK CONDITION rules to:

"If the Notify Enable Spinup timer has expired, the device server shall terminate each media access command (including the one, if any, that caused entry into this state) or TEST UNIT READY command with CHECK CONDITION status with the sense key set to NOT READY and the additional sense code set to LOGICAL UNIT NOT READY, NOTIFY (ENABLE SPINUP) REQUIRED."

Author: wdc-mevans Subject: Highlight Date: 5/23/2008 10:22:49 AM -07'00' REJECT (first noun/subject convention, but added then)

s/b

then the device server

T10/1760-D Revision 14 28 January 2008

Figure 220 describes the SA_PC state machine.

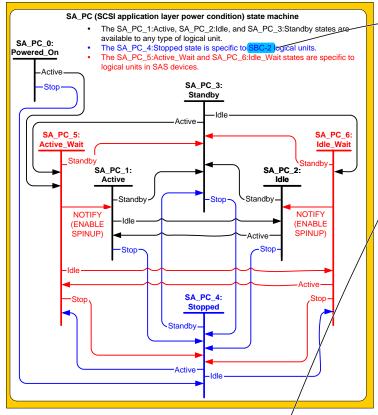


Figure 220 — SA_PC (SCSI application layer power condition) state rhachine for SAS

10.2.10.2.2 SA_PC_0:Powered_On state

10.2.10.2.2.1 State description

This state shall be entered upon power on. This state consumes zero time.

10.2.10.2.2.2 Transition SA_PC_0:Powered_On to SA_PC_4:Stopped

This transition shall occur if the SAS device has been configured to start in the SA_PC_4:Stopped state.

Page: 544

Author: stx-ghoulder Subject: Highlight Date: 5/26/2008 9:09:58 AM -07'00' ACCEPT - DONE (changed to "logical units that are direct-access block devices" which avoids the standards name altogether.) SBC-2 s/b SBC-3

Author: stx-ghoulder
Subject: Highlight
Date: 5/29/2008 10:56:51 AM -07/00'
ACCEPT - DONE (5/7 add a sentence stating "The SA_PC state machine shall be configured to transition to either the SA_PC_4:
Stopped state or the SA_PC_5:Active_Wait state after power on by a mechanism outside the scope of this standard." to the SA_PC state machine overview.

Changed "start in" to "transition to ... after power on" in this sentence and in the Active_Wait sentence.)

There is no mention in SAS-2 of a method to do this configuration. Shouldn't this be described?

T10/1760-D Revision 14

10.2.10.2.2.3 Transition SA PC 0:Powered On to SA PC 5:Active Wait

This transition shall occur if the SAS device has been configured to start in the SA_PC_5:Active_Wait state.

10.2.10.2.3 SA PC 1:Active state

10.2.10.2.3.1 State description

While in this state, rotating media in block devices shall be active (i.e., rotating or spinning).

See SPC-4 for more details about this state

10.2.10.2.3.2 Transition SA_PC_1:Active to SA_PC_2:Idle

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to IDLE is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set to FORCE IDLE 0 is processed;
- c) the Power Condition mode page idle condition timer expires

10.2.10.2.3.3 Transition SA_PC_1:Active to SA_PC_3:Standby

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to STANDBY is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set to FORCE STANDBY 0 is processed: or
- c) the Power Condition mode page standby condition timer expir

10.2.10.2.3.4 Transition SA PC 1:Active to SA PC 4:Stopped

This transition shall occur if:

a) a START STOP UNIT command with the START bit set to zero is processed.

10.2.10.2.4 SA PC 2:Idle state

10.2.10.2.4.1 State description

While in this state, rotating media in block devices shall be active (i.e., rotating or spinning

See SPC-4 fer more details about this state.

10.2.10.2.4.2 Transition SA_PC_2:Idie to SA_PC_1:Active

This transition shall occur if:

- a) a START STOP UNIT command with the START bit set to one is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set to ACTIVE is processed; or
- c) a command that requires the active power condition is processed.

10.2.10.2.4.3 Transition SA_PC_2:Idle to SA_PC_3:Standby

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to STANDBY is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_STANDBY_0 is processed; or
- c) the Power Condition mode page standby condition timer expires

Page: 545

Author: RElliott

Subject: Cross-Out Date: 9/25/2008 2:06:26 PM -07'00' ACCEPT - DONE

While in this state, rotating media in block devices shall be active (i.e., rotating or spinning).

Let SBC-3 and SPC-4 define the properties of this state

(from discussion with Gerry Houlder, Seagate)

Author: stx-ghoulder

Subject: Highlight Date: 9/18/2008 12:21:37 PM -07'00'

ACCEPT - DONE (as "and, for direct-access block devices, SBC-3"

9/8 "See SPC-4 and the command standard"

(that would only be a valid pointer for direct-access block devices. A tape drive wouldn't want to reference SBC-3.)

SPC-4

Use SBC-3 as reference instead, since it includes START-STOP UNIT command details that SPC doesn't.

Author: stx-ghoulder

Subject: Highlight Date: 5/26/2008 9:10:22 AM -07'00'

REJECT ("expire" is used about 122 times; this is no different)

expires

s/b "is enabled and is zero".

Author: stx-ahoulder

Subject: Highlight Date: 5/26/2008 9:10:31 AM -07'00'

REJECT ("expire" is used about 122 times; this is no different)

expires

s/b "is enabled and is zero".

Author: RElliott

Subject: Cross-Out

ACCEPT - DONE

While in this state, rotating media in block devices shall be active (i.e., rotating or spinning).

Let SBC-3 and SPC-4 define the properties of this state.

(from discussion with Gerry Houlder, Seagate)

Author: stx-ghoulder Subject: Highlight Date: 9/18/2008 12:21:51 PM -07'00'

ACCEPT - DONE (as "and, for direct-access block devices, SBC-3"

9/8 "See SPC-4 and the command standard"

(that would only be a valid pointer for direct-access block devices. A tape drive wouldn't want to reference SBC-3.)

Comments from page 545 continued on next page

10.2.10.2.2.3 Transition SA PC 0:Powered On to SA PC 5:Active Wait

This transition shall occur if the SAS device has been configured to start in the SA_PC_5:Active_Wait state.

10.2.10.2.3 SA PC 1:Active state

10.2.10.2.3.1 State description

While in this state, rotating media in block devices shall be active (i.e., rotating or spinning).

See SPC-4 for more details about this state.

10.2.10.2.3.2 Transition SA_PC_1:Active to SA_PC_2:Idle

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to IDLE is processed;
- a START STOP UNIT command with the POWER CONDITION field set to FORCE_IDLE_0 is processed;
 or
- c) the Power Condition mode page idle condition timer expires.

10.2.10.2.3.3 Transition SA_PC_1:Active to SA_PC_3:Standby

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to STANDBY is processed;
- a START STOP UNIT command with the POWER CONDITION field set to FORCE_STANDBY_0 is processed; or
- c) the Power Condition mode page standby condition timer expires.

10.2.10.2.3.4 Transition SA_PC_1:Active to SA_PC_4:Stopped

This transition shall occur if:

a) a START STOP UNIT command with the START bit set to zero is processed.

10.2.10.2.4 SA_PC_2:Idle state

10.2.10.2.4.1 State description

While in this state, rotating media in block devices shall be active (i.e., rotating or spinning).

See SPC-4 for more details about this state.

10.2.10.2.4.2 Transition SA_PC_2:Idle to SA_PC_1:Active

This transition shall occur if:

- a) a START STOP UNIT command with the START bit set to one is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set to ACTIVE is processed; or
- c) a command that requires the active power condition is processed.

10.2.10.2.4.3 Transition SA_PC_2:Idle to SA_PC_3:Standby

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to STANDBY is processed;
- b) a START STOP UNIT command with the POWER CONDITION field se to FORCE_STANDBY_0 is processed; or
- c) the Power Condition mode page standby condition timer expires.

Working Draft Serial Attached SCSI - 2 (SAS-2)

545

SPC-4

Use SBC-3 as reference instead, since it includes START-STOP UNIT command details that SPC doesn't.

Author: stx-ghoulder Subject: Highlight

Subject: Highlight Date: 5/26/2008 9:11:09 AM -07'00'

REJECT ("expire" is used about 122 times; this is no different)

expires

s/b "is enabled and is zero".

T10/1760-D Revision 14 28 January 2008

10.2.10.2.4.4 Transition SA_PC_2:Idle to SA_PC_4:Stopped

This transition shall occur if:

a) a START STOP UNIT command with the START bit set to zero is processed.

10.2.10.2.5 SA_PC_3:Standby state

10.2.10.2.5.1 State description

While in this state, rotating media in block devices shall be stopped.

See SPC-4 for more details about this state.

10.2.10.2.5.2 Transition SA_PC_3:Standby to SA_PC_4:Stopped

This transition shall occur if:

a) a START STOP UNIT command with the START bit set to zero is processed.

10.2.10.2.5.3 Transition SA_PC_3:Standby to SA_PC_5:Active_Wait

This transition shall occur if:

- a) a START STOP UNIT command with the START bit set to one is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set to ACTIVE is processed; or
- c) a command that requires the active power condition is processed.

If the transition is based on a START STOP UNIT command with the IMMED bit set to zero, the device serve shall not complete the command until this state machine reaches the SA PC 1:Active state.

10.2.10.2.5.4 Transition SA PC 3:Standby to SA PC 6:Idle Wait

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to IDLE is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_IDLE_0 is processed;
- c) a command that requires the idle power condition is processed.

If the transition is based on a START STOP UNIT command with the IMMED bit set to zero, the sevice server shall not complete the command until this state machine reaches the SA_PC_2:Idle state.

10.2.10.2.6 SA PC 4:Stopped state

10.2.10.2.6.1 State description

This state is only implemented in block devices.

While in this state, rotating media shall be stopped.

See SBC-3 for more details about this state.

10.2.10.2.6.2 Transition SA_PC_4:Stopped to SA_PC_3:Standby

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to STANDBY is processed; or
- b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_STANDBY_0 is processed.

10.2.10.2.6.3 Transition SA_PC_4:Stopped to SA_PC_5:Active_Wait

This transition shall occur if:

a) a START STOP UNIT command with the START bit set to one is processed; or

Author: RElliott Subject: Cross-Out Date: 9/25/2008 2:07:15 PM -07'00' ACCEPT - DONE Delete: While in this state, rotating media in block devices shall be stopped. Let SBC-3 and SPC-4 define the properties of this state. (from discussion with Gerry Houlder, Seagate) Author: stx-ghoulder Subject: Highlight Date: 9/18/2008 12:22:01 PM -07'00' ACCEPT - DONE (as "and, for direct-access block devices, SBC-3" 9/8 "See SPC-4 and the command standard" (that would only be a valid pointer for direct-access block devices. A tape drive wouldn't want to reference SBC-3.) SPC-4 Use SBC-3 as reference instead, since it includes START-STOP UNIT command details that SPC doesn't. Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the Author: RElliott Subject: Cross-Out Date: 10/23/2008 3:31:37 PM -07'00' b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_IDLE_0 is processed; per T10 reflector email from Gerry Houlder, Seagate Author: RElliott

Page: 546

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

logical units that are direct-access block devices.

s/b

then the

Author: RElliott

TRACCEPT - DONE

block devices.

Comments from page 546 continued on next page

T10/1760-D Revision 14 28 January 2008

10.2.10.2.4.4 Transition SA_PC_2:Idle to SA_PC_4:Stopped

This transition shall occur if:

a) a START STOP UNIT command with the START bit set to zero is processed.

10.2.10.2.5 SA_PC_3:Standby state

10.2.10.2.5.1 State description

While in this state, rotating media in block devices shall be stopped.

See SPC-4 for more details about this state.

10.2.10.2.5.2 Transition SA_PC_3:Standby to SA_PC_4:Stopped

This transition shall occur if:

a) a START STOP UNIT command with the START bit set to zero is processed.

10.2.10.2.5.3 Transition SA_PC_3:Standby to SA_PC_5:Active_Wait

This transition shall occur if:

- a) a START STOP UNIT command with the START bit set to one is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set to ACTIVE is processed; or
- c) a command that requires the active power condition is processed.

If the transition is based on a START STOP UNIT command with the IMMED bit set to zero, the device server shall not complete the command until this state machine reaches the SA PC 1:Act we state.

10.2.10.2.5.4 Transition SA PC 3:Standby to SA PC 6:Idle Wait

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to IDLE is processed;
- b) a START STOP UNIT command with the POWER CONDITION field cet to FORCE_IDLE_0 is processed; or
- c) a command that requires the idle power condition is processed.

If the transition is based on a START STOP UNIT command with the IMMED bit set to zero, the device server shall not complete the command until this state machine reaches the SA_PC_2:Idle state.

10.2.10.2.6 SA_PC_4:Stopped state

10.2.10.2.6.1 State description

This state is only implemented in block devices.

While in this state, rotating media shall be stopped.

See SBC-3 for more details about this state.

10.2.10.2.6.2 Transition SA_PC_4:Stopped to SA_PC_3:Standby

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to STANDBY is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_STANDBY_0 is processed.

10.2.10.2.6.3 Transition SA_PC_4:Stopped to SA_PC_5:Active_Wait

This transition shall occur if:

546

a) a START STOP UNIT command with the START bit set to one is processed; or

Working Draft Serial Attached SCSI - 2 (SAS-2)

to match response to stx-ghoulder comment on the figure above

Author: RElliott Subject: Cross-Out Date: 9/25/2008 2:07:30 PM -07'00'

While in this state, rotating media shall be stopped.

Let SBC-3 and SPC-4 define the properties of this state.

(from discussion with Gerry Houlder, Seagate)

Author: RElliott Subject: Cross-Out Date: 10/23/2008 3:32:30 PM -07'00'

b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_STANDBY_0 is processed.

per T10 reflector email from Gerry Houlder, Seagate

b) a START STOP UNIT command with the POWER CONDITION field set to ACTIVE is processed.

If the transition is based on a START STOP UNIT command with the IMMED bit set to zero, the dev shall not complete the command until this state machine reaches the SA_PC_1:Active state.

10.2.10.2.6.4 Transition SA_PC_4:Stopped to SA_PC_6:Idle_Wait

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to IDLE is processed; or
- b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_IDLE_0 is processed.

If the transition is based on a START STOP UNIT command with the IMMED bit set to zero, the sevice server shall not complete the command until this state machine reaches the SA_PC_2:Idle state.

10.2.10.2.7 SA PC 5:Active Wait state

10.2.10.2.7.1 State description

This state shall only be implemented in SAS devices.

While in this state, rotating media in block devices shall be stopped. The device server shall be capable of processing commands and shall terminate each media access command or TEST UNIT READY command with CHECK CONDITION status with the sense key set to NOT READY and the additional sense code set to LOGICAL UNIT NOT READY, NOTIFY (ENABLE SPINUP) REQUIRED.

In response to a REQUEST SENSE command processed in this state, the device server shall return parameter data containing sense data with the sense key set to NOT READY and the additional sense code set to LOGICAL UNIT NOT READY, NOTIFY (ENABLE SPINUP) REQUIRED and return GOOD status for the

10.2.10.2.7.2 Transition SA_PC_5:Active_Wait to SA_PC_1:Active

This transition shall occur if:

- a) a NOTIFY (ENABLE SPINUP) is detected; or
- b) the SAS device does not consume additional power as a result of the transition to SA_PC_1:Active.

10.2.10.2.7.3 Transition SA PC 5:Active Wait to SA PC 3:Standby

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to STANDBY is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_STANDBY_0 is processed: or
- c) the Power Condition mode page standby condition timer expires.

10.2.10.2.7.4 Transition SA_PC_5:Active_Wait to SA_PC_4:Stopped

This transition shall occur if:

a) a START STOP UNIT command with the START bit set to zero is processed.

10.2.10.2.7.5 Transition SA_PC_5:Active_Wait to SA_PC_6:Idle_Wait

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to IDLE is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_IDLE_0 is processed;
- c) the Power Condition mode page idle condition timer expires.

If the transition is based on a START STOP UNIT command with the IMMED bit set to zero, the device server shall not complete the command until this state machine reaches the SA_PC_2:Idle state.

(from discussion with Gerry Houlder, Seagate) Author: RElliott Subject: Highlight Date: 9/25/2008 2:27:40 PM -07'00' ACCEPT - DONE the SAS device does not consume additional power as a result of the transition to SA_PC_1:Active the SAS target device does not consume more power while making this transition than it would consume while making a transition from SA_PC_2:Idle to SA_PC_1:Active (per discussion with Gerry Houlder, Seagate) Author: RElliott Subject: Cross-Out Date: 10/23/2008 3:34:11 PM -07'00' ACCEPT - DONE b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_STANDBY_0 is Comments from page 547 continued on next page

Page: 547

ACCEPT - DONE the

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Date: 10/23/2008 3:33:24 PM -07'00' ACCEPT - DONE

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Subject: Highlight Date: 9/25/2008 2:12:02 PM -07'00'

processing commands

Standby state

per T10 reflector email from Gerry Houlder, Seagate

b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_IDLE_0 is processed.

While in this state, rotating media in block devices shall be stopped. The device server shall be capable of

While in this state, the device server shall be capable of processing the same commands that it is able to process in the SA PC3:

Author: RElliott

s/b then the

Author: RElliott

Author: RElliott

the

s/b

then the

Author: RElliott

ACCEPT - DONE

Subject: Cross-Out

T10/1760-D Revision 14 28 January 2008

b) a START STOP UNIT command with the POWER CONDITION field set to ACTIVE is processed.

If the transition is based on a START STOP UNIT command with the IMMED bit set to zero, the device server shall not complete the command until this state machine reaches the SA_PC_1:Active state.

10.2.10.2.6.4 Transition SA_PC_4:Stopped to SA_PC_6:Idle_Wait

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to IDLE is processed; or
- b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_IDLE_0 is processed.

If the transition is based on a START STOP UNIT command with the IMMED bit set to zero, the device server shall not complete the command until this state machine reaches the SA PC 2:Idle state.

10.2.10.2.7 SA PC 5:Active Wait state

10.2.10.2.7.1 State description

This state shall only be implemented in SAS devices.

While in this state, rotating media in block devices shall be stopped. The device server shall be capable processing commands and shall terminate each media access command or TEST UNIT READY command with CHECK CONDITION status with the sense key set to NOT READY and the additional sense code set to LOGICAL UNIT NOT READY, NOTIFY (ENABLE SPINUP) REQUIRED.

In response to a REQUEST SENSE command processed in this state, the device server shall return parameter data containing sense data with the sense key set to NOT READY and the additional/sense code set to LOGICAL UNIT NOT READY, NOTIFY (ENABLE SPINUP) REQUIRED and return GOOD status for the

10.2.10.2.7.2 Transition SA_PC_5:Active_Wait to SA_PC_1:Active

This transition shall occur if:

- a) a NOTIFY (ENABLE SPINUP) is detected; or
- b) the SAS device does not consume additional power as a result of the transition to SA PC 1:Active

10.2.10.2.7.3 Transition SA PC 5:Active Wait to SA PC 3:Standby

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to STANDBY is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set/to FORCE_STANDB//_0 is processed: or
- c) the Power Condition mode page standby condition timer expire

10.2.10.2.7.4 Transition SA_PC_5:Active_Wait to SA_PC_4:Stopped

This transition shall occur if:

a) a START STOP UNIT command with the START bit set to zero is processed.

10.2.10.2.7.5 Transition SA PC 5:Active Wait to SA PC 6:Idle Wait

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field soft to IDLE is processed;
- b) a START STOP UNIT command with the POWER CONDITION field of to FORCE IDLE 0 is placed
- c) the Power Condition mode page idle condition timer

If the transition is based on a START STOP UNIT command with the IMMED bit set to zero, the device server shall not complete the command until this state machine reaches the SA_PC_2:Idle state.

Working Draft Serial Attached SCSI - 2 (SAS-2)

547

- c) the Power Condition mode page standby condition timer expires.
- per T10 reflector email from Gerry Houlder, Seagate

Author: stx-ghoulder

Subject: Highlight Date: 5/8/2008 4:41:17 PM -07'00'

REJECT ("expire" is used about 122 times; this is no different. The standby timer could indeed kick in while the logical unit is sitting in Active_Wait - e.g. after power on, NOTIFY (ENABLE SPINUP) might not showing up in a long time. If a media access command had caused the transition to Active_Wait, but the command is aborted before the NOTIFY (ENABLE SPINUP), then the timer can start again too.)

expires

s/b "is enabled and is zero". Actually, I don't think it is possible to be in Active_Wait state unless the standby timer is either disabled (due to START STOP command entrance) or already zero.

Author: RElliott

Subject: Cross-Out Date: 10/23/2008 3:34:31 PM -07'00'

ACCEPT - DONE

- b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_IDLE_0 is processed;
- c) the Power Condition mode page idle condition timer expires.

Author: stx-ghoulder

Subject: Highlight Date: 5/8/2008 4:39:20 PM -07'00'

REJECT (see previous response on this page)

s/b "is enabled and is zero". Actually, I don't think it is possible to be in Active_Wait state unless the standby timer is either disabled (due to START STOP command entrance) or already zero.

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

the

then the

10.2.10.2.8 SA_PC_6:Idle_Wait state

10.2.10.2.8.1 State description

This state shall only be implemented in SAS devices.

While in this state, rotating media in block devices shall be stopped. The device server shall be capable of processing commands and shall terminate each media access command or TEST UNIT READY command with CHECK CONDITION status with the sense key set to NOT READY and the additional sense code set to LOGICAL UNIT NOT READY, NOTIFY (ENABLE SPINUP) REQUIRED.

In response to a REQUEST SENSE command processed in this state, the device server shall return parameter data containing sense data with the sense key set to NOT READY and the additional sense code set to LOGICAL UNIT NOT READY, NOTIFY (ENABLE SPINUP) REQUIRED and return GOOD status for the command.

10.2.10.2.8.2 Transition SA PC 6:Idle Wait to SA PC 2:Idle

This transition shall occur if:

- a) a NOTIFY (ENABLE SPINUP) is detected; or
- b) the SAS device does not consume additional power as a result of the transition to SA_PC_2:Idle.

10.2.10.2.8.3 Transition SA_PC_6:Idle_Wait to SA_PC_3:Standby

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to STANDBY is processed;
- b) a START STOP UNIT command with the POWER CONDITION field set to FORCE_STANDBY_0 is processed; or
- c) the Power Condition mode page standby condition timer expires

10.2.10.2.8.4 Transition SA_PC_6:Idle_Wait to SA_PC_4:Stopped

This transition shall occur if:

a) a START STOP UNIT command with the START bit set to zero is processed.

10.2.10.2.8.5 Transition SA PC 6:Idle Wait to SA PC 5:Active Wait

This transition shall occur if:

- a) a START STOP UNIT command with the POWER CONDITION field set to ACTIVE is processed; or
- b) a command that requires the active power condition is processed.

If the transition is based on a START STOP UNIT command with the IMMED bit set to zero, the device server shall not complete the command until this state machine reaches the SA PC 1:Active state.

Page: 548

 Author: RElliott Subject: Highlight Date: 9/25/2008 2:12:20 PM -07'00'

Date: 9/25/2008 2:12:20 PM -07'00

While in this state, rotating media in block devices shall be stopped. The device server shall be capable of processing commands

processing command

While in this state, the device server shall be capable of processing the same commands that it is able to process in the SA_PC3: Standby state.

(from discussion with Gerry Houlder, Seagate)

Author: RElliott Subject: Highlight Date: 9/25/2008 2:27:26 PM -07'00'

Date: 9/25/2008 2:27:26 PM -07'00'

,

the SAS device does not consume additional power as a result of the transition to SA_PC_2:Idle

s/b

the SAS target device does not consume more power while making this transition than it would consume while making a transition from SA_PC_2:Idle to SA_PC_1:Active

(per discussion with Gerry Houlder, Seagate)

Author: stx-ghoulder
Subject: Highlight
Date: 5/8/2008 4:40:38 PM -07'00'
TREJECT (see previous responses)

expires

sib "is enabled and is zero". Actually, I don't think it is possible to be in Idle_Wait state unless the standby timer is either disabled (due to START STOP command entrance) or already zero.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

s/b

then the

28 January 2008 T10/1760-D Revision 14

10.2.11 SCSI vital product data (VPD)

10.2.11.1 SCSI vital product data (VPD) overview

Table 236 lists VPD pages for which this standard defines special requirements.

Table 236 — VPD pages with special requirements for SAS SSP

Page code	VPD Page Name	Reference	Support Requirements
83h	Device Identification VPD page	10.2.11.2 and SPC-4	Mandatory
90h	Protocol-Specific Logical Unit Information VPD page	10.2.11.3 and SPC-4	See a

Mandatory if the target port and logical unit support the TLR CONTROL field set to a non-zero value in the SSP frame header, otherwise optional.

10.2.11.2 Device Identification VPD page

In the Device Identification VPD page (83h) returned by the INQUIRY command (see SPC-4), each logical unit in a SAS target device shall include the designation descriptors for the target port identifier (see 4.2.7) and the relative target port identifier (see SAM-4 and SPC-4) listed in table 237.

Table 237 — Device Identification VPD page designation descriptors for the S∕∕S target port

Field in designation	Designation descriptor					
descriptor	Target port identifier	Relative target port identifier				
DESIGNATOR TYPE	3h (i.e., NAA)	4h (i.e., relative target port identifier)				
ASSOCIATION	01b (i.e., SCSI target port)	01/5 (i.e., SCSI target port)				
CODE SET	1h (i.e., binary)	1h (i.e., binary)				
DESIGNATOR LENGTH	8	4				
PIV (protocol identifier valid)	1	1				
PROTOCOL IDENTIFIER	6h (i.e., SAS)	6h (i.e., SAS)				
DESIGNATOR	SAS address ^a in NAA IEEE / Registered format (see 4.2.2)	Relative port identifier ^b as described in SAM-4 and SPC-4				

^a The DESIGNATOR field contains the SAS address of the SSP target port through which the INQUIRY command was received.

In the Device Identification VPD page (83h) returned by the INQUIRY command (see SPC-4), each logical unit in a SAS target device shall include a designation descriptor for the SAS target device name (see 4.2.4)

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 549

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

Delete

549

in NAA IEEE Registered format (see 4.2.2)

to all NAA Locally Administered as well.

The rest of this column should be enough hint that the binary NAA format is required, and this is not a SCSI name string format.

b The DESIGNATOR field contains the relative port identifier of the SSP target port through which the INQUIRY command was received.

using NAA format and may include a designation descriptor for the SAS target device name using the SCSI name string format as listed in table 238.

Table 238 — Device Identification VPD page designation descriptors for the SAS target device

Field in designation	Designation descriptor for SAS target device					
descriptor	NAA format (required)	SCSI name string format (optional)				
DESIGNATOR TYPE	3h (i.e., NAA)	8h (i.e., SCSI name string)				
ASSOCIATION	10b (i.e., SCSI target device)	10b (i.e., SCSI target device)				
CODE SET	1h (i.e., binary)	3h (i.e., UTF-9)				
DESIGNATOR LENGTH	8	24				
PIV (protocol identifier valid)	1	0				
PROTOCOL IDENTIFIER	6h (i.e., SAS)	Oh ^a				
DESIGNATOR	Device name of the SAS target device in NAA IEEE Registered format (see 4.2.2)	Device name of the SAS target device in SCSI name string format (e.g., "naa." followed by 16 hexadecimal digits followed by 4 ASCII null characters)				
a The PROTOCOL IDENTIFIER	R field is reserved when the PIV bit is	set to zero.				

Logical units may include designation descriptors in addition to those required by this standard (e.g., SCSI target devices with SCSI target ports using other SCSI transport protocols may return additional SCSI target device names for those other SCSI transport protocols).

10.2.11.3 Protocol-Specific Logical Unit Information VPD page

The Protocol-Specific Logical Unit Information VPD page (see SPC-4) contains parameters for the logical unit that are protocol-specific based on the I_T nexus being used to access the logical unit.

Page: 550

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

NAA IEEE Registered format (see 4.2.2) s/b SAS address format (see new section)

Table 239 defines the Protocol-Specific Logical Unit Information VPD page for logical units with SAS target

Table 239 — Protocol-Specific Logical Unit Information VPD page for SAS SSP

Byte\Bit	7	6	5	4	3	2	1	0		
0	PERIP	HERAL QUAL	IFIER		PERIPHERAL DEVICE TYPE					
1				PAGE CO	DDE (90h)					
2	(MSB)			PAGE LEN	CTH (n - 2)					
3		="		PAGE LEIN	31H (II - 3)			(LSB)		
			Logical unit	information	descriptor li	st				
4		- Log	ical unit info	ormation des	scriptor (first)(see table 2	240)			
n		- Log	ical unit info	ormation des	scriptor (last)(see table 2	240)			

The PERIPHERAL QUALIFIER field and the PERIPHERAL DEVICE TYPE field are defined in SPC-4.

The PAGE CODE field is defined in SPC-4 and shall be set to the value defined in table 239.

The PAGE LENGTH field is defined in SPC-4 and shall be set to the value defined in table 239.

The logical unit information descriptor list contains logical unit information descriptor

Page: 551

Author: stx-ghoulder
Subject: Highlight
Date: 5/29/2008 11:48:06 AM -07'00'
PREJECT (There is actually an entry per target port, not per logical unit; this VPD page is being provided by a particular logical unit.

Reworded as "The logical unit information descriptor list is defined in SPC-4 and shall contain a logical unit information descriptor for each SAS target port known to the device server." to clarify that.)

information descriptors.

Add this additional sentence: "A logical unit information descriptor should be included for each logical unit accessible to this target port."

Table 240 defines the logical unit information descriptor for logical units with SAS target ports.

Table 240 — Logical unit information descriptor for SAS SSP

Byte\Bit	7	6	5	4	3	2	1	0		
0	(MSB)		RELATIVE PORT IDENTIFIER							
1				RELATIVE POI	KI IDENTIFIER			(LSB)		
2		Res	served			PROTOCOL II	DENTIFIER (6	h)		
3				Pos	erved					
5				1/636	siveu					
6	(MSB)		D	ESCRIPTOR LI	-NOTH (0004	b)				
7			D	ESCRIPTOR LI	ENGTH (0004	11)	/	(LSB)		
	ļ.	F	Per logical u	nit SCSI tran	sport specifi	c data				
8			Reserved							
9		Reserved								
11										

The RELATIVE PORT IDENTIFIER field is defined in SPC-4.

The PROTOCOL IDENTIFIER field is defined in SPC-4 and shall be set to the value defined in table 240 indicating that this is a SAS SSP specific descriptor.

The DESCRIPTOR LENGTH field is defined in SPC-4 and shall be set to the value defined in table 240.

A TLR CONTROL SUPPORTED bit set to one indicates that the combination of the SCSI target port and logical unit support the TLR CONTROL field in the SSP frame header (see 9.1). A TLR CONTROL SUPPORTED bit set to zero indicates that the combination of the SCSI target port and logical unit do not support the TLR CONTROL field in the SSP frame header.

10.3 ATA application layer

No SAS-specific ATA features are defined.

10.4 Management application layer

10.4.1 READY LED signal behavior

552

A SAS target device uses the READY LED signal to activate an externally visible LED that indicates the state of readiness and activity of the SAS target device. The READY LED signal electrical characteristics are described in 5.4. All SAS target devices using the SAS Drive plug connector (see 5.2.3.2.1.1) shall support the

The system is not required to generate any visual output when the READY LED signal is asserted. Additional vendor-specific flashing patterns may be used to signal vendor-specific conditions.

SAS target devices without SSP target ports may transmit the READY LED signal using vendor-specific patterns.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 552

Author: Isi-gpenokie Adultion: Isr-genitorle
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
TACCEPT: DONE
This << features are defined. >> should be << features are defined by this standard. >>

SAS target devices with SSP target ports shall follow the READY LED MEANING bit in the Protocol-Specific Port mode page (see 10.2.7.4) as described in table 241.

Table 241 — READY LED signal behavior

Power condition a (see 10.2.10) or activity	READY LED MEANING bit set to zero ^b	READY LED MEANING bit set to one
Active or Idle power condition	The SAS target device shall: a) when not processing a command, assert the READY LED signal continuously or b) when processing a command toggle the READY LED signal between the asserted and negated states in a vendor-specified manner. (i.e., The LED is usually on, but flashes on and off when commands are processed.)	The SAS target device shall: a) when not processing a commend, negate the READY LED signal
Standby or Stopped power condition	The SAS target device shall: a) when not processing a command, negate the READY LED signal continuously; or b) when processing a command, toggle the READY LED signal between the asserted and negated states in a vendor-specified manner. (i.e., The LED is usually off, but flashes on and off when commands are processed.) After a vendor-specific amount of time in this state, SAS target devices with rotating media may be removed with minimum risk of mechanical or electrical damage.	continuously; or b) when processing command, toggle the PEATO LED signal between the asserted an negated states in a vendor-specified manner. (i.e., The LED is usually off, but flashes on and off when commands are processed.)
Spinup/ spindown	If the SAS target device has rotating media and i spin-down, then the SAS target device shall togg asserted and negated states with a 1 s \pm 0.1 s cy the LED is on for 0.5 s and off for 0.5 s).	le the READY LED signal between the
Formatting media	If the SAS target device is in the process of form shall toggle the READY LED signal between the vendor-specified manner (e.g., with each cylinde	asserted and negated states in a
condition b If the tan signal be with rota significal LED sign	IS target device has more than one logical unit and a should be used to control the READY LED signal get device has rotating media, a READY LED MEANINg shavior that provides an indication of the target thing media that is not in a state for safe removal sh not rate during spin-up, during spin-down, and while hal continuously. When removal is safe from a medideasserted.	G bit set to zero results in a READY LED ce's readiness for removal. A target device all either toggle the READY LED signal at a formatting media, or assert the READY

Page: 553 Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
The s/b the and delete the period at the end Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACEPT - DONE s/b the and delete the period at the end Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' s/b the and delete the period at the end Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE spin-up or spin-down spinup or spindown Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE spin-down s/b spindown Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE spin-up s/b

spinup

T10/1760-D Revision 14

10.4.2 Management protocol services

The management application client and management device server use a four-step process to perform management functions:

- 1) The management application client invokes Send SMP Function;
- 2) The SMP target port invokes SMP Function Received;
- 3) The management device server invokes Send SMP Function Response; and
- 4) The SMP initiator port invokes Received SMP Function Complete.

10.4.3 SMP functions

10.4.3.1 SMP functions overview

Table 242 defines the SMP functions.

Table 242 — SMP functions (FUNCTION field) (part 1 of 2)

	Table 242 — SIVIF I	unctions (Fonction neta) (part 1 of 2)								
Function code	SMP function	Description	Reference							
SMP input	SMP input functions (0%) - 7Fh)									
General Si	MP input functions (90h - 0Fh)									
00h	REPORT GENERAL	Return general information about the device	10.4.3.4							
01h	REPORT MANUFACTURER INFORMATION	Return vendor and product identification	10.4.3.5							
02h	READ GPIO REGISTER	See SFF-8485								
03h	REPORT SELF-CONFIGURATION STATUS	Return status of the discover process in a self-configuring expander device	10.4.3.6							
04h	REPORT ZONE PERMISSION TABLE	Return zone permission table values	10.4.3.7							
05h	REPORT ZONE MANAGER PASSWORD	Return the zone manager password	10.4.3.8							
06h	REPORT BROADCAST	Return information about Broadcast counters	10.4.3.9							
07h - 0Fh	Reserved for general SMP inp	ut functions								
Phy-based	SMP input functions (10h - 1Fh)									
10h	DISCOVER	Return information about the specified phy	10.4.3.10							
11h	REPORT PHY ERROR LOG	Return error logging information about the specified phy	10.4.3.11							
12h	REPORT PHY SATA	Return information about a phy currently attached to a SATA phy	10.4.3.12							
13h	REPORT ROUTE INFORMATION	Return phy-based expander route table information	10.4.3.13							
14h	REPORT PHY EVENT	Return phy events for the specified phy	10.4.3.14							
15h - 1Fh	Reserved for phy-based SMP	input functions	1							
Descriptor	list-based SMP input functions (2	20h - 2Fh)								
20h	DISCOVER LIST	Return information about the specified phys	10.4.3.15							
			l							

Return phy events

Page: 554

28 January 2008

Author: Isi-bbesmer

Subject: Note Date: 6/26/2008 5:15:51 PM -07'00'

ACCEPT - DONE (Additional comments added by the specific changes.

- 1. Add DESCRIPTOR LENGTH fields to the three response frames that have room? 6/11: yes
- 2. Add 4 bytes to the REPORT EXPANDER ROUTE TABLE LIST <no, REPORT BROADCAST> response and include a DESCRIPTOR LENGTH field? 6/11; ves
- 3. Reduce the NUMBER OF field in REPORT EXPANDER ROUTE TABLE LIST to one byte to match the others? The descriptor is 16 bytes long, so one frame can only hold 61 of them. A one byte field is plenty. 6/11: yes
- 4. Move the NUMBER OF field in REPORT EXPANDER ROUTE TABLE LIST to byte 31? 6/11: no
- 5. Move the NUMBER OF field in DISCOVER LIST to byte 47? 6/11: no

6a. Add a rule that the management application client should ignore fields in a response frame that are beyond the response frame length it understands?

or 6b. Add a rule that the management application client should consider it an error if it detects fields in a response frame that are beyond the request length it understands?

6/11: yes option a

7a. Add a rule that the management application client should ignore fields in a response descriptor that are beyond the descriptor length it understands?

or $\overline{7}b$. Add a rule that the management application client should consider it an error if it detects fields in a response descriptor that are beyond the descriptor length it understands?

6/11: yes option a

8. Add DESCRIPTOR LENGTH fields to CONFIGURE ZONE PERMISSION TABLE and CONFIGURE PHY EVENT? 6/11: yes
9. Add 4 bytes to CONFIGURE ZONE PHY INFORMATION request and include a DESCRIPTOR LENGTH field?
6/11: use 6 reserved bits as a 6-bit LENGTH field to avoid this. LSI and PMC both prefer.

10. Move the NUMBER OF field in CONFIGURE ZONE PERMISSION TABLE to byte 15? 6/11: no

11a. Add a rule that the management device server shall ignore fields in a request frame that are beyond the request frame length it understands?

or 11b. Add a rule that the management device server shall report an error if it detects fields in a request frame that are beyond the request frame length it understands?

6/11: yes option b

12a. Add a rule that the management device server shall ignore fields in a request descriptor that are beyond the descriptor length it understands?

or 12b. Add a rule that the management device server shall report an error if it detects fields in a request descriptor that are beyond the descriptor length it understands?

6/11: yes option b

,

We should consider adding the size of the all descriptors to the "header" of each SMP response that contains descriptors (similar to REPORT SELF-CONFIGURATION STATUS), if they do not already have such a field.

Author: RElliott

Subject: Note

Date: 6/30/2008 3:16:52 PM -07'00'

REJECT (when there are large fields like descriptors that contain other fields, subsections are used so the field name references are not confused between the outer and inner structures. When there is just one level of fields, they are all described in one section.)

1. In section 10.4.3, there is not a consistant format for the SMP function subsections. Some functions such as REPORT GENERAL, REPORT MANUFACTURER INFORMATION, and REPORT ZONE MANAGER PASSWORD use a single block style, where others such as REPORT SELF-CONFIGURATION STATUS,

Comments from page 554 continued on next page

21h

REPORT PHY EVENT LIST

10.4.3.16

10.4.2 Management protocol services

The management application client and management device server use a four-step process to perform

- 1) The management application client invokes Send SMP Function;
- 2) The SMP target port invokes SMP Function Received;
- The management device server invokes Send SMP Function Response; and
 The SMP initiator port invokes Received SMP Function Complete.

10.4.3 SMP functions

554

10.4.3.1 SMP functions overview

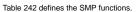


Table 242 — SMP functions (FUNCTION field) (part 1 of 2)

Function code	SMP function	Description	Reference			
SMP input	functions (00h - 7Fh)					
General S	MP input functions (00h - 0Fh)					
00h	REPORT GENERAL	Return general information about the device	10.4.3.4			
0111	REPORT MANUFACTURER INFORMATION	Return vendor and product identification	10.4.3.5			
02h	READ GPIO REGISTER	See SFF-8485				
03h	REPORT SELF-CONFIGURATION STATUS	Return status of the discover process in a self-configuring expander device	10.4.3.6			
04h	REPORT ZONE PERMISSION TABLE	Return zone permission table values	10.4.3.7			
05h	REPORT ZONE MANAGER PASSWORD	Return the zone manager password	10.4.3.8			
06h	REPORT BROADCAST	Return information about Broadcast counters	10.4.3.9			
07h - 0Fh	Reserved for general SMP inpo	ut functions				
Phy-based	SMP input functions (10h - 1Fh)					
10h	DISCOVER	Return information about the specified phy	10.4.3.10			
11h	REPORT PHY ERROR LOG	Return error logging information about the specified phy	10.4.3.11			
12h	REPORT PHY SATA	Return information about a phy currently attached to a SATA phy	10.4.3.12			
13h	REPORT ROUTE INFORMATION	Return phy-based expander route table information	10.4.3.13			
14h	REPORT PHY EVENT	Return phy events for the specified phy	10.4.3.14			
15h - 1Fh	Reserved for phy-based SMP i	input functions				
Descriptor	list-based SMP input functions (2	20h - 2Fh)				
20h	DISCOVER LIST	Return information about the specified phys	10.4.3.15			
21h	REPORT PHY EVENT LIST	Return phy events	10.4.3.16			

Working Draft Serial Attached SCSI - 2 (SAS-2)

REPORT ZONE PERMISSION TABLE and REPORT BROADCAST break the section into an overview, request, response and additional table subsections.

(from Tim McLeod, Data Domain; T10 reflector 5/9/2008)

Author: RElliott

Subject: Note
Date: 8/28/2008 12:52:50 PM -07'00'

ACCEPT - DONE (7714 obsolete codes 02h and 82h. Assign new codes for new modern versions added to SFF-8485 revision 0.8)

7/9 yes change them. SFF-8485 is open for changes now...)

SFF-8485's READ GPIO REGISTER (02h) and WRITE GPIO REGISTER (82h) functions do not have room for the ALLOCATED REQUEST LENGTH and ALLOCATE RESPONSE LENGTH fields.

Define new versions of them following the SAS-2 format, and obsolete these function codes.

Function code	SMP function	Description	Reference	
22h	REPORT EXPANDER ROUTE TABLE LIST	Return contents of the expander-based expander route table	10.4.3.17	
23h - 2Fh	Reserved for descriptor list-bas	sed SMP input functions		
Other	l			
30h - 3Fh	Reserved for SMP input function	ons		
40h - 7Fh	Vendor specific			
SMP outpu	it functions (80h - FFh)			
General SN	MP output functions (80h - 8Fh)			
80h	CONFIGURE GENERAL	Configure the device	10.4.3.18	
81h	ENABLE DISABLE ZONING	Enable or disable zoning	10.4.3.19	
82h	WRITE GPIO REGISTER	See SFF-8485	-	
83h - 84h	Reserved for general SMP out	put functions		
85h	ZONED BROADCAST	Transmit the specified Broadcast on the expander ports in the specified zone group(s)	10.4.3.20	
86h	ZONE LOCK	Lock a zoning expander device	10.4.3.21	
87h	ZONE ACTIVATE	Set the zoning expander active values equal to the zoning expander shadow values	10.4.3.22	
88h	ZONE UNLOCK	Unlock a zoning expander device	10.4.3.23	
89h	CONFIGURE ZONE MANAGER PASSWORD	Configure the zone manager password	10.4.3.24	
8Ah	CONFIGURE ZONE PHY INFORMATION	Configure zone phy information	10.4.3.25	
8Bh	CONFIGURE ZONE PERMISSION TABLE	Configure the zone permission table	10.4.3.26	
8Ch - 8Fh	Reserved for general SMP out	put functions	1	
Phy-based	SMP output functions (90h - 9Fh	n)		
90h	CONFIGURE ROUTE INFORMATION	Change phy-based expander route table information	10.4.3.27	
91h	PHY CONTROL	Request actions by the specified phy	10.4.3.28	
92h	PHY TEST FUNCTION	Request a test function by the specified phy	10.4.3.29	
93h	CONFIGURE PHY EVENT	Configure phy events for the specified phy	10.4.3.30	
94h - 9Fh	Reserved for phy-based SMP	output functions	1	
Other				
A0h - BFh	Reserved for SMP output functions	tions		
C0h - FFh	Vendor specific			

Working Draft Serial Attached SCSI - 2 (SAS-2)

10.4.3.2 SMP function request frame format

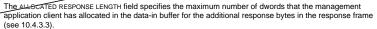
10.4.3.2.1 SMP function request frame format overview

An SMP request frame is sent by a management application client via an SMP initiator port to request an SMP function be performed by a management device server. Table 243 defines the SMP request frame format.

Table 243 — SMP request frame format

Byte ^a \Bit	7	6	5	4	3	2	1	0			
0		SMP FRAME TYPE (40h)									
1				FUN	CTION						
2			ALI	LOCATED RE	SPONSE LEN	GTH					
3			REQUE	ST LENGTH ((00h or ((n -	7) / 4))					
4				A	annest butes						
m				Additional re	equest bytes	•					
				Fill bytes	, if needed						
n - 3	(MSB)			CF	20						
n		- '		CF	KC .			(LSB)			

^a Shaded byte numbers (e.g., bytes 0 through 3 and (n - 3) through n) show the bytes that are included in the request frame when the REQUEST LENGTH field is set to 00h. Functions defined in previous versions of this standard may be defined as containing more than eight bytes when the REQUEST LENGTH field is set to 00h.


10.4.3.2.2 SMP FRAME TYPE field

The SMP FRAME TYPE field is defined by the SMP transport layer (see 9.4.1) and parsed by the SMP transport layer state machines (see 9.4.5). The SMP FRAME TYPE field is set to the value defined in table 242 (see 10.4.3.2.1).

10.4.3.2.3 FUNCTION field

The FUNCTION field specifies which SMP function is being requested and is defined in tably 242 (see 10.4.3.1); If the value in the FUNCTION field is not supported by the management device server, it shall return a function result of UNKNOWN SMP FUNCTION as described in table 276 (see 10.4.3.3.4).

10.4.3.2.4 ALLOCATED RESPONSE LENGTH field

For compatibility with previous versions of this standard, an ALLOCATED RESPONSE LENGTH field set to 00h specifies that a specific number of dwords are to be transferred as defined in the SMP function description. This condition shall not be considered as an error.

If the LONG RESPONSE bit is set to one in the REPORT GENERAL response (see 10.4.3.4), then the management application client may set the ALLOCATED RESPONSE LENGTH field to a non-zero value in all SMP request frames. If the LONG RESPONSE bit is set to zero in the REPORT GENERAL response, then the

Page: 556

Author: hpq-relliott

Subject: Note Date: 5/27/2008 4:09:13 PM -07'00'

ACCEPT - DONE (5/7 on requests, we do need to define that an error be detected if too many bytes are sent. The link layer already checks for and discards a frame that is too long (258 dwords), so just reduced that by 1 dword.)

The fields Allocated Response Length, Request Length, and Response Length all have maximum values of FFh=255, meaning 255*4=1020 bytes, not 1024. So, the statements in the SMP transport layer that the maximum SMP request bytes size (excluding the CRC field) is 1024 bytes is untrue.

Since the size including CRC is indeed 1024, it's still a convenient number.

Change the SMP transport layer section to match this limit. Add a NOTE that in SAS-1.1, a vendor-specific frame might have been defined that had 1024 bytes of data.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

get rid of fill bytes

Author: wdc-mevans Subject: Highlight

Date: 5/26/2008 9:14:06 AM -07'00'

TREJECT (but reworded sentence so first noun/subject convention holds, and added "then": "If the management device server does not support the value in the function field, then it shall return...")

it s/b

then the management device server

Author: Isi-bbesmer
Subject: Note
Date: 5/27/2008 4:05:15 PM -07'00'
ACCEPT - DONE

A non-zero value in ALLOCATED RESPONSE LENGTH limits additional response frame to be 1020 bytes. Including the SMP header, this leads to the entire SMP Frame Length maximum to be 1024 (not including CRC):

(255 * 4) + 4 bytes header = 1024.

Author: RElliott

Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE (added one sentence in the first paragraph:

"If the SMP function description does not specify a specific number of dwords, then the number of dwords to be transferred is zero."

(from Bill Martin, Emulex)

In 10.4.3.2.4 there are the following two statements:

For compatibility with previous versions of this standard, an ALLOCATED RESPONSE LENGTH field set to 00h specifies that a specific number of dwords are to be transferred as defined in the SMP function description. This condition shall not be considered as an error.

If the ALLOCATED RESPONSE LENGTH field is set to a non-zero value, then the management device server shall truncate the additional response bytes to the number of dwords specified by the ALLOCATED RESPONSE LENGTH field.

This is correct for SMP functions that were previously defined; however new SAS-2 SMP functions do not define a fixed length

Comments from page 556 continued on next page

10.4.3.2 SMP function request frame format

10.4.3.2.1 SMP function request frame format overview

An SMP request frame is sent by a management application client via an SMP initiator port to request an SMP function be performed by a management device server. Table 243 defines the SMP request frame format.

Table 243 — SMP request frame format

Byte ^a \Bit	7	6	5	4	3	2	1	0			
0		SMP FRAME TYPE (40h)									
1				FUNC	TION						
2			ALL	OCATED RES	PONSE LEN	GTH					
3			REQUES	ST LENGTH (00h or ((n -	7) / 4))					
4			Δ.	ما اممانانام							
m		•	^	dditional re	quesi bytes	1					
				Fill bytes,	if needed						
n - 3	(MSB)			0.0	^						
n		-		CR				(LSB)			

a Shaded byte numbers (e.g., bytes 0 through 3 and (n - 3) through n) show the bytes that are included in the request frame when the REQUEST LENGTH field is set to 00h. Functions defined in previous versions of this standard may be defined as containing more than eight bytes when the REQUEST LENGTH field is set to 00h.

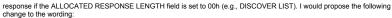
10.4.3.2.2 SMP FRAME TYPE field

The SMP FRAME TYPE field is defined by the SMP transport layer (see 9.4.1) and parsed by the SMP transport layer state machines (see 9.4.5). The SMP FRAME TYPE field is set to the value defined in table 243 (see 10.4.3.2.1).

10.4.3.2.3 FUNCTION field

The FUNCTION field specifies which SMP function is being requested and is defined in table 242 (see 10.4.3.1). If the value in the FUNCTION field is not supported by the management device server, it shall return a function result of UNKNOWN SMP FUNCTION as described in table 245 (see 10.4.3.3.4).

10.4.3.2.4 ALLOCATED RESPONSE LENGTH field



The ALLOCATED RESPONSE LENGTH field specifies the maximum number of dwords that the management application client has allocated in the data-in buffer for the additional response bytes in the response frame (see 10.4.3.3).

For compatibility with previous versions of this standard, an ALLOCATED RESPONSE LENGTH field set to 00h specifies that a specific number of dwords are to be transferred as defined in the SMP function description. This condition shall not be considered as an error.

If the LONG RESPONSE bit is set to one in the REPORT GENERAL response (see 10.4.3.4), then the management application client may set the ALLOCATED RESPONSE LENGTH field to a non-zero value in all SMP request frames. If the LONG RESPONSE bit is set to zero in the REPORT GENERAL response, then the

556 Working Draft Serial Attached SCSI - 2 (SAS-2)

For compatibility with previous versions of this standard, an ALLOCATED RESPONSE LENGTH field set to 00h specifies that a specific number of dwords are to be transferred as defined in the SMP function description. If the SMP function defines the number of dwords to be transferred when the ALLOCATED RESPONSE LENGTH field is set to 00h, the value 00h shall not be considered

If an SMP function specifies a number of dwords to be transferred when the ALLOCATED RESPONSE LENGTH field is set to 00h and the ALLOCATED RESPONSE LENGTH field is set to a non-zero value, then the management device server shall truncate the additional response bytes to the number of dwords specified by the ALLOCATED RESPONSE LENGTH field.

management application client shall set the ALLOCATED RESPONSE LENGTH field to 00h in all SMP request

If the ALLOCATED RESPONSE LENGTH field is set to a non-zero value, then the management device server shall truncate the additional response bytes to the number of dwords specified by the ALLOCATED RESPONSE LENGTH

If the ALLOCATED RESPONSE LENGTH field is set to 00h, then the management device serves shall truncate the additional response bytes to the number of dwords specified by the SMP function.

The allocated response length is used to limit the maximum amount of variable length data returned to the management application client. Fields in the additional response bytes (e.g., fields containing counts of the number of dwords in some or all of the data) shall not be altered to reflect the truncation, if any, that results from an insufficient allocated response length value

10.4.3.2.5 REQUEST LENGTH field

A REQUEST LENGTH field set to 00h specifies that either:

- a) no dwords follow the REQUEST LENGTH field before the CRC field; or
- b) a non-zero number of dwords follow the REQUEST LENGTH field before the CRC field. This is for compatibility with previous versions of this standard.

The function description defines the interpretation of a REQUEST LENGTH field set to 00h.

A REQUEST LENGTH field set to a non-zero value (i.e., the non-zero value defined in table 243 (see 10.4.3.2.1)) specifies the number of dwords that follow the REQUEST LENGTH field before the CRC field (i.e., the length of the entire request frame minus eight).

If the LONG RESPONSE bit is set to one in the REPORT GENERAL response (see 10.4.3.4), then the management application client may set the REQUEST LENGTH field to a non-zero-value in the SMP request frame for any SMP function. If the LONG RESPONSE bit is set to zero in the REPORT GENERAL response, then the management application client shall set the REQUEST LENGTH field to 00h in the SMP request Trace for every SMP function.

If the request frame size including the CRC field is less than 8 byes, or the REQUEST LENGTH field does not match the request frame size, the management device server shall return a function result of INVALID REQUEST FRAME LENGTH.

The management device server shall consider any fields not included in the resuest frame to be set to zero.

10.4.3.2.6 Additional request bytes

The additional request bytes definition and length are based on the SMP function. The maximum size of the additional request bytes is 1 024 bytes, making the maximum size of the frame 1 032 bytes (i.e., 1 024 bytes) of data + 4 bytes of header + 4 bytes of CRC).

10.4.3.2.7 Fill bytes

Fill bytes shall be included after the additional request bytes so the CRC field is aligned on a four byte boundary. The contents of the fill bytes are vendor specific.

10.4.3.2.8 CRC field

The CRC field is defined by the SMP transport layer (see 9.4.1) and parsed by the SMP link layer state machines (see 7.18.5).

Page: 557

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

SMP function SMP function description

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

value

Author: Isi-bbesmer Subject: Highlight Date: 5/27/2008 5:32:46 PM -07'00'

REJECT (this is referring to the length itself, not the field specifying the length. Deleting "value", which is unnecessary)

allocated response length

small caps?

Author: Isi-gpenokie

Subject: Highlight Date: 5/27/2008 2:38:14 PM -07'00'

REJECT (prefer to see the "non-zero number..." at the front of the list.)

This << a non-zero number of dwords follow the REQUEST LENGTH field before the CRC field. This is for compatibility with previous versions of this standard >> should be << for compatibility with previous versions of this standard, a non-zero number of dwords follow the REQUEST LENGTH field before the CRC field. >>

Author: Isi-bbesmer

Subject: Note Date: 5/27/2008 2:35:44 PM -07'00'

ACCEPT - DONE (backed down to 1020)

A REQUEST LENGTH maximum value of 255, leads to maximum additional request bytes value of (255 * 4) = 1020.

Section 9.4.2 says:

The REQUEST BYTES field definition and length is based on the SMP function (see 10.4.3.2). The maximum size of the REQUEST BYTES field is 1 024 bytes, making the maximum size of the frame 1 032 bytes (i.e., 1 024 bytes of data + 4 bytes of header + 4 bytes of CRC).

1020 <> 1024

Potential solutions:

- 1) Reduce maximum additional request length to 1020 (currently 1024)
- 2) additional_request_length = (REQUEST_LENGTH+1) * 4...this would be problem for a 4-byte request however.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

eight

Comments from page 557 continued on next page

28 January 2008 T10/1760-D Revision 14

management application client shall set the ALLOCATED RESPONSE LENGTH field to 00h in all SMP request frames

If the ALLOCATED RESPONSE LENGTH field is set to a non-zero value, then the management device server shall truncate the additional response bytes to the number of dwords specified by the ALLOCATED RESPONSE LENGTH field.

If the ALLOCATED RESPONSE LENGTH field is set to 00h, then the management device server shall truncate the additional response bytes to the number of dwords specified by the SMP function.

The allocated response length is used to limit the maximum amount of variable length data returned to the management application client. Fields in the additional response bytes (e.g., fields containing counts of the number of dwords in some or all of the data) shall not be altered to reflect the truncation, if any, that results from an insufficient allocated response length value.

10.4.3.2.5 REQUEST LENGTH field

A REQUEST LENGTH field set to 00h specifies that either:

- a) no dwords follow the REQUEST LENGTH field before the CRC field; or
- b) a non-zero number of dwords follow the REQUEST LENGTH field before the CBP field. This is for compatibility with previous versions of this standard.

The function description defines the interpretation of a REQUEST LENGTH field set to 00h.

A REQUEST LENGTH field set to a non-zero value (i.e., the now zero value defined in table 243 (see 10.4.3.2.1)) specifies the number of dwords that follow the REQUEST LENGTH field before the CRC field (i.e., the length of the entire request frame minus cioth).

If the LONG RESPONSE bit is set to one is the REPORT SENERAL response (see 10.4.3.4), then the management application client may set the REQUEST LENGTH field to a non-zero value in the SMP request frame for any SMP function. If the LONG RESPONSE bit is set to zero in the REPORT GENERAL response, then the management application client shall set the REQUEST LENGTH field to 00h in the SMP request frame for every SMP function.

If the reguest frame size including the CRC field is less than 8 bytes, or the REQUEST LENGTH field dose not match the request frame size, the management device server shall return a function result of HYALID REQUEST FRAME LENGTH.

The management device server shall consider any fields not included in the request frame to be set to zero

10.4.3.2.6 Additional request bytes

The additional request bytes definition and length are based on the SMP function. The maximum size of the additional request bytes is 1 024 bytes, making the maximum size of the frame 1 032 bytes (i.e., 1 024 bytes of data + 4 bytes of header + 4 bytes of CRC).

10.4.3.2.7 Fill bytes

Fill bytes shall be included after the additional request bytes so the CRC field is aligned on a four byte boundary. The contents of the fill bytes are render specific.

10.4.3.2.8 CRC field

The CRC field is defined by the SMP transport layer (see 9.4.1) and parsed by the SMP list layer state machines (see 7.18.5).

two since the units are dwords, not bytes

(as noted by Isi-bbesmer for the RESPONSE FRAME field)

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the

Author: RElliott

then the

Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE (specific comments added in SMP request and SMP response sections. SPC-4 proposal 08-261r0 proposes general rule for all parameter lists/parameter data in SCSI, so SAS need not create similar rules for mode pages, log pages, diagnostic pages, etc.)

Should the device server ignore fields it doesn't understand (requests that are too long)? This rule only discusses request frames that are too short. Without an easy way to detect the version of the device server, the initiator would have to try multiple times to get a frame through.

Author: Isi-bbesmer Subject: Highlight Date: 5/27/2008 2:33:18 PM -07'00'

ACCEPT - DONE (backed down to 1028)

Not possible to describe. See comment in 10.4.3.2.5

Author: Isi-gpenokie

Subject: Highlight Date: 5/27/2008 2:33:31 PM -07'00'

ACCEPT - DONE (backed down to 1020)

How can this be 1024? The math does not seem to work. The largest value for the length field is FFh (255). 255 x 4 = 1020. So how can you get to 1024?

Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Change to:

The additional request bytes definition and length are based on the SMP function.

The number of additional request bytes are an integer multiple of four, so the crc field is aligned on a four byte boundary.

The maximum number additional request bytes is 1 020, making the maximum size of the frame 1 028 bytes (i.e., 1 020 bytes of data + 4 bytes of header + 4 bytes of CRC).

NOTE: Management application clients compliant with previous versions of this standard may send a vendor-specific SMP request frame containing 1 024 additional request bytes. The SMP_TP state machine discards SMP request frames that exceed 1 023 request bytes (see 7.18.5.4.2.2). SMP request frames defined in those versions of this standard did not have more than 36 additional request bytes.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

management application client shall set the ALLOCATED RESPONSE LENGTH field to 00h in all SMP request

If the ALLOCATED RESPONSE LENGTH field is set to a non-zero value, then the management device server shall truncate the additional response bytes to the number of dwords specified by the ALLOCATED RESPONSE LENGTH

If the ALLOCATED RESPONSE LENGTH field is set to 00h, then the management device server shall truncate the additional response bytes to the number of dwords specified by the SMP function.

The allocated response length is used to limit the maximum amount of variable length data returned to the management application client. Fields in the additional response bytes (e.g., fields containing counts of the number of dwords in some or all of the data) shall not be altered to reflect the truncation, if any, that results from an insufficient allocated response length value

10.4.3.2.5 REQUEST LENGTH field

A REQUEST LENGTH field set to 00h specifies that either:

- a) no dwords follow the REQUEST LENGTH field before the CRC field; or
- b) a non-zero number of dwords follow the REQUEST LENGTH field before the CRC field. This is for compatibility with previous versions of this standard.

The function description defines the interpretation of a REQUEST LENGTH field set to 00/h.

A REQUEST LENGTH field set to a non-zero value (i.e., the non-zero value defined in table 243 (see 10.4.3.2.1)) specifies the number of dwords that follow the REQUEST LENGTH field before the DRC field (i.e., the length of the entire request frame minus eight).

If the LONG RESPONSE bit is set to one in the REPORT GENERAL response (see 10.4.3.4), then the management application client may set the REQUEST LENGTH field to a non-zero value in the SMP request frame for any SMP function. If the LONG RESPONSE bit is set to zero in the REPORT GENERAL response, then the management application client shall set the REQUEST LEWSTH field to 00h in the SMP request fame for every SMP function.

If the request frame size including the CRC field is less than 8 bytes, or the REQUEST LENGTH field does not match the request frame size, the management device server shall return a function result of INVALID REQUEST FRAME LENGTH.

The management device server shall consider any fields per included in the request frame to be set to zero.

10.4.3.2.6 Additional request bytes

The additional request bytes definition and length are based on the SMP function. The maximum size of the additional request bytes is 1 0/4 bytes, making the maximum size of the frame 1 032 bytes (i.e., 1 024 bytes of data + 4 bytes of header 4 bytes of CRC).

10.4.3.2.7 Fill bytes

Fill bytes shall be included after the additional request bytes so the CRC field is aligned on a four byte boundary. The contents of the fill bytes are vendor specific.

10.4.3.2.8 CRC field

The CRC field is defined by the SMP transport layer (see 9.4.1) and parsed by the SMP link layer state machines (see 7.18.5).

Working Draft Serial Attached SCSI - 2 (SAS-2)

ACCEPT - DONE (see other comments for details on specific additions)

Add text with these rules:

- 1. Device servers shall report an error if they receive extra bytes in request frames
- 2. Application clients should ignore any extra bytes in response frames

The application client can figure out the version of the device server, reformat its request frame, and try again. The device server, on the other hand, is not obligated to figure out the version of the application client - it cannot "try again".

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

10.4.3.2.7 Fill bytes

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Per 6/11 LB call discussion, add this rule:

If the management device server receives more additional request bytes than it expects (e.g., the management device server complies with a version of this standard defining 24 additional request bytes, but receives a request frame containing 36 additional request bytes), then it shall return a function result of INVALID REQUEST FRAME LENGTH.

Author: wdc-mevans Subject: Highlight Date: 5/27/2008 4:04:09 PM -07'00' REJECT (deleting the concept of SMP fill bytes instead)

Fill bytes

557

If the number additional request bytes is not a multiple of four, then fill bytes

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE Per the 6/11 LB call. add:

> For additional request bytes containing a descriptor length field and a descriptor list, if the management application client receives more bytes in each descriptor than it expects (e.g., the management application client complies with a version of this standard defining that a descriptor is 12 bytes, but receives a request frame containing a descriptor list with 16 byte descriptors), then it shall return a function result of INVALID REQUEST FRAME LENGTH.

10.4.3.3 SMP function response frame format

10.4.3.3.1 SMP function response frame format overview

An SMP response frame is sent by a management device server via an SMP target port in response to an SMP request frame. Table 244 defines the SMP response frame format.

Table 244 — SMP response frame format

Byte ^a \Bit	7	6	5	4	3	2	1	0			
0		SMP FRAME TYPE (41h)									
1		FUNCTION									
2				FUNCTIO	N RESULT						
3		RESPONSE LENGTH (00h or ((n - 7) / 4))									
4			٨	dditional res	nonno buto	•					
m			A	ullional 165	ponse byte	5					
				Fill bytes,	if needed						
n - 3	(MSB)			CR	0						
n		•		CR	C			(LSB)			

^a Shaded byte numbers (e.g., bytes 0 through 3 and (n - 3) through n) show the bytes that are included in the response frame when the ALLOCATED RESPONSE LENGTH field is set to 00h in the request frame. Functions defined in previous versions of this standard may be defined as returning more than eight bytes when the ALLOCATED RESPONSE LENGTH field is set to 00h.

10.4.3.3.2 SMP FRAME TYPE field

The SMP FRAME TYPE field is defined by the SMP transport layer (see 9.4.1) and parsed by the MT state machines (see 9.4.5). The SMP FRAME TYPE field is set to the value defined in table 244 (see 10.4.3.3.1).

10.4.3.3.3 FUNCTION field

558

The FUNCTION field indicates the SMP function to which this frame is a response, and is defined in table 242 (see 10.4.3.1).

10.4.3.3.4 FUNCTION RESULT field

The FUNCTION RESULT field is defined in table 245.

Table 245 — FUNCTION RESULT field (part 1 of 5)

Code	Name SMP function(s)		Description		
00h	SMP FUNCTION ACCEPTED	All	(The management device server supports the SMP function.)		
01h	UNKNOWN SMP FUNCTION	Unknown	The management device server does not support the requested SMP function.		
02h	SMP FUNCTION FAILED	All	The requested SMP function failed.		

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 558

Author: stx-ghoulder
Subject: Highlight
Date: 5/29/2008 11:50:30 AM -07'00'

ACCEPT - DONE (added " and processed the SMP request". I am hesitant to say it completed successfully, since some of the functions like PHY CONTROL schedule operations that take time, like HARD RESET. The SMP function is responded to immediately - it doesn't wait for the actions to complete.)

The management device server supports the SMP function.

Does this also mean the function completed successfully? A sentence should be added to clarify this.

28 January 2008 T10/1760-D Revision 14

Table 245 — FUNCTION RESULT field (part 2 of 5)

Code	Name	SMP function(s)	Description			
03h	INVALID REQUEST FRAME LENGTH	All	The SMP request frame length was invalid (see 10.4.3.2).			
04h	INVALID EXPANDER CHANGE COUNT	CONFIGURE GENERAL, ENABLE DISABLE ZONING, ZONE LOCK, ZONE ACTIVATE, CONFIGURE ZONE MANAGER PASSWORD, CONFIGURE ZONE PHY INFORMATION, CONFIGURE ZONE PERMISSION TABLE, CONFIGURE ROUTE INFORMATION, PHY CONTROL, PHY TEST FUNCTION, CONFIGURE PHY EVENT	The management device server supports the SMP function, but the EXPECTED EXPANDER CHANGE COUNT field does not match the current expander change count.			
05h	BUSY	ZONE UNLOCK, ENABLE DISABLE ZONING, CONFIGURE ZONE MANAGER PASSWORD, CONFIGURE ZONE PHY INFORMATION, CONFIGURE ZONE PERMISSION TABLE	For ZONE UNLOCK, the locked zoning expander device is processing the activate step. For the other functions, the management device server is currently saving zoning values.			
06h	INCOMPLETE DESCRIPTOR LIST	ZONED BROADCAST, CONFIGURE ZONE PHY INFORMATION, CONFIGURE ZONE PERMISSION TABLE, CONFIGURE PHY EVENT INFORATION	of a multi-byte field or descriptor list (e.g., in th ZONED BROADCAST request, the request frame is not large enough to contain the numb of broadcast source zone groups specified by t NUMBER OF BROADCAST SOURCE ZONE GRO			

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 559

559

Author: Isi-gpenokie
Subject: Highlight
Date: 5/27/2008 5:41:29 PM -07'00'

TREJECT (There are two independent clauses here; they need to be joined by a a coordinating conjunction (e.g., and. but, for, not, or, yet, while). "However" is a conjunctive adverb, not a coordinating conjunction)

This << function, but the >> should be << function, however the >>

Table 245 — FUNCTION RESULT field (part 3 of 5)

Code	Name	Name SMP function(s) Description			
10h	PHY DOES NOT EXIST	DISCOVER, REPORT PHY ERROR LOG, REPORT PHY SATA, REPORT ROUTE INFORMATION, REPORT PHY EVENT, DISCOVER LIST, CONFIGURE ZONE PHY INFORMATION, CONFIGURE ROUTE INFORMATION, PHY CONTROL, PHY TEST FUNCTION, CONFIGURE PHY EVENT	The phy specified by the PHY IDENTIFIER field or the STARTING PHY IDENTIFIER field in the SMP request frame does not exist (e.g., the value is not within the range of zero to the value of the NUMBER OF PHYS field reported in the SMP REPORT GENERAL response).		
11h	INDEX DOES NOT EXIST	REPORT ROUTE INFORMATION, CONFIGURE ROUTE INFORMATION	The phy specified by the PHY IDENTIFIER field in the SMP request frame does not have the table routing attribute (see 4.6.7.1), or the expander route index specified by the EXPANDER ROUTE INDEX field does not exist (i.e., the value is not in the range of 0000h to the value of the EXPANDER ROUTE INDEXES field in the SMP REPORT GENERAL response). The ADDITIONAL RESPONSE BYTES field may be present but shall be ignored.		
12h	PHY DOES NOT SUPPORT SATA	REPORT PHY SATA, PHY CONTROL	See 10.4.3.12 and 10.4.3.28		
13h	UNKNOWN PHY OPERATION	PHY CONTROL	See 10.4.3.28		
14h	UNKNOWN PHY TEST FUNCTION	PHY TEST FUNCTION	See 10.4.3.29		
15h	PHY TEST FUNCTION IN PROGRESS	PHY TEST FUNCTION	See 10.4.3.29		
16h	PHY VACANT	DISCOVER, REPORT PHY ERROR LOG, REPORT PHY SATA, REPORT ROUTE INFORMATION, REPORT PHY EVENT, CONFIGURE ZONE PHY INFORMATION, CONFIGURE ROUTE INFORMATION, PHY CONTROL, PHY TEST FUNCTION, CONFIGURE PHY EVENT	The management device server processing the SMP request frame does not have access to a specified phy (e.g., because of zoning) or vendor-specific reasons), although the value is within the range of zero to the value of the NUMBER OF PHYS field reported in the SMP REPORT GENERAL response.		

560

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 560

Author: Isi-bbesmer
Subject: Highlight
Date: \$27,72008 5:47:34 PM -07'00'
TACCEPT - DONE (as "the value is less than the value indicated in the NUMBER OF PHYS field in the REPORT GENERAL response")

NUMBER OF PHYS
\$7b\$
(NUMBER OF PHYS - 1)

Author: Isi-gpenokie
Subject: Highlight
Date: \$26,2008 9:15:18 AM -07'00'
TREJECT (nothing wrong with "because")

This<< (e.g., because of zoning or >> should be << (e.g., as a result of zoning or for>>

Author: Relliott
Subject: Highlight
Date: \$30,2008 3:16:52 PM -07'00'
TACCEPT - DONE

within the range of zero to the value of the NUMBER OF PHYS field reported in the SMP REPORT GENERAL response.

\$7b\$
the value is less than the value indicated in the NUMBER OF PHYS field in the REPORT GENERAL response

28 January 2008

T10/1760-D Revision 14

Table 245 — FUNCTION RESULT field (part 4 of 5)

Code	Name	SMP function(s)	Description		
17h	UNKNOWN PHY EVENT SOURCE	CONFIGURE PHY EVENT	See 10.4.3.30.3		
18h	UNKNOWN DESCRIPTOR TYPE	DISCOVER LIST	The descriptor type specified by the DESCRIPTOR TYPE field is not supported.		
19h	UNKNOWN PHY FILTER	DISCOVER LIST	The phy filter specified by the PHY FILTER field is not supported.		
1Ah	AFFILIATION VIOLATION	PHY CONTROL	The specified phy operation is not allowed due to the current state of affiliations.		
20h	SMP ZONE VIOLATION	CONFIGURE GENERAL, ZONED BROADCAST, PHY CONTROL, PHY TEST FUNCTION, CONFIGURE PHY EVENT	Zoning is enabled and the SMP initiator port dozenot have access to a necessary zone group according to the zone permission table (see 4.9.3.2).		
21h	NO MANAGEMENT ACCESS RIGHTS	REPORT ZONE MANAGER PASSWORD, ZONE LOCK, CONFIGURE ZONE MANAGER PASSWORD	For ZONE LOCK, any of the following are true: a) zoning is enabled, the ZONE LOCK bit is set to zero, the PHYSICAL PRESENCE byt is set to zero, the ZONE MANAGER PASSWORD field is not set to the current zone manager password, and the zone manager does not have access to zone group 2; b) zoning is enabled, the ZONE LOCK bit is set to one, and the request old not originate from the active zone manager, or c) zoning is disabled, the PHYSICAL PRESENCE bit is set to zero, the ZONE MANAGER PASSWORD field is not set to the current zone manager password. For REPORT ZONE MANAGER PASSWORD, see 10.4.3.8. For CONFIGURE ZONE MANAGER PASSWORD, see 10.4.3.24.		
22h	UNKNOWN ENABLE DISABLE ZONING VALUE	ENABLE DISABLE ZONING	See 10.4.3.19		

Page: 561

```
Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b
and the
```

Table 245 — FUNCTION RESULT field (part 5 of 5)

Code	Name	SMP function(s)	Description			
23h	ZONE LOCK VIOLATION	ENABLE DISABLE ZONING, ZONE LOCK, ZONE ACTIVATE, ZONE UNLOCK, CONFIGURE ZONE PHY INFORMATION, CONFIGURE ZONE PERMISSION TABLE	Zoning is enabled and: a) an unlocked zoning expander device receives an SMP zone configuration function request, a ZONE ACTIVATE request, or a ZONE UNLOCK request from an SMP initiator port that is not the active zone manager; or b) a locked zoning expander device receives an SMP ZONE LOCK request, an SMP zone configuration function request, a ZONE ACTIVATE request, or a ZONE UNLOCK request from an SMP initiator port that is not the active zone manager.			
24h	NOT ACTIVATED	ZONE UNLOCK	The ACTIVATE REQUIRED bit in the request is set to one but the locked zoning expander device has not processed the activate step.			
25h	ZONE GROUP OUT OF RANGE	CONFIGURE ZONE PHY INFORMATION, CONFIGURE ZONE PERMISSION TABLE	GROUPS field contains a value that is not			
26h	NO PHYSICAL PRESENCE	CONFIGURE ZONE MANAGER PASSWORD	The new ZONE MANAGER PASSWORD field is set to DISABLED (see table 26 in 4.9.1) but physical presence is not asserted.			
27h	SAVING NOT SUPPORTED	ENABLE DISABLE ZONING, CONFIGURE ZONE MANAGER PASSWORD, CONFIGURE ZONE PHY INFORMATION, CONFIGURE ZONE PERMISSION TABLE	The SAVE field is set to 01b or 11b and the management device server does not support saved values for the specified information.			
28h	SOURCE ZONE GROUP DOES NOT EXIST	REPORT ZONE PERMISSION TABLE	See 10.4.3.7			
All others	Reserved					

Table 246 defines the priority of the SMP function results defined in table 245.

Table 246 — Function result priority (part 1 of 5)

SMP function	SMP function result priority	
REPORT GENERAL (see 10.4.3.4)	INVALID REQUEST FRAME LENGTH; SMP FUNCTION FAILED; and SMP FUNCTION ACCEPTED	
REPORT MANUFACTURER INFORMATION (see 10.4.3.5)	INVALID REQUEST FRAME LENGTH; SMP FUNCTION FAILED; and SMP FUNCTION ACCEPTED	

Page: 562

Author: RElliott

```
Aution: Relifott
Subject: Cross-Out
Date: 8/28/2008 6:25:38 AM -07'00'
PACCEPT - DONE
Delete:
     from an SMP initiator port
     that is not the active zone manager
    (from Bill Martin, Emulex)
On page 562 (SAS2r14), Table 245 part 5 of 5, code 23h, under description item a should be independent of where the request comes from. I believe that the words 'from an SMP initiator port
     that is not the active zone manager" should be removed from the end of item a.
Author: wdc-mevans
Subject: Highlight
Date: 5/27/2008 5:43:01 PM -07'00'

REJECT (but changed to an a)b) list)
one but
     s/b
     one, but
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
     new ZONE MANAGER PASSWORD
     all small caps (it's the field name)
Author: wdc-mevans
Subject: Highlight
Date: 5/22/2008 2:20:24 PM -07'00'

REJECT (but changed to an a)b) list)
     4.9.1) but
     s/b
     4.9.1), but
Author: wdc-mevans
Subject: Highlight
Date: 5/22/2008 2:19:45 PM -07'00'
     11b and
     s/b
     11b, and
```

28 January 2008 T10/1760-D Revision 14

Table 246 — Function result priority (part 2 of 5)

SMP function	SMP function result priority			
READ GPIO REGISTER (see SFF-8485)	INVALID REQUEST FRAME LENGTH; SMP FUNCTION FAILED; and SMP FUNCTION ACCEPTED			
REPORT SELF-CONFIGURATION STATUS (see 10.4.3.6)	INVALID REQUEST FRAME LENGTH; SMP FUNCTION FAILED; and SMP FUNCTION ACCEPTED			
REPORT ZONE PERMISSION TABLE (see 10.4.3.7)	INVALID REQUEST FRAME LENGTH; SOURCE ZONE GROUP DOES NOT EXIST; SMP FUNCTION FAILED; and SMP FUNCTION ACCEPTED			
REPORT ZONE MANAGER PASSWORD (see 10.4.3.8)	1) INVALID REQUEST FRAME LENGTH; 2) NO MANAGEMENT ACCESS RIGHTS; 3) SMP FUNCTION FAILED; and 4) SMP FUNCTION ACCEPTED			
REPORT BROADCAST (see 10.4.3.9)	INVALID REQUEST FRAME LENGTH; SMP FUNCTION FAILED; and SMP FUNCTION ACCEPTED			
DISCOVER (see 10.4.3.10)	1) INVALID REQUEST FRAME LENGTH; 2) PHY DOES NOT EXIST; 3) PHY VACANT; 4) SMP FUNCTION FAILED; and 5) SMP FUNCTION ACCEPTED			
REPORT PHY ERROR LOG (see 10.4.3.11)	1) INVALID REQUEST FRAME LENGTH; 2) PHY DOES NOT EXIST; 3) PHY VACANT; 4) SMP FUNCTION FAILED; and 5) SMP FUNCTION ACCEPTED			
REPORT PHY SATA (see 10.4.3.12)	1) INVALID REQUEST FRAME LENGTH; 2) PHY DOES NOT EXIST; 3) PHY VACANT; 4) PHY DOES NOT SUPPORT SATA; 5) SMP FUNCTION FAILED; and 6) SMP FUNCTION ACCEPTED			
REPORT ROUTE INFORMATION (see 10.4.3.13)	1) INVALID REQUEST FRAME LENGTH; 2) PHY DOES NOT EXIST; 3) PHY VACANT; 4) INDEX DOES NOT EXIST; 5) SMP FUNCTION FAILED; and 6) SMP FUNCTION ACCEPTED			
REPORT PHY EVENT (see 10.4.3.14)	1) INVALID REQUEST FRAME LENGTH; 2) PHY DOES NOT EXIST; 3) PHY VACANT; 4) SMP FUNCTION FAILED; and 5) SMP FUNCTION ACCEPTED			

Table 246 — Function result priority (part 3 of 5)

SMP function	SMP function result priority			
DISCOVER LIST (see 10.4.3.15)	1) INVALID REQUEST FRAME LENGTH; 2) PHY DOES NOT EXIST; 3) UNKNOWN DESCRIPTOR TYPE; 4) UNKNOWN PHY FILTER; 5) SMP FUNCTION FAILED; and 6) SMP FUNCTION ACCEPTED			
REPORT PHY EVENT LIST (see 10.4.3.16)	INVALID REQUEST FRAME LENGTH; SMP FUNCTION FAILED; and SMP FUNCTION ACCEPTED			
REPORT EXPANDER ROUTE TABLE LIST (see 10.4.3.17)	INVALID REQUEST FRAME LENGTH; SMP FUNCTION FAILED; and SMP FUNCTION ACCEPTED			
CONFIGURE GENERAL (see 10.4.3.18)	1) INVALID REQUEST FRAME LENGTH; 2) SMP ZONE VIOLATION; 3) INVALID EXPANDER CHANGE COUNT; 4) SMP FUNCTION FAILED; and 5) SMP FUNCTION ACCEPTED			
WRITE GPIO REGISTER (see SFF-8485)	1) INVALID REQUEST FRAME LENGTH; 2) SMP FUNCTION FAILED; and 3) SMP FUNCTION ACCEPTED			
ENABLE DISABLE ZONING (see 10.4.3.19)	1) INVALID REQUEST FRAME LENGTH; 2) ZONE LOCK VIOLATION; 3) UNKNOWN ENABLE DISABLE ZONING VALUE; 4) INVALID EXPANDER CHANGE COUNT; 5) SAVING NOT SUPPORTED; 6) SMP FUNCTION FAILED; and 7) SMP FUNCTION ACCEPTED			
ZONED BROADCAST (see 10.4.3.20)	1) INVALID REQUEST FRAME LENGTH; 2) INCOMPLETE DESCRIPTOR LIST; 3) SMP ZONE VIOLATION; 4) SMP FUNCTION FAILED; and 5) SMP FUNCTION ACCEPTED			
ZONE LOCK (see 10.4.3.21)	1) INVALID REQUEST FRAME LENGTH; 2) ZONE LOCK VIOLATION; 3) NO MANAGEMENT ACCESS RIGHTS; 4) INVALID EXPANDER CHANGE COUNT; 5) SMP FUNCTION FAILED; and 6) SMP FUNCTION ACCEPTED			
ZONE ACTIVATE (see 10.4.3.22)	INVALID REQUEST FRAME LENGTH; ZONE LOCK VIOLATION; INVALID EXPANDER CHANGE COUNT; SMP FUNCTION FAILED; and SMP FUNCTION ACCEPTED			

28 January 2008 T10/1760-D Revision 14

Table 246 — Function result priority (part 4 of 5)

SMP function	SMP function result priority
ZONE UNLOCK (see 10.4.3.23)	1) INVALID REQUEST FRAME LENGTH; 2) ZONE LOCK VIOLATION; 3) NOT ACTIVATED; 4) BUSY; 5) SMP FUNCTION FAILED; and 6) SMP FUNCTION ACCEPTED
CONFIGURE ZONE MANAGER PASSWORD (see 10.4.3.24)	1) INVALID REQUEST FRAME LENGTH; 2) INVALID EXPANDER CHANGE COUNT; 3) NO MANAGEMENT ACCESS RIGHTS; 4) NO PHYSICAL PRESENCE; 5) SAVING NOT SUPPORTED; 6) SMP FUNCTION FAILED; and 7) SMP FUNCTION ACCEPTED
CONFIGURE ZONE PHY INFORMATION (see 10.4.3.25)	1) INVALID REQUEST FRAME LENGTH; 2) INCOMPLETE DESCRIPTOR LIST; 3) PHY DOES NOT EXIST; 4) PHY VACANT; 5) ZONE LOCK VIOLATION; 6) INVALID EXPANDER CHANGE COUNT; 7) SAVING NOT SUPPORTED; 8) ZONE GROUP OUT OF RANGE; 9) SMP FUNCTION FAILED; and 10) SMP FUNCTION ACCEPTED
CONFIGURE ZONE PERMISSION TABLE (see 10.4.3.26)	1) INVALID REQUEST FRAME LENGTH; 2) INCOMPLETE DESCRIPTOR LIST; 3) ZONE LOCK VIOLATION; 4) INVALID EXPANDER CHANGE COUNT; 5) SAVING NOT SUPPORTED; 6) ZONE GROUP OUT OF RANGE; 7) SMP FUNCTION FAILED; and 8) SMP FUNCTION ACCEPTED
CONFIGURE ROUTE INFORMATION (see 10.4.3.27)	1) INVALID REQUEST FRAME LENGTH; 2) PHY DOES NOT EXIST; 3) PHY VACANT; 4) INVALID EXPANDER CHANGE COUNT; 5) INDEX DOES NOT EXIST; 6) SMP FUNCTION FAILED; and 7) SMP FUNCTION ACCEPTED
PHY CONTROL (see 10.4.3.28)	1) INVALID REQUEST FRAME LENGTH; 2) PHY DOES NOT EXIST; 3) PHY VACANT; 4) SMP ZONE VIOLATION; 5) INVALID EXPANDER CHANGE COUNT; 6) UNKNOWN PHY OPERATION; 7) PHY DOES NOT SUPPORT SATA; 8) AFFILIATION VIOLATION; 9) SMP FUNCTION FAILED; and 10) SMP FUNCTION ACCEPTED

Working Draft Serial Attached SCSI - 2 (SAS-2)

Table 246 — Function result priority (part 5 of 5)

SMP function	SMP function result priority		
PHY TEST FUNCTION (see 10.4.3.29)	1) INVALID REQUEST FRAME LENGTH; 2) PHY DOES NOT EXIST; 3) PHY VACANT; 4) SMP ZONE VIOLATION; 5) INVALID EXPANDER CHANGE COUNT; 6) UNKNOWN PHY TEST FUNCTION; 7) PHY TEST FUNCTION IN PROGRESS; 8) SMP FUNCTION FAILED; and 9) SMP FUNCTION ACCEPTED		
CONFIGURE PHY EVENT (see 10.4.3.30)	1) INVALID REQUEST FRAME LENGTH; 2) INCOMPLETE DESCRIPTOR LIST; 3) PHY DOES NOT EXIST; 4) PHY VACANT; 5) SMP ZONE VIOLATION; 6) INVALID EXPANDER CHANGE COUNT; 7) UNKNOWN PHY EVENT SOURCE; 8) SMP FUNCTION FALLED; and 9) SMP FUNCTION ACCEPTED		

10.4.3.3.5 RESPONSE LENGTH field

A RESPONSE LENGTH field set to 00h indicates that either:

- a) no dwords follow the RESPONSE LENGTH field before the CRC field; 20
- b) a non-zero number of dwords follow the RESPONSE LEWSTH field efore the CRC field. This is compatibility with previous versions of this standard

The function description defines the interpretation of a RESPONSE LENGTH field set to 00h.

A RESPONSE LENGTH field set to a non-zero value (i.e., the non-zero value defined in table 244 (see 10.4.3.3.1)) indicates the purifiber of dwords that follow the RESPONSE LENGTH field before the CRC field (i.e., the length of the entire response frame minus eight).

10.4.3-2.6 Additional response bytes

If the FUNCTION RESULT field is set to 00h, then the additional response bytes definition depends on the SMP function requested. If the FUNCTION RESULT field is set to a value other than 00h, then the additional response bytes may be present but shall be ignored. The maximum size of the additional response bytes is 1 024 bytes, making the maximum size of the frame 1 032 bytes (i.e., 1 024 bytes of data + 4 bytes of header + 4 bytes of CRC).

10.4.3.3.7 Fill bytes

Fill bytes shall be included after the ADDITIONAL RESPONSE BYTES field so the CRC field is aligned on a four byte boundary. The contents of the fill bytes are vendor specific.

The CRC field is defined by the SMP transport layer (see 9.4.1) and parsed by the SMP link layer state machines (see 7.18.5).

10.4.3.4 REPORT GENERAL function

The REPORT GENERAL function returns general information about the SAS device (e.g., a SAS device contained in an expander device). This SMP function shall be implemented by all management device

Page: 566

Author: Isi-gpenokie

Subject: Highlight Date: 5/27/2008 2:38:49 PM -07'00'

REJECT (prefer to have "non-zero number" at the beginning)

This << a non-zero number of dwords follow the RESPONSE LENGTH field before the CRC field. This is for compatibility with previous versions of this standard >> should be << for compatibility with previous versions of this standard, a non-zero number of dwords follow the RESPONSE LENGTH field before the CRC field.>>

Author: Isi-bhesmer

Subject: Highlight Date: 5/27/2008 5:43:57 PM -07'00'

TACCEPT - DONE

eight s/b two

units are in number of dwords, not number of bytes.

Author: RElliott

Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Change to:

If the function result field is set to 00h, then the additional response bytes definition depends on the SMP function requested. If the function result field is set to a value other than 00h, then the additional response bytes may be present but shall be ignored.

The number of additional response bytes are an integer multiple of four, so the crc field is aligned on a four byte boundary.

The maximum number of additional response bytes is 1 020, making the maximum size of the frame 1 028 bytes (i.e., 1 020 bytes of data + 4 bytes of header + 4 bytes of CRC).

NOTE: Management device servers compliant with previous versions of this standard may send a vendor-specific SMP response frame containing 1 024 additional response bytes. The SMP_IP state machine discards SMP response frames that exceed 1 023 request bytes (see 7.18.5.3.4). SMP response frames defined in those versions of this standard did not have more than 56 additional response bytes.

Author: Isi-bbesmer

Subject: Highlight Date: 5/27/2008 2:35:12 PM -07'00'

TACCEPT - DONE (backed down to 1028)

Not possible to describe. See comment in 10.4.3.2.4

Author: RElliott Subject: Note

Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

Per 6/11 LB call discussion, add this rule:

The management application client should ignore any additional response bytes beyond those that it expects (e.g., if the management application client complies with a version of this standard defining 24 additional response bytes, but receives a response frame containing 36 additional response bytes, then it should ignore the last 12 additional response bytes).

A related rule will be added for device servers handling additional request bytes in 10.4.3.2.6.

Comments from page 566 continued on next page

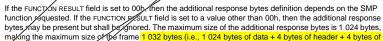
T10/1760-D Revision 14

28 January 2008

Table 246 — Function result priority (part 5 of 5)

SMP function	SMP function result priority		
PHY TEST FUNCTION (see 10.4.3.29)	1) INVALID REQUEST FRAME LENGTH; 2) PHY DOES NOT EXIST; 3) PHY VACANT; 4) SMP ZONE VIOLATION; 5) INVALID EXPANDER CHANGE COUNT; 6) UNKNOWN PHY TEST FUNCTION; 7) PHY TEST FUNCTION IN PROGRESS; 8) SMP FUNCTION FAILED; and 9) SMP FUNCTION ACCEPTED		
CONFIGURE PHY EVENT (see 10.4.3.30)	1) INVALID REQUEST FRAME LENGTH; 2) INCOMPLETE DESCRIPTOR LIST; 3) PHY DOES NOT EXIST; 4) PHY VACANT; 5) SMP ZONE VIOLATION; 6) INVALID EXPANDER CHANGE COUNT; 7) UNKNOWN PHY EVENT SOURCE; 8) SMP FUNCTION FALED; and 9) SMP FUNCTION ACCEPTED		

10.4.3.3.5 RESPONSE LENGTH field


A RESPONSE LENGTH field set to 00h indicates that either:

- a) no dwords follow the RESPONSE LENGTH field before the CRC field; or
- b) a non-zero number of dwords fallow the RESPONSE LENGTH field before the ZRC field. This is for compatibility with previous varsions of this standard.

The function description defines the interpretation of a RESPONSE LENGTH field set to 00h.

A RESPONSE LENGTH field so to a non-zero value (i.e., the ron-zero value defined in table 244 (see 10.4.3.3.1)) indicates the number of dwords that follow the pesponse Length field before the CRC field (i.e., the length of the entire response frame minus eight).

10.4.3.3.6 Additional response bytes

10.4.3.3.7 Fill bytes

Fill bytes shall be included after the ADDITIONAL RESPONSE BYTES field so the CRC field is aligned on a four byte boundary. The contents of the fill bytes are vendor specific.

10.4.3.3.8 CRC field

566

The CRC field is defined by the SMP transport layer (see 9.4.1) and parsed by the SMP link layer state machines (see 7.18.5).

10.4.3.4 REPORT GENERAL function

The REPORT GENERAL function returns general information about the SAS device (e.g., a SAS device contained in an expander device). This SMP function shall be implemented by all management device servers.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Per 6/11 LB call, add:

For additional response bytes containing a descriptor length field and a descriptor list, the management application client should ignore any bytes in each descriptor beyond those that it expects (e.g., if the management application client complies with a version of this standard defining that a descriptor has 24 bytes, but receives a response frame containing a descriptor list with 36 byte descriptors, then it should ignore the last 12 bytes of each descriptor).

A related rule will be added for device servers in 10.4.3.2.6.

Author: RElliott
Subject: Cross-Out
Date: 6/30/2008 3:16:52 PM -07'00'
TCACCEPT - DONE

10.4.3.3.7 Fill bytes

Author: wdc-mevans Subject: Highlight Date: 5/27/2008 2:34:13 PM -07'00' TREJECT (fill bytes concept deleted for SMP instead)

Fill bytes

s/b

If the number additional request bytes is not a multiple of four, then fill bytes

28 January 2008

T10/1760-D Revision 14

567

Table 247 defines the request format.

Table 247 — REPORT GENERAL request

Byte\Bit	7	6	5	4	3	2	1	0
0		SMP FRAME TYPE (40h)						
1				FUNC	CTION (00h)			
2		ALLOCATED RESPONSE LENGTH						
3		REQUEST LENGTH (00h)						
4	(MSB)	3) CRC						
7		•	(LSB)					

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 247.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 247.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

If the ALLOCATED RESPONSE LENGTH field is set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field to 00h in the response frame; and
- b) return the first 28 bytes defined in table 248 plus the CRC field as the response frame.

If the ALLOCATED RESPONSE LENGTH field is not set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field in the response frame to the non-zero value definition table 248; and
- b) return the response frame as specified by the ALLOCATED RESPONSE LENGTH field.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 247.

The CRC field is defined in 10.4.3.2.8.

Table 248 defines the response format.

Table 248 — REPORT GENERAL response (part 1 of 3)

Byte\Bit	7	6	5	4	3	2	1	0			
0	SMP FRAME TYPE (41h)										
1	FUNCTION (00h)										
2		FUNCTION RESULT									
3		RESPONSE LENGTH (00h or 11h)									
4	(MSB)	(MSB) EXPANDER CHANGE COUNT (LSB)									
5											
6	(MSB)		EVENIDED DOUTE INDEVE								
7		•	EXPANDER ROUTE INDEXES (LSB)								
8	LONG RESPONSE	Reserved Reserved									
9		NUMBER OF PHYS									

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 567

Author: Isi-bbesmer

Subject: Note Date: 6/2/2008 6:43:30 AM -07'00'

ACCEPT - DONE ("return the response frame as defined in 10.4.3.2.4" for all instances of this wording)

(global

this is recursive. perhaps add reference to ARL clause?

b) return the response frame as specified by the ALLOCATED RESPONSE LENGTH field (see 10.4.3.2.4).

Table 248 — REPORT GENERAL response (part 2 of 3)

	Byte\Bit	7	6	5	4	3	2	1	0		
	10	TABLE TO TABLE SUPPORTED	Res	served	STP CONTINUE AWT	OPEN REJECT RETRY SUPPORTED	CONFIGURES OTHERS	CONFIGURING	EXTERNALLY CONFIGURABLE ROUTE TABLE		
	11		I		Į.	Į.					
	12		ENCLOSURE LOGICAL IDENTIFIER —								
	19		-	ENGLOSONE LOGICAL IDENTIFIER -							
	20		Reserved -								
I	27		-								
I	28					Reserved					
	29		-			Reserved					
	30	(MSB)			STD BIIS	INACTIVITY TIN	4E LIMIT				
	31		-		011 500	III.	AL LIWIT		(LSB)		
	32	(MSB)			STP MAXIM	UM CONNECT	TIME LIMIT				
	33					0 00201			(LSB)		
	34	(MSB)			STP SMP	I_T NEXUS LO	SS TIME				
	35				011 0111				(LSB)		
	36	NUMBER OF Z GROUPS	NUMBER OF ZONE GROUPS Reserved Saving Zone MANAGER PHYSICAL PRESENCE SUPPORTED SUPPORTED SAVING ZONE PHY PERMISSION INFORMATION TABLE SUPPORTED								
	37	Res									
	38	(MSB)	_	MAXIM	IIM NIIMBE	R OF ROUTED					
	39				OM HOMBE		O/10 /155/1200		(LSB)		
	40			А	CTIVE ZONE	MANAGER SA	S ADDRESS				
	47										
	48	(MSB)	-								
	49		ZONE LOCK INACTIVITY TIME LIMIT -								
	50										
	51										
	52					Reserved					
	53			FIRST	ENCLOSUR	E CONNECTOR	ELEMENT IND	EX			

568

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 568

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Augment the CONFIGURING bit with 2 new bits (per Isi-bbesmer comment on first page), with definitions below (see comment on page 570)

28 January 2008

T10/1760-D Revision 14

569

Table 248 — REPORT GENERAL response (part 3 of 3)

Byte\Bit	7	6	5	4	3	2	1	0				
54		NUMBER OF ENCLOSURE CONNECTOR ELEMENT INDEXES										
55	Reserved											
56	REDUCED FUNCTIONALITY Reserved											
57		TIME TO REDUCED FUNCTIONALITY										
58		INITIAL TIME TO REDUCED FUNCTIONALITY										
59			MA	XIMUM RED	UCED FUNCTION	DNALITY TIME						
60	(MSB)		LACT CELE	CONFICUR	ATION STATUS	DESCRIPTOR	INDEV					
61			LAST SELF	CONFIGUR	ATION STATUS	DESCRIPTOR	INDEX	(ZSB)				
62	(MSB)	MA	AXIMUM NU	MBER OF S	TORED SELF-C	ONFIGURATIO	N STATUS					
63			DESCRIPTORS (LSB									
64	(MSB)											
65			LAST PHY EVENT LIST DESCRIPTOR INDEX (LSI									
66	(MSB)		VIMI IM NII I	MDED OF C	FORED BHY EV	ENT LIST DES	PURTORS					
67		MAXIMUM NUMBER OF STORED PHY EVENT LIST DESCRIPTORS (LSE										
68	(MSB)			eth be	JECT TO OPEN	LIMIT						
69				SIFKE	JECT TO OPEN	LIMITY		(LSB)				
70					Reserved /							
71					Keserved							
72	(MSB)				05/0							
75					CF/C			(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and small be set to the value defined in table 248.

The FUNCTION field is defined in 10.4.3.3.3 and shall/be set to the value defined in table 248.

The FUNCTION RESULT field is defined in 10.4.3.3.4

The RESPONSE LENGTH field is defined in 10.4.3/3.5 and shall be set to one of the values defined in table 248 based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field counts the number of Broadcast (Change)s originated by an expander device (see 7.11). Management device servers in expander devices shall support this field. Management device servers in other device types (e.g., end devices) shall set this field to 0000h. This field shall be set to at least 0001h at power on. If the expander device has originated Broadcast (Change) for any reason described in 7.11 since transmitting any SMP response frame containing an EXPANDER CHANGE COUNT field, it shall increment this field at least once from the value in the previous REPORT GENERAL response. It shall not increment this field when forwarding a Broadcast (Change). This field shall wrap to at least 0001h after the maximum value (i.e., FFFFh) has been reached.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 569

```
Author: wdc-mevans
Subject: Highlight
Date: 5/23/2008 11:31:26 AM -07'00'
TACCEPT - DONE (as "indicates")

counts
s/b
contains

Author: wdc-mevans
Subject: Highlight
Date: 5/26/2008 9:16:55 AM -07'00'
TREJECT (first noun/subject convention, but added "then")

it
s/b
then the management device server

Author: wdc-mevans
Subject: Highlight
Date: 5/26/2008 9:17:13 AM -07'00'
TREJECT (subject of previous sentence)

It
s/b
The management device server
```

NOTE 103 - Application clients that use the EXPANDER CHANGE COUNT field should read it often enough to ensure that it does not increment a multiple of 65 535 times between reading the field in an expander device compliant with this standard or a multiple of 65 536 times between reading the field in an expander device compliant with previous versions of this standard.

NOTE 104 - Management device servers in expander devices compliant with previous versions of this standard may return an EXPANDER CHANGE COUNT field set to 0000h.

NOTE 105 - The originated Broadcast (Change) count is also reported in the REPORT BROADCAST response (see 10.4.3.9).

The EXPANDER ROUTE INDEXES field indicates the maximum number of expander route indexes per phy for the expander device (see 4.6.7.3). Management device servers in externally configurable expander devices containing phy-based expander route tables shall support this field. Management device servers in other device types (e.g., end devices, externally configurable expander devices with expander-based expander route tables, and self-configuring expander devices) shall set the EXPANDER ROUTE INDEXES field to zero. Not all phys in an externally configurable expander device are required to support the maximum number indicated by this field.

A LONG RESPONSE bit set to one indicates that the management device server supports returning non-zero values in the RESPONSE LENGTH field of the response frame for any SMP function when the ALLOCATED RESPONSE LENGTH field in the request frame for that SMP function is set to a non-zero value. The LONG RESPONSE bit shall be set to one

NOTE 106 - Devices compliant with previous versions of this standard set the LONG RESPONSE bit to zero in the REPORT GENERAL response and set the RESPONSE LENGTH field to 00h in all SMP response frames.

The NUMBER OF PHYS field indicates the number of phys in the device, including any virtual phys and any vacant phys.

A TABLE TO TABLE SUPPORTED bit set to one indicates that the expander device is a self-configuring expander device. That supports its table routing phys being attached to table routing phys in other expander devices. The TABLE TO TABLE SUPPORTED bit shall only be set to one if the EXTERNALLY CONFIGURABLE ROUTE TABLE bit is set to zero. A TABLE TO TABLE SUPPORTED bit set to zero indicates that the expander device is not a self-configuring expander device that supports its table routing phys being attached to table routing phys other expander devices.

An STP CONTINUE AWT bit set to one specifies that the STP port shall not stop the Arbitration Wait Time timer and set the Arbitration Wait Time timer to zero when the STP port receives an OPEN_REACT (RETRY). An STP CONTINUE AWT bit set to zero specifies that the STP port shall stop the Arbitration Wait Time timer to zero when the STP port receives an OPEN_REACT (RETRY).

An OPEN REJECT RETRY SUPPORTED bit set to one indicates that the expanded device returns OPEN_REJECT (RETRY) for any connection requests that would otherwise have resulted in OPEN_REJECT (NO DESTINATION) while the CONFIGURING bit is set to one (see 4.7.2). An OPEN REJECT RETRY SUPPORTED set to zero indicates that the expander device complies with previous versions of this standard (i.e. returns OPEN_REJECT (NO DESTINATION)). Self-configuring expander devices compliant with this standard shall set the OPEN REJECT RETRY SUPPORTED bit to one.

A CONFIGURES OTHERS bit set to one indicates that the expander device is a self-configuring expander devices that performs the configuration subprocess defined in 4.8. A CONFIGURES OTHERS bit set to Zero indicates that the expander device may or may not perform the configuration subprocess. Self-configuring expander devices compliant with this standard shall set the CONFIGURES OTHERS bit to one.

NOTE 107 - If the CONFIGURES OTHERS bit is set to zero, the expander device may configure all external configurable expander devices in the SAS domain.

Page: 570

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
    zero
    s/b
    0000h
Author: Isi-bhesmer
Subject: Highlight
Date: 6/9/2008 1:40:30 PM -07'00'
 TACCEPT - DONE (Added rules to 4.6.7.1; see comments added there 5/7 agree need to introduce this concept in the model
    This seems to be the only place this rule is specified, namely that Table to Table is ONLY allowed on Self-configuring expanders.
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    expander devices
   expander devices (i.e., table-to-table attachment)
   so searches for table-to-table (with the dashes) will find this field.
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
   ACCEPT - DONE
    while the CONFIGURING bit is set to one (see 4.7.2).
    while the self configuring bit is set to one (see 4.7.2) or the zone configuring bit is set to one (see 4.9.6.3).
   to match Isi-bbesmer comment on first page
Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
 TACCEPT - DONE (but with a dreaded "it")
   (i.e. returns OPEN_REJECT (NO DESTINATION))
   (i.e., the expander device returns OPEN_REJECT (NO DESTINATION) while the CONFIGURING bit is set to one)
Author: Isi-apenokie
Subject: Highlight

Subject: Highlight

Date: 5/26/2008 91:8:06 AM - 07'00'

"PREJECT( expander devices compliant with this standard must have the bit set to one. This note is describing the behavior of
```

Comments from page 570 continued on next page

expander devices not compliant with this standard (e.g., compliant with SAS-1.1))

This note << NOTE 107 - If the CONFIGURES >> should be normative.

Author: RElliott

Date: 6/30/2008 3:16:52 PM -07'00'

NOTE 103 - Application clients that use the EXPANDER CHANGE COUNT field should read it often enough to ensure that it does not increment a multiple of 65 535 times between reading the field in an expander device compliant with this standard or a multiple of 65 536 times between reading the field in an expander device compliant with previous versions of this standard.

NOTE 104 - Management device servers in expander devices compliant with previous versions of this standard may return an EXPANDER CHANGE COUNT field set to 0000h.

NOTE 105 - The originated Broadcast (Change) count is also reported in the REPORT BROADCAST response (see 10.4.3.9).

The EXPANDER ROUTE INDEXES field indicates the maximum number of expander route indexes per phy for the expander device (see 4.6.7.3). Management device servers in externally configurable expander devices containing phy-based expander route tables shall support this field. Management device servers in other device types (e.g., end devices, externally configurable expander devices with expander-based expander route tables, and self-configuring expander devices) shall set the EXPANDER ROUTE INDEXES field to zero. Not all phys in an externally configurable expander device are required to support the maximum number indicated

A LONG RESPONSE bit set to one indicates that the management device server supports returning non-zero values in the RESPONSE LENGTH field of the response frame for any SMP function when the ALLOCATED RESPONSE LENGTH field in the request frame for that SMP function is set to a non-zero value. The LONG RESPONSE bit shall be set to one

NOTE 106 - Devices compliant with previous versions of this standard set the LONG RESPONSE bit to zero/in the REPORT GENERAL response and set the RESPONSE LENGTH field to 00h in all SMP response frames.

The NUMBER OF PHYS field indicates the number of phys in the device, including any virtual phys/and any vacant phys.

A TABLE TO TABLE SUPPORTED bit set to one indicates that the expander device is a self-configuring expander device that supports its table routing phys being attached to table routing phys in other expander devices. The TABLE TO TABLE SUPPORTED bit shall only be set to one if the EXTERNALLY CONFIGURABLE ROUTE TABLE bit is set to zero. A TABLE TO TABLE SUPPORTED bit set to zero indicates that the expander device s not a self-configuring expander device that supports its table routing phys being attached to table routing phys in other expander devices.

An STP CONTINUE AWT bit set to one specifies that the STP port shall not stop the Arbitration Wait Time timer and set the Arbitration Wait Time timer to zero when the STP port receives an Of EN REJECT (RETRY). An STP CONTINUE AWT bit set to zero specifies that the STP port shall stop the Arbitration Wait Time timer and set the Arbitration Wait Time timer to zero when the STP port receives an OPEN_REJECT (RETRY).

An OPEN REJECT RETRY SUPPORTED bit set to one indicates that the expanded device returns OPEN REJECT (RETRY) for any connection requests that would otherwise have resulted in OPEN_REJECT (NO DESTINATION) while the CONFIGURING bit is set to one (see 4.7.2). An OFEN REJECT RETRY SUPPORTED set to zero indicates that the expander device complies with previous versions of this standard (i.e. returns OPEN REJECT (NO DESTINATION)). Self-configuring expander devices compliant with this standard shall set the OPEN REJECT RETRY SUPPORTED bit to one.

A CONFIGURES OTHERS bit set to one indicates that the expander device is a self-configuring expander device that performs the configuration subprocess defined in 4.8. A CONFIGURES OTHERS bit set to zero indicates that the expander device may or may not perform the configuration supprocess. Self-configuring expander devices compliant with this standard shall set the CONFIGURES OTHERS bit to one.

NOTE 107 - If the CONFIGURES OTHERS bit is set to zero, the expander device may configure all externally configurable expander devices in the SAS domain.

Working Draft Serial Attached SCSI - 2 (SAS-2)

TACCEPT - DONE

the

then the

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

s/b

then the

570

28 January 2008

A CONFIGURING bit set to one indicates that either:

 a) the management device server is in a self-configuring expander device, the self-configuring expander device's management application client is currently performing the discover process (see 4.7), and it has tomitfied at least one change to its expander routing table; or

T10/1760-D Revision 14

 the zoning expander device is locked and the zoning expander shadow values differ from the zoning expander active values.

A CONFIGURING bit set to zero indicates that the management device server is not in a seti-sentiguring expander device currently performing the discover process and changing its expander routing table. Changes in this bit from one to zero result in a Broadcast (Change) being originated (see 7.11). Management device servers in self-configuring expander devices shall support this bit. Management device servers in externally configurable expander devices and in other device types shall set the CONFIGURING bit to zero.

An EXTERNALLY CONFIGURABLE ROUTE TABLE bit set to one indicates that the management device server is in an externally configurable expander device that has a phy-based expander route table that is required to be configured with the SMP CONFIGURE ROUTE INFORMATION function (see 4.6.7.3). An EXTERNALLY CONFIGURABLE ROUTE TABLE bit set to zero indicates that the management device server is not in an externally configurable expander device (e.g., % is in an end device, in a self-configuring expander device, or in an expander device with no phys with table yourse attributes).

The ENCLOSURE LOGICAL IDENTIFIER field identifies the emolosure, if any, in which the device is located, and is defined in SES-2. The ENCLOSURE LOGICAL IDENTIFIER field shall be set to the same value reported by the enclosure services process, if any, for the enclosure. An ENCLOSURE LOGICAL IDENTIFIER field set to zero indicates no enclosure information is available.

The STP BUS INACTIVITY TIME LIMIT field indicates the bus inactivity time Limit or STP connections, which is let by the CONFIGURE GENERAL function (see 10.4.3.18).

The STP MAXIMUM CONNECT TIME LIMIT field indicates the maximum connect time with for STP connections which is set by the CONFIGURE GENERAL function (see 10.4.3.18).

The STP SMP I_T NEXUS LOSS TIME field indicates the minimum time that an STP target port and an SMP initiator port retry certain connection requests which is set by the CONFIGURE GENERAL NUCLEON (see 10.4.3.18).

The number of zone groups field indicates the number of zone groups (e.g., the number of entries in the zone group permission table) supported by the expander device and is defined in table 249.

Table 249 — NUMBER OF ZONE GROUPS field

Code	Description
00b	128 zone groups
01b	256 zone groups
All others	Reserved

A ZONE LOCKED bit set to one indicates that the zoning expander device is locked (see 4.9.6.2). A ZONE LOCKED bit set to zero indicates that the zoning expander device is not locked.

A PHYSICAL PRESENCE SUPPORTED bit set to one indicates that the expander device supports physical presence as a mechanism for allowing locking from phys in zone groups without access to zone group 2. A PHYSICAL PRESENCE SUPPORTED bit set to zero indicates that the expander device does not support physical presence as a mechanism for allowing locking.

A PHYSICAL PRESENCE ASSERTED bit set to one indicates that the expander device is currently detecting physical presence. A PHYSICAL PRESENCE ASSERTED bit set to zero indicates that the expander device is not currently detecting physical presence. The PHYSICAL PRESENCE ASSERTED bit shall be set to zero if the PHYSICAL PRESENCE SUPPORTED bit is set to zero.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 571

```
Author: wdc-mevans
Subject: Highlight
Subject: Highlight
Subject: Highlight
Subject: Highlight
Accept - DONE ("that management application client")

it
s/b
the management application client
```

Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'

Author: wdc-mevans

Author: RElliott

571

Augment the CONFIGURING bit with 2 new bits (per Isi-bbesmer comment on first page), with these definitions:

A zone configuring bit set to one indicates that the zoning expander device is locked and the zoning expander shadow values differ from the zoning expander current values. A zone configuring bit set to zero indicates that is not true. Management device servers in zoning expander devices shall support this bit. Management device servers in non-zoning expander devices and in other device types shall set this bit to zero.

A self configuring bit set to one indicates that the management device server is in a self-configuring expander device, the self-configuring expander device's management application client is currently performing the discover process (see 4.7), and that management application client has identified at least one change to its expander routing table. Management device servers in self-configuring expander devices shall support this bit. Management device servers in externally configurable expander devices and in other device types shall set this bit to zero.

The configuring bit indicates the logical OR of the zone configuring bit and the self configuring bit. Changes in this bit from one to zero result in a Broadcast (Change) being originated (see 7.11). Management device servers that support the zone configuring bit or the self configuring bit shall support this bit.

```
Subject: Highlight
Date: 5/29/2008 11:56:52 AM -07'00'

it s/b
the management device server

Author: wdc-mevans
Subject: Highlight
Date: 5/29/2008 11:56:22 AM -07'00'
TREJECT (yes, a reserved device type)

e.g.
s/b
i.e. [are there any other cases not listed?]

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
phys with table routing attributes
s/b
table routing phys
```

Comments from page 571 continued on next page

A CONFIGURING bit set to one indicates that either:

- a) the management device server is in a self-configuring expander device, the self-configuring expander device's management application client is currently performing the discover process (see 4.7), and it has identified at least one change to its expander routing table; or
- b) the zoning expander device is locked and the zoning expander shadow values differ from the zoning expander active values

A CONFIGURING bit set to zero indicates that the management device server is not in a self-configuring expander device currently performing the discover process and changing its expander routing table. Changes in this bit from one to zero result in a Broadcast (Change) being originated (see 7.11). Management device servers in self-configuring expander devices shall support this bit. Management device servers in externally configurable expander devices and in other device types shall set the CONFIGURING bit to zero.

An EXTERNALLY CONFIGURABLE ROUTE TABLE bit set to one indicates that the management device server is in an externally configurable expander device that has a phy-based expander route table that is required to be configured with the SMP CONFIGURE ROUTE INFORMATION function (see 4.6.7.3). An EXTERNALLY CONFIGURABLE ROUTE TABLE bit set to zero indicates that the management device server is not in an externally configurable expander device (e.g., it is in an end device, in a self-configuring expander device, or in an expander device with no phys with table routing attributes).

The ENCLOSURE LOGICAL IDENTIFIER field identifies the enclosure, if any, in which the device is located, and is defined in SES-2. The ENCLOSURE LOGICAL IDENTIFIER field shall be set to the same value reported by the enclosure services process, if any, for the enclosure. An ENCLOSURE LOGICAL IDENTIFIER field set to zero indicates no enclosure information is available.

The STP BUS INACTIVITY TIME LIMIT field indicates the bus inactivity time limit for STP connections, which is set by the CONFIGURE GENERAL function (see 10.4.3.18).

The STP MAXIMUM CONNECT TIME LIMIT field indicates the praximum connect time limit for STP connections, which is set by the CONFIGURE GENERAL function (see 10.4.3.18).

The STP SMP I_T NEXUS LOSS TIME field indicates the minimum time that an STP target port and an SMP initiator port retry certain connection requisits which is set by the CONFIGURE GENERAL function (see 10.4.3.18).

The number of zone groups field indicates the number of zone groups (e.g., the number of entries in the zone group permission table) supported by the expander device and is defined in table 249.

Table 249 - NUMBER OF ZONE GROUPS field

Code	Description
00b	128 zone groups
01b	256 zone groups
All others	Reserved

A ZONE LOCKED bit set to one indicates that the zoning expander device is locked (see 4.9.6.2), A ZONE LOCKED bit set to zero indicates that the zoning expander device is not locked.

A PHYSICAL PRESENCE SUPPORTED bit set to one indicates that the expander device supports physical presence as a mechanism for allowing locking from phys in zone groups without access to zone group 2. A PHYSICAL PRESENCE SUPPORTED bit set to zero indicates that the expander device does not support physical presence as a mechanism for allowing locking.

A PHYSICAL PRESENCE ASSERTED bit set to one indicates that the expander device is currently detecting physical presence. A PHYSICAL PRESENCE ASSERTED bit set to zero indicates that the expander device is not currently detecting physical presence. The PHYSICAL PRESENCE ASSERTED bit shall be set to zero if the PHYSICAL PRESENCE SUPPORTED bit is set to zero.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

00000000 00000000h

Author: Isi-bbesmer Subject: Highlight Date: 5/26/2008 9:19:02 AM -07'00' ACCEPT - DONE

number of zone groups

small-caps

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' ACCEPT - DONE number of zone groups

small caps

571

A ZONING SUPPORTED bit set to one indicates that zoning is supported by the expander device (i.e., it is a zoning expander device). A ZONING SUPPORTED bit set to zero indicates that zoning is not supported by the expander device.

A ZONING ENABLED bit set to one indicates that zoning is enabled in the expander device. A ZONING ENABLED bit set to zero indicates that zoning is disabled in the expander device. The ZONING ENABLED bit shall be set to zero if the ZONING SUPPORTED bit is set to zero

A SAVING bit set to one indicates that the management device server is currently saving zoning values to non-volatile storage and may return a function result of BUSY for zone management functions that access saved zoning values. A SAVING bit set to zero indicates that the management device server is not currently saving zoning values to non-volatile storage.

A SAVING ZONE MANAGER PASSWORD SUPPORTED bit set to one indicates that saving the zone manager password is supported. A SAVING ZONE MANAGER PASSWORD SUPPORTED bit set to zero indicates that saving the zone manager password is not supported.

A SAVING ZONE PHY INFORMATION SUPPORTED bit set to one indicates that saving the zone phy information is supported. A SAVING ZONE PHY INFORMATION SUPPORTED bit set to zero indicates that saving the zone ph information is not supported.

A SAVING ZONE PERMISSION TABLE SUPPORTED bit set to one indicates that saving the zone permission table is supported. A SAVING ZONE PERMISSION TABLE SUPPORTED bit set to zero indicates that saving the zone permission table is not supported

A SAVING ZONING ENABLE SUPPORTED bit set to one indicates that saving the ZONING ENABLED bit is supported. A SAVING ZONING ENABLE SUPPORTED bit set to zero indicates that saving the ZONING ENABLED bit is not

The MAXIMUM NUMBER OF ROUTED SAS ADDRESSES field indicates the number of routed SAS addresses in an expander-based expander route table (see 4.6.7.3 and 4.3.3.4). Management de/rice servers in expander devices containing expander-based expander route tables shall support this field. Management device servers in other device types (e.g., end devices and expander devices with pty-based expander route tables) shall set this field to 0000h.

The ACTIVE ZONE MANAGER SAS ADDRESS field indicates the SAS address of the zone manager that last locked the zoning expander device. If the zoning expander device is currently being configured by a vendor-specific sideband method then the ACTIVE ZONE MANAGER SAS ADDRESS field shall be set to 00000000 00000000h. This field shall be set to 00000000 00000000h at power on.

The ZONE LOCK INACTIVITY TIME LIMIT field indicates the minimum time between any SMP ZONE LOCK requests, SMP zone configuration function requests, or SMP ZONE ACTIVATE requests from the active zone manager that the locked expander device allows and is set in the SMP ZONE LOCK request (see 10.4.3.21).

The PIRST ENCLOSURE CONNECTOR ELEMENT INDEX field indicates the lowest CONNECTOR ELEMENT INDEX field of all the expander phys in all the expander devices in the enclosure that have CONNECTOR TYPE fields set to 20h through 2Fh (i.e., an internal connector to an end device) in their SMP DISCOVER responses.

The NUMBER OF ENCLOSURE CONNECTOR ELEMENT INDEXES field indicates the number of expander phys in all the expander devices in the enclosure that have CONNECTOR TYPE fields set to 20h through 2Fh (i.e., an internal connector to an end device) in their SMP DISCOVER responses.

NOTE 108 - The NUMBER OF ENCLOSURE CONNECTOR ELEMENT INDEXES field assumes that all internal connectors to end devices are assigned to a contiguous range of CONNECTOR ELEMENT INDEX field values.

A REDUCED FUNCTIONALITY bit set to one indicates that:

572

- a) the expander device is scheduled to reduce its functionality (see 4.6.8) in the time indicated in the TIME TO REDUCED FUNCTIONALITY field; or
- b) the expander device is currently operating with reduced functionality (see 4.6.8).

A REDUCED FUNCTIONALITY bit set to zero indicates that the expander device is not scheduled to reduce functionality and that the contents of the TIME TO REDUCED FUNCTIONALITY field shall be ignored.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 572

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' CACCEPT - DONE

SAS address

add "(see 4.2.4)" to support the new section

Author: Isi-bbesmer

Subject: Highlight Date: 7/14/2008 3:07:06 PM -07'00'

*TPREJECT (new fields at the end of DISCOVER will be more useful for what this was being used for. Current wording is correct as

Need to clarify the usage of connector element index. Current usage assumes that CEI is the same value for all phys w/in a

28 January 2008 T10/1760-D Revision 14

If the REDUCED FUNCTIONALITY bit is set to one, then the TIME TO REDUCED FUNCTIONALITY field indicates the time, in 100 ms increments, remaining until the expander device is scheduled to reduce functionality. The expander device starts the reduced functionality delay timer after originating a Broadcast (Expander) (see 4 6 8)

The INITIAL TIME TO REDUCED FUNCTIONALITY field indicates the minimum period of time, in 100 ms increments, that an expander device waits from originating a Broadcast (Expander) to reducing functionality. The expander device should set the default value for the INITIAL TIME TO REDUCED FUNCTIONALITY field to at least 2 000 ms (i.e., 14h).

The MAXIMUM REDUCED FUNCTIONALITY TIME field indicates the maximum time, in seconds, that the expander device responds with OPEN_REJECT (RETRY) to connection requests that map to an expander phy or an SMP target port that is not accessible during expander device reduced functionality. This timer starts after the reduced functionality delay timer expires.

The LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field is defined in the REPORT SELF-CONFIGURATION STATUS response (see 10.4.3.6).

The MAXIMUM NUMBER OF STORED SELF-CONFIGURATION STATUS DESCRIPTORS field indicates the maximum number of self-configuration status descriptors (see 10.4.3.6.4) that the management device server supports.

The LAST PHY EVENT LIST DESCRIPTOR INDEX field is defined in the REPORT PHY EVENT LIST response (see 10.4.3.16).

The MAXIMUM NUMBER OF STORED PHY EVENT LIST DESCRIPTORS field indicates the maximum number of phy event list descriptors (see 10.4.3.14.4) that the management device server supports.

The STP REJECT TO OPEN LIMIT field indicates the minimum time in 10 µs increments that an STP port waits to establish a connection request with an initiator port on an I_T nexus after receiving an OPEN_REJECT (RETRY), OPEN_REJECT (CONTINUE 0), or OPEN_REJECT (CONTINUE 1). An STP REJECT TO OPEN LIMIT field set to 0000h indicates that the time limit is vendor specific.

The CRC field is defined in 10.4.3.3.8.

10.4.3.5 REPORT MANUFACTURER INFORMATION function

The REPORT MANUFACTURER INFORMATION function returns vendor and product identification. This SMP function may be implemented by any management device server.

Table 250 defines the request format.

Table 250 — REPORT MANUFACTURER INFORMATION request

Byte\Bit	7	6	5	4	3	2	1	0		
0	SMP FRAME TYPE (40h)									
1		FUNCTION (01h)								
2	ALLOCATED RESPONSE LENGTH									
3	REQUEST LENGTH (00h)									
4	(MSB)	(MSB)								
7		•		CR				(LSB)		

573

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 250.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 250.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

Working Draft Serial Attached SCSI - 2 (SAS-2)

If the ALLOCATED RESPONSE LENGTH field is set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field to 00h in the response frame; and
- b) return the first 60 bytes defined in table 251 plus the CRC field as the response frame.

If the ALLOCATED RESPONSE LENGTH field is not set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field in the response frame to the non-zero value defined in table 251; and
- b) return the response frame as specified by the ALLOCATED RESPONSE LENGTH field.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 250.

The CRC field is defined in 10.4.3.2.8.

Table 251 — REPORT MANUFACTURER INFORMATION response

Byte\Bit	7	6	5	4	3	2	1	0				
0				SMP FRAME	TYPE (41h	1)						
1				FUNCTIO	N (01h)							
2		FUNCTION RESULT										
3	RESPONSE LENGTH (00h or 0Eh)											
4	(MSB)											
5			EXPANDER CHANGE COUNT									
6				Rese	nved							
7				11000	ivou							
8				Reserved				SAS-1.1 FORMAT				
9				Rese	nved							
11			Reserved									
12	(MSB)		VENDOR IDENTIFICATION									
19												
20	(MSB)											
35			(LSB)									
36	(MSB)	_	PRODUCT REVISION LEVEL									
39												
40	(MSB)	_	COMPONENT VENDOR IDENTIFICATION									
47												
48	(MSB)	_		COMPON	IENT ID							
49								(LSB)				
50			cc	MPONENT R	EVISION LE	VEL						
51				Rese	erved							
52				Vendor	specific							
59			Vendor specific —									
60	(MSB)			CR	c							
63		CRC						(LSB)				

Working Draft Serial Attached SCSI - 2 (SAS-2)

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 251.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 251.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to one of the values defined in table 251 based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

A SAS-1.1 FORMAT bit set to one indicates that bytes 40 through 59 are as defined in this standard. A SAS-1.1 FORMAT bit set to zero indicates that bytes 40 through 59 are vendor-specific as defined in the original version of this standard.

ASCII data fields (e.g., the VENDOR IDENTIFICATION field, the PRODUCT IDENTIFICATION field, and PRODUCT REVISION LEVEL field, and the COMPONENT VENDOR IDENTIFICATION field) shall contain only graphic codes (i.e., code values 20h through 7Eh). Left-aligned fields shall place any unused bytes at the end of the field (i.e., at the highest offset) and the unused bytes shall be filled with space characters (i.e., 20h).

The VENDOR IDENTIFICATION field contains eight bytes of ASCII data identifying the vendor of the subsystem (e.g., the board or enclosure) containing the component. The data shall be left-aligned within the field. The vendor identification string shall be one assigned by INCITS for use in the standard INQUIRY data VENDOR IDENTIFICATION field. A list of assigned vendor identification strings is in SPC-4 and on the T10 web site (http://www.t10.org).

The PRODUCT IDENTIFICATION field contains 16 bytes of ASCII data identifying the type of the subsystem (e.g., the board or enclosure model number) containing the component, as defined by the vendor of the subsystem. The data shall be left-aligned within the field. The PRODUCT IDENTIFICATION field should be charged whenever the subsystem design changes in a way noticeable to a user (e.g., a different stock-keeping unit (SKU)).

The PRODUCT REVISION LEVEL field contains four bytes of ASCII data identifying the revision level of the subsystem (e.g., the board or enclosure) containing the component, as defined by the vendor of the subsystem. The data shall be left-aligned within the field. The PRODUCT REVISION LEVEL field should be changed whenever the subsystem design changes (e.g., any component change, even including resistor values)

All components on a subsystem should have the same values for their VENDOR IDENTIFICATION fields, PRODUCT IDENTIFICATION fields, and PRODUCT REVISION LEVEL fields.

NOTE 109 - Application clients may use the VENDOR IDENTIFICATION field and PRODUCT IDENTIFICATION field to identify the subsystem (e.g., for a user interface). Application clients may use the VENDOR IDENTIFICATION field, PRODUCT IDENTIFICATION field, PRODUCT REVISION LEVEL field to perform workarounds for problems in a specific revision of a subsystem.

The COMPONENT VENDOR IDENTIFICATION field contains eight bytes of ASCII data identifying the vendor of the component (e.g., the expander device) containing the management device server. The data shall be left-aligned within the field. The component vendor identification string shall be one assigned by INCITS for use in the standard INQUIRY data VENDOR IDENTIFICATION field. A list of assigned vendor identification strings is in SPC-4 and on the T10 web site (http://www.t10.org).

The COMPONENT ID field contains a 16-bit identifier identifying the type of the component (e.g., the expander device model number) containing the management device server, as defined by the vendor of the component. The COMPONENT ID field should be changed whenever the component's programming interface (e.g., the management device server definition) changes.

The COMPONENT REVISION LEVEL field contains an 8-bit identifier identifying the revision level of the component (e.g., the expander device) containing the management device server, as defined by the vendor of the component. The COMPONENT REVISION LEVEL field should be changed whenever the component changes but its programming interface does not change.

NOTE 110 - Application clients may use the COMPONENT VENDOR IDENTIFICATION field and the COMPONENT ID field to interpret vendor-specific information (e.g., vendor-specific SMP functions) correctly for that component. Application clients may use the COMPONENT VENDOR DIEDTHIFICATION field, the

Page: 576 Author: elx-bmartin Subject: Comment on Text Date: 5/23/2008 12:58:10 PM -07'00' REJECT ("the original" gives a stronger hint that it's SAS-1.0 only. Although the bit name is pretty clear too...) a previous Author: Isi-hday Subject: Highligh Date: 5/26/2008 9:19:33 AM -07'00' **REJECT (previous versions to SAS-2 will mean both SAS-1 and SAS-1.1; these bits were only vendor specific in SAS-1.) the original version suggest previous versions Author: wdc-mevans Subject: Highlight Date: 5/26/2008 9:22:23 AM -07'00' (http://www.t10.org) s/b (i.e., at http://www.t10.org) Author: wdc-mevans Subject: Highlight Date: 5/26/2008 9:23:39 AM -07'00' REJECT component, as component as Author: wdc-mevans Subject: Highlight Date: 5/26/2008 9:22:52 AM -07'00' REJECT (we don't use i.e. for acronyms) unit (SKU)). s/h unit number (i.e, SKU)). Author: wdc-mevans Subject: Highlight Date: 5/26/2008 9:23:11 AM -07'00' ACCEPT - DONE (with "see " - see previous comment on http) (http://www.t10.org) s/b (i.e., at http://www.t10.org) Author: wdc-meyans Subject: Highlight Date: 5/26/2008 9:23:25 AM -07'00'

TREJECT

server, as

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 251.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 251.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to one of the values defined in table 251 based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

A SAS-1.1 FORMAT bit set to one indicates that bytes 40 through 59 are as defined in this standard. A SAS-1.1 FORMAT bit set to zero indicates that bytes 40 through 59 are vendor-specific as defined in the original version of this standard.

ASCII data fields (e.g., the VENDOR IDENTIFICATION field, the PRODUCT IDENTIFICATION field, and PRODUCT REVISION LEVEL field, and the COMPONENT VENDOR IDENTIFICATION field) shall contain only graphic codes (i.e., code values 20h through 7Eh). Left-aligned fields shall place any unused bytes at the end of the field (i.e., at the highest offset) and the unused bytes shall be filled with space characters (i.e., 20h).

The VENDOR IDENTIFICATION field contains eight bytes of ASCII data identifying the vendor of the subsystem (e.g., the board or enclosure) containing the component. The data shall be left-aligned within the field. The vendor identification string shall be one assigned by INCITS for use in the standard INQUIRY data VENDOR DENTIFICATION field. A list of assigned vendor identification strings is in SPC-4 and on the T10 web site (http://www.t10.org).

The PRODUCT IDENTIFICATION field contains 16 bytes of ASCII data identifying the type of the subsystem /e.g., the board or enclosure model number) containing the component, as defined by the vendor of the subsystem. The data shall be left-aligned within the field. The PRODUCT IDENTIFICATION field should be changed whenever the subsystem design changes in a way noticeable to a user (e.g., a different stock-keeping unit (SK/J)).

The PRODUCT REVISION LEVEL field contains four bytes of ASCII data identifying the revision level of the subsystem (e.g., the board or enclosure) containing the component, as defined by the vendor of the subsystem. The data shall be left-aligned within the field. The PRODUCT REVISION LEVEL field should be changed whenever the subsystem design changes (e.g., any component change, even including resistor values)

All components on a subsystem should have the same values for their VENDOR IDENTIFICATION fields, PRODUCT IDENTIFICATION fields, and PRODUCT REVISION LEVEL fields.

NOTE 109 - Application clients may use the VENDOR IDENTIFICATION field and PRODUCT IDENTIFICATION field to identify the subsystem (e.g., for a user interface). Application clients may use the VENDOR IDENTIFICATION field, PRODUCT IDENTIFICATION field, PRODUCT REVISION LEVEL field to perform worksrounds for problems in a specific revision of a subsystem.

The COMPONENT VENDOR IDENTIFICATION field contains eight bytes of ASCII data identifying the vendor of the component (e.g., the expander device) containing the management device server. The data shall be left-aligned within the field. The component vendor identification string shall be one assigned by INCITS for use in the standard INQUIRY data VENDOR IDENTIFICATION field. A list of assigned yendor identification strings is in SPC-4 and on the T10 web site (http://www.t10.org).

The COMPONENT ID field contains a 16-bit identifier identifying the type of the component (e.g., the expander device model number) containing the management device server, as defined by the vendor of the component. The COMPONENT ID field should be changed whenever the component's programming interface (e.g., the management device server definition) changes.

The COMPONENT REVISION LEVEL field contains an 8-bit identifier identifying the revision level of the component (e.g., the expander device) containing the management device server, as defined by the vendor of the component. The COMPONENT REVISION LEVEL field should be changed whenever the component changes but its programming interface does not change.

NOTE 110 - Application clients may use the COMPONENT VENDOR IDENTIFICATION field and the COMPONENT ID field to interpret vendor-specific information (e.g., vendor-specific SM) runctions) correctly for that component. Application clients may use the COMPONENT VENDOR DEDITIFICATION field, the

576

Working Draft Serial Attached SCSI - 2 (SAS-2)

s/b server as

Author: wdc-mevans Subject: Highlight Date: 5/26/2008 9:23:30 AM -07'00'

> server, as s/b server as

28 January 2008 T10/1760-D Revision 14

COMPONENT ID field, and the COMPONENT REVISION LEVEL field to perform workarounds for problems in a specific revision of a component.

The vendor-specific bytes are defined by the vendor of the subsystem (e.g., the board or enclosure) containing the component.

The CRC field is defined in 10.4.3.3.8.

10.4.3.6 REPORT SELF-CONFIGURATION STATUS function

10.4.3.6.1 REPORT SELF-CONFIGURATION STATUS function overview

The REPORT SELF-CONFIGURATION STATUS function returns self-configuration expander device status. This SMP function shall be implemented by the management device server in self-configuring expander devices and shall not be implemented by any other management device servers.

10.4.3.6.2 REPORT SELF-CONFIGURATION STATUS request

Table 252 defines the request format.

Table 252 — REPORT SELF-CONFIGURATION STATUS request

Byte\Bit	7	6	5	4	3	2	1	0					
0		SMP FRAME TYPE (40h)											
1		FUNCTION (03h)											
2			ALL	OCATED RES	PONSE LENG	ЭТН							
3		REQUEST LENGTH (01h)											
4				Rese	avod								
5		=		Nese	veu								
6	(MSB)	CTART	INC SELE CO	ONFIGURATIO	N STATUS DE	SCRIPTOR I	NDEV						
7		SIAKI	ING SELF-CC	NI IGURATIO	N SIAIUS DE	JONIPTOR I	NULA	(LSB)					
8	(MSB)			CR	C								
11		- '		CK	C			(LSB)					

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 252.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 252.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 252.

The STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field specifies the first self-configuration status. descriptor that the management device server shall return in the SMP response frame. If the specified inde does not contain a valid self-configuration status descriptor, then the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in the response may differ from the specified index.

The CRC field is defined in 10.4.3.2.8.

Working Draft Serial Attached SCSI - 2 (SAS-2)

577

Page: 577

Author: Isi-bbesmer

Subject: Note Date: 5/30/2008 12:45:32 PM -07'00'

ACCEPT - DONE (added "A starting self-configuration status descriptor index field specifies that the device server shall return no self-configuration status descriptors.")

The response for this request indicates that a value of zero has special meaning that is not described here.

T10/1760-D Revision 14

10.4.3.6.3 REPORT SELF-CONFIGURATION STATUS response

Table 253 defines the response format.

Table 253 — REPORT SELF-CONFIGURATION STATUS response

28 January 2008

Byte\Bit	7	6	5	4	3	2	1	0				
0				SMP FRAMI	E TYPE (41h	1)						
1				FUNCTI	ON (03h)							
2		FUNCTION RESULT										
3		RESPONSE LENGTH ((n - 7) / 4)										
4	(MSB)	(MSB) EXPANDER CHANGE COUNT										
5		•	LA	FANDLIK GIT	ANGL COON	•		(LSB)				
6	(MSB)	STARTIN	IG SELE-COL	NEIGI IRATIO	N STATUS D	ESCRIPTOR	NDEY					
7		STARTIN	IG SELI -COI	WI IGUINATIO	N STATUS D	LOCKIFIO	V INDEX	(LSB)				
8	(MSB)	TOTAL NIII	MBED OF SI	EI E-CONEIG	URATION ST	ATUS DESC	POTTOIG					
9		TOTAL NO	WIDER OF 31	LLI -CONI IG	UKATION 31	ATOS DESC	KIF TOKS	(LSB)				
10	(MSB)	LAST	LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX									
11		LAST	SELI-CONI	IGUINATION	STATUS DES	CKIF TOK II	NDLX	(LSB)				
12		S	ELF-CONFIG	URATION ST	TATUS DESC	RIPTOR LE	NGTH					
13				Rese	nyed							
18				11030	ived							
19		NUM	BER OF SEL	F-CONFIGUR	RATION STAT	TUS DESCR	IPTORS					
		Se	elf-configur	ation status	s descriptor	list						
20		Self-cor	nfiguration	status desc 10.4.3	criptor (first) 3.6.4)	(see table	254 in					
n - 4		Self-coi	nfiguration	status desc 10.4.3	criptor (last) 3.6.4)	(see table	254 in					
n - 3	(MSB)											
n				CR	iC .			(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 253.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 253.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

This page contains no comments

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 253. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4). If the SMP initiator port detects a change in the value of this field while retrieving multiple response frames, it should start again because the status information setumed is incomplete and inconsistent.

The STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field indicates the Index-of-the first self-configuration status descriptor being returned. It the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in the SMP request is set to 0000h, then the management device server shall set the STARTING SELF-CONFIGURATION STATUS DESCRIPTORS field to 0000h, and return no descriptors. If the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field to 1000h, and return no descriptors. If the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field to the SMP request does not contain a valid descriptor, then the management device server shall set the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field to the next index, in ascending order wrapping from FFFFh to 0001h, that contains a valid descriptor, Otherwise, this field shall be set to the same value as the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in the SMP request.

The SELF-CONFIGURATION DESCRIPTOR LENGTH field indicates the length, in descriptor (see table 254 in 10.4.3.6.4).

The TOTAL NUMBER OF SELF-CONFIGURATION STATUS DESCRIPTORS field indicates how many self-configuration status descriptors are available at this time from the management device server.

The LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field indicates the index of the last recorded self-configuration status descriptor.

The NUMBER OF SELF-CONFIGURATION STATUS DESCRIPTORS field indicates how many self-configuration status descriptors follow in this SMP response frame.

The self-configuration status descriptor list contains self-configuration status descriptors. The management device server shall return either all the self-configuration status descriptors that fit in one SMP response frame or all the self-configuration status obscriptors until the index indicated in the LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field is reached. The self-configuration status descriptor list shall start with the self-configuration status descriptor specified by the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in ascending order, wrapping from FFFFh to 0001h, based on the self-configuration status descriptor index. The self-configuration status descriptor list shall not contain any truncated self-configuration status descriptors. If the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field is equal to the LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field, then the self-configuration status descriptor at that index shall be returned.

The CRC field is defined in 10.4.3.3.8.

```
Page: 579
Author: Isi-gpenokie
Subject: Highlight
Date: 5/8/2008 5:31:28 PM -07'00'
 REJECT
    Global (there are 16 other instances of this same statement that should also be changed)
    This << A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE
    LENGTH field in the request frame. >> should be made into a note as the information is not normative.
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
   SMP initiator port
    management application client
Author: wdc-mevans
Subject: Highlight
Date: 6/2/2008 6:45:29 AM -07'00'
    ACCEPT - DONE (with "response frames")
   it should start again
   then the SMP initiator port should retrieve the frame again
Author: Isi-bbesmer
Date: 6/2/2008 6:46:10 AM -07'00'
TREJECT (but changed to "is possibly". We're not trying to grant permission here, which "may" is supposed to mean.)
   is
    s/b
   may be
Author: Isi-anenokie
Subject: Highlight
Date: 5/26/2008 9:24:41 AM -07'00'
REJECT (nothing wrong with "because")
    This << start again because the status information >> should be << start again as the status information >>
Author: Isi-gpenokie
Subject: Highlight
Date: 5/29/2008 12:01:51 PM -07'00'
TACCEPT - DONE
    This << If the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in the SMP request is set to 0000h, then
   the management device server shall set the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field to 0000h,
    set the TOTAL NUMBER OF SELF-CONFIGURATION STATUS DESCRIPTORS field to 0000h, and return no descriptors. >>
    would be easier to understand if it was made into an a,b,c list.
Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
```

contain s/b specify 28 January 2008 T10/1760-D Revision 14

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 253. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4). If the SMP initiator port detects a change in the value of this field while retrieving multiple response frames, it should start again because the status information returned is incomplete and inconsistent.

The STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field indicates the index of the first self-configuration status descriptor being returned. If the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in the SMP request is set to 0000h, then the management device server shall set the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field to 0000h, set the TOTAL NUMBER OF SELF-CONFIGURATION STATUS DESCRIPTORS field to 0000h, and return no descriptors. If the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in the SMP request does not contain a valid descriptor, then the management device server shall set the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field to the next index, in ascending order wrapping from FFFFh to 0001h, that contains a valid descriptor. Otherwise, this field shall be set to the same value as the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in the SMP request.

The SELF-CONFIGURATION DESCRIPTOR LENGTH #eld indicates the length, in descriptor (see table 254 in 19.4.3.6.4).

The TOTAL NUMBER OF SELF-CONFIGURATION STATUS DESCRIPTORS field indicates how in the self-configuration status descriptors are available at this time from the management device server.

The LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field indicates the index of the last coorded self-configuration status descriptor.

The NUMBER OF SELF-CONFIGURATION STATUS DESCRIPTORS field indicates how many self-configuration status descriptors follow in this SMP response frame.

The self-configuration status descriptor list contains self-configuration status descriptors. The management device server shall return either all the self-configuration status descriptors that fit in one SMP response frame or all the self-configuration status descriptors until the index indicated in the LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field is reached. The self-configuration status descriptor list shall start with the self-configuration status descriptor specified by the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in ascending order, wrapping from FFFFh to 0001h, based on the self-configuration status descriptor index. The self-configuration status descriptor list shall not contain any truncated self-configuration status descriptors. If the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field is equal to the LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field, then the self-configuration status descriptor at that index shall be returned.

The CRC field is defined in 10.4.3.3.8.

REJECT (the index is what is in ascending order. That rewording makes it less clear, and you might think the descriptor is is ascending order (but that doesn't compute)) This << field to the next index, in ascending order wrapping from FFFFh to 0001h, that contains a valid descriptor. >> should be << field to the next index that contains a valid descriptor in ascending order wrapping from FFFFh to 0001h. >> Author: wdc-mevans Subject: Highlight Date: 5/29/2008 12:03:39 PM -07'00' REJECT (see Isi-gpenokie reply) index, in ascending order wrapping from FFFFh to 0001h, that contains a valid descriptor. index that contains a valid descriptor in ascending order wrapping from FFFFh to 0001h. Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE Otherwise s/b If the starting self-configuration status descriptor index field is not set to 0000h and specifies a valid descriptor Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE SELF-CONFIGURATION DESCRIPTOR LENGTH SELF-CONFIGURATION STATUS DESCRIPTOR LENGTH to match table Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE REPORT SELF-CONFIGURATION STATUS descriptor self-configuration status descriptor Author: Isi-bbesmer Subject: Note Date: 6/11/2008 8:12:14 AM -07'00' REJECT (6/11 per brad) Should this indicate that this value shall be 4 for expanders compliant w/this standard? Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE how many self-configuration status descriptors follow in this SMP response frame the number of self-configuration status descriptors in the self-configuration status descriptor list

Author: Isi-gpenokie

Subject: Highlight Date: 5/29/2008 12:03:23 PM -07'00' 28 January 2008 T10/1760-D Revision 14

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 253. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4). If the SMP initiator port detects a change in the value of this field while retrieving multiple response frames, it should start again because the status information returned is incomplete and inconsistent.

The STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field indicates the index of the first self-configuration status descriptor being returned. If the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in the SMP request is set to 0000h, then the management device server shall set the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field to 0000h, set the TOTAL NUMBER OF SELF-CONFIGURATION STATUS DESCRIPTORS field to 0000h, and return no descriptors. If the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field to the SMP request does not contain a valid descriptor, then the management device server shall set the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field to the next index, in ascending order wrapping from FFFFh to 0001h, that contains a valid descriptor. Otherwise, this field shall be set to the same value as the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in the SMP request.

The SELF-CONFIGURATION DESCRIPTOR LENGTH field indicates the length, in descriptor (see table 254 in 10.4.3.6.4).

The TOTAL NUMBER OF SELF-CONFIGURATION STATUS DESCRIPTORS field indicates how many self-configuration status descriptors are available at this time from the management device server.

The LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field indicates the index of the last recorded self-configuration status descriptor.

The NUMBER OF SELF-CONFIGURATION STATUS DESCRIPTORS field indicates how many self-configuration status descriptors follow in this SMP response frame.

The self-configuration status descriptor list contains self-configuration status descriptors. The management device server shall return either all the self-configuration status descriptors that fit in one SMP response frame or all the self-configuration status descriptors until the index indicated in the LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field is reached. The self-configuration status descriptor list shall start with the self-configuration status descriptor specified by the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in ascending order, wrapping from FFFFh to 0001h, based on the self-configuration status descriptor index. The self-configuration status descriptor list shall not contain any truncated self-configuration status descriptor. If the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field is equal to the LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field, then the self-configuration status descriptor at that index shall be returned.

The CRC field is defined in 10.4.3.3.8.

Working Draft Serial Attached SCSI - 2 (SAS-2)

L'ACCEPT -

Author: RElliott

Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

Fix this incomplete sentence:

The self-configuration status descriptor list shall start with the self-configuration status descriptor specified by the STARTING SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field in ascending order, wrapping from FFFFh to 0001h, based on the self-configuration status descriptor index.

s/h

The self-configuration status descriptor list shall start with the self-configuration status descriptor specified by the starting self-configuration status descriptor index field, and shall continue with self-configuration status descriptor sorted in ascending order, wrapping from FFFFh to 0001h, based on the self-configuration status descriptor index

Author: Isi-gpenokie

Subject: Highlight Date: 5/30/2008 1:02:24 PM -07'00'

REJECT (other problems in this sentence)

This << field in ascending order, wrapping from FFFFh to 0001h, based on the self-configuration status descriptor index. >> should be << field in ascending order based on the self-configuration status descriptor index wrapping from FFFFh to 0001h. >

Author: wdc-mevans

Subject: Highlight Date: 5/30/2008 1:02:20 PM -07'00'

REJECT (other problems in this sentence)

order, wrapping from FFFFh to 0001h, based on the self-configuration status descriptor index.

s/b

579

order based on the self-configuration status descriptor index wrapping from FFFFh to 0001h.

T10/1760-D Revision 14 28 January 2008

10.4.3.6.4 Self-configuration status descriptor

Each self-configuration status descriptor follows the format defined in table 254.

Table 254 — Self-configuration status descriptor

This page contains no comments

Byte\Bit	7	6	5	4	3	2	1	0				
0	STATUS TYPE											
1		Reserved FINAL										
2				Rese	erved							
3		PHY IDENTIFIER										
4				Pos	erved							
7		•		1/636	sived							
8	(MSB)			242.45	DRESS							
15				SAS AL	DRESS			(LSB)				

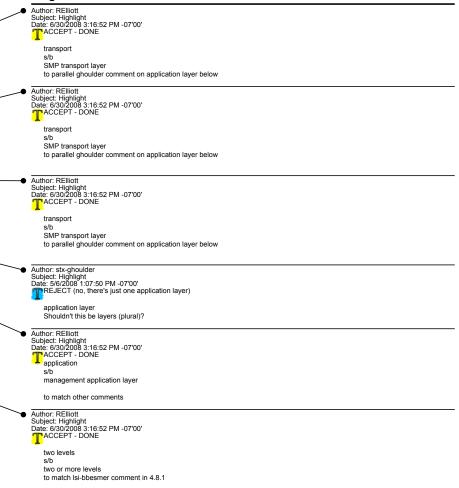
The STATUS TYPE field indicates the type of status being reported and is defined in table 255.

Table 255 — STATUS TYPE field (part 1 of 2)

Code	Description						
00h	Reserved						
01h	Error not related to a specific layer						
02h	The expander device currently has a connection or is currently attempting to establish a connection with the SMP target port with the indicated SAS address.						
03h	Expander route table is full. The expander device was not able to add the indicated SAS address to the expander route table.						
04h	Expander device is out of resources (e.g., it discovered too many SAS addresses while performing the discover process through a subtractive port). This does not affect the expander route table.						
05h - 1Fh	Reserved for status not related to specific layers						
Status repo	Status reported by the phy layer						
20h	Error reported by the phy layer						
21h	All phys in the expander port containing the indicated phy lost dword synchronization						
22h - 3Fh	Reserved for status reported by the phy layer						
Status repo	orted by the link layer						
40h	Error reported by the link layer						
41h	Connection request failed: Open Timeout timer expired						
42h	Connection request failed: Received an abandon-class OPEN_REJECT (e.g., BAD DESTINATION, PROTOCOL NOT SUPPORTED, ZONE VIOLATION, STP RESOURCES BUSY, WRONG DESTINATION)						
43h	Connection request failed: Received a vendor-specific number of retry-class OPEN_REJECTs (e.g. RETRY, PATHWAY BLOCKED)						

Working Draft Serial Attached SCSI - 2 (SAS-2)

Table 255 — STATUS TYPE field (part 2 of 2)


Code	Description
44h	Connection request failed: I_T nexus loss occurred (e.g., OPEN_REJECT (NO DESTINATION) for longer than the time specified by the STP SMP I_T NEXUS LOSS TIME field in the CONFIGURE GENERAL function
45h	Connection request failed: Received BREAK
46h	Connection established: SMP response frame had a CRC error
47h - 5Fh	Reserved for status reported by the link layer
Status repo	orted by the port layer
60h	Error reported by the port layer
61h	During an SMP connection, there was no SMP response frame within the maximum SMP connection time
62h - 7Fh	Reserved for status reported by the port layer
Status repo	orted by the transport layer
80h	Error reported by the transport layer
81h - 9Fh	Reserved for status reported by the transport layer
Status repo	orted by the application layer
A0h	Error reported by the application layer
A1h	SMP response frame is too short
A2h	SMP response frame contains field(s) with unsupported values
A3h	SMP response frame contains results inconsistent with other SMP response frames (e.g., the DISCOVER response ATTACHED SAS ADDRESS field does not contain the SAS address the expander device expected)
A4h	The SAS ADDRESS field contains the SAS address of a self-configuring expander device that returned a REPORT GENERAL response with the CONFIGURING bit set to one. Accesses to SAS addresses two levels beyond this expander device may not succeed until the indicated expander device completes configuration. This is not necessarily an error.
A5h - BFh	Reserved for status reported by the application layer
Other statu	is
C0h - DFh	Reserved
E0h - FFh	Vendor-specific

A FINAL bit set to one indicates that the expander device is no longer attempting to establish connections to the SMP target port with the indicated SAS address as part of the discover process because of the error indicated by the descriptor. A FINAL bit set to zero indicates that the expander device is still attempting to access the SMP target port with the indicated SAS address as part of the discover process.

The PHY IDENTIFIER field indicates the phy (see 4.2.7) that was used to request a connection with the SMP target port with the indicated SAS address.

The SAS ADDRESS field indicates the SAS address of the SMP target port to which the expander device established a connection or attempted to establish a connection.

Page: 581

Comments from page 581 continued on next page

28 January 2008

T10/1760-D Revision 14

581

Table 255 — STATUS TYPE field (part 2 of 2)

Code	Description
44h	Connection request failed: I_T nexus loss occurred (e.g., OPEN_REJECT (NO DESTINATION) for longer than the time specified by the STP SMP I_T NEXUS LOSS TIME field in the CONFIGURE GENERAL function
45h	Connection request failed: Received BREAK
46h	Connection established: SMP response frame had a CRC error
47h - 5Fh	Reserved for status reported by the link layer
Status repo	orted by the port layer
60h	Error reported by the port layer
61h	During an SMP connection, there was no SMP response frame within the maximum SMP connection time
62h - 7Fh	Reserved for status reported by the port layer
Status repo	orted by the transport layer
80h	Error reported by the transport layer
81h - 9Fh	Reserved for status reported by the transport layer
Status repo	orted by the application layer
A0h	Error reported by the population layer
A1h	SMP response frame is too short
A2h	SMP response frame contains field(s) with unsupported values
A3h	SMP response frame contains results inconsistent with other SMP response/rames (e.g., the DISCOVER response ATTACHED SAS ADDRESS field does not contain the SAS address the expander device expected)
A4h	The SAS ADDRESS field contains the SAS address of a self-configuring expander device that returned a REPORT GENERAL response with the CONFIGURING by set to one. Accesses to SAS addresses two levels beyond this expander device may not succeed until the indivated expander device completes configuration. This is not necessarily an error.
A5h - BFh	Reserved for status reported by the application layer
Other statu	
C0h - DFh	Reserved
E0h - FFh	Vendor-specific /

A FINAL bit set to one indicates that the expander device is no longer attempting to establish connections to the SMP target port with the indicated SAS address as part of the discover process because of the error indicated by the descriptor. A FINAL bit set to zero indicates that the expander device is still attempting to access the SMP target port with the indicated SAS address as part of the discover process.

The PHY IDENTIFIER field indicates the phy (see 4.2.7) that was used to request a connection with the SMP target port with the indicated SAS address.

The SAS ADDRESS field indicates the SAS address of the SMP target port to which the expander device established a connection or attempted to establish a connection.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott Author: Reliliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Change A4h to:

with the configuring bit set to one, the self configuring bit set to zero, and the zone configuring bit set to zero.

Add A5h with:

with the self configuring bit set to one.

Add A6h: with

with the zone configuring bit set to one.

to match Isi-bbesmer comment on first page

Author: stx-ghoulder Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' TREJECT application layer Should be layers (plural).

 Author: Isi-gpenokie Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

REJECT

This << discover process because of the error indicated >> should be << discover process as a result of the error indicated >>

Author: elx-bmartin

Subject: Comment on Text
Date: 5/6/2008 1:07:50 PM -07'00'
TACCEPT - DONE (also, globally fixed all references to phy identifier fields to use the same wording: "indicates the phy identifier (see 4.2.8) of the phy ...")

This reference should be 4.2.8

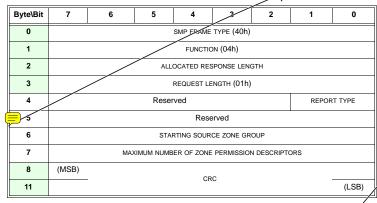
Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

SAS address

add "(see 4.2.4)" to support the new section

T10/1760-D Revision 14 28 January 2008

10.4.3.7 REPORT ZONE PERMISSION TABLE function


10.4.3.7.1 REPORT ZONE PERMISSION TABLE function overview

The REPORT ZONE PERMISSION function returns a set of zone permission table entries. This function shall be supported by all zoning expander devices.

10.4.3.7.2 REPORT ZONE PERMISSION TABLE request

Table 256 defines the request format.

Table 256 — REPORT ZONE PERMISSION TABLE request

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 256.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 256.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 256.

The REPORT TYPE field specifies the values that the management device server shall return and is defined in table 257.

Table 257 — REPORT TYPE field

Code	Description
00b	Current
01b	Shadow
10b	Saved
11b	Default

The STARTING SOURCE ZONE GROUP field specifies the first source zone group, (i.e., s) returned. If the value in this field exceeds the end of the zone permission table then the management device server shall return a function result of SOURCE ZONE GROUP DOES NOT EXIST in the response frame (see table 245 in 10.4.3.3).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 582

Author: RElliott Subject: Note Date: 9/2/2008 4:20:47 PM -07'00'

Could also just define that zeros are returned, and the application is expected to know the value of the SAVING ZONE PERMISSION TABLE SUPPORTED bit and the SAVING ZONE MANAGER PASSWORD SUPPORTD bit in the REPORT GENERAL response. But, an error is just as easy and might better avoid misinterpretation.

All the other REPORT TYPE values are mandatory, so SAVED is the only one that needs a special error.)

(from Bill Martin, Emulex)

Section 10.4.3.7 REPORT ZONE PERMISSION TABLE defines REPORT TYPE, which includes saved. If the report type is set to SAVED, and saving is not supported. I believe the command should return SAVING NOT SUPPORTED (as indicated in Table 245, page 562 for various zone configuration commands).

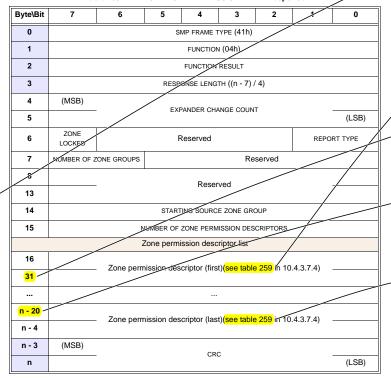
10.4.3.7 should indicate this response and this should be added to table 245 as an additional condition for reporting SAVING NOT SUPPORTED and SAVING NOT SUPPORTED should be added to the priority list of responses for REPORT ZONE PERMISSION TABLE in Table 246.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

then s/b . then

28 January 2008

T10/1760-D Revision 14


The MAXIMUM NUMBER OF ZONE PERMISSION DESCRIPTORS field specifies the maximum number of complete zone permission descriptors that the management device server shall return.

The CRC field is defined in 10.4.3.2.8.

10.4.3.7.3 REPORT ZONE PERMISSION TABLE response

Table 258 defines the response format.

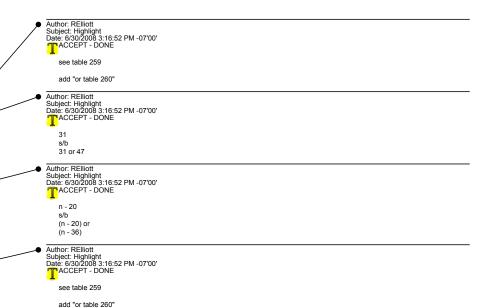
Table 258 — REPORT ZONE PERMISSION TABLE response

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 258.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 258.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to one of the values defined in table 258 based on the ALLOCATED RESPONSE LENGTH field in the request frame.


Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 583

 Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE

Per 6/11 LB call, make byte 13 into a Zone Permission Descriptor Length field.

This is implied by the NUMBER OF ZONE GROUPS field, but there is no certain way to understand what Reserved values in that field mean if it is ever changed. Two fields will let the descriptor grow to include other fields after the of zone permission bits.

T10/1760-D Revision 14 28 January 2008

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4). If the SMP initiator port detects a change in the value of this field while retrieving multiple response frames, it should start again because the status information returned is incomplete and inconsistent.

The ZONE LOCKED bit is defined in the SMP REPORT GENERAL response.

The REPORT TYPE field indicates the value of the REPORT TYPE field in the request frame.

The NUMBER OF ZONE GROUPS field indicates the number of elements in the zone permission descriptor list and is defined in the REPORT GENERAL response (see table 249 in 10.4.3.4).

The STARTING SOURCE ZONE GROUP field indicates the first source zone group (i.e., s) being returned, and is set to the same value as the STARTING SOURCE ZONE GROUP field in the SMP request frame.

The NUMBER OF ZONE PERMISSION DESCRIPTORS field indicates how many zone permission descriptors follow in this SMP response frame.

The zone permission descriptor list contains a zone permission descriptor as defined in 10.4.3.7.4 for each source zone group in ascending order starting with the source zone group specified in the STARTING SOURCE ZONE GROUP field in the request.

The CRC field is defined in 10.4.3.3.8.

10.4.3.7.4 Zone permission descriptor

Table 259 defines the zone permission descriptor containing 128 entries.

Table 259 — Zone permission descriptor for a source zone group (i.e., s) with 128 zone groups

	_													
Byte\Bit	7	7 6		7 6 5		7 6 5		7 6 5 4		3	2	1	0	
0	ZP[s, 127]	ZP[s, 126]	ZP(s. 125]	ZP[s, 124]	ZP[s, 123]	ZP[s, 122]	ZP[s, 121]	ZP[s, 120]						
15	ZP[s, 7] (0b)	ZP[s, 6] (0b)	ZP[s, 5] (0b)	ZP[s, 4] (0b)	ZP[5, 3]	ZP[s, 2]	ZP[s, 1] (1b)	ZP[s, 0] (0b)						

Table 260 defines the zone permission descriptor containing 256 entries.

Table 260 — Zone permission descriptor for a source zone group (i.e., s) with 256 zone groups

Byte\Bit	7	6	5	4	3	2	1	
0	ZP[s, 255]	ZP[s, 254]	ZP[s, 253]	ZP[s, 252]	ZP[s, 251]	ZP[s, 250]	ZP[s, 249]	ZP[s, 248]
31	ZP[s, 7] (0b)	ZP[s, 6] (0b)	ZP[s, 5] (0b)	ZP[s, 4] (0b)	ZP[s, 3]	ZP[s, 2]	ZP[s, 1] (1b)	ZP[s, 0] (0b)

The zone permission descriptor contains all of the zone permission table entries for the source zone group (i.e., s).

Page: 584

Author: RElliott

Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Author: wdc-mevans Subject: Highlight Date: 5/30/2008 1:05:22 PM -07'00' ACCEPT - DONE (but kept the "it" based on first noun/subject convention, and used "response frames" rather than "frames") it should start s/b then the SMP initiator port should retrieve the frames Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE elements in the zone permission descriptor zone groups supported by the expander device Author: wdc-mevans Subject: Highlight
Date: 5/26/2008 9:25:50 AM -07'00' returned, and s/b returned and Author: Isi-gpenokie Subject: Highlight Date: 5/29/2008 1:17:25 PM -07'00' TACCEPT - DONE This << and is set to the same value as the >> looks like a requirement that should be stated as << and shall be set to the same value as the >> Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE how many zone permission descriptors follow in this SMP response frame

the number of zone permission descriptors in the zone permission descriptor list

Add a table introducing these 2 tables and explaining how the NUMBER OF ZONE GROUPS field indicates which one is applicable

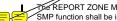

28 January 2008 T10/1760-D Revision 14

Table 261 defines how the zone permission descriptor bits shall be set by the management device server.

Table 261 — Zone permission descriptor bit requirements

Source zone group (i.e., s)	Management device server requirement(s) ^a
0	ZP[s, 0] shall be set to zero. ZP[s, 1] shall be set to one. ZP[s, 2 through (z-1)] shall be set to zero.
1	ZP[s, 0 through (z-1)] shall be set to one.
4, 5, 6 or 7	ZP[s, 0] shall be set to zero. ZP[s, 1] shall be set to one. ZP[s, 4 through (z-1)] shall be set to zero.
2, 3, or 8 through (z-1) ^a	ZP[s, 0] shall be set to zero. ZP[s, 1] shall be set to one. ZP[s, 1] shall be set to zero. ZP[s, 2] through 3] shall be set to zero or one as specified by the CONFIGURE ZONE PERMISSION TABLE function (see 10.4.3.26). ZP[s, 4 through 7/5 shall be set to zero. ZP[s, 8 through (z-)/3 shall be set to zero or one as specified by the CONFIGURE ZONE PERMISSION TABLE function.
a The number	of zone groups (i.e., z) is reported in NUMBER OF ZONE GROUPS field.

10.4.3.8 EPORT ZONE MANAGER PASSWORD function

REPORT ZONE MANAGER PASSWORD function returns the zone manager password (see 4.9.1). This SMP function shall be implemented by all management device servers in zoning expander devices. This function shall only be processed if:

- a) the request is received from an SMP initiator port that has access to zone group 2 (see 4.9.3.2); or
- b) the request is received from any SMP initiator port-while physical presence is asserted.

If physical presence is not asserted and the SMP initiator port does not have access to zone group 2, then the management device server shall return a function result of NO MANAGEMENT ACCESS RIGHTS in the response frame (see table 245 in 10.4.3.3).

Table 262 defines the request format.

Table 262 — REPORT ZONE MANAGER PASSWORD request

Byte\Bit	7	6	5	4	3	2	1	0					
0		SMP FRAME TYPE (40h)											
1		function (05h)											
2		ALLOCATED RESPONSE LENGTH											
3				REQUES	T LENGTH (00	h)							
4	(MSB)				CRC								
7		-			ONO			(LSB)					

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 262.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 262.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

Working Draft Serial Attached SCSI - 2 (SAS-2)

585

Page: 585

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

Add "Other management device servers shall not implement this function.")

Author: RElliott Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

add " and shall be implemented by a management device server supporting the CONFIGURE ZONE MANAGER PASSWORD function (see 10.4.3.24)"

Author: wdc-mevans Subject: Highlight Date: 8/28/2008 6:26:19 AM -07'00' asserted and s/b

Author: RElliott Subject: Note

asserted, and

Date: 9/2/2008 4:07:10 PM -07'00'

ACCEPT - DONE (add a REPORT TYPE field to make this like the others. There are no shadow values, though.)

(from Bill Martin, Emulex)

The REPORT ZONE MANAGER PASSWORD does not specify which Zone Manager Password to report. This may be a big change at this point, but there is a current zone manager password, a shadow zone manager password, and a saved zone manager password. There should have been a REPORT TYPE field as in the REPORT ZONE PERMISSION TABLE request. T10/1760-D Revision 14 28 January 2008

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 262.

The CRC field is defined in 10.4.3.2.8. Table 263 defines the response format.

Table 263 — REPORT ZONE MANAGER PASSWORD response

Byte\Bit	7	6	5	4	3	2	1_	0				
0		SMP FRAME TYPE (41h)										
1		FUNCTION (04h)										
2					FUNCTION	RESULT						
3					RESPONSE LE	NGTH (09h)						
4	(MSB)			EV	PANDER CHAN	IGE COLINT						
5		=		LA	FANDER CHAIN	IGE COONT		(LSB)				
6					Reserve	ad						
7		=			Reserve	su .						
8				70	NE MANAGER I	PASSWORD						
39		=		ZONE MANAGER PASSWORD								
40	(MSB)				CRC			/				
43		-			CKC			(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 263.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 263.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 263. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REFORT GENERAL response (see 10.4.3.4).

The ZONE MANAGER PASSWORD field indicates the zone manager password.

The CRC field is defined in 10.4.3.3.8.

10.4.3.9 REPORT BROADCAST function

10.4.3.9.1 REPORT BROADCAST function everview

The REPORT BROADCAST function returns information about Broadcasts (see 4.1.13) that were either originated from this expander device or SAS device, or received on a phy directly attached to an end device.

This SMP function may implemented by any management device server.

Page: 586

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE
2. Section 10.4.3.8, for REPORT ZONE MANAGER PASSWORD function, table

264, byte 1 shows the function code as 04h instead of 05h.

(from Tim McLeod, Data Domain; T10 reflector 5/9/2008)

Author: elx-bmartin Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
ACCEPT - DONE

may implemented

may be implemented

10.4.3.9.2 REPORT BROADCAST request

Table 264 defines the request format.

Table 264 — REPORT BROADCAST request

Byte\Bit	7	6	5	4	3	2	1	0		
0		SMP FRAME TYPE (40h)								
1		FUNCTION (06h)								
2		ALLOCATED RESPONSE LENGTH								
3		REQUEST LENGTH (01h)								
4		Res	erved			BROADCA	BROADCAST TYPE			
5		Percent								
7		Reserved ————								
8	(MSB) CRC									
11		-			CRC			(LSB)		

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 264.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 264.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 264.

The BROADCAST TYPE field, defined in the ZONED BROADCAST request (see table 307 in 10.4.3.20), specifies the type of Broadcast for which counts shall be returned in the response frame.

The CRC field is defined in 10.4.3.2.8.

Page: 587

Author: wdc-mevans Subject: Highlight Date: 5/26/2008 9:26:43 AM -07'00'

field, defined in the ZONED BROADCAST request (see table 307 in 10.4.3.20), specifies s/b field defined in the ZONED BROADCAST request (see table 307 in 10.4.3.20) specifies

10.4.3.9.3 REPORT BROADCAST response

Table 265 defines the response format.

Table 265 — REPORT BROADCAST response

Byte\Bit	7	6	5	4	3	2	1	0
0		SMP FRAME TYPE (41h)						
1				FUNCT	ION (06h)			
2		FUNCTION RESULT						
3				SPONSE LEI	NGTH ((n - 7	') / 4)		
4	(MSB)	EXPANDER CHANGE COUNT						
5							(LSB)	
6	Reserved BROADCAST TYPE							
7		NUMBER OF BROADCAST DESCRIPTORS						
	Broadcast descriptor list							
8		Broad	cast descri	ptor (first)(see table 2	88 in 10.4	.3.9.4)	
15				F ()(
n - 11		Broad	cast descri	iptor (last)(see table 2	88 in 10 4	394)	
n - 4		Bload	0401 463011	pror (last)(occ table 2	10. - 1	.0.0.4)	
n - 3	(MSB)			CF)C			
n		-						(LSB)

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 265.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 265.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 265. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3/4).

The BROADCAST TYPE field indicates the value of the BROADCAST TYPE field in the request frame.

The NUMBER OF BROADCAST DESCRIPTORS field indicates how many broadcast descriptors follow.

NOTE 111 - The number of broadcast descriptors is limited to 126 by the SMP response frame size

The broadcast descriptor list contains broadcast descriptors as defined in 10.4.3.9.4. Broadcast descriptors shall be returned for all Broadcasts of the type specified in the BROADCAST TYPE field, for which the count is non-zero. Broadcast descriptors shall be returned with the descriptor, if any, pertaining to no particular phy (i.e., PHY IDENTIFIER field set to FFh) first, followed by descriptors, if any, in ascending order sorted by the PHY IDENTIFIER field.

Page: 588 Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE Per 6/11 LB call, add 4 bytes to slip in a BROADCAST DESCRIPTOR LENGTH field. New arrangement is: 7,8,9 Reserved 10 Broadcast Descriptor Length 11 Number of Broadcast Descriptors Author: Isi-gpenokie Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
TACCEPT - DONE
This is not the correct table reference. It should be table 266. Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' ACCEPT - DONE TACCEPT - DUNE
This is not the correct table reference. It should be table 266. Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE how many broadcast descriptors follow the number of Broadcast descriptors in the Broadcast descriptor list Author: RElliott Subject: Highlight Date: 10/17/2008 2:38:29 PM -07'00' ACCEPT - DONE include that this applies to a Broadcast descriptor length of 8, since it may change in the future revision. Per discussion with Brad Besmer, LSI Author: wdc-mevans Subject: Highlight
Date: 5/26/2008 9:26:58 AM -07'00' field, for s/b field for Author: wdc-mevans Subject: Highlight
Date: 5/29/2008 1:18:25 PM -07'00'

ACCEPT - DONE (in each descriptor)

Comments from page 588 continued on next page

field.

T10/1760-D Revision 14 28 January 2008

10.4.3.9.3 REPORT BROADCAST response

Table 265 defines the response format.

Table 265 — REPORT BROADCAST response

Byte\Bit	7	6	5	4	3	2	1	0
0		SMP FRAME TYPE (41h)						
1				FUNCTI	ON (06h)			
2				FUNCTIO	ON RESULT			
3			RES	SPONSE LEN	NGTH ((n - 7) / 4)		
4	(MSB)							
5		EXPANDER CHANGE COUNT				(LSB)		
6	Reserved BROADCAST TYPE							
7		NUMBER OF BROADCAST DESCRIPTORS						
	Broadcast descriptor list							
8		Broade	cast descri	ptor (first)(see table 2	38 in 10.4.	3.9.4)	
15				F (/ (
n - 11		Broad	nast descri	ntor (last) <mark>(</mark>	see table 2	38 in 10 4	3 9 4)	
n - 4		Dioau	0001 000011	proi (idor)(See lable 2	, 10.4.	0.0.4)	
n - 3	(MSB)			CR				
n				- Civ				(LSB)

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 265.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 265.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

588

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 265. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

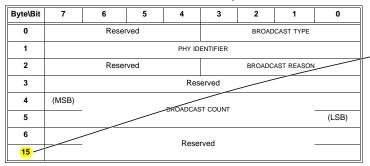
The BROADCAST TYPE field indicates the value of the BROADCAST TYPE field in the request frame.

The NUMBER OF BROADCAST DESCRIPTORS field indicates how many broadcast descriptors follow.

NOTE 111 - The number of broadcast descriptors is limited to 126 by the SMP response frame size.

The broadcast descriptor list contains broadcast descriptors as defined in 10.4.3.9.4. Broadcast descriptors shall be returned for all Broadcasts of the type specified in the BROADCAST TYPE field, for which the count is non-zero. Broadcast descriptors shall be returned with the descriptor, if any, pertaining to no particular phy (i.e., PHY IDENTIFIER field set to FFh) first, followed by descriptors, if any, in ascending order sorted by the PHY IDENTIFIER field.

Working Draft Serial Attached SCSI - 2 (SAS-2)


field in the descriptor.

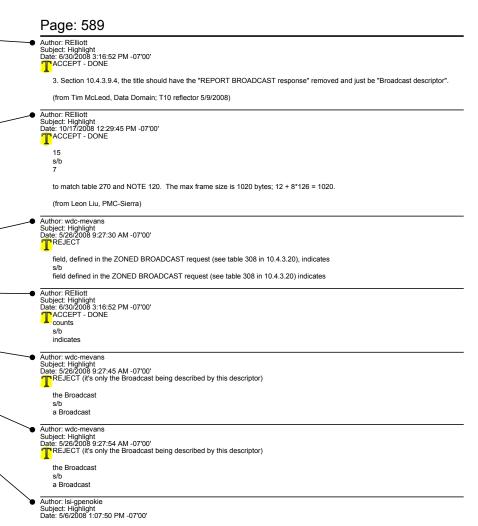
The CRC field is defined in 10.4.3.3.8.

10.4.3.9.4 REPORT BROADCAST response broadcast descriptor

Table 266 defines the broadcast descriptor.

Table 266 — Broadcast descriptor

The BROADCAST TYPE field, defined in the ZONED BROADCAST request (see table 308 in 10.4.3.20), indicates the type of Broadcast described by this broadcast descriptor.


The PHY IDENTIFIER field indicates the phy that caused the Broadcast described by this broadcast descriptor to be originated or the phy on which the Broadcast was received. A PHY IDENTIFIER field set to FFh indicates that no specific phy caused the Broadcast described by this broadcast descriptor.

The BROADCAST COUNT field counts the number of Broadcasts that were either:

- a) originated by the SAS device or expander device; or
- b) received by a phy attached to an end device.

If the SAS device or expander device has originated the Broadcast screecived the Broadcast sines transmitting a REPORT BROADCAST response, it shall increment this field stellarst once from the value in the previous REPORT BROADCAST response. It shall not increment this field when the region a Broadcast. This field shall wrap to at least 0001h after the maximum value (i.e., FFFFh) has been reached:

NOTE 112 - A management application client that uses the BROADCAST COUNT field should read and save all the BROADCAST COUNT field values after performing the discover process (see 4.7), and then read them after each receipt of each Broadcast to ensure that none of the counts increments a multiple of 65 535 times between reading them.

Comments from page 589 continued on next page

28 January 2008 T10/1760-D Revision 14

The CRC field is defined in 10.4.3.3.8.

10.4.3.9.4 REPORT BROADCAST response broadcast descriptor

Table 266 defines the broadcast descriptor.

Table 266 — Broadcast descriptor

Byte\Bit	7	6	5	4	3	2	1	0
0		Rese	rved			BROAD	CAST TYPE	
1		PHY IDENTIFIER						
2		Rese	rved			BROADC	AST REASON	
3		Reserved						
4	(MSB)			BBOADCAS	ET COLINT		/	
5			BROADCAST COUNT (LSB					(LSB)
6		Reserved						
15		•		1/636	ivou			

The BROADCAST TYPE field, defined in the ZONED BROADCAST request (see table 308 in 19.4.3.20), indicates the type of Broadcast described by this broadcast descriptor.

The PHY IDENTIFIER field indicates the phy that caused the Broadcast described by this broadcast descriptor to be originated or the phy on which the Broadcast was received. A PHY IDENTIFIER field set to FFh indicates that no specific phy caused the Broadcast described by this broadcast descriptor.

The BROADCAST COUNT field counts the number of Broadcasts that were either:

- a) originated by the SAS device or expander device; g
- b) received by a phy attached to an end device.

If the SAS device or expander device has originated the Broadcast or received the Broadcast since transmitting a REPORT BROADCAST response, it shall increment this field at least once from the value in the previous REPORT BROADCAST response. It shall not increment this field when forwarding a Broadcast. This , field shall wrap to at least 0001h after the maximum value (i.e., FFFFh) has been reached.

NOTE 112 - A management application client that uses the BROADCAST COUNT field should read and save all the BROADCAST COUNT field values after performing the discover process (see 4.7), and then read them after each receipt of each Broadcast to ensure that none of the counts increments a multiple of 65 535 times between reading them.

TREJECT (but added "then")
This << it shall increment this field >> should be << the SAS device or expander device shall increment this field >>

Author: wdc-mevans
Subject: Highlight
Date: \$/26/2008 9:28:44 AM -07'00'
TREJECT(first noun/subject convention, but added "then")

it
s/b
then the SAS device or expander device

Author: Isi-gpenokie
Subject: Highlight
Date: \$/26/2008 6:27:55 AM -07'00'
TACCEPT - DONE (combine these into an a)b) list so the lengthy qualified compound noun isn't confused)

This << It shall not increment >> should be << The SAS device or expander device shall not increment >>

Author: wdc-mevans
Subject: Highlight
Date: \$26/2008 9:28:56 AM -07'00'
TREJECT (subject of previous sentence)

It
s/b
The SAS device or expander device

Author: Isi-gpenokie
Subject: Highlight
Date: \$30/2008 1:08:40 PM -07'00'
TREJECT (the are 79 uses of "this field" in the standard, including 3 lines above this one. They keep the wording from being

unreadably verbose.)

T10/1760-D Revision 14

28 January 2008

For Broadcasts that are received, the BROADCAST REASON field shall be set to Fh. For Broadcasts that are originated, the BROADCAST REASON field indicates the reason that the Broadcast described by this broadcast descriptor was originated and is defined in table 267.

Table 267 — BROADCAST REASON field -

BROADCAST TYPE field	BROADCAST REASON field	Description
0h (i.e., Broadcast (Change))	0h	Unspecified ^{a b}
	0h	Unspecified
4h (i.e., Broadcast (Expander))	1h	A phy event peak value detector has reached its threshold value.
	2h	A phy event peak value detector has been cleared by the SMP CONFIGURE PHY EVENT function (see 10.4.3.30)
	3h	The expander device is going to temporarily have reduced functionality (e.g., disable SMP access, reduced performance, disable phy to phy communication) for a period of time (see 4.6.8)
8h (i.e., Broadcast (Zone Activate))	0h	Unspecified
All others		Reserved

^a In an expander device, the Broadcast (Change) count is also reported in the REPORT GENERAL response (see 10.4.3.4) and in other SMP response frames containing an EXPANDER CHANGE COUNT field.

10.4.3.10 DISCOVER function

The DISCOVER function returns information about the specified phy. This SMP function provides information from the IDENTIFY address frame received by the phy and additional phy-specific information. This SMP function shall be implemented by all management device servers.

NOTE 113 - The DISCOVER LIST function (see 10.4.3.15) returns information about one or more phys.

Page: 590

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE BROADCAST REASON field

BROADCAST REASON field for originated Broadcasts

Author: wdc-mevans
Subject: Highlight
Date: 5726/2008 9:29:12 AM -07'00'
ACCEPT - DONE (just deleting temporarily, leaving "going to have reduced". It has not actually started reducing anything yet.)
going to temporarily have reduced

b Broadcast (Change)s originated by this expander device or SAS device shall be counted, with the PHY IDENTIFIER field set to FFh.

28 January 2008

T10/1760-D Revision 14

Table 268 defines the request format.

Table 268 — DISCOVER request

Byte\Bit	7	6	5	4	3	2	1	0
0		SMP FRAME TYPE (40h)						
1				FUNCTIO	N (10h)			
2			ALL	OCATED RES	PONSE LEN	GTH		
3			REC	QUEST LENG	гн (00h or 0)2h)		
4								
7		Reserved						
8		Reserved					IGNORE ZONE GROUP	
9				PHY IDE	NTIFIER			
10								
11		Reserved						
12	(MSB)			CR	C			
15		-		CR	C			(LSB)

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 268.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 268.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

If the ALLOCATED RESPONSE LENGTH field is set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field to 00h in the response frame; and
- b) return the first 52 bytes defined in table 269 plus the CRC field as the response frame.

If the ALLOCATED RESPONSE LENGTH field is not set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field in the response frame to the non-zero value defined in table 269; and
- b) return the response frame as specified by the ALLOCATED RESPONSE LENGTH field.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the one of the values defined in table 268 based on the LONG RESPONSE bit in the REPORT GENERAL response (see 10.4.3.4). A REQUEST LENGTH field set to 00h specifies that there are 2 dwords before the CRC field.

An IGNORE ZONE GROUP bit set to one specifies that the management device server shall return information about the specified phy (i.e., the phy specified by the PHY IDENTIFIER field) regardless of the zone permission table.

An IGNORE ZONE GROUP bit set to zero specifies that the management device server shall:

- a) if the SMP initiator port has access to the specified phy based on the zone permission table, return the requested information; or
- if the SMP initiator port does not have access to the specified phy, return a function result of PHY VACANT in the response frame (see table 245 in 10.4.3.3).

Working Draft Serial Attached SCSI - 2 (SAS-2)

This page contains no comments

T10/1760-D Revision 14 28 January 2008

If the management device server is not in a zoning expander device with zoning enabled, it shall ignore the IGNORE ZONE GROUP bit.

The PHY IDENTIFIER field specifies the phy (see 4.2.8) for which the information is being requested.

The CRC field is defined in 10.4.3.2.8.

592

Table 269 defines the response format.

Table 269 — DISCOVER response (part 1 of 3)

Byte\Bit	7	6	5	4	3	2	1	0			
0				SMP FRAM	E TYPE (41h)	•	•			
1				FUNCT	ION (10h)						
2				FUNCTIO	ON RESULT						
3			RE	SPONSE LEN	GTH (00h or	1Ah)					
4	(MSB)			EXPANDER CH	IANCE COUNT	т.					
5				AFAINDER CH	ANGE COON	'		(LSB)			
6				Rese	rved						
8		•		11000	1100						
9				PHY ID	ENTIFIER						
10				Rese	rved						
11											
12	Reserved	ATTA	CHED DEVICE	TYPE		ATTACHE	ED REASON				
13		Res	erved		N	EGOTIATED LO	OGICAL LINK F	CAL LINK RATE			
14		Res	erved		ATTACHED SSP INITIATOR	ATTACHED STP INITIATOR	ATTACHED SMP INITIATOR	ATTACHED SATA HOST			
15	ATTACHED SATA PORT SELECTOR		Reserved		ATTACHED SSP TARGET	ATTACHED STP TARGET	ATTACHED SMP TARGET	ATTACHED SATA DEVICE			
16				SAS AD	DRESS	•	•	•			
23		•		SAS AD	DICESS						
24				ATTACHED SA	AS ADDRESS						
31											
32			,	ATTACHED PH	Y IDENTIFIER	₹					
33			Reserved			ATTACHED INSIDE ZPSDS PERSISTENT	ATTACHED REQUESTED INSIDE ZPSDS	ATTACHED BREAK_REPLY CAPABLE			
34			·	Rese	rved						
39				11000							
40	PROGRA	MMED MINIMU	JM PHYSICAL	LINK RATE	HARD\	WARE MINIMU!	M PHYSICAL L	INK RATE			
41	PROGRA	MMED MAXIMI	JM PHYSICAL	LINK RATE	HARDV	VARE MAXIMU	M PHYSICAL L	INK RATE			
42				PHY CHA	NGE COUNT						

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 592

```
Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
CACCEPT - DONE
it
s/b
then it
```

Table 269 — DISCOVER response (part 2 of 3)

Byte\Bit	7	6	5	4	3	2	1	0
43	VIRTUAL PHY		Reserved		PA	RTIAL PATHW	AY TIMEOUT \	/ALUE
44		Reserved ROUTING ATTR				ATTRIBUTE		
45	Reserved			C	ONNECTOR T	YPE		
46				CONNECTOR	ELEMENT IN	DEX		
47				CONNECTOR	PHYSICAL L	INK		
48				Rese	rved			
49				11000	1700			
50		=		Vendor	specific			
51				vendor	эрсоно			
52				ATTACHED D	EVICE NAME			
59		ī				ı		1
60	Reserved	REQUESTED INSIDE ZPSDS CHANGED BY EXPANDER	INSIDE ZPSDS PERSISTENT	REQUESTED INSIDE ZPSDS	Reserved	ZONE GROUP PERSISTENT	INSIDE ZPSDS	ZONING ENABLED
61				Poso	nuod		•	
62		Reserved ————						
63		ZONE GROUP						
64			5	SELF-CONFIGU	JRATION STA	TUS		
65			SELF-C	ONFIGURATIO	N LEVELS C	OMPLETED		
66		=		Rese	rved			
67								
68			SEI E-	CONFIGURAT	ION SAS ADE	DESS.		
75			OLLI	CON ICCION	ION ONO ADE	ALCOO		
76		-	PRO	OGRAMMED PI	HY CAPABILI	ΓIES		
79								
80		-	c	URRENT PHY	CAPABILITIE	S		
83								
84		-	A ⁻	TTACHED PHY	CAPABILITIE	S		
87								
88		-		Rese	rved			
93								

Working Draft Serial Attached SCSI - 2 (SAS-2)

This page contains no comments

T10/1760-D Revision 14 28 January 2008

Table 269 — DISCOVER response (part 3 of 3)

Byte\Bit	7	6	5	4	3	2	1	0	
94		RE.	ASON		NE	EGOTIATED PH	IYSICAL LINK	RATE	
95			Res	erved			NEGOTIATED SSC	HARDWARE MUXING SUPPORTED	
96	Reserved		DEFAULT INSIDE ZPSDS PERSISTENT	DEFAULT REQUESTED INSIDE ZPSDS	Reserved	DEFAULT ZONE GROUP PERSISTENT	Reserve	DEFAULT ZONING ENABLED	
97				Res	served				
98				Res	served				
99				DEFAULT 2	ZONE GROUF	•			
100	Res	served	SAVED INSIDE ZPSDS PERSISTENT	SAVED REQUESTED INSIDE ZPSDS	Reserved	SAVED ZONE GROUP PERSISTENT	Reserved	SAVED ZONING ENABLED	
101		Reserved							
102				Res	served				
103				SAVED Z	ONE GROUP				
104	Res	served	SHADOW INSIDE ZPSDS PERSISTENT	SHADOW REQUESTED INSIDE ZPSDS	Reserved	SHADOW ZONE GROUP PERSISTENT	Reserved		
105		Reserved							
106		Reserved							
107				SHADOW 2	ZONE GROUP	•			
108	(MSB)			CF	ıC				
111								(LSB)	

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 269.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 269.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to one of the values defined in table 269 based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

The PHY IDENTIFIER field indicates the phy for which information is being returned.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 594

Author: hpq-relliott
Subject: Note
Date: 7/14/2008 11:34:27 AM -07'00'
REJECT (5/7 no interest in the SAS LB meeting at least)

Add a field indicating drive presence (if known)

Author: hpq-relliott
Subject: Note
Date: 8/28/2008 11:26:59 AM -07'00'
ACCEPT - DONE (8/28 incorporated r1 7/14 WG made further changes that will be in 08-183r1)

Incorporate 08-183 SAS-2 Add device slot numbering fields to DISCOVER, which adds 3 new fields to fully describe the device slot (i.e., drive bay) in a variety of system topologies.

28 January 2008

T10/1760-D Revision 14

The ATTACHED DEVICE TYPE field indicates the device type attached to this phy and is defined in table 270.

Table 270 - ATTACHED DEVICE TYPE field

Code	Description
000b	No device attached
001b	SAS device or SATA device
010b	Expander device
011b	Expander device compliant with a previous version of this standard
All others	Reserved

If the phy is a physical phy, the ATTACHED DEVICE TYPE field shall only be set to a value other than 0.00b after

- a) if a SAS device or expander device is attached, after the identification sequence is complete;
- b) if a SATA phy is attached and the STP/SATA bridge does not retrieve IDENTIFY (PACKET) DEVICE data, after the STP/SATA bridge receives the initial Register - Device to Host FIS; or
- c) if a SATA phy is attached and the STP/SATA bridge retrieves IDENTIFY (PACKET) DEVICE data, after the STP/SATA bridge receives IDENTIFY (PACKET) DEVICE data or it encounters a failure retrieving that data.

If the phy is a physical phy and a SAS phy or expander phy is attached, the ATTACHED REASON field indicates the value of the REASON field received in the IDENTIFY address frame (see 7.8.2) during the identification sequence. If the phy is a physical phy and a SATA phy is attached, the ATTACHED REASON field shall be set to 0h after the initial Register - Device to Host FIS has been received. If the phy is a victual phy, the ATTACHED REASON field shall be set to 0h.

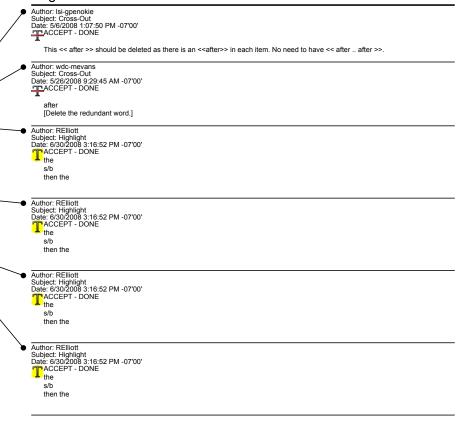

The NEGOTIATED LOGICAL LINK RATE field is defined in table 271 and indicates the logical link rate being us by the phy. For physical phys, this is negotiated during the link reset sequence. For virtual phys, this field should be set to the maximum physical link rate supported by the expander device. This field may be different from the negotiated physical link rate when multiplexing is enabled.

Table 271 — NEGOTIATED LOGICAL LINK RATE field

NEGOTIATED PHYSICAL LINK RATE field	Multiplexing	NEGOTIATED LOGICAL LINK RATE field
9h (i.e., G2)	Disabled	9h (i.e., 3 Gbps)
311 (i.e., G2)	Enabled	8h (i.e., 1.5 Gbps)
Ah (i.e., G3)	Disabled	Ah (i.e., 6 Gbps)
All (i.e., G5)	Enabled	9h (i.e., 3 Gbps)
All others	Any	Same as the NEGOTIATED LOGICAL LINK RATE field

NOTE 114 - In previous versions of this standard that did not define multiplexing, the NEGOTIATED LOGICAL LINK RATE field was called the NEGOTIATED PHYSICAL LINK RATE field and the NEGOTIATED PHYSICAL LINK RATE field in byte 94 did not exist.

Page: 595

T10/1760-D Revision 14

Table 272 defines the ATTACHED SATA PORT SELECTOR bit and the ATTACHED SATA DEVICE bit.

Table 272 — ATTACHED SATA PORT SELECTOR and ATTACHED SATA DEVICE bits

F		
ATTACHED SATA PORT SELECTOR bit value ^{a b d}	SATA DEVICE bit value c d	Description
0	0	Either: a) the phy is a virtual phy; or b) the phy is a physical phy, and neither a SATA port selector nor a SATA device is attached and ready on the selected phy.
0	1	The phy is a physical phy and the attached phy is a SATA device phy. No SATA port selector is present (i.e., the SP state machine did not detect COMWAKE in response to the initial COMINIT, but sequenced through the normal (non-SATA port selector) SATA device OOB sequence).
1	0	The phy is a physical phy, the attached phy is a SATA port selector host phy, and either: a) the attached phy is the inactive host phy, or b) the attached phy is the active host phy and a SATA device is either not present or not ready betimo the SATA port selector (i.e., the SP state machine detected COMWAKE while waiting for COMINIT).
1	1	The phy is a physical phy, the attached phy is a SATA port selector's active host phy and a SATA device is present behind the SATA port selector (i.e., the SP state machine detected COMWAKE while waiting for COMINIT, timed out

^a The ATTACHED SATA PORT SELECTOR bit is invalid it to NEGOTIATED LOGICAL LINK RATE field is set to UNKNOWN (i.e., 0h), DISABLED (i.e., 1h), or RESET IN ₱ROGRESS (i.e., 5h).

waiting for COMSAS, and exchanged COMWAKE with an attached SATA

- b Whenever the ATTACHED SATA PORT SELECTOR bit changes, the phy shall sciginate a Broadcast (Change)(see 7.11).
- ° For the purposes of the ATTACHED SATA DEVICE bit, a SATA port selector is not considered a SATA device.
- d The ATTACHED SATA PORT SELECTOR bit and the ATTACHED SATA DEVICE bit are updated as specified in the SP state machine (see 6.8).

An ATTACHED SATA HOST bit set to one indicates a SATA host port is attached. An ATTACHED SATA HOST bit set to zero indicates a SATA host port is not attached.

NOTE 115 - Support for SATA hosts is outside the scope of this standard.

device).

If a SAS phy reset sequence occurs (see 6.7.4)(i.e., one or more of the ATTACHED SSP INITIATOR PORT bit, ATTACHED SMP INITIATOR PORT bit, the ATTACHED SMP INITIATOR PORT bit, the ATTACHED SMP TARGET PORT bit, the ATTACHED STP TARGET PORT bit, and/or the ATTACHED SMP TARGET PORT bit is set to one), Then the ATTACHED SATA PORT SELECTOR bit, the ATTACHED SATA DEVICE bit, and the ATTACHED SATA HOST bit shall each be set to zero.

An ATTACHED SSP INITIATOR PORT bit set to one indicates that the attached phy supports an SSP initiator port. An ATTACHED SSP INITIATOR PORT bit set to zero indicates that the attached phy does not support an SSP initiator port. If the phy is a physical phy, the ATTACHED SSP INITIATOR PORT bit indicates the value of the SSP INITIATOR PORT bit received in the IDENTIFY address frame (see 7.8.2) during the identification sequence.

An ATTACHED STP INITIATOR PORT bit set to one indicates that the attached phy supports an STP initiator port. An ATTACHED STP INITIATOR PORT bit set to zero indicates that the attached phy does not support an STP

Page: 596
Author: Isi-bday

Author: RElliott

28 January 2008

Subject: Highlight
Date: 8/28/2008 11:30:56 AM -07'00'
TACCEPT - DONE (7/14 "and the attached phy is neither a SAS phy nor an expander phy (i.e., the attached phy did not respond with COMSAS within the COMSAS Timeout)". Also apply this to the other Isi-bday comment.

7/9 yes. don't know for sure that it is a SATA device. This bit really means "attached non-SAS device" or "attached potential SATA device". Don't want to dealy setting the bit until COMWAKE, which would mess up spinup hold handling. If a SAS device is unplugged after sending COMINIT but before sending COMSAS, the phy could be confused.)

The phy is a physical phy and the attached phy is a SATA device phy.

Since ATTACHED SATA DEVICE is set to one prior to actually getting a COMWAKE back from device, this row can be hit when no SATA device is present.

Subject: Note
Date: 11/5/2008 11:32:31 PM

REJECT (
11/5 changed again by 08-426r1.

7/14 Port Selector bit cleared out of SP1. SATA Device set in SP7. Mark this row as "Obsolete".)

(from Brian Day 4/17 reflector)

on an active port of a port selector, the PS bit gets cleared by the COMINIT, so the device runs with these set to 01b

Might be impossible to get into the 11b state

Author: RElliott Subject: Note Date: 11/5/2008 11:33:29 PM ACCEPT - DONE

Incorporate 08-426r1 SAS-2 Port selector discovery wording change (Brian Day, LSI)

which keeps the Attached SATA Port Selector bit set through the COMSAS state, and does result in 1 1 combinations at times.

Author: RElliott
Subject: Highlight
Date: 8/31/2008 2:35:31 PM -07'00'
TACCEPT - DONE

bit is invalid
s/b
bit shall be ignored

to avoid misusing the "ignored" keyword

Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

ACCEPT - DONE

ATTACHED

s/b the ATTACHED

[or all "the"s after the first "the" may be deleted. This form is used on the next page. One way or another, they should be

Comments from page 596 continued on next page

T10/1760-D Revision 14 28 January 2008

Table 272 defines the ATTACHED SATA PORT SELECTOR bit and the ATTACHED SATA DEVICE bit.

Table 272 — ATTACHED SATA PORT SELECTOR and ATTACHED SATA DEVICE bits

г				
	ATTACHED SATA PORT SELECTOR bit value ^{a b d}	SATA DEVICE bit value c d	Description	
	0	0	Either: a) the phy is a virtual phy; or b) the phy is a physical phy, and neither a SATA port selector nor a SATA device is attached and ready on the selected phy.	
	0	1	The phy is a physical phy and the attached phy is a SATA device phy. No SATA port selector is present (i.e., the SP state machine did not detect COMWAKZ in response to the initial COMINIT, but sequenced through the normal (non-SATA port selector) SATA device OOB sequence).	
	1	0	The phy is a physical phy, the attached phy is a SATA port selector host phy, and either: a) the attached phy is the inactive host phy, or b) the attached phy is the active host phy and a SATA device is either not present or not ready behind the SATA port selector (i.e., the SP state machine detected COMWAKE while waiting for COMINIT).	
	1	1	The phy is a physical phy, the attached phy is a SATA port selector's active host phy and a SATA device is present behind the SATA port selector (i.e., the SP state machine detected COMWAKE while waiting for COMINIT, timed out waiting for COMSAS, and exchanged COMWAKE with an attached SATA device).	

- ^a The ATTACHED SATA PORT SELECTOR bit is invalid if the NEGOTIATED LOGICAL LINK RATE field is set to UNKNOWN (i.e., 0h), DISABLED (i.e., 1h), or RESET_IN_PROGRESS/(i.e., 5h).
- b Whenever the ATTACHED SATA PORT SELECTOR bit changes, the phy shall originate a Broadcast (Change)(see 7.11).
- c For the purposes of the ATTACHED SATA DEVICE bit, a SATA port selector is not considered a SATA device.
- d The ATTACHED SATA PORT SELECTOR bit and the ATTACHED SATA DEVICE bit are updated as specified in the SP state machine (see 6.8).

An ATTACHED SATA HOST bit set to one indicates a SATA host port is attached. An ATTACHED SATA HOST bit set to zero indicates a SATA host port is not attached.

NOTE 115 - Support for SATA hosts is outside the scope of this standard.

596

If a SAS phy reset sequence occurs (see 6.7.4)(i.e., one or more of the ATTACHED SSP INITIATOR PORT bit, ATTACHED SMP INITIATOR PORT bit, the ATTACHED SMP INITIATOR PORT bit, the ATTACHED SSP TARGET PORT bit, the ATTACHED STP TARGET PORT bit, and/or the ATTACHED SMP TARGET PORT bit is set to one), then the ATTACHED SATA PORT SELECTOR bit, the ATTACHED SATA DEVICE bit, and the ATTACHED SATA HOST bit shall each be set to zero.

An ATTACHED SSP INITIATOR PORT bit set to one indicates that the attached phy supports an SSP initiator port. An ATTACHED SSP INITIATOR PORT bit set to zery indicates that the attached phy does not support an SSP initiator port. If the phy is a physical phy, the ATTACHED SSP INITIATOR PORT bit indicates the value of the SSP INITIATOR PORT bit received in the IDENTIFY address frame (see 7.8.2) during the identification sequence.

An ATTACHED STP INITIATOR PORT bit set to one indicates that the attached phy supports an STP initiator port. An ATTACHED STP INITIATOR PORT bit set to zero indicates that the attached phy does not support an STP

Working Draft Serial Attached SCSI - 2 (SAS-2)

consistent,]

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b
then the

T10/1760-D Revision 14

initiator port. If the phy is a physical phy, the ATTACHED STP INITIATOR PORT bit indicates the value of the STP INITIATOR PORT bit received in the IDENTIFY address frame (see 7.8.2) during the identification sequence.

An ATTACHED SMP INITIATOR PORT bit set to one indicates that the attached phy supports an SMP initiator port. An ATTACHED SMP INITIATOR PORT bit set to zero indicates that the attached phy does not support an SMP initiator port. If the phy is a physical phy, the ATTACHED SMP INITIATOR PORT bit received in the IDENTIFY address frame (Sep 7.8-2) during the identification sequence.

An ATTACHED SSP TARGET PORT bit set to one indicates that the attached phy supports an SSP target port. An ATTACHED SSP TARGET PORT bit set to zero indicates that the attached phy does not support an SSP target port. If the phy is a physical phy, the ATTACHED SSP TARGET PORT bit indicates the value of the SSP TARGET PORT bit received in the IDENTIFY address frame (Sep 3.2) during the identification sequence.

An ATTACHED STP TARGET PORT bit set to one indicates that the attached phy supports an STP target port. An ATTACHED STP TARGET PORT bit set to zero indicates that the attached phy does not support an STP target port. If the phy is a physical phy, the ATTACHED STP TARGET PORT bit indicates the value of the STR TARGET PORT bit received in the IDENTIFY address frame (see 7.8.2) during the identification sequence.

An ATTACHED SMP TARGET PORT bit set to one indicates that the attached phy supports an SMP target port. An ATTACHED SMP TARGET PORT bit set to zero indicates that the attached phy does not support an SMP target port. If the phy is a physical phy, the ATTACHED SMP TARGET PORT bit indicates the value of the SMP TARGET PORT bit received in the IDENTIFY address target (see 7.8.2) during the identification sequence.

If the phy is a physical phy, the ATTACHED SSP INITIATOR PORT bit, ATTACHED STP INITIATOR PORT bit, ATTACHED SSP SMP INITIATOR PORT bit, ATTACHED SSP TARGET PORT bit, and ATTACHED SMP TARGET PORT bit shall be updated at the end of the identification sequence.

If a SATA phy reset sequence occurs (see 6.7.3) to the ATTACHED SATA PORT SELECTOR bit is set to one, the ATTACHED SATA HOST bit is set to one, or the ATTACHED SATA HOST bit is set to one), then the ATTACHED SSP INITIATOR PORT bit, ATTACHED STP INITIATOR PORT bit, ATTACHED STP TARGET PORT bit, ATTACHED STP TARGET PORT bit, ATTACHED STP TARGET PORT bit, TATACHED ST

If the phy is an expander phy, the SAS ADDRESS field contains the SAS address of the expander device (see 4.2.4). If the phy is a SAS phy, the SAS ADDRESS field contains the SAS address of the SAS phy (see 4.2.7). If the phy is a physical phy, the SAS ADDRESS field contains the value of the SAS ADDRESS field transmitted in the IDENTIFY address frame (see 7.8.2) during the identification sequence.

The ATTACHED SAS ADDRESS field is defined as follows:

- a) if the attached port is an expander port, then the ATTACHED SAS ADDRESS field contains the SAS address of the attached expander device (see 4.2.4);
- b) if the attached port is a SAS port, then the ATTACHED SAS ADDRESS field contains SAS address of the attached SAS port (see 4.2.7); or
- c) if the attached port is a SATA device port, then the ATTACHED SAS ADDRESS field contains the SAS address of the STP/SATA bridge (see 4.6.2).

For a physical phy, the ATTACHED SAS ADDRESS field contains the value of the SAS ADDRESS field received in the IDENTIFY address frame (see 7.8.2) during the identification sequence, and shall be updated:

- a) after the identification sequence completes, if a SAS phy or expander phy is attached; or
- b) after the COMSAS Detect Timeout timer expires (see 6.8.3.9), if a SATA phy is attached.

An STP initiator port should not make a connection request to the attached SAS address until the ATTACHED DEVICE TYPE field is set to a value other than 000b (see table 270).

The ATTACHED PHY IDENTIFIER field is defined as follows:

- a) if the attached phy is a SAS phy, then the ATTACHED PHY IDENTIFIER field contains the phy identifier of the attached SAS phy in the attached SAS device;
- if the attached phy is an expander phy, then the ATTACHED PHY IDENTIFIER field contains the phy identifier (see 4.2.8) of the attached expander phy in the attached expander device;
- c) if the attached phy is a SATA device phy, then the ATTACHED PHY IDENTIFIER field contains 00h;

Page: 597 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/h then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' TACCEPT - DONE ATTACHED

Comments from page 597 continued on next page

T10/1760-D Revision 14 28 January 2008

initiator port. If the phy is a physical phy. the ATTACHED STP INITIATOR PORT bit indicates the value of the STP INITIATOR PORT bit received in the IDENTIFY address frame (see 7.8.2) during the identification sequence.

An ATTACHED SMP INITIATOR PORT bit set to one indicates that the attached phy supports an SMP initiator port. An ATTACHED SMP INITIATOR PORT bit set to zero indicates that the attached phy does not support an SMP initiator port. If the phy is a physical phy, the ATTACHED SMP INITIATOR PORT bit indicates the value of the SMP INITIATOR PORT bit received in the IDENTIFY address frame (see 7.8.2) during the identification sequence.

An ATTACHED SSP TARGET PORT bit set to one indicates that the attached phy supports an SSP target port. As ATTACHED SSP TARGET PORT bit set to zero indicates that the attached phy does not support an SSP target port. If the phy is a physical phy, the ATTACHED SSP TARGET PORT bit indicates the value of the SSP TARGET PORT bit received in the IDENTIFY address frame (see 7.8.2) during the identification sequence.

An ATTACHED STP TARGET PORT bit set to one indicates that the attached phy supports ar STP target port. An ATTACHED STP TARGET PORT bit set to zero indicates that the attached phy does not support an STP target port. If the phy is a physical phy, the ATTACHED STP TARGET PORT bit indicates the value of the STP TARGET PORT bit received in the IDENTIFY address frame (see 7.8.2) during the identification sequence.

An ATTACHED SMP TARGET PORT bit set to one indicates that the attached phy supports an SMP target port. An ATTACHED SMP TARGET PORT bit set to zero indicates that the attached phy does not support an SMP target PORT. If the phy is a physical phy, the ATTACHED SMP TARGET PORT bit indicates the value of the SMP TARGET PORT bit received in the IDENTIFY address frame (see 7.6.2) during the identification sequence.

If the phy is a physical phy, the ATTACHED SSP INITIMOR PORT bit, ATTACHED INITIATOR PORT bit, ATTACHED SMP INITIATOR PORT bit, ATTACHED SSP TARGET PORT bit, ATTACHED STP TARGET PORT bit, and ATTACHED SMP TARGET PORT bit shall be updated at the epz of the identification sequence.

If a SATA phy reset sequence occurs (see 6.7.3)(i.e., the ATTACHED SATA PORT SELECTOR bit is set to one, the ATTACHED SATA DEVICE bit is set to one, or the ATTACHED SATA HOST bit is set to one), then the ATTACHED SSP INITIATOR PORT bit, ATTACHED STP INITIATOR PODY bit, ATTACHED SMP INITIATOR PORT bit, ATTACHED SSP TARGET PORT bit, ATTACHED STP TARGET PORT bit, and ATTACHED SMP TARGET PORT bit shall each be set to zero.

If the phy is an expander phy, the SAS ADDRESS field contains the SAS address of the expander device (see 4.2.4). If the phy is a SAS phy, the SAS ADDRESS field contains the SAS address of the SAS port (see 4.2.7). If the phy is a physical phy, the SAS ADDRESS field contains the value of the SAS ADDRESS field transmitted in the IDENTIFY address frame (see 7.8.2) during the identification sequence.

The ATTACHED SAS ADDRESS field is defined as follows:

- a) if the attached port is an expander port, then the ATTACHED SAS ADDRESS field contains the SAS address of the attached expander device (see 4.2.4);
- b) if the attached port is a SAS port, then the ATTACHED SAS ADDRESS field contains SAS address of the attached SAS port (see 4.2.7); or
- c) if the attached port is a SATA device port, then the ATTACHED SAS ADDRESS field contains the SAS address of the STP/SATA bridge (see 4.6.2).

For a physical phy, the ATTACHED SAS ADDRESS field contains the value of the SAS ADDRESS field received in the IDENTIFY address frame (see 7.8.2) during the identification sequence, and shall be updated:

- a) after the identification sequence completes, if a SAS phy or expander phy is attached; or
- b) after the COMSAS Detect Timeout timer expires (see 6.8.3.9), if a SATA phy is attached.

An STP initiator port should not make a connection request to the attached SAS address until the ATTACHED DEVICE TYPE field is set to a value other than 000b (see table 270).

The ATTACHED PHY IDENTIFIER field is defined as follows:

- a) if the attached phy is a SAS phy, then the ATTACHED PHY IDENTIFIER field contains the phy identifier of the attached SAS phy in the attached SAS device;
- b) if the attached phy is an expander phy, then the ATTACHED PHY IDENTIFIER field contains the phy identifier (see 4.2.8) of the attached expander phy in the attached expander device;
- c) if the attached phy is a SATA device phy, then the ATTACHED PHY IDENTIFIER field contains 00h;

Working Draft Serial Attached SCSI - 2 (SAS-2)

597

the ATTACHED [or all "the"s after the first "the" may be deleted. This form is used on the next page. One way or another, they should be consistent.1 Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' ACCEPT - DONE ATTACHED the ATTACHED [or all "the"s after the first "the" may be deleted. This form is used on the next page. One way or another, they should be consistent,] Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TRACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b then the Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 1:10:19 PM -07'00' TREJECT (that puts the "if" in between "shall be updated" and "after ...")

This << a) after the identification sequence completes, if a SAS phy or expander phy is attached; or

b) after the COMSAS Detect Timeout timer expires (see 6.8.3.9), if a SATA phy is attached >> should be << a) if a SAS phy or expander phy is attached, then after the identification sequence completes; or

b) if a SATA phy is attached, then after the COMSAS Detect Timeout timer expires (see 6.8.3.9). >> to make this a.b.c list consistent with the others

d) if the attached phy is a SATA port selector phy and the expander device is able to determine the port of the SATA port selector to which it is attached, then the ATTACHED PHY IDENTIFIER field contains 00h or 0th; or

if the attached phy is a SATA port selector phy and the expander device is not able to determine the
port of the SATA port selector to which it is attached, then the ATTACHED PHY IDENTIFIER field contains
00h.

If the phy is a physical phy and the attached phy is a SAS phy or an expander phy, the ATTACHED PHY IDENTIFIER field contains the value of the PHY IDENTIFIER field received in the IDENTIFY address frame (see 7.8.2) during the identification sequence.

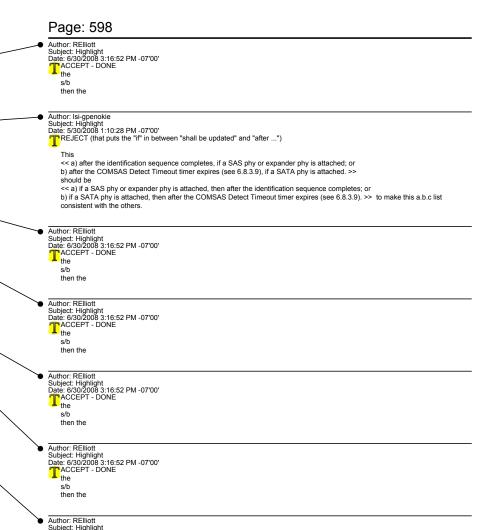
For a physical phy, the ATTACHED PHY IDENTIFIER field shall be updated:

- a) after the identification sequence completes, if a SAS phy or expander phy is attached; or
- b) after the COMSAS Detect Timeout timer expires (see 6.8.3.9), if a SATA phy is attached

If the phy is a physical phy, the ATTACHED INSIDE ZPSDS PERSISTENT bit indicates the value of the INSIDE ZPSDS PERSISTENT bit received in the IDENTIFY address frame (see 7.8.2) from the attached phy during the identification sequence. If the phy is a virtual phy, the ATTACHED INSIDE ZPSDS PERSISTENT bit shall be set to zero.

If the phy is a physical phy, the ATACHED REQUESTED INSIDE ZPSDS Distindicates the value of the REQUESTED INSIDE ZPSDS bit received in the IDENTIFY address frame (see 7.8.2) from the attached phy during the identification sequence. If the phy is a virtual phy, the ATACHED REQUESTED INSIDE ZPSDS bit shall be set to zero.

If the phy is a physical phy, the ATTACHED BREAK_REPLY CAPABLE bit indicates the value of the BREAK_REPLY CAPABLE bit received in the IDENTINEY address frame (see 7.8.3) turing the identification sequence. He phy reset sequence occurs (see 6.7) then the ATTACHED BREAK_REPLY CAPABLE bit shall be set to zero. If the phy is a virtual phy, the ATTACHED BREAK_REPLY CAPABLE bit shall be set to zero.


The PROGRAMMED MINIMUM PHYSICAL LINK RATE field indicates the minimum physical link rate set by the PHY CONTROL function (see 10.4.3.28). The values are defined in table 273. The default value shall be the value of the HARDWARE MINIMUM PHYSICAL LINK RATE field.

The HARDWARE MINIMUM PHYSICAL LINK RATE field indicates the minimum physical link rate supported by the phy. The values are defined in table 274.

The PROGRAMMED MAXIMUM PHYSICAL LINK RATE field indicates the maximum physical link rate set by the PHY CONTROL function (see 10.4.3.28). The values are defined in table 273. The default value shall be the value of the HARDWARE MAXIMUM PHYSICAL LINK RATE field.

Table 273 — PROGRAMMED MINIMUM PHYSICAL LINK RATE and PROGRAMMED MAXIMUM PHYSICAL LINK rate fields

Code	Description	
0h	Not programmable	
1h - 7h	Reserved	
8h	1.5 Gbps	
9h	3 Gbps	
Ah	6 Gbps	
Bh - Fh	Reserved for future physical link rates	

T10/1760-D Revision 14 28 January 2008

d) if the attached phy is a SATA port selector phy and the expander device is able to determine the port of the SATA port selector to which it is attached, then the ATTACHED PHY IDENTIFIER field contains 00h or 0.01 or

if the attached phy is a SATA port selector phy and the expander device is not able to determine the
port of the SATA port selector to which it is attached, then the ATTACHED PHY IDENTIFIER field contains
only

If the phy is a physical phy and the attached phy is a SAS phy or an expander phy, the ATTACHED PHY IDENTIFIER field contains the value of the PHY IDENTIFIER field received in the IDENTIFY address frame (see 7.8.2) during the identification sequence.

For a physical phy, the ATTACHED PHY IDENTIFIER field shall be updated:

598

- a) after the identification sequence completes, if a SAS phy or expander phy is attached; or
- b) after the COMSAS Detect Timeout timer expires (see 6.8.3.9), if a SATA phy is attached

If the phy is a physical phy, the ATTACHED INSIDE ZPSDS PERSISTENT bit indicates the value of the MISIDE ZPSDS PERSISTENT bit received in the IDENTIFY address frame (see 7.8.2) from the attacked pay during the identification sequence. If the phy is a virtual phy, the ATTACHED INSIDE ZPSDS PERSISTENT bit shall be set to zero.

If the phy is a physical phy, the ATTACHED REQUESTED INSIDE ZPSPS of indicates the value of the REQUESTED INSIDE ZPSDS bit received in the IDENTIFY address frame (569 7.8.2) from the attached phy during the identification sequence. If the phy is a virtual phy, the ATTACHED REQUESTED INSIDE ZPSDS bit shall be set to zero.

If the phy is a physical phy, the ATTACHED BREAK KEPLY CAPABLE bit indicates the value of the BREAK_REPLY CAPABLE bit received in the IDENTIFY address frame (see 7.8.2) during the identification sequence. If a phy reset sequence occurs (see 6.7) then the ATTACHED BREAK_REPLY CAPABLE bit shall be set to zero. If the phy is a virtual phy, the ATTACHED BREAK_REPLY CAPABLE bit shall be set to zero.

The PROGRAMMED MINIMUM PHYSICAL LINK RATE field indicates the minimum physical link rate set by the PHY CONTROL function (see 10.4.3.28). The values are defined in table 273. The default value shall be the value of the HARDWARE MINIMUM PHYSICAL LINK RATE field.

The HARDWARE MINIMUM PHYSICAL LINK RATE field indicates the minimum physical link rate supported by the phy. The values are defined in table 274.

The PROGRAMMED MAXIMUM PHYSICAL LINK RATE field indicates the maximum physical link rate set by the PHY CONTROL function (see 10.4.3.28). The values are defined in table 273. The default value shall be the value of the HARDWARE MAXIMUM PHYSICAL LINK RATE field.

Table 273 — PROGRAMMED MINIMUM PHYSICAL LINK RATE and PROGRAMMED MAXIMUM PHYSICAL LINK rate fields

Code	Description
0h	Not programmable
1h - 7h	Reserved
8h	1.5 Gbps
9h	3 Gbps
Ah	6 Gbps
Bh - Fh	Reserved for future physical link rates

Working Draft Serial Attached SCSI - 2 (SAS-2)

Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
the
s/b
then the

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

This << sequence occurs (see 6.7) then the >> is missing a comma before the then.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b then the 28 January 2008

T10/1760-D Revision 14

The HARDWARE MAXIMUM PHYSICAL LINK RATE field indicates the maximum physical link rate supported by the phy. The values are defined in table 274. If the phy is a virtual phy, this field should be set to the maximum physical link rate supported by the expander device.

Table 274 — HARDWARE MINIMUM PHYSICAL LINK RATE and HARDWARE MAXIMUM PHYSICAL LINK RATE fields

Code	Description
0h - 7h	Reserved
8h	1.5 Gbps
9h	3 Gbps
Ah	6 Gbps
Bh - Fh	Reserved for future physical link rates

The PHY CHANGE COUNT field counts the number of Broadcast (Change)s originated by an expander phy.

Expander devices shall support this field. Other device types shall not support this field. This field shall be set to 00h at power on. The expander device shall increment this field at least once when:

- a) it originates a Broadcast (Change) for an expander phy-related reason described in 7.11 from the specified expander phy: or
- b) the zone phy information changes for the specified expander phy (e.g., when a locked expander device is unlocked (see 4.9.6.5)),

and shall not increment this field when forwarding a Broadcast (Change).

After incrementing the PHY CHANGE COUNT field, the expander device is not required to increment the PHY CHANGE COUNT field again unless a DISCOVER response is transmitted. The PHY CHANGE COUNT field shall wrap to 00h after the maximum value (i.e., FFh) has been reached.

NOTE 116 - Application clients that use the PHY CHANGE COUNT field should read it often enough to ensure that it does not increment a multiple of 256 times between reading the field.

A VIRTUAL PHY bit set to one indicates that the phy is a virtual phy and is part of an internal port and the attached device is contained within the expander device. A VIRTUAL PHY bit set to zero indicates that the phy is a physical phy and the attached device is not contained within the expander device.

The PARTIAL PATHWAY TIMEOUT VALUE field indicates the partial pathway timeout value in microseconds (see 7.12.4.4) set by the PHY CONTROL function (see 10.4.3.28).

NOTE 117 - The recommended default value for PARTIAL PATHWAY TIMEOUT VALUE is 7 μs .

Page: 599

```
Author: wdc-mevans
Subject: Highlight
Date: 5/23/2008 11:30:44 AM -07'00'
 TACCEPT - DONE (as "indicates") counts
   s/b
   contains
Author: wdc-mevans
Author. wdc-inevaris
Subject: Highlight
Date: 5/26/2008 9:30:50 AM -07'00'
   it
    s/b
   the expander phy
Author: wdc-mevans
Subject: Highlight
Date: 5/26/2008 9:31:46 AM -07'00'
 ACCEPT - DONE
   (see 4.9.6.5)),
   and
   s/b
   (see 4.9.6.5)).
    The expander device
Author: elx-bmartin
Subject: Comment on Text
Date: 5/30/2008 1:12:50 PM -07'00'
   *ACCEPT - DONE (also added "for the phy", since returning DISCOVER response for another phy doesn't matter.)
   DISCOVER response
   DISCOVER response or a DISCOVER_LIST response
```

T10/1760-D Revision 14

28 January 2008

The ROUTING ATTRIBUTE field indicates the routing attribute supported by the phy (see 4.6.7.1) and is defined in table 275.

Table 275 — ROUTING ATTRIBUTE field

Code	Name	Description
0h	Direct routing attribute	Direct routing method for attached end devices. Attached expander devices are not supported on this phy.
1h	Subtractive routing attribute	Either: a) subtractive routing method for attached expander devices, or b) direct routing method for attached end devices.
2h	Table routing attribute	Either: a) table routing method for attached expander devices; or b) direct routing method for attached end devices.
All others	Reserved	

The ROUTING ATTRIBUTE field shall not change based on the attached device type

The CONNECTOR TYPE field indicates the type of connector used to access the phy, as reported by the enclosure services process for the enclosure (see the SAS-Connector element in SES-2). A CONNECTOR TYPE field set to 00h indicates no connector information is available and that the CONNECTOR ELEMENT INDEX field and the CONNECTOR PHYSICAL LINK fields are invalid apply shall be ignored.

The CONNECTOR ELEMENT INDEX field indicates the element index of the SAS Connector element representing the connector used to access the phy, as/reported by the enclosure services process for the enclosure (see the SAS Connector element in SES-2).

The CONNECTOR PHYSICAL LINK field indicates the physical link in the connector used to access the phy, as reported by the enclosure services process for the enclosure (see the SAS Connector element in SES-2).

The ATTACHED DEVICE NAME field is defined as follows:

- a) if the attached phy is an expander phy, then the ATTACHED DEVICE NAME field contains the device name
 of the attached expander device (see 4.2.4);
- if the attached phy is a SAS phy, then the ATTACHED DEVICE NAME field contains the device name of the attached SAS device (see 4.2.7); or
- c) if the attached phy is a SATA device phy, then the ATTACHED DEVICE NAME field contains the world wide name of the SATA device (see 4.6.2) or 00000000 0000000h.

Page: 600

```
Author: RElilott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE (deleted. "shall be ignored" suffices)

invalid
s/b
different word to avoid keyword

Author: wdc-mevans
Subject: Highlight
Date: 5/26/2008 9:32:05 AM -07'00'

TREJECT

phy, as
s/b
phy as

Author: wdc-mevans
Subject: Highlight
Date: 5/26/2008 9:32:12 AM -07'00'

TREJECT

phy, as
s/b
phy, as
s/b
phy, as
s/b
phy, as
```

28 January 2008 T10/1760-D Revision 14

For physical phys, table 276 defines how the ATTACHED DEVICE NAME field is updated.

Table 276 — ATTACHED DEVICE NAME field

Condition	Update time	Value
A SAS phy or expander phy is attached	Completion of the identification sequence	The management device server shall set this field to the DEVICE NAME field in the incoming IDENTIFY address frame (i.e., the attached expander device name or attached SAS device name (see 4.2.4))
	Expiration of the COMSAS Detect Timeout timer (see 6.6.3)	The management device server shall set this field to 00000000 00000000h
A SATA phy is attached	Reception of IDENTIFY (PACKET) DEVICE data from the SATA device ^a	Either: a) if IDENTIFY (PACKET) DEVICE data word 255 (i.e. the Integrity word) is correct and words 108-111 (i.e., the World Wide Name field) are not set to zero, the management device server shall set this field to the world wide name indicated by words 108-111 according to table 12 in 4.2.5; b) if IDENTIFY (PACKET) DEVICE data word 255 (i.e. the Integrity word) is correct and words 108-111 (f.e., the World Wide Name) are set to zero, the management device server shall set this field to 00000000 00000000; or c) if IDENTIFY (PACKET) DEVICE data word 255 (i.e., the Integrity word) is not correct, the management device server shall set this field to 00000000 00000000h.
	Processing a PHY CONTROL function SET ATTACHED DEVICE NAME phy operation	The management device server shall set this field to the value specified in the ATTACHED DEVICE NAME field in the PHY CONTROL request (see 10.4.3.28).

A REQUESTED INSIDE ZPSDS CHANGED BY EXPANDER bit set to one indicates that the zoning expander device set the REQUESTED INSIDE ZPSDS bit to zero in the zone phy information at the completion of the last link reset sequence. A REQUESTED INSIDE ZPSDS CHANGED BY EXPANDER bit set to zero indicates that the zoning expander device did not set the REQUESTED INSIDE ZPSDS bit to zero in the zone phy information at the completion of the last link reset sequence.

NOTE 118 - The zone manager may use the REQUESTED INSIDE ZPSDS CHANGED BY EXPANDER bit to determine why the REQUESTED INSIDE ZPSDS bit has changed in the DISCOVER response from the value to which it last set the hit

The INSIDE ZPSDS PERSISTENT bit indicates the value of the INSIDE ZPSDS PERSISTENT bit in the zone phy information (see 4.9.3.1).

The REQUESTED INSIDE ZPSDS bit indicates the value of the REQUESTED INSIDE ZPSDS bit in the zone phy information (see 4.9.3.1).

The ZONE GROUP PERSISTENT bit indicates the value of the ZONE GROUP PERSISTENT bit in the zone phy information (see 4.9.3.1).

The INSIDE ZPSDS bit indicates the value of the INSIDE ZPSDS bit in the zone phy information (see 4.9.3.1).

A ZONING ENABLED bit set to one indicates that zoning is enabled in the expander device. A ZONING ENABLED bit set to zero indicates that zoning is disabled in the expander device.

Working Draft Serial Attached SCSI - 2 (SAS-2)

601

Page: 601

Subject: Note Date: 7/9/2008 8:15:16 AM -07'00' REJECT (for SAS, this follows the Attached SAS Address convention of preserving the previous value, only updating it when an dentification sequence completes. For SATA, it is cleared each time (since the value doesn't show up in a nice IDENTIFY address frame). So, they are different. It might be more confusing to mention the "don't change" cases here while not mentioning them for Do we need to add what to report if nothing is attached? Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE 1 the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE the s/b then the

The ZONE GROUP field indicates the value of the ZONE GROUP field in the zone phy information (see 4.9.3.1).

The SELF-CONFIGURATION STATUS field indicates the status of a self-configuring expander device pertaining to the specified phy and is defined in table 277.

Table 277 — SELF-CONFIGURATION STATUS field

Code	Description
00h	No status available
01h - FFh	As defined for the STATUS TYPE field in the self-configuration status descriptor in the REPORT SELF-CONFIGURATION STATUS response (see table 253 in 10.4.3.6)

The SELF-CONFIGURATION LEVELS COMPLETED field indicates the number of levels of expander devices beyond the expander port containing the specified phy for which the self-configuring expander device's management application client has completed the discover process and is defined in table 278.

Table 278 — SELF-CONFIGURATION LEVELS COMPLETED field

Code	Description
00h	The management application client: a) has not begun the discover process through the expander port containing the specified phy; b) has not completed the discover process through the expander port containing the specified phy; or c) an expander device is not attached to the expander port containing the specified phy.
01h	The management application client has completed discovery of the expander device attached to the expander port containing the specified phy (i.e., level 1).
02h	The management application client has completed discovery of the expander devices attached to the expander device attached to the expander port containing the specified phy (i.e., level 2).
FFh	The management application client has completed discovery of the expander devices attached at level 255.

NOTE 119 - The self-configuration levels completed field does not reflect the level of externally configurable expander devices that the configuration subprocess updates to enable the displayer process to proceed to higher levels.

The SELF-CONFIGURATION SAS ADDRESS field indicates the SAS address of the SMP target port to which the self-configuring expander device established a connection or attempted to establish a connection using the specified phy and resulted in the status indicated by the SELF-CONFIGURATION STATUS field.

The PROGRAMMED PHY CAPABILITIES field indicates the SWW-3 phy capabilities bits that are going to be transmitted in the next link reset sequence containing SNW-3 as defined in table 98 in 6.7.4.2.4.5.

The CURRENT PHY CAPABILITIES field indicates the outgoing SNW-3 phy capabilities bits transmitted in the last link reset sequence as defined in table 98 to 6.7.4.2.3.3. If the last tiek reset sequence did not/include SNW-3 or was a SATA link reset sequence, the CURRENT PHY CAPABILITIES field shall be set to zero/

The ATTACHED PHY CAPABILITIES field indicates the incoming SNW-3 phy capabilities bits received in the last SNW-3 as defined in table 98 in 6.7.4.2-5.3. If the last link reset sequence did not include SNW-3 or was a SATA link reset sequence, the ATTACHED PHY CAPABILITIES field shall be set to zero.

The REASON field indicates the reason for the last reset of the phy. If the phy is a physical phy, the REASON field indicates the value of the REASON field transmitted in the IDENTIFY address frame (see 7.8.2) during the

Page: 602 Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' TREJECT process and s/b process. The SELF-CONFIGURATION LEVELS COMPLETED field Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE SAS address add "(see 4.2.4)" to support the new section Author: RElliott Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE zero s/b 00000000h Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE s/b then the Author: RElliott Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE zero 00000000h Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE the s/b then the Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Comments from page 602 continued on next page

TACCEPT - DONE

T10/1760-D Revision 14 28 January 2008

The ZONE GROUP field indicates the value of the ZONE GROUP field in the zone phy information (see 4.9.3.1).

The SELF-CONFIGURATION STATUS field indicates the status of a self-configuring expander device pertaining to the specified phy and is defined in table 277.

Table 277 — SELF-CONFIGURATION STATUS field

Code Description	
00h	No status available
01h - FFh	As defined for the STATUS TYPE field in the self-configuration status descriptor in the REPORT SELF-CONFIGURATION STATUS response (see table 253 in 10.4.3.6)

The SELF-CONFIGURATION LEVELS COMPLETED field indicates the number of levels of expander devices beyond the expander port containing the specified phy for which the self-configuring expander device's management application client has completed the discover process and is defined in table 278.

Table 278 — SELF-CONFIGURATION LEVELS COMPLETED field

Code	Description	
00h	The management application client: a) has not begun the discover process through the expander port containing the specified phy; b) has not completed the discover process through the expander port containing the specified phy; or c) an expander device is not attached to the expander port containing the specified phy.	
01h	The management application client has completed discovery of the expander device attached to the expander port containing the specified phy (i.e., level 1).	
02h	The management application client has completed discovery of the expander devices attached to the expander device attached to the expander port containing the specified phy (i.e., level 2).	
FFh	The management application client has completed discovery of the expander devices attached at level 255.	

NOTE 119 - The self-configuration levels completed field does not reflect the level of externally configurable expander devices that the configuration subprocess updates to enable the discover process to proceed to higher levels

The SELF-CONFIGURATION SAS ADDRESS field indicates the SAS address of the SMP target port to which the self-configuring expander device established a connection or attempted to establish a connection using the specified phy and resulted in the status indicated by the SELF-CONFIGURATION STATUS field.

The PROGRAMMED PHY CAPABILITIES field indicates the SNW-3 phy capabilities bits that are going to be transmitted in the next link reset sequence containing SNW-3 as defined in table 98 in 6.7.4.2.3.3.

The CURRENT PHY CAPABILITIES field indicates the outgoing SNW-3 phy capabilities bits transmitted in the last link reset sequence as defined in table 98 in 6.7.4.2.3.3. If the last link reset sequence did not include SNW-3 or was a SATA link reset sequence, the CURRENT PHY CAPABILITIES field shall be set to zero.

The ATTACHED PHY CAPABILITIES field indicates the incoming SNW-3 phy capabilities bits received in the last SNW-3 as defined in table 98 in 6.7.4.2.3.3. If the last link reset sequence did not include SNW-3 or was a SATA link reset sequence, the ATTACHED PHY CAPABILITIES field shall be set to zero.

The REASON field indicates the reason for the last reset of the phy. If the phy is a physical phy, the REASON field indicates the value of the REASON field transmitted in the IDENTIFY address frame (see 7.8.2) during the

602

Working Draft Serial Attached SCSI - 2 (SAS-2)

s/b then the A NEGOTIATED SSC field set to one indicates that SSC is enabled (see 5.3.8). A NEGOTIATED SSC field set to zero indicates that SSC is disabled. The NEGOTIATED SSC field is only valid when the NEGOTIATED PHYSICAL LINK RATE field is greater than or equal to 8h.

The NEGOTIATED PHYSICAL LINK RATE field is defined in table 279. If the pay is a physical phy, this field indicates the physical link rate negotiated during the link reset sequence. If the physical virtual phy, this field should be set to the maximum physical link rate supported by the expander device. The negotiated physical link rate may be less than the programmed minimum physical link rate or greater than the programmed maximum physical link rate if the programmed physical link rates have been changed since the last link reset sequence.

Table 279 - NEGOTIATED PHYSICAL LINK RATE field

1000 210 1120 1112 1112 1112 1112			
SP state machine ResetStatus state machine variable	Code	Description	
UNKNOWN	0h	Phy is enabled; unknown physical link rate. ^a	
DISABLED	1h	Phy is disabled.	
PHY_ RESET_ PROBLEM	2h	Phy is enabled; a phy reset problem occurred (see 6.7.4.2.4).	
SPINUP_HOLD	3h	Phy is enabled; detected a SATA device, and entered the SATA spinup hold state. The SMP PHY CONTROL function (see 10.4.3.28) phy operations of LINK RESET and HARD RESET may be used to release the phy.	
PORT_ SELECTOR	4h	Phy is enabled; detected a SATA port selector. The physical line rate has not been negotiated since the last time the phy's SP state machine entered the SP0:OOB_COMINIT state. The SATA spinup hold state has not been entered since the last time the phy's SP state machine entered the SP0:OOB_COMINIT state. The value in this field may change to 3h, 8h, 9h, or Ah if attached to the active phy of the SATA port selector. Presence of a SATA port selector is indicated by the ATTACHED SATA PORT SELECTOR bit (see table 272).	
RESET_ IN_ PROGRESS	5h	Phy is enabled; the expander phy is performing an SMP PHY CONTROL function (see 10.4.3.28) phy operation of LINK RESET or HARD RESET. This value is returned if the specified phy contained a value of 8h, 9h, or Ah in this field when an SMP PHY CONTROL function phy operation of LINK RESET or HARD RESET phy operation is processed.	
UNSUPPORTED_ PHY_ ATTACHED	6h	Phy is enabled; a phy is attached without any commonly supported settings.	
Reserved	7h	Reserved	
G1	8h	Phy is enabled; 1.5 Gbps physical link rate.	
G2	9h	Phy is enabled; 3 Gbps physical link rate.	
G3	Ah	Phy is enabled; 6 Gbps physical link rate.	
Reserved	Bh - Fh	Phy is enabled; reserved for future logical or physical link rates.	

This code may be used by an application client in its local data structures to indicate an unknown negotiated logical or physical link rate (e.g., before the discover process has queried the phy).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 603

then the

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the s/b

Author: RElliott Aumor: Relliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

> NEGOTIATED SSC field NEGOTIATED SSC bit

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

NEGOTIATED SSC field NEGOTIATED SSC bit

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

> NEGOTIATED SSC field NEGOTIATED SSC bit

Author: Isi-bday Author: is-boday
Subject: Highlight
Date: 8/28/2008 11:31:56 AM -07'00'
TACCEPT - DONE (7/9 yes. SATA is not conclusive until COMWAKE exchange. At this point, only a COMSAS timeout has occurred.)

detected a SATA device suggest: did not detect as SAS device

A HARDWARE MUXING SUPPORTED bit set to one indicates that the phy supports multiplexing (see 6.10). A HARDWARE MUXING SUPPORTED bit set to zero indicates that the phy does not support multiplexing. This value is not adjusted based on the negotiated physical link rate.

The DEFAULT INSIDE ZPSDS PERSISTENT bit contains the default value of the INSIDE ZPSDS PERSISTENT bit in the zone phy information (see 4.9.3.1).

The DEFAULT REQUESTED INSIDE ZPSDS bit contains the default value of the REQUESTED INSIDE ZPSDS bit in the zone phy information (see 4.9.3.1).

The DEFAULT ZONE GROUP PERSISTENT bit contains the default value of the ZONE GROUP PERSISTENT bit in the zone phy information (see 4.9.3.1).

The DEFAULT ZONING ENABLED bit contains the default value of the ZONING ENABLED bit (see 4.9.3.1).

The DEFAULT ZONE GROUP field contains the default value of the ZONE GROUP field in the zone phy information (see 4.9.3.1)

- The SAVED INSIDE ZPSDS PERSISTENT bit contains the saved value of the INSIDE ZPSDS PERSISTENT bit in the zone phy information (see 4.9.3.1).
- The SAVED REQUESTED INSIDE ZPSDS bit contains the saved value of the REQUESTED INSIDE ZPSDS bit in the zone phy information (see 4.9.3.1).
- The SAVED ZONE GROUP PERSISTENT bit contains the saved value of the ZONE GROUP PERSISTENT bit in the zone phy information (see 4.9.3.1).

The SAVED ZONING ENABLED bit contains the saved value of the ZONING ENABLED bit (see 4.9.3.1).

The SAVED ZONE GROUP field contains the saved value of the ZONE GROUP field in the zone phy information (see 4.9.3.1)

- The SHADOW INSIDE ZPSDS PERSISTENT bit contains the shadow value of the INSIDE ZPSDS PERSISTENT bit in the zone phy information (see 4.9.3.1).
- The SHADOW REQUESTED INSIDE ZPSDS bit contains the shadow value of the REQUESTED INSIDE ZPSDS bit in the zone phy information (see 4.9.3.1).
- The SHADOW ZONE GROUP PERSISTENT bit contains the shadow value of the ZONE GROUP PERSISTENT bit in the zone phy information (see 4.9.3.1).

The SHADOW ZONING ENABLED bit contains the shadow value of the ZONING ENABLED bit (see 4.9.3.1).

The SHADOW ZONE GROUP field contains the shadow value of the ZONE GROUP field in the zone phy information (see 4.9.3.1).

The CRC field is defined in 10.4.3.3.8.

10.4.3.11 REPORT PHY ERROR LOG function

The REPORT PHY ERROR LOG function returns error logging information about the specified phy. This SMP function may be implemented by any management device server.

Table 280 defines the request format.

Table 280 — REPORT PHY ERROR LOG request

Byte\Bit	7	6	5	4	3	2	1	0				
0		SMP FRAME TYPE (40h)										
1				FUNCTIO	N (11h)							
2		ALLOCATED RESPONSE LENGTH										
3		REQUEST LENGTH (00h or 02h)										
4		Reserved										
8		Keserved										
9				PHY IDE	NTIFIER							
10				Rese	rved							
11		="		Nese	iveu							
12	(MSB)											
15		CRC (LSB)										

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 280.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 280.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

If the ALLOCATED RESPONSE LENGTH field is set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field to 00h in the response frame; and
- b) return the first 28 bytes defined in table 281 plus the CRC field as the response frame.

If the ALLOCATED RESPONSE LENGTH field is not set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field in the response frame to the non-zero value defined in table 281; and
- b) return the response frame as specified by the ALLOCATED RESPONSE LENGTH field.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the one of the values defined in table 280 based on the LONG RESPONSE bit in the REPORT GENERAL response (see 10.4.3.4). A REQUEST LENGTH field set to 00h specifies that there are 2 dwords before the CRC field.

The PHY IDENTIFIER field specifies the phy (see 4.2.8) for which information shall be reported.

The CRC field is defined in 10.4.3.2.8.

Table 281 defines the response format.

Table 281 — REPORT PHY ERROR LOG response

Byte\Bit	7	6	5	4	3	2	1	0				
0				SMP FRAME	TYPE (41h)						
1				FUNCTIO	N (11h)							
2				FUNCTION	N RESULT							
3			RESP	ONSE LENG	тн (00h or	06h)						
4	(MSB)	SB) EXPANDER CHANGE COUNT										
5		-	EXTANDER OFFINGE SOON									
6			Reserved									
8												
9		PHY IDENTIFIER										
10		Reserved										
11			Kezetved									
12	(MSB)			NVALID DWC	DED COLINE							
15					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(LSB)				
16	(MSB)	_	RUNNIN	IG DISPARIT	Y ERROR C	OLINT						
19		-	KONN	O DIOI AITT	LINION	00111		(LSB)				
20	(MSB)		LOSS OF DV	VORD SYNC	HRONIZATI	ON COUNT						
23			L000 01 D1	VORD OTHO	III ONIZA II	514 000141		(LSB)				
24	(MSB)		PHY RESET PROBLEM COUNT									
27		-	· · · · · · · · · · · · · · · · · · ·									
28	(MSB)		CRC									
31		=-		CR				(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 281

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 281.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to one of the values defined in table 281 based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see \$\int 0.4.3.4).

The PHY IDENTIFIER field indicates the phy (see 4.2.8) for which information is being reported.

The INVALID DWORD COUNT field indicates the number of invalid dwords (see 3.1.114) that have been received outside of phy reset sequences (i.e., between when the SP state machine (see 6.8) sends a Phy Layer Ready

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 606

```
Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

after
reported.

add
and is the same as the phy identifier field in the request frame.
```

I

28 January 2008 T10/1760-D Revision 14

(SAS) confirmation or Phy Layer Ready (SATA) confirmation and when it sends a Phy Layer Not Ready confirmation to the link layer). The count shall stop at the maximum value. The INVALID DWORD COUNT field is set to a vendor-specific value after power on.

The RUNNING DISPARITY ERROR COUNT field indicates the number of dwords containing running disparity errors (see 6.2) that have been received outside of phy reset sequences. The count shall stop at the maximum value. The RUNNING DISPARITY ERROR COUNT field is set to a vendor-specific value after power on.

The LOSS OF DWORD SYNCHRONIZATION COUNT field indicates the number of times the phy has restarted the link reset sequence because it lost dword synchronization (see 6.9) (i.e., the SP state machine transitioned from SP15:SAS_PHY_Ready or SP22:SATA_PHY_Ready to SP0:OOB_COMINIT (see 6.8)). The count shall stop at the maximum value. The LOSS OF DWORD SYNCHRONIZATION COUNT field is set to a vendor-specific value after power on.

The PHY RESET PROBLEM COUNT field indicates the number of times a phy reset problem (see 6.7.4.2.4) occurred. The count shall stop at the maximum value. The PHY RESET PROBLEM COUNT field is set to a vendor-specific value after power on.

The CRC field is defined in 10.4.3.3.8.

10.4.3.12 REPORT PHY SATA function

The REPORT PHY SATA function returns information about the SATA state for a specified phy. This SMP function shall be implemented by management device servers behind SMP target ports that share SAS addresses with STP target ports and by management device servers in expander devices with STP/SATA bridges. This SMP function shall not be implemented by any other type of management device server.

Table 282 defines the request format.

Table 282 — REPORT PHY SATA request

Byte\Bit	7	6	5	4	3	2	1	0			
0				SMP FRAME	TYPE (40h)						
1		FUNCTION (12h)									
2		ALLOCATED RESPONSE LENGTH									
3			RE	QUEST LENG	н (00h or ()2h)					
4		Reserved									
8		Keserved									
9				PHY IDE	NTIFIER						
10				AFFILIATIO	CONTEXT						
11		Reserved									
12	(MSB)	(MSB) CRC									
15		•		CR	C			(LSB)			

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 282.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 282.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

Working Draft Serial Attached SCSI - 2 (SAS-2)

607

Page: 607

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

(see 6.2) that

point to new RD section

If the ALLOCATED RESPONSE LENGTH field is set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field to 00h in the response frame; and
- b) return the first 56 bytes defined in table 283 plus the CRC field as the response frame.

If the ALLOCATED RESPONSE LENGTH field is not set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field in the response frame to the non-zero value defined in table 283; and
- b) return the response frame as specified by the ALLOCATED RESPONSE LENGTH field.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to one of the values defined in table 282 based on the LONG RESPONSE bit in the REPORT GENERAL response (see 10.4.3.4). A REQUEST LENGTH field set to 00h specifies that there are 2 dwords before the CRC field.

The PHY IDENTIFIER field specifies the phy (see 4.2.8) for which information shall be reported.

The AFFILIATION CONTEXT field specifies the relative identifier of the affiliation context for which information shall be reported (see 7.17.4).

The CRC field is defined in 10.4.3.2.8.

608

Table 283 defines the response format.

Table 283 — REPORT PHY SATA response (part 1 of 2)

Byte\Bit	7	6	5	4	3	2	1	0					
0				SMP FR	AME TYPE	(41h)							
1				FUN	CTION (12	h)							
2		FUNCTION RESULT											
3		RESPONSE LENGTH (00h or 10h)											
4	(MSB)												
5		EXPANDER CHANGE COUNT											
6		Proceed											
8		Reserved ————											
9		PHY IDENTIFIER											
10				F	Reserved								
11		Re	eserved			STP I_T NEXUS LOSS OCCURRED	AFFILIATIONS SUPPORTED	AFFILIATION VALID					
12				Po	served								
15		-		ING.	serveu								
16				CTD CA	e ADDDEES	2							
23		STP SAS ADDRESS											
24			DE	GISTER DE	VICE TO H	DET EIS							
43		-	KE	.GIOTER DE	VICE TO H	JOI FIO							

Working Draft Serial Attached SCSI - 2 (SAS-2)

28 January 2008 T10/1760-D Revision 14

Table 283 — REPORT PHY SATA response (part 2 of 2)

Byte\Bit	7	6	5	4	3	2	1	0					
44				Ro	served								
47		=	10001700										
48			AFFILIATED STP INITIATOR SAS ADDRESS										
55		-	AFFILIATED STP INITIATOR SAS ADDRESS										
56			STP I_T NEXUS LOSS SAS ADDRESS										
63		-	317	I_I NEXOS	LOGG GAG	ADDICESS							
64				F	Reserved								
65				AFFILIA	TION CON	TEXT							
66			С	URRENT AF	FILIATION	CONTEXTS		/					
67			N	IAXIMUM AF	FILIATION	CONTEXTS							
68	(MSB)		CRC —										
71		=			ONO			(L/SB)					

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 283/

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 283.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to one of the values defined in table 283 based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

The PHY IDENTIFIER field indicates the phy (see 4.2.8) for which information is being reported and is the same as the PHY IDENTIFIER field in the request frame.

An STP I_T NEXUS LOSS OCCURRED bit set to one indicates that the STP target port encountered an I_T nexus loss in the specified affiliation context for the STP initiator port whose SAS address is indicated in the STP I_T NEXUS LOSS SAS ADDRESS field. An STP I_T NEXUS LOSS OCCURRED bit set to zero indicates that:

- a) an I_T nexus loss has not occurred in the specified affiliation context;
- b) an I_T nexus loss has occurred in the specified affiliation context and byen cleared by the SMP PHY CONTROL function CLEAR STP I_T NEXUS LOSS phy operation (see table 333 in 10.4.3.28); or
- c) the STP target port has successfully established a connection with the indicated STP initiator port in the specified affiliation context.

An AFFILIATIONS SUPPORTED bit set to one indicates that the specified affiliation context is supported by the STP target port containing the specified phy. An AFFILIATIONS SUPPORTED to the specified affiliation context is not supported by the STP target port containing the specified phy.

An AFFILIATION VALID bit set to one indicates that the STP target port is corrently maintaining an affiliation in the specified affiliation context and the AFFILIATED STP INITIATOR SAS ADDRESS field is valid. An AFFILIATION VALID bit set to zero indicates that the STP target port is not currently maintaining an affiliation in the specified affiliation context and the AFFILIATED STP INITIATOR SAS ADDRESS field is not valid.

The STP SAS ADDRESS field indicates the SAS address (see 4.2.2) of the STP target port that contains the specified phy.

Working Draft Serial Attached SCSI - 2 (SAS-2)

609

Page: 609

point to new 4.2.4

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
SAS address (see 4.2.2)
```

The REGISTER DEVICE TO HOST FIS field indicates the contents of the initial Register - Device to Host FIS. For an STP/SATA bridge, this is delivered by the attached SATA device after a link reset sequence (see SATA-2). For a native STP target port in an end device, this is directly provided.

The FIS contents shall be stored with little-endian byte ordering (i.e., the first byte, byte 24, contains the FIS Type).

For an STP/SATA bridge, the first byte of the field (i.e., the FIS Type) shall be initialized to zero so power on and whenever the phy has restarted the link reset sequence after losing dword synchronization (see 6.9) (i.e., the SP state machine transitioned from SP22:SATA_PHY_Ready to SP0:OOB_COMINIT (see 6.8)) to indicate the field is invalid and the attached SATA device has not delivered a Register – Device to Host FIS. The first byte of the field shall be set to 34h when the attached SATA device has delivered the initial Register – Device to Host FIS. The remaining contents of the REGISTER DEVICE TO HOST FIS field shall remain constant until a link reset sequence causes the attached SATA device to deliver another initial Register – Device to Host FIS.

If the AFFILIATION VALID bit is set to one, the AFFILIATED STP INITIATOR SAS ADDRESS field indicates the SAS address (see 4.2.2) of the STP initiator port that has an affiliation in the specified affiliation context with the STP target port that contains the specified phy. If the AFFILIATION VALID bit is set to zero, the AFFILIATED STP INITIATOR SAS ADDRESS field may contain the SAS address of the STP initiator port that previously had an affiliation in the specified affiliation context with the STP target port that sontains the specified and affiliation.

The STP I_T NEXUS LOSS SAS ADDRESS field indicates the SAS address (see 4.2.2) withe last STP initiator port for which the STP target port experienced an I_T nexus loss (see 4.5) in the specified affiliation context.

The AFFILIATION CONTEXT field indicates the relative identifier of the affiliation context for which affiliation-related information (i.e., the AFFILIATIONS SUPPORTED bit, the AFFILIATION VALID wit, the AFFILIATION SITE INTILATOR SAS ADDRESS field, the STP I_T NEXUS LOSS OCCURRED bit, and the STP I_T NEXUS LOSS SAS ADDRESS field) is being reported (see 7.17.4) and is the same as the AFFILIATION CONTEXT field in the request frame).

The CURRENT AFFILIATION CONTEXTS field indicates the current number of affiliations established by the STP target port.

The MAXIMUM AFFILIATION CONTEXTS field indicates the maximum number of affiliation contexts supported by the STP target port.

The CRC field is defined in 10.4.3.3.8.

10.4.3.13 REPORT ROUTE INFORMATION function

The REPORT ROUTE INFORMATION function returns an expander route entry from a phy-based expander route table within an expander device (see 4.6.7.3). This SMP function shall be supported by management device servers in expander devices if the EXPANDER ROUTE INDEXES field is set to a non-zero value in the SMP REPORT GENERAL response (see 10.4.3.4). This SMP function may be used as a diagnostic tool to resolve topology issues.

Page: 610

```
Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
 ACCEPT - DONE
   (i.e., the first byte, byte 24, contains the FIS Type)
   (e.g., the first byte of the field (i.e., byte 24) contains the FIS Type)
Author: RElliott
Subject: Highlight
Date: 9/1/2008 4:07:05 PM -07'00'
TACCEPT - DONE
   initialized to zero
    set to 00h
Author: RElliott
Subject: Highlight
Date: 8/31/2008 2:38:58 PM -07'00'
    ACCEPT - DONE
   the field is invalid and the attached SATA device has not delivered a Register - Device to Host FIS
   that the register device to host fis field does not contain the Register - Device to Host FIS contents of the currently attached SATA
   to avoid misusing the "invalid" keyword
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    s/b
   then the
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
   SAS address (see 4.2.2)
    point to new 4.2.4
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
    s/h
   then the
Author: RElliott
```

Comments from page 610 continued on next page

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

The REGISTER DEVICE TO HOST FIS field indicates the contents of the initial Register - Device to Host FIS. For an STP/SATA bridge, this is delivered by the attached SATA device after a link reset sequence (see SATA-2). For a native STP target port in an end device, this is directly provided.

The FIS contents shall be stored with little-endian byte ordering (i.e., the first byte, byte 24, contains the FIS Type).

For an STP/SATA bridge, the first byte of the field (i.e., the FIS Type) shall be initialized to zero on power on and whenever the phy has restarted the link reset sequence after losing dword synchronization (see 6.9)(i.e., the SP state machine transitioned from SP22:SATA_PHY_Ready to SP0:OOB_COMINIT (see 6.8)) to indicate the field is invalid and the attached SATA device has not delivered a Register — Device to Host FIS. The first byte of the field shall be set to 34h when the attached SATA device has delivered the initial Register — Device to Host FIS. The remaining contents of the REGISTER DEVICE TO HOST FIS field shall remain constant until a link reset sequence causes the attached SATA device to deliver another initial Register — Device to Host FIS.

If the AFFILIATION VALID bit is set to one, the AFFILIATED STP INITIATOR SAS ADDRESS field indicates the SAS address (see 4.2.2) of the STP initiator port that has an affiliation in the specified affiliation context with the STP target port that contains the specified phy. If the AFFILIATION VALID bit is set to zero, the AFFILIATED STP INITIATOR SAS ADDRESS field may contain the SAS address of the STP initiator port that previously had an affiliation in the specified affiliation context with the STP target port that contains the specified phy.

The STP I_T NEXUS LOSS SAS ADDRESS field indicates the SAS address (see 4.2.2) of the last STP initiator port for which the STP target port experienced an I_T nexus loss (see 4.5) in the specified affiliation context.

The AFFILIATION CONTEXT field indicates the relative identifier of the affiliation context for which affiliation-related information (i.e., the AFFILIATIONS SUPPORTED bit, the AFFILIATION VALID bit, the AFFILIATED STP INITIATOR SAS ADDRESS field, the STP L_T NEXUS LOSS OCCURRED bit, and the STP L_T NEXUS LOSS SAS ADDRESS field) is being reported (see 7.17.4) and is the same as the AFFILIATION CONTEXT field in the request frame.

The CURRENT AFFILIATION CONTEXTS field indicates the current number of affiliations established by the STP target port.

The MAXIMUM AFFILIATION CONTEXTS field indicates the maximum number of affiliation contexts supported by the STP target port.

The CRC field is defined in 10.4.3.3.8.

610

10.4.3.13 REPORT ROUTE INFORMATION function

The REPORT ROUTE INFORMATION function returns an expander route entry from a phy-based expander route table within an expander device (see 4.6.7.3). This SMP function shall be supported by management device servers in expander devices if the EXPANDER ROUTE INDEXES field is set to a non-zero value in the SMP REPORT GENERAL response (see 10.4.3.4). This SMP function may be used as a diagnostic tool to resolve topology issues.

Working Draft Serial Attached SCSI - 2 (SAS-2)

point to new 4.2.4

28 January 2008 T10/1760-D Revision 14

Table 284 defines the request format.

Table 284 — REPORT ROUTE INFORMATION request

Byte\Bit	7	6	5	4	3	2	1	0				
0				SMP FRAME	TYPE (40h)							
1		FUNCTION (13h)										
2		ALLOCATED RESPONSE LENGTH										
3		REQUEST LENGTH (00h or 02h)										
4				Dana								
5		-	Reserved -									
6	(MSB)											
7		- EXPANDER ROUTE INDEX -										
8				Rese	rved							
9				PHY IDE	NTIFIER							
10				Rese								
11		-										
12	(MSB)											
15		=	CRC (LS									

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 284.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 284.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

If the ALLOCATED RESPONSE LENGTH field is set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field to 00h in the response frame; and
- b) return the first 40 bytes defined in table 285 plus the CRC field as the response frame.

If the ALLOCATED RESPONSE LENGTH field is not set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field in the response frame to the non-zero value defined in table 285; and
- b) return the response frame as specified by the ALLOCATED RESPONSE LENGTH field.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to one of the values defined in table 284 based on the LONG RESPONSE bit in the REPORT GENERAL response (see 10.4.3.4). A REQUEST LENGTH field set to 00h specifies that there are 2 dwords before the CRC field.

The EXPANDER ROUTE INDEX field specifies the expander route index for the expander route entry being requested (see 4.6.7.3).

The PHY IDENTIFIER field specifies the phy for which the expander route entry is being requested.

The CRC field is defined in 10.4.3.2.8.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Table 285 defines the response format.

Table 285 — REPORT ROUTE INFORMATION response

Byte\Bit	7	6	5	4	3	2	1	0				
0				SMP FRAME	TYPE (41h)							
1				FUNCTIO	N (13h)							
2				FUNCTION	RESULT							
3			RESF	ONSE LENG	гн (00h or 0)9h)						
4	(MSB)			(DANIDED OLI	ANOE COUNT	-						
5		=	EXPANDER CHANGE COUNT (L									
6	(MSB)		EXPANDER ROUTE INDEX —									
7		-	EXPANDER ROUTE INDEX									
8												
9		PHY IDENTIFIER										
10		Reserved										
11		-		Rese	veu							
12	EXPANDER ROUTE ENTRY DISABLED				Reserved							
13				Rese	nyod							
15		='		1/636	veu							
16				ROUTED SAS	ADDRESS							
23		-		ROOTED SA	ADDICESS							
24			Reserved -									
39		=	Kezerven									
40	(MSB)		CRC _									
43		='		CR				(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 285.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 285.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to one of the values defined in table 285 based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

28 January 2008

T10/1760-D Revision 14

The EXPANDER ROUTE INDEX field indicates the expander route index for the expander route entry being returned (see 4.6.7.3).

The PHY IDENTIFIER field indicates the phy identifier for the expander route entry being returned.

The EXPANDER ROUTE ENTRY DISABLED bit indicates whether the ECM shall use the expander route entry to route connection requests (see 4.6.7.3). If the EXPANDER ROUTE ENTRY-DISABLED bit is set to zero, then the ECM shall use the expander route entry to route connection requests. If the EXPANDER ROUTE ENTRY DISABLED bit is set to one, the ECM shall not use the expander route entry to route connection requests.

The ROUTED SAS ADDRESS field indicates the SAS address in the expander route entry (see 4.6.7.3):

The CRC field is defined in 10.4.3.3.8.

10.4.3.14 REPORT PHY EVENT function

10.4.3.14.1 REPORT PHY EVENT function overview

The REPORT PHY EVENT function returns phy events (see 4.11) concerning the specified phy. This SMP function may be implemented by any management device server.

NOTE 120 - The REPORT PHY EVENT LIST function (see 10.4.3.16) returns information above one or more phys.

10.4.3.14.2 REPORT PHY EVENT request

Table 286 defines the request format.

Table 286 — REPORT PHY EVENT request

Byte\Bit	7	6	5	4	3	2	1	0				
0				SMP FRAME	TYPE (40h)							
1				FUNCTIO	on (14h)							
2		ALLOCATED RESPONSE LENGTH										
3		REQUEST LENGTH (02h)										
4		Reserved										
5		Descried										
8		Reserved ————										
9				PHY IDE	NTIFIER							
10				Rese	nuad							
11		-		Rese	rveu							
12	(MSB)											
15		CRC (LSB)										

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 286.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 286.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 286.

Working Draft Serial Attached SCSI - 2 (SAS-2)

613

Page: 613

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

after
returned.

add
and is the same as the phy identifier field in the request frame.

Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

TREJECT (According to m-w.com, "whether" is for an "indirect question involving stated or implied alternatives" while "whether or not" means "in any case". Here, the two alternatives (bit set to 0 and bit set to 1) are both stated in the rest of the paragraph, so it seems more appropriate to forgo the "or not" phrase.

http://www.pearsonlongman.com/ae/azar/grammar_ex/message_board/archive/articles/00095.htm also describes the NY Times style guidelines.)

whether s/b whether or not

Author: Relliott
Subject: Highlight
Date: 8/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
s/b
then the

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

SAS address

add "(see 4.2.4)" to support the new section

The PHY IDENTIFIER field specifies the phy (see 4.2.7) for which information shall be reported.

The CRC field is defined in 10.4.3.2.8.

10.4.3.14.3 REPORT PHY EVENT response

Table 287 defines the response format.

Table 287 — REPORT PHY EVENT response

Ī	Byte\Bit	7	6	5	4	3	2	1	0		
	0				SMP FRAM	TYPE (41h	1)				
	1				FUNCTI	ON (14h)					
	2				FUNCTIO	N RESULT					
	3			RE	SPONSE LEN	IGTH ((n - 7)/4)				
	4	(MSB)		EV	PANDER CH	AIGE COUR	ıT				
	5			LA	FAINDLIK	ANGL COUR	••		(LSB)		
	6		Reserved								
	8		Reserved								
	9		PHY IDENTIFIER								
	10				Rese	rved					
5	14				11000	ivou					
	15			NUMBE	R OF PHY E	VENT DESC	RIPTORS				
				Phy e	vent descr	ptor list					
	16		Phy ev	ent descrir	otor (first)(s	ee table 28	38 in 10.4.3	.14.4)			
	27		,		()(-			,			
	n - 15		Phy event descriptor (last)(see table 288 in 10.4.3.14.4)								
	n - 4										
	n - 3	(MSB)			CR	·C					
	n				OI*				(LSB)		

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 287.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 287.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 287. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

Page: 614

Author: elx-bmartin Subject: Comment on Text Date: 5/6/2008 1:07:50 PM -07'00'

This reference should be 4.2.8

Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Per 6/11 LB call, change byte 14 to a Phy Event Descriptor Length field

The PHY IDENTIFIER field indicates the phy (see 4.2.7) for which information is being reported.

The NUMBER OF PHY EVENT DESCRIPTORS field indicates how many phy event descriptors follow.

The phy event descriptor list contains phy event descriptors as defined in 10.4.3.14.4.

10.4.3.14.4 REPORT PHY EVENT response phy event descriptor

The CRC field is defined in 10.4.3.3.8.

Table 288 defines the phy event descriptor.

Table 288 — Phy event descriptor

Byte\Bit	7	6	5	4	3	2	1	0			
0			Reserved								
2			Neserveu								
3			PHY EVENT SOURCE								
4	(MSB)		DIVERSIT								
7			PHY EVENT								
8	(MSB)		DEAK VALUE DETECTOR THRESHOLD								
11			PEAK VALUE DETECTOR THRESHOLD (LS								

The PHY EVENT SOURCE field, defined in table 37 in 4.11, indicates the type of phy event being reported in the PHY EVENT field.

The PHY EVENT field indicates the value (i.e., the count or peak value detected) of the phy event indicated by the PHY EVENT SOURCE field.

If the phy event source is a peak value detector, the REAK VALUE DETECTOR THRESHOLD field indicates the value of the peak value detector that causes the expander device to originate a Broadcast (Expander)(see 7.2.6.4). If the phy event source is not a peak value detector, then the REAK VALUE DETECTOR THRESHOLD field is reserved.

10.4.3.15 DISCOVER LIST function

10.4.3.15.1 DISCOVER LIST function overview

The DISCOVER LIST function returns information about the device (i.e., some fields from the REPORT GENERAL response (see 10.4.3.4)) and one or more phys (i.e., some fields from the DISCOVER response (see 10.4.3.10)). This SMP function shall be implemented by all management device servers. This function is intended to provide the necessary information in a single SMP response for a self-configuring expander device to perform the discover process and configure its own expander routing table.

Page: 615

Author: elx-bmartin Subject: Comment on Text Date: 5/6/2008 1:07:50 PM -07'00'

This reference should be 4.2.8

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

reported.

- --

and is the same as the phy identifier field in the request frame.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

how many phy event descriptors follow.

s/h

the number of phy event descriptors in the phy event descriptor list

Author: hpq-relliott Subject: Note Date: 6/20/2008 9:18:11 AM -07'00'

Added: "The phy event descriptor list shall contain no more than one phy event descriptor with the same value in the phy event

6/11 no sorting required, but only allow one entry in the list.)

Require the phy event descriptors be in ascending order sorted by the phy event source.

Require that only one entry be present per phy event source.

(or, treat this as a log, where events are added as they occur)

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

REPORT PHY EVENT response phy event descriptor

Phy event descriptor

(matching comment on 10.4.3.9.4 by Data Domain)

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the

Comments from page 615 continued on next page

28 January 2008 T10/1760-D Revision 14

The PHY IDENTIFIER field indicates the phy (see 4.2.7) for which information is being reported.

The NUMBER OF PHY EVENT DESCRIPTORS field indicates how many phy event descriptors follow.

615

The phy event descriptor list contains phy event descriptors as defined in 10.4.3.14.4. The CRC field is defined in 10.4.3.3.8.

10.4.3.14.4 REPORT PHY EVENT response phy event descriptor

Table 288 defines the phy event descriptor.

Table 288 — Phy event descriptor

Byte\Bit	7	6	5	4	3	2	1	0				
0			Reserved									
2			Nederved									
3			PHY EVENT SOURCE									
4	(MSB)		PHY EVENT									
7		•		PHI	VEINI			(LSB)				
8	(MSB)		PEAK VALUE DETECTOR THRESHOLD (LSB)									
11		•										

The PHY EVENT SOURCE field, defined in table 37 in 4.11, indicates the type of phy event being reported in the PHY EVENT field.

The PHY EVENT field indicates the value (i.e., the count or peak value detected) of the phy event indicated by the PHY EVENT SOURCE field.

If the phy event source is a peak value detector, the PEAK VALUE DETECTOR THRESHOLD field indicates the value of the peak value detector that causes the expander device to originate a Broadcast (Expander)(see 7.2.6.4). If the phy event source is not a peak value detector, then the PEAK VALUE DETECTOR THRESHOLD field is reserved.

10.4.3.15 DISCOVER LIST function

10.4.3.15.1 DISCOVER LIST function overview

The DISCOVER LIST function returns information about the device (i.e., some fields from the REPORT GENERAL response (see 10.4.3.4)) and one or more phys (i.e., some fields from the DISCOVER response (see 10.4.3.10)). This SMP function shall be implemented by all management device servers. This function is intended to provide the necessary information in a single SMP response for a self-configuring expander device to perform the discover process and configure its own expander routing table.

Working Draft Serial Attached SCSI - 2 (SAS-2)

then the

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

This << This function is intended to provide the necessary information in a single SMP response >> should be << This function provides the necessary information in a single SMP response >>

10.4.3.15.2 DISCOVER LIST request

Table 289 defines the request format.

Table 289 — DISCOVER LIST request

Byte\Bit	7	6	5	4	3	2	1	0				
0				SMP FRAME	TYPE (40h)							
1				FUNCTIO	on (20h)							
2			ALL	OCATED RES	SPONSE LEN	GTH						
3				REQUEST LE	NGTH (06h)							
4		Reserved										
7		Reserved										
8		STARTING PHY IDENTIFIER										
9		MAXIMUM NUMBER OF DISCOVER LIST DESCRIPTORS										
10	IGNORE ZONE GROUP		Reserved			PHY	FILTER					
11		Reser	ved			DESCRI	PTOR TYPE					
12				Rese	nrod							
15				Rese	ivea							
16				Vandar	anacifia							
27		Vendor-specific ————										
28	(MSB)	MSB) CRC										
31		•		CH	·			(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 289.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 289.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 289.

The STARTING PHY IDENTIFIER field specifies the phy identifier of the first phy for which the information is being requested.

Working Draft Serial Attached SCSI - 2 (SAS-2)

The MAXIMUM NUMBER OF DISCOVER LIST DESCRIPTORS field specifies the maximum number of complete DISCOVER LIST descriptors that the management device server shall return.

The IGNORE ZONE GROUP bit is defined in the SMP DISCOVER request (see 10.4.3.10).

28 January 2008

T10/1760-D Revision 14

The PHY FILTER field is defined in table 290 and specifies a filter limiting which phys that the management device server shall return in the DISCOVER LIST descriptor list in the DISCOVER response.

Table 290 - PHY FILTER field

Code	Description
0h	All phys.
1h	Phys with the ATTACHED DEVICE TYPE field (see 10.4.3.10) set to 010b or 0 (i.e., attached to expander devices).
2h	Phys with the ATTACHED DEVICE TYPE field (see 10.4.3.10) set to a value other than zero (i.e., attached to end devices or expander devices).
All others	Reserved

The DESCRIPTOR TYPE field is defined in table 291 and specifies the DISCOVER LIST descriptor format and length.

Table 291 — DESCRIPTOR TYPE field

Code	DISCOVER LIST descriptor format	Descriptor length
0h	DISCOVER response defined in table 269 (see 10.4.3.10), not including the CRC field.	The length of time DISCOVER response, not including the CRC field
10	SHORT FORMAT descriptor defined in table 293 (see 10.4.3.15.4)	24 bytes
All others	Reserved	

The CRC field is defined in 10.4.3.2.8.

10.4.3.15.3 DISCOVER LIST response

Table 292 defines the response format.

Table 292 — DISCOVER LIST response (part 1 of 2)

Byte\Bit	7	6	5	4	3	2	1	0			
0				SMP F	RAME TYPE	(41h)	•				
1				Fl	JNCTION (20	Oh)					
2		FUNCTION RESULT									
3		RESPONSE LENGTH ((n - 7) / 4)									
4	(MSB)		EXPANDER CHANGE COUNT (LSB)								
5		-									
6					Reserved						
7		-			(CSCI VCC						
8				STARTI	NG PHY IDE	NTIFIER					
9			NUN	MBER OF DI	SCOVER LIS	T DESCRIPTO	ORS				
10		Reserv	ed				PHY FILTER				
11		Reserv	ed			DES	SCRIPTOR TYP	E			

Page: 617 Author: Isi-bbesmer

Subject: Note Date: 8/28/2008 11:42:17 AM -07'00'

ACCEPT - DONE (for 1h and 2h: only return phys that do not return a function result of PHY VACANT)

Need to clarify if this includes VACANT phys or not.

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' zero

s/b 000b

Author: Isi-bbesmer

Subject: Highlight Date: 5/26/2008 9:33:29 AM -07'00'

ACCEPT - DONE (changed to "(i.e., phys attached..." to clarify that the i.e. is providing other words for the whole description, not just the latter part. Same change in 1h)

This example here is opposite of what this filters.

Author: elx-hmartin

Subject: Highlight Date: 5/30/2008 1:32:16 PM -07'00'

ACCEPT - DONE (yes. Added "starting with byte 0 and" before "not including" to clarify.)

DISCOVER response defined in table 269 (see 10.4.3.10), not including the CRC field.

Does this include the SMP Frame Type, Function, and Function Result?

Author: Isi-gpenokie

Subject: Highlight Date: 5/30/2008 1:30:08 PM -07'00'

TACCEPT - DONE (though this will quickly become out of date as the DISCOVER response grows. The number is currently 8, not 9, with a 112 byte DISCOVER response.

1028-48-4=976, 976/112=8.7.

Added two table footnotes:

"a A maximum response frame size of 1 028 bytes supports 8 112-byte DISCOVER LIST descriptors containing DISCOVER

b A maximum response frame size of 1 028 bytes supports 40 24-byte SHORT FORMAT descriptors.")

Should state here that this allows a maximum of 9 phys of information to be returned in with one function request.

Author: RElliott

Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE (added "starting with byte 0 and" before "not including" to clarify)

4. Section 10.4.3.15.2, for the DISCOVER LIST request, table 292 lists for 0h that descriptor length will be "The length of the DISCOVER

response, not including the CRC field." as described in section

10.4.3.10, table 270. Do these descriptor also include the response

header fields of SMP FRAME TYPE, FUNCTION, FUNCTION RESULT, RESPONSE LENGTH and EXPANDER CHANGE COUNT?

(from Tim McLeod, Data Domain; T10 reflector 5/9/2008)

28 January 2008

T10/1760-D Revision 14

617

The PHY FILTER field is defined in table 290 and specifies a filter limiting which phys that the management device server shall return in the DISCOVER LIST descriptor list in the DISCOVER response.

Table 290 — PHY FILTER field

Code	Description
0h	All phys.
1h	Phys with the ATTACHED DEVICE TYPE field (see 10.4.3.10) set to 010b or 0 (i.e., attached to expander devices).
2h	Phys with the ATTACHED DEVICE TYPE field (see 10.4.3.10) set to a value other than zero (i.e., attached to end devices or expander devices).
All others	Reserved

The DESCRIPTOR TYPE field is defined in table 291 and specifies the DISCOVER LIST descriptor format and length.

Table 291 — DESCRIPTOR TYPE field

Code	DISCOVER LIST descriptor format	Descriptor lezigth
0h	DISCOVER response defined in table 269 (see 10.4.3.10), not including the CRC field.	The length of the DISCOVER response, not including the CRC field
1h	SHORT FORMAT descriptor defined in table 293 (see 10.4.3.15.4)	24 bytes
All others	Reserved	

The CRC field is defined in 10.4.3.2.8.

10.4.3.15.3 DISCOVER LIST response

Table 292 defines the response format.

Table 292 — DISCOVER LIST response (part 1 of 2)

Byte\Bit	7	6	5	4	3	2	1	0					
0		SMP FRAME TYPE (41h)											
1	/	/		FL	INCTION (20	Oh)							
2		FUNCTION RESULT											
3		RESPONSE LENGTH ((n - 7) / 4)											
4	(MSB)	-	EXPANDER CHANGE COUNT										
5/								(LSB)					
6		_			Reserved								
7													
8				STARTI	NG PHY IDE	NTIFIER							
9			NUM	MBER OF DI	SCOVER LIS	T DESCRIPTO	DRS						
10		Reserve	d				PHY FILTER						
11		Reserve	d			DES	CRIPTOR TYPE						

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: Isi-gpenokie
 Subject: Highlight
 Date: 5/30/2008 1:26:29 PM -07'00'
 TACCEPT - DONE (though this can easily become out of date)

Should state here that this allows a maximum of 40 phys of information to be returned in with one function request.

Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
REJECT

The 6/11 LB call discussed whether to move the NUMBER OF DISCOVER LIST DESCRIPTORS field to byte 47 (immediately in front of the descriptor list), and decided not to do so.

T10/1760-D Revision 14

28 January 2008

Table 292 — DISCOVER LIST response (part 2 of 2)

Byte\Bit	7	6	5	4	3	2	1	0			
12				DES	CRIPTOR LE	NGTH -					
13					Reserved						
15		-			reserved						
16	ZONING SUPPORTED	ZONING ENABLED	Reserved — CONFIGURING								
17					Reserved			/			
18	(MSB)	/ISB) LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX									
19		- Div	LAST SEET TOTAL ISOTATION STATUS DESCRIPTOR INDEX								
20	(MSB)		LAST PHY EVENT LIST DESCRIPTOR INDEX								
21			2.101		. 2.01 2200			(LSB)			
22		=			Reserved						
31											
32		_		Ve	ndor specif	ic					
47											
			DISC	COVER LIS	ST descript	or list					
48							n 10.4.3.15.1,				
		and	table 26	9 IN 10.4.	3.10 or tabl	e 293 in 10.	4.3.15.4)				
						table 291 in e 293 in 10.	n 10.4.3.15.1,				
n - 4		and	lable 20	9 111 10.4.	3. 10 OF TABI	e 293 IN 10.	4.3.13.4)				
n - 3	(MSB)	<u>.</u>			CRC						
n								(LSB)			

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 292,

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 292.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 292. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

The STARTING PHY IDENTIFIER field indicates the phy identifier of the first phy in the DISCOVER LIST descriptor

NOTE 121 - The STAPPING PHY IDENTIFIER field may be <u>different than the</u> STARTING PHY IDENTIFIER field in the request frame (see 10.4.3.15.2) due to the filter specified by the PHY FILTER field in the request frame.

The NUMBER OF DISCOVER LIST DESCRIPTORS field indicates the number of DISCOVER LIST descriptors returned in the DISCOVER LIST descriptor list.

Page: 618

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

DESCRIPTOR LENGTH

DISCOVER LIST DESCRIPTOR LENGTH

to match convention used in these other response frames: REPORT SELF-CONFIGURATION STATUS response has a SELF-CONFIGURATION DESCRIPTOR LENGTH field

REPORT PHY EVENT LIST response has a PHY EVENT LIST DESCRIPTOR LENGTH field

Author: RElliott Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Add:

SELF CONFIGURING to bit 3 ZONE CONFIGURING to bit 2

to match Isi-bbesmer comment on first page

Author: RElliott

Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

different than the

fix font

Author: RElliott

Subject: Note

Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE (added "The phy filter field indicates the phy filter (see table 292 in 10.4.3.15.2) being used and is the same as the phy filter field in the request frame.")

Need a PHY FILTER paragraph

(from Brad Besmer, LSI)

The DESCRIPTOR LENGTH Field indicates the length of the DISCOVER LIST descriptor (see table 291 in 10.4.3.15.2).

The ZONING SUPPORTED bit is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

The ZONING ENABLED bit is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

The CONFIGURING bit is defined in the SMP DISCOVER response (see 10.4.3.10).

The EXTERNALLY CONFIGURABLE ROUTE TABLE bit is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

The LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field is defined in the REPORT SELF-CONFIGURATION STATUS response (see 10.4.3.6).

The LAST PHY EVENT LIST DESCRIPTOR INDEX field is defined in the REPORT PHY EVENT LIST response (see 10.4.3.16).

DISCOVER LIST descriptor list contains DISCOVER LIST descriptors for each ph

- starting with the phy whose phy identifier is specified in the STARTING PHY IDENTIFIER field in the request (see 19.4.3.15.2);
- b) satisfying the filter specified in the PHY FILTER field in the request (see table 290 in 10.4.3.15.2); and
- that is able to be included in the response frame without being truncated.

Each DISCOVER LIST descriptor shall use the format specified in the DESCRIPTOR TYPE field in the request (see table 291 in 10.4.3.15.2)

The management device server shall not include DISCOVER LIST descriptors for phys with phy identifiers greater than or equal to the NUMBER SE PHYS field reported in the SMP REPORT SENERAL response (see 10.4.3.4). The management device server shall not include partial DISCOVER LIST descriptors.

The CRC field is defined in 10.4.3.3.8.

10.4.3.15.4 DISCOVER LIST response SHORT FORMAT descriptor

Table 293 defines the SHORT FORMAT descriptor.

Table 293 — SHORT FORMAT descriptor

Byte\Bit	7	6	5	4	3	2	1	9	
0				PHY IDE	NTIFIER		•		
1				FUNCTION	N RESULT				
2	Restricted	А	TTACHED DEVIC	E TYPE		ATTACHED	REASON		
3	for D		Restricted ER response b	yte 13	NE	GOTIATERLOG	ICAL LINK RA	TE	
4	for D		Restricted ER response b	yte 14	ATTACHED SSP INITIATOR	ATTACHED STP INITIATOR	ATTACHED SMP INITIATOR	SATA HOST	
5	ATTACHED SATA PORT SELECTOR	Re	stricted for DIS response byt		ATTACHED SSP TARGET	ATTACHED STP TARGET	ATTACHED SMP TARGET	ATTACHED SATA DEVICE	
6	VIRTUAL PHY		Reserved	i	ROUTING ATTRIBUTE				
7			REASON			Reser	rved		
8				ZONE (GROUP				

Page: 619 Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

> length s/b

length, in dwords,

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

DESCRIPTOR LENGTH

Author: RElliott

DISCOVER LIST DESCRIPTOR LENGTH

to match convention in other response frames (see matching comment in table)

Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

The self configuring bit is defined in the REPORT GENERAL response (see 10.4.3.4). The zone configuring bit is defined in the REPORT GENERAL response (see 10.4.3.4).

to match Isi-bbesmer comment on first page

Author: Isi-gpenokie Subject: Sticky Note Date: 5/8/2008 5:42:51 PM -07'00'

REJECT (item c says the list ends with the last full, non-truncated descriptor. It is up to the management application client to send another DISCOVER LIST request with a higher STARTING PHY IDENTIFIER field to obtain additional descriptors.)

OK so what happens if the number of descriptors exceeds the maximum possible length of the response?

Author: hpq-relliott Subject: Note Date: 6/20/2008 9:19:43 AM -07'00'

ACCEPT - DONE (6/11 yes)

sorted in ascending order based on phy identifier;

Author: RElliott

Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

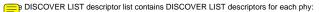
Add "(see n of n)" to table 293 SHORT FORMAT descriptor title

Author: RElliott Subject: Note

28 January 2008 T10/1760-D Revision 14

The DESCRIPTOR LENGTH field indicates the length of the DISCOVER LIST descriptor (see table 291 in 10.4.3.15.2).

The ZONING SUPPORTED bit is defined in the SMP REPORT GENERAL response (see 10.4.3.4).


The ZONING ENABLED bit is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

The CONFIGURING bit is defined in the SMP DISCOVER response (see 10.4.3.10).

The EXTERNALLY CONFIGURABLE ROUTE TABLE bit is defined in the SMP REPORT GENERAL response (see

The LAST SELF-CONFIGURATION STATUS DESCRIPTOR INDEX field is defined in the REPORT SELF-CONFIGURATION STATUS response (see 10.4.3.6).

The LAST PHY EVENT LIST DESCRIPTOR INDEX field is defined in the REPORT PHY EVENT LIST response (see 10.4.3.16).

- a) starting with the phy whose phy identifier is specified in the STARTING PHY IDENTIFIER field in the request (see 10.4.3.15.2);
- b) satisfying the filter specified in the PHY FILTER field in the request (see table 290 in 10.4.3.15.2); and
 c) that is able to be included in the response frame without being truncated.

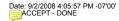
Each DISCOVER LIST descriptor shall use the format specified in the DESCRIPTOR TYPE field in the request (see table 291 in 10.4.3.15.2)

The management device server shall not include DISCOVER LIST descriptors for phys with phy identifiers greater than or equal to the NUMBER OF PHYS field reported in the SMP REPORT GENERAL response (see 10.4.3.4). The management device server shall not include partial DISCOVER LIST descriptors.

The CRC field is defined in 10.4.3.3.8.

10.4.3.15.4 DISCOVER LIST response SHORT FORMAT descriptor

Table 293 defines the SHORT FORMAT descriptor.



Byte\Bit	7	6	5	4	3	2	1	0			
0		PHY IDENTIFIER									
1				FUNCTION	N RESULT						
2	Restricted	A	TTACHED DEVIC	E TYPE		ATTACHED	REASON				
3	for D		testricted ER response b	yte 13	NEGOTIATED LOGICAL LINK RATE						
4	for D		Restricted ER response by	yte 14	ATTACHED SSP INITIATOR	ATTACHED STP INITIATOR	ATTACHED SMP INITIATOR	ATTACHED SATA HOST			
5	ATTACHED SATA PORT SELECTOR Restricted for DISCOVER response byte 15				ATTACHED SSP TARGET	ATTACHED STP TARGET	ATTACHED SMP TARGET	ATTACHED SATA DEVICE			
6	VIRTUAL PHY		Reserved		ROUTING ATTRIBUTE						
7	REASON Reserved										
8				ZONE (GROUP						

Working Draft Serial Attached SCSI - 2 (SAS-2)

619

Add the NEGOTIATED PHYSICAL LINK RATE field to the SHORT FORMAT descriptor for DISCOVER LIST.

Multiplexing is not strictly necessary for filling in routing tables. However, after a Broadcast (Change) due to a change in multiplexing configuration, nothing in the SHORT FORMAT descriptor will change, possibly causing confusion.

(from Brad Besmer, LSI)

Table 293 — SHORT FORMAT descriptor

Byte\Bit	7	6	5	4	3	2	1	0			
9	Restricted for DISCOVER response byte 60		INSIDE ZPSDS PERSISTENT	REQUESTED INSIDE ZPSDS	Reserved	ZONE GROUP PERSISTENT	INSIDE ZPSDS	Reserved			
10		ATTACHED PHY IDENTIFIER									
11		PHY CHANGE COUNT									
12				ATTACHED	AS ADDRESS						
19		ATTACHED SAS ADDRESS									
20		Reserved									
23		3		11030	sived						

The PHY IDENTIFIER field indicates the phy for which physical configuration link information is being returned

The FUNCTION RESULT field indicates the value that is returned in the FUNCTION RESULT field in the SMP/DISCOVER response for the specified phy (e.g., SMP FUNCTION ACCEPTED, PHY VACANT, or PHY DOES NOT EXIST). If the FUNCTION RESULT field is set to PHY VACANT or PHY DOES NOT EXIST, the est of the fields in the SHORT FORMAT descriptor shall be ignored.

The fields in the SHORT FORMAT descriptor not defined in this subclause are defined in the SMP DISCOVER response (see 10.4.3.10).

10.4.3.16 REPORT PHY EVENT LIST function

10.4.3.16.1 REPORT PHY EVENT LIST function overview

The REPORT PHY EVENT LIST function returns phy events (see 4.11). This SMP function may be implemented by any management device server.

10.4.3.16.2 REPORT PHY EVENT LIST request

Table 294 defines the request format.

Table 294 — REPORT PHY EVENT LIST request

Byte\Bit	7	6	5	4	3	2	1	0			
0		•		SMP FRAME	TYPE (40h)			-			
1				FUNCTIO	N (21h)						
2			ALL	OCATED RES	PONSE LENG	STH					
3		REQUEST LENGTH (01h)									
4											
5				Rese	vea						
6	(MSB)		074071110		OT DESCRIPT	-05 111557					
7			STARTING PHY EVENT LIST DESCRIPTOR INDEX (LSB)								
8	(MSB)			0.0	•						
11		-		CR	U			(LSB)			

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 620

Author: RElliott
Subject: Cross-Out
Date: 67:00/2008 3:16:52 PM -07'00'
TACCEPT - DONE
physical configuration link

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
s/b
then the

28 January 2008 T10/1760-D Revision 14

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 294.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 294.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 294.

The STARTING PHY EVENT LIST DESCRIPTOR INDEX field specifies the first phy event list descriptor that the management device server shall return in the SMP response frame. A STARTING PHY EVENT LIST DESCRIPTOR INDEX field set to 0000h is reserved. The requested starting index and the indicated starting index in the response may differ.

The CRC field is defined in 10.4.3.2.8.

10.4.3.16.3 REPORT PHY EVENT LIST response

Table 295 defines the response format.

Table 295 — REPORT PHY EVENT LIST response

Byte\Bit	7	6	5	4	3	2	1	0			
0			•	SMP FRAME	TYPE (41h	1)		•			
1				FUNCTI	ON (21h)						
2				FUNCTIO	N RESULT						
3			RE	SPONSE LEN	IGTH ((n - 7) / 4)					
4	(MSB)		EY	PANDER CH	ANGE COUN	т					
5											
6	(MSB)	,									
7			STARTING PHY EVENT LIST DESCRIPTOR INDEX /								
8	(MSB)		LAST PHY EVENT LIST DESCRIPTOR INDEX								
9			LAST FREE EVENT LIST DESCRIPTOR INDEX								
10			PHY E	VENT LIST D	ESCRIPTOR	LENGTH					
11				Rese	rved						
14				11000	ivou						
15			NUMBER	OF PHY EVE	ENT LIST DES	SCRIPTORS					
			Phy eve	ent list desc	criptor list						
16		Phy ever	nt list desc	riptor (first)	(see table 2	296 in 10.4	.3.16.4)				
				1 (,	(
		Phy ever	Phy event list descriptor (last)(see table 296 in 10.4.3.16.4)								
n - 4		, 5 vo.			, 0 100 10 2						
n - 3	(MSB)			CR	·C						
n								(LSB)			

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 295.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 295.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 295. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

Page: 622

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

STARTING PHY EVENT LIST DESCRIPTOR INDEX s/b

FIRST PHY EVENT LIST DESCRIPTOR INDEX

to avoid confusion between the request/response field names. They are not always identical.

This matches the field names in other functions.

The STARTING PHY EVENT LIST DESCRIPTOR INDEX field indicates the index of the first phy event list descriptor being returned. If the STARTING PHY EVENT LIST DESCRIPTOR INDEX field in the SMP request to 5696H, then the management device server shall set the STARTING PHY EVENT LIST DESCRIPTOR INDEX field to 0000h. If the STARTING PHY EVENT LIST DESCRIPTOR INDEX field specified in the SMP request does not contain a valid descriptor, then the device management server shall set the STARTING PHY EVENT LIST DESCRIPTOR INDEX field to the next index, in ascending order wrapping from FFFFh to 0001h, that antains a relid descriptor.

Otherwise, this field shall be set to the same value as the STARTING PHY EVENT LIST DESCRIPTOR HUDEX field in the SMP request frame.

The DESCRIPTOR LENGTH field indicates the length of the phy event list descriptor (see table 288 in 10.4.3.14.4).

The LAST PHY EVENT LIST DESCRIPTOR INDEX field indicates the last index of the last recorded phy even descriptor.

The NUMBER OF PHY EVENT LIST DESCRIPTORS field indicates how many phy event list descriptors follow.

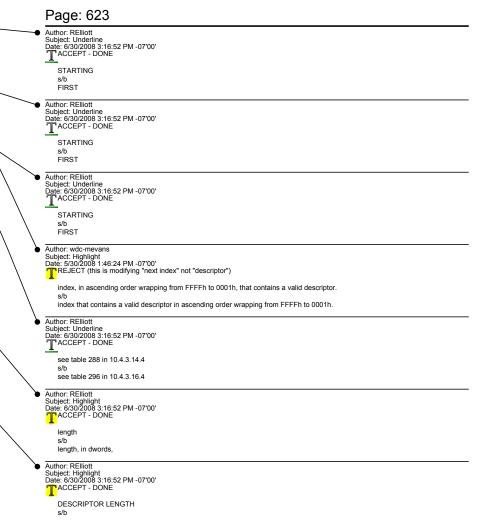
The phy event list descriptor list contains pay event list descriptors as defined in 10.4.3.14.4.

The CRC field is defined in 10.4.3.3.8.

10.4.3.16.4 REPORT PHY EVENT LIST response play event list descriptor

Table 296 defines the phy event list descriptor.

Table 296 — Phy event list descriptor


Byte\Bit	7	6	6 5 4 2 0									
0			Reserved									
1												
2			PHY IDENTIFIER									
3			PHY EVENT SOURCE									
4	(MSB)			PHY F	EVENT							
7			PHY EVENT (LSB)									
8	(MSB)		PEAK VALUE DETECTOR THRESHOLD									
11			FLA	N VALUE DETE	JOTON HINES	IIOLD		(LSB)				

The PHY IDENTIFIER field indicates the phy for which information is being returned.

The PHY EVENT SOURCE field, defined in table 37 in 4.11, indicates the type of phy event being reported in the PHY EVENT field.

The PHY EVENT field indicates the value (i.e., the count or peak value detected) of the phy event indicated by the PHY EVENT SOURCE field.

If the phy event source is a peak value detector, the PEAK VALUE DETECTOR THRESHOLD field indicates the value of the peak value detector that causes the expander device to originate a Broadcast (Expander)(see 7.2.6.4). If the phy event source is not a peak value detector, then the PEAK VALUE DETECTOR THRESHOLD field is reserved.

Comments from page 623 continued on next page

28 January 2008

T10/1760-D Revision 14

The <u>STARTING PHY EVENT LIST DESCRIPTOR INDEX field indicates the index of the first phy event list descriptor being returned. If the STARTING PHY EVENT LIST DESCRIPTOR INDEX field in the SMP request is 0000h, then the management device server shall set the <u>STARTING PHY EVENT LIST DESCRIPTOR INDEX field to 0000h. If the STARTING PHY EVENT LIST DESCRIPTOR INDEX field specified in the SMP request does not contain a valid descriptor, then the device management server shall set the <u>STARTING PHY EVENT LIST DESCRIPTOR INDEX field to the next index, in ascending order wrapping from FFFFh to 0001h, that contains a valid descriptor.</u>

Otherwise, this field shall be set to the same value as the STARTING PHY EVENT LIST DESCRIPTOR INDEX field in the SMP request frame.</u></u>

The DESCRIPTOR LENGTH field indicates the length of the phy event list descriptor (see table 288 in 10.4.3.14.4).

The LAST PHY EVENT LIST DESCRIPTOR INDEX field indicates the last index of the last recorded phy event list descriptor.

The NUMBER OF PHY EVENT LIST DESCRIPTORS field indicates how many phy event list descriptors fol

The phy event list descriptor list contains phy event list descriptors as defined in 10.4.3.14.4.

The CRC field is defined in 10.4.3.3.8.

10.4.3.16.4 REPORT PHY EVENT LIST response phy event list descriptor

Table 296 defines the phy event list descriptor.

Table 296 — Phy event list descriptor

			5.0 200	,	or accompr						
Byte\Bit	7	6	6 5 4 3 2 1								
0											
1			Reserved								
2			PHY IDENTIFIER								
3		PHY EVENT SOURCE									
4	(MSB)			DUV I	EVENT						
7		•		F111 .	VLINI			(LSB)			
8	(MSB)		PEAK VALUE DETECTOR THRESHOLD								
11		•	FLA	IN VALUE DETE	OTOK HIKESI	IOLD		(LSB)			

The PHY IDENTIFIER field indicates the phy for which information is being returned.

The PHY EVENT SOURCE field, defined in table 37 in 4.11, indicates the type of phy event being reported in the PHY EVENT field.

The PHY EVENT field indicates the value (i.e., the count or peak value detected) of the PHY EVENT SOURCE field.

If the phy event source is a peak value detector, the FEAK VALUE DETECTOR THRESHOLD field indicates the value of the peak value detector that causes the expander device to originate a Broadcast (Expander)(see 7.2.6.4). If the phy event source is not a peak value detector, then the PEAK VALUE DETECTOR THRESHOLD field is reserved.

PHY EVENT LIST DESCRIPTOR LENGTH

to match table

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

how many phy event list descriptors follow

s/b

the number of phy event list descriptors in the phy phy event list descriptor list

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

in 10.4.3.14.4 s/b in 10.4.3.16.4

Author: Isi-gpenokie

Subject: Sticky Note Date: 6/20/2008 10:10:35 AM -07'00'

ACCEPT - DONE (added text based on the self-configuration status descriptor list text.

The phy event list descriptor list contains phy event list descriptors as defined in 10.4.3.16.4. The management device server shall return either all the phy event list descriptors that fit in one SMP response frame or all the phy event list descriptors until the index indicated in the last phy event list descriptor index field is reached. The phy event list descriptor list shall start with the phy event list descriptor indicated by the first phy event list descriptor index field, and continue with phy event list descriptors sorted in ascending order, wrapping from FFFFh to 0001h, based on the phy event list descriptor index. The phy event list descriptor ist shall not contain any truncated phy event list descriptors. If the first phy event list descriptor index field is equal to the last phy event list descriptor index field, then the phy event list descriptor at that index shall be returned.

What happens if the number of phy events is too many to contain within the REPORT PHY EVENT LIST response?

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

REPORT PHY EVENT LIST response phy event list descriptor

Phy event list descriptor

(matching comment on 10.4.3.9.4 by Data Domain)

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE the

then the

10.4.3.17 REPORT EXPANDER ROUTE TABLE LIST function

10.4.3.17.1 REPORT EXPANDER ROUTE TABLE LIST function overview

The REPORT EXPANDER ROUTE TABLE LIST function returns the contents of an expander-based expander route table (see 4.6.7.3 and 4.9.3.4). The list may be in any order. Self-configuring expander devices shall support this function.

10.4.3.17.2 REPORT EXPANDER ROUTE TABLE LIST request

Table 297 defines the request format.

Table 297 — REPORT EXPANDER ROUTE TABLE LIST request

Byte\Bit	7	6	5	4	3	2	1	0				
0				SMP FRAME	TYPE (40h)							
1				FUNCTIO	on (22h)							
2			ALL	OCATED RE	SPONSE LEN	GTH						
3		REQUEST LENGTH (06h)										
4				Rese	nyod							
7		116361760										
8	(MSB)	MAYIMI IM NI	NAVIMUM AND MODER OF REPORT EXPANDED POLITE TABLE RECORDITIONS									
9		- WAXIWOW N	MAXIMUM NUMBER OF REPORT EXPANDER ROUTE TABLE DESCRIPTORS (LSB,									
10	(MSB)		CTADTIA	IG ROUTED S	AC ADDDECS	NDEV						
11		=	STARTIN	IG ROUTED S	AS ADDRESS	S INDEX		(LSB)				
12				Rese	nyod							
18		=		Rese	iveu							
19				STARTING PH	Y IDENTIFÆ	₹						
20				Pose	nuod							
27		Reserver										
28	(MSB)			CF	0							
31					·C			(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 297.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 297.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

624

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 297.

The MAXIMUM NUMBER OF REPORT EXPANDER ROUTE TABLE DESCRIPTORS field specifies the maximum number of REPORT EXPANDER ROUTE TABLE descriptors that the management device server shall return.

The STARTING ROUTED SAS ADDRESS INDEX field specifies the index of the first routed SAS address to be returned in the descriptor list.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 624

```
Author: RElliott
Subject: Underline
Date: 8/28/2008 11:43:07 AM -07'00'

TACCEPT - DONE

to be returned
s/b
that the management device server shall return

Author: RElliott
Subject: Underline
Date: 8/28/2008 11:42:59 AM -07'00'
TACCEPT - DONE

descriptor list
s/b
expander route table descriptor list
(using the new name)
```

28 January 2008

T10/1760-D Revision 14

The STARTING PHY IDENTIFIER field specifies the first phy identifier of the phy identifier bit map returned in the Report EXPANDER ROUTE TABLE descriptor (see table 299 in 10.4.3.17.3). The value of this field shall be aligned to a boundary of 48 (e.g., 0, 48, 96) and not exceed the value of the NUMBER OF PHYS field reported in the REPORT GENERAL response (see 10.4.3.4).

The CRC field is defined in 10.4.3.2.8.

10.4.3.17.3 REPORT EXPANDER ROUTE TABLE LIST response

Table 298 defines the response format.

Table 298 — REPORT EXPANDER ROUTE TABLE LIST response

Byte\Bit	7	6	5	4	3	2	1	0					
0				SMP	FRAME TYP	E (41h)							
1				F	UNCTION (2	2h)							
2				F	UNCTION RE	SULT							
3				RESPON	SE LENGTH	((n - 7) / 4)							
4	(MSB)		EVDANDED CHANCE COUNT										
5			EXPANDER CHANGE COUNT										
6	(MSB)		EXPANDER ROLLTE TABLE CHANGE COLINT										
7			EXPANDER ROUTE TABLE CHANGE COUNT -										
8			Re	eserved	Ę	-	CONFIGURING	Reserved					
9					Reserved	t							
10 ~	(MSB)	NILI	NUMBER OF REPORT EXPANDER ROUTE TABLE DESCRIPTORS —										
11			NUMBER OF REPORT EXPANDER ROUTE TABLE DESCRIPTORS -										
12	(MSB)		FIRST ROUTED SAS ADDRESS INDEX										
43			LIKOT KONTEN SAS ADERESS INDEX										
14	(MSB)	_	LAST ROUTED SAS ADDRESS INDEX										
15				2.01 1.001.		00 11.02.1		(LSB)					
16				_	Reserved								
18													
19				STAR	TING PHYUDI	ENTIFIER							
20					Reserved								
31													
		REP	ORT EXP	PANDER R	OUTE TAB	LE descriptor	list						
32		REPORT	EXPANDE				(see table 299 in						
47			10.4.3.17.4)										
n - 20		REPORT	EXPAND				(see table 299 in						
n - 4				1	10.4.3.17.4)								
n - 3	(MSB)				CRC								
n					OILO			(LSB)					

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 625
Author: RElliott

Subject: Underline
Date: 6/30/2008 3:16.52 PM -07'00'

TACCEPT - DONE

the REPORT EXPANDER ROUTE TABLE descriptor

s/b each REPORT EXPANDER ROUTE TABLE descriptor

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

The value of this field shall be aligned to a boundary of 48 (e.g., 0, 48, 96)

s/b
This field should be set to a multiple of 48 (e.g., 0, 48, 96)

There is no error reported if it is not, so "shall" is too strong. Adding comment in response that the device server shall round down the starting phy identifier if needed.

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

not exceed the value of the NUMBER OF PHYS field reported in the REPORT GENERAL response

shall be less than the value indicated in the REPORT GENERAL response

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

> Add SELF CONFIGURING to bit 3 ZONE CONFIGURING to bit 2

to match Isi-bbesmer comment on first page

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Per 6/11 LB call, change byte 10 to an Expander Route Table Descriptor Length field

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

Per 6/11 LB call, change the Number of Expander Route Table Descriptors field to one byte only in byte 11, to match the "Number of" fields in all the other functions that have descriptor lists.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

625

Comments from page 625 continued on next page

28 January 2008 T10/1760-D Revision 14

The STARTING PHY IDENTIFIER field specifies the first phy identifier of the phy identifier bit map returned in the REPORT EXPANDER ROUTE TABLE descriptor (see table 299 in 10.4.3.17.3). The value of this field shall be aligned to a boundary of 48 (e.g., 0, 48, 96) and not exceed the value of the NUMBER OF PHYS field reported in the REPORT GENERAL response (see 10.4.3.4).

The CRC field is defined in 10.4.3.2.8.

10.4.3.17.3 REPORT EXPANDER ROUTE TABLE LIST response

Table 298 defines the response format.

Table 298 — REPORT EXPANDER ROUTE TABLE LIST response

Byte\Bit	7	6	5	4	3	2	1	0			
0	'		•	SMP	FRAME TYPI	E (41h)					
1				F	UNCTION (2	2h)					
2				FL	JNCTION RE	SULT					
3				RESPON	SE LENGTH	((n - 7) / 4)					
4	(MSB)			EVBAND.		0011117					
5				EXPAND	ER CHANGE	COUNT		(LSB)			
6	(MSB)		EXPANDER ROUTE TABLE CHANGE COUNT -								
7											
8			Reserved CONFIGURING								
9			Reserved								
10	(MSB)	NUI	NUMBER OF REPORT EXPANDER ROUTE TABLE DESCRIPTORS								
11											
12	(MSB)		FIRST ROUTED SAS ADDRESS INDEX								
13			TINGT NOUTED SAG ADDRESS INDEA								
14	(MSB)		LAST ROUTED SAS ADDRESS INDEX -								
15								(LSB)			
16					Reserved		/				
18							/				
19				START	TING PHY IDE	ENTIFIER	/				
20					Reserved		/				
31											
		REP	ORT EXP	ANDER R	OUTE TAB	LE descriptor	list '				
32		REPORT	EXPANDE				see table 299 in				
47			10.4.3.17.4)								
n - 20		REPORT	REPORT EXPANDER ROUTE TABLE descriptor (last)(see table 299 in 10.4.3.17.4)								
n - 4	(1.100)				0.4.3.17.4)						
n - 3	(MSB)				CRC			(1.05)			
n								(LSB)			

Working Draft Serial Attached SCSI - 2 (SAS-2)

625

The 6/11 LB call discussed whether to move the NUMBER OF REPORT EXPANDER ROUTE TABLE DESCRIPTORS field to byte 31 (immediately in front of the descriptor list), and decided not to do so.

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

REPORT EXPANDER ROUTE TABLE descriptor list

s/b

Expander route table descriptor list

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 298.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 298.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 298 RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT CENERAL response (see 10.4.3.4).

The EXPANDER ROUTE TABLE CHANGE COUNT field counts the number of times the expander route table has been modified by the self-configuring expander devices. Self-configuring expander devices shall support this field. This field shall be set to at least 0001h at power on. If the self-configuring expander device modified the expander route table since responding to a previous REPORT EXPANDER ROUTE TABLE LIST request, it shall increment this field at least once from the value in the previous REPORT EXPANDER ROUTE TABLE LIST response. This field shall wrap to at least 0001h after the maximum value (i.e., FFFFh) has been reached.

NOTE 122 - Application clients that use the EXPANDER ROUTE TABLE CHANGE COUNT field should read it often enough to ensure that it does not increment a multiple of 65 536 times between reading the field.

The CONFIGURING bit is defined in the REPORT GENERAL response (see 10.4.3.4).

The NUMBER OF REPORT EXPANDER ROUTE TABLE DESCRIPTORS field indicates the number of REPORT EXPANDER ROUTE TABLE descriptors contained in the REPORT EXPANDER ROUTE TABLE descriptor

The FIRST ROUTED SAS ADDRESS INDEX field indicates the index of the first REPORT EXPANDER ROUTE TABLE descriptor reported in the REPORT EXPANDER ROUTE TABLE descriptor list.

The LAST ROUTED SAS ADDRESS INDEX field indicates the index of the last REPORT EXPANDER ROUTE TABLE descriptor reported in the REPORT EXPANDER ROUTE TABLE descriptor list. The magagement application client may set the STARTING ROUTED SAS ADDRESS INDEX field in its next REPORT EXPANDER ROUTE TABLE LIST request to the value of this field plus one.

The STARTING PHY IDENTIFIER field indicates the value of the STARTING PHY IDENTIFIER field in the request frame

The REPORT EXPANDER ROUTE TABLE descriptor list contains REPORT EXPANDER ROUTE TABLE descriptors as defined in 10.4.3.17.4.

The CRC field is defined in 10.4.3.3.8.

10.4.3.17.4 REPORT EXPANDER ROUTE TABLE descriptor

Table 299 defines the REPORT EXPANDER ROUTE TABLE descriptor

Table 299 — REPORT EXPANDER ROUTE TABLE descriptor

Byte\Bit	7	6	5	4	3	2	1	0			
0			ROUTED SAS ADDRESS								
7			NOUTED ONG NOUNCESS								
8	(starting phy identifier + 47)			(starting phy identifier + 40)							
13	(starting phy identifier + 7)			PHY B	i we			(starting phy identifier)			
14	ZONE GROUP VALID		Reserved								
15		ZONE GROUP									

Page: 626

28 January 2008

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE counts

s/b indicates

Author: wdc-mevans Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

**REJECT (would have to be "the self-configuring expander device" which is too wordy. There is no confusion about who "it" is here. Will add "then" though)

s/b

then the expander device

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' REJECT (but will add "then")

This << request, it shall increment >> should be << request, the self-configuring expander device shall increment >>

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

The self configuring bit is defined in the REPORT GENERAL response (see 10.4.3.4). The zone configuring bit is defined in the REPORT GENERAL response (see 10.4.3.4).

to match Isi-bbesmer comment on first page

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

contained

Author: RElliott Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE

indicates the value of the STARTING PHY IDENTIFIER field in the request frame.

add ", rounded down to a multiple of 48."

There is no function result to report an error if the STARTING PHY IDENTIFIER field in the request is not a multiple of 48, so this is a way to handle that possibility and keep the response data self-coherent.

Subject: Note Date: 6/20/2008 10:09:43 AM -07'00'

Comments from page 626 continued on next page

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 298.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 298.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 298. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The EXPANDER CHANGE COUNT field is defined in the SMP REPORT GENERAL response (see 10.4.3.4).

The EXPANDER ROUTE TABLE CHANGE COUNT field counts the number of times the expander route table has been modified by the self-configuring expander devices. Self-configuring expander devices shall support this field. This field shall be set to at least 0001h at power on. If the self-configuring expander device modified the expander route table since responding to a previous REPORT EXPANDER ROUTE TABLE LIST request, it shall increment this field at least once from the value in the previous REPORT EXPANDER ROUTE TABLE LIST response. This field shall wrap to at least 0001h after the maximum value (i.e., FFFFh) has been reached.

NOTE 122 - Application clients that use the EXPANDER ROUTE TABLE CHANGE COUNT field should read it often enough to ensure that it does not increment a multiple of 65 536 times between reading the field.

The CONFIGURING bit is defined in the REPORT GENERAL response (see 10.4.3.4).

The NUMBER OF REPORT EXPANDER ROUTE TABLE DESCRIPTORS field indicates the number of REPORT EXPANDER ROUTE TABLE descriptors contained in the REPORT EXPANDER ROUTE TABLE descriptor list

The FIRST ROUTED SAS ADDRESS INDEX field indicates the index of the first REPORT EXPANDER POUTE TABLE descriptor reported in the REPORT EXPANDER ROUTE TABLE descriptor list.

The LAST ROUTED SAS ADDRESS INDEX field indicates the index of the last REPORT EXPANDER ROUTE TABLE descriptor reported in the REPORT EXPANDER ROUTE TABLE descriptor list. The management application client may set the STARTING ROUTED SAS ADDRESS INDEX field in its next REPORT EXPANDER ROUTE TABLE LIST request to the value of this field plus one.

The STARTING PHY IDENTIFIER field indicates the value of the STARTING PHY IDENTIFIER field in the request frame.

The REPORT EXPANDER ROUTE TABLE descriptor list contains REPORT EXPANDER ROUTE TABLE descriptors as defined in 10.4.3.17.4.

The CRC field is defined in 10.4.3.3.8.

626

10.4.3.17.4 REPORT EXPANDER ROUTE TABLE descriptor

Table 299 defines the REPORT EXPANDER ROUTE TABLE descriptor.

Table 299 — REPORT EXPANDER ROUTE TABLE descriptor

Byte\Bit	7	6	5	4	3	2	1	0			
0			ROUTED SAS ADDRESS								
7											
8	(starting phy identifier + 47)			PHY B	T MAD			(starting phy identifier + 40)			
13	(starting phy identifier + 7)			FIII B	II WAF			(starting phy identifier)			
14	ZONE GROUP VALID		Reserved								
15		ZONE GROUP									

Working Draft Serial Attached SCSI - 2 (SAS-2)

ACCEPT - DONE (

"The expander route table descriptor list contains expander route table descriptors as defined in 10.4.3.17.4. The management device server shall return either all the expander route table descriptors that fit in one SMP response frame or all the expander route table descriptors until the index indicated in the last routed sas address index field is reached. The expander route table descriptor list shall start with the expander route table descriptor indicated by the first routed sas address index field, and continue with expander route table descriptors sorted in a vendor-specific order based on the routed SAS address index. The expander route table descriptor list shall not contain any truncated expander route table descriptors. If the first routed sas address index field is equal to the last routed sas address index field, then the expander route table descriptor that index shall be returned."

6/11: no, don't want to require the device server to make the table look different just for clean presentation to the application client. The descriptors are sorted by the vendor-specific index. Make that clear.)

Require the REPORT EXPANDER ROUTE TABLE descriptor list be sorted in ascending order based on routed SAS address

(internally it need not be sorted, but for reporting purposes some order is helpful)

Author: RElliott
Subject: Underline
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

GlobaL

REPORT EXPANDER ROUTE TABLE descriptor

expander route table descriptor to match names of other descriptors.

28 January 2008 T10/1760-D Revision 14

The ROUTED SAS ADDRESS field indicates the routed SAS address.

The PHY BIT MAP field indicates the phy(s) to which connection requests to the SAS address indicated by the ROUTED SAS ADDRESS field may be forwarded. This field is a bit map where each bit position indicates a corresponding phy (e.g., bit zero of byte 5 indicates the phy indicated by the starting phy identifier). A bit set to one indicates that connection requests to the SAS address indicated by the ROUTED SAS ADDRESS field may be forwarded to the corresponding phy. A bit set to zero indicates that connection requests to the SAS address indicated by the ROUTED SAS ADDRESS field are not forwarded to that corresponding phy. Bits representing phys beyond the value of the NUMBER OF PHYS field reported in the REPORT GENERAL response (see 10.4.3.4) shall be set to zero.

A ZONE GROUP VALID bit set to zero indicates that the ZONE GROUP field shall be ignored. A ZONE GROUP VALID bit set to one indicates that the ZONE GROUP field is valid.

The ZONE GROUP field is defined in 4.9.3.1.

10.4.3.18 CONFIGURE GENERAL function

The CONFIGURE GENERAL function requests actions by the device containing the management device server. This SMP function may be implemented by any management device server. In zoning expander devices, if zoning is enabled then this function shall only be processed from SMP initiator ports that have access to zone group 2 (see 4.9.3.2).

Page: 627

Author: Isi-gpenokie

Subject: Highlight Date: 5/30/2008 2:03:23 PM -07'00'

TACCEPT - DONE (changed 5 to 13. The first and second 8 bytes swapped positions a while back.)

This << (e.g., bit zero of byte 5 indicates the phy indicated by the starting phy identifier). >> does not compute. Byte 5 is in the middle of the ROUTED SAS ADDRESS field.

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

enabled then

enabled, then

T10/1760-D Revision 14

Table 300 defines the request format.

Table 300 — CONFIGURE GENERAL request

28 January 2008

Byte\Bit	7	6	5	4	3	2	1	0				
0				SMP	FRAME TYPE (40h)							
1				F	UNCTION (80h)							
2				ALLOCAT	ED RESPONSE LEN	GTH						
3			REQUEST LENGTH (04h)									
4	(MSB)		EVECTED EVDANDED CHANCE COUNT									
5		-	EXPECTED EXPANDER CHANGE COUNT -									
6			Reserved -									
7		-	Reserved -									
8		Reserved	eserved PATE STP TIME TO STP SMP REJECT TO OPEN LIMIT FUNCTIONALITY LOSS TIME TIME LIMIT UPDATE STP SMP REDUCED I_T NEXUS CONNECT TIME LIMIT TIME LIMIT									
9					Reserved	II.						
10	(MSB)			OTD DUG	INACTIVITY TIME LIN	AUT						
11		-		215 B02	INACTIVITY TIME LIN	ЛП		(LSB)				
12	(MSB)			CTD MAVIMI	JM CONNECT TIME	LIMIT						
13		=		STP WAXING	JW CONNECT TIME	LIIVIII		(LSB)				
14	(MSB)			STD SMD	I_T NEXUS LOSS TI	ME						
15		_		OTT CIVII		WIL		(LSB)				
16			IN	NITIAL TIME T	O REDUCED FUNCT	IONALITY						
17					Reserved							
18	(MSB)		OTD DE IEST TO ODEN LINET									
19		=	STP REJECT TO OPEN LIMIT									
20	(MSB)				CRC							
23		=			CNO			(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 300.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 300.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 300.

If the management device server is not in an expander device or the EXPECTED EXPANDER CHANGE COUNT field is set to 0000h, the EXPECTED EXPANDER CHANGE COUNT field shall be ignored. If the management device server is in an expander device and the EXPECTED EXPANDER CHANGE COUNT field is not set to 0000h, then:

- a) if the EXPECTED EXPANDER CHANGE COUNT field contains the current expander change count (i.e., the value of the EXPANDER CHANGE COUNT field that would be returned by an SMP REPORT GENERAL response at this time), the management device server shall process the function, and
- b) if the EXPECTED EXPANDER CHANGE COUNT field does not contain the current expander change count the management device server shall return a function result of INVALID EXPANDER CHANGE COUNT in the response frame (see table 245 in 10.4.3.3).

An UPDATE STP REJECT TO OPEN LIMIT bit set to one specifies that the STP REJECT TO OPEN LIMIT field shall be honored. An update STP REJECT TO OPEN LIMIT bit set to zero specifies that the STP REJECT TO OPEN LIMIT field shall be ignored.

An UPDATE INITIAL TIME TO REDUCED FUNCTIONALITY bit set to one specifies that the INITIAL TIME TO REDUCED FUNCTIONALITY field shall be honored. An UPDATE INITIAL TIME TO REDUCED FUNCTIONALITY bit set to zero specifies that the INITIAL TIME TO REDUCED FUNCTIONALITY field shall be ignored.

An UPDATE STP BUS INACTIVITY TIME LIMIT bit set to one specifies that the STP BUS INACTIVITY TIME LIMIT field shall be honored. An update STP BUS INACTIVITY TIME LIMIT bit set to zero specifies that the STP BUS INACTIVITY TIME LIMIT field shall be ignored.

An update STP MAXIMUM CONNECT TIME LIMIT bit set to one specifies that the STP MAXIMUM CONNECT TIME LIMIT field shall be honored. An UPDATE STP MAXIMUM CONNECT TIME LIMIT bit set to zero specifies that the STP MAXIMUM CONNECT TIME LIMIT field shall be ignored.

An UPDATE STP SMP I T NEXUS LOSS TIME bit set to one specifies that the STP SMP I T NEXUS LOSS TIME field shall be honored. An UPDATE STP SMP I_T NEXUS LOSS TIME bit set to zero specifies that the STP SMP I_T NEXUS LOSS TIME field shall be ignored.

The STP BUS INACTIVITY TIME LIMIT field specifies the maximum time in 100 µs increments that an STP target port is permitted to maintain a connection (see 4.1.12) while transmitting and receiving SATA_SYNC. When this time is exceeded, the STP target port shall close the connection. A value of 0000h in this field specifies that there is no bus inactivity time limit. This value is reported in the STP BUS INACTIVITY TIME LIMIT field in the SMP REPORT GENERAL response (see 10.4.3.4). The bus inactivity time limit is enforced by the port lay

The STP MAXIMUM CONNECT TIME LIMIT field specifies the maximum duration of a connection (see 4.1.12) in 100 μs increments (e.g., a value of 0001h in this field means that the time is less than or equatio 100 μs and a value of 0002h in this field means that the time is less than or equal to 200 μs). Where this time is exceeded, the STP target port shall close the connection at the next opportunity. If the STP target port is transferring a frame when the maximum connection time limit is exceeded, the STP target port shall complete transfer of the frame before closing the connection. A value of 0000h in this field specifies that there is no maximum connection time limit. This value is reported in the STP MAXIMUM CONNECT TIME LIMIT field in the SMP REPORT GENERAL response (see 10.4.3.4). The maximum connection time limit is enforced by the port layer (see 8.2.3).

The STP SMP I_T NEXUS LOSS TIME field specifies the minimum time that an STP target port or SMP initiator port shall retry connection requests that are rejected with responses indicating the destination port may no longer be present (see 8.2.2) before recognizing an I_T nexus loss (see 4.5). Table 301 defines the values of the STP SMP I T NEXUS LOSS TIME field. This value is enforced by the port layer (see 8.2.2).

Code	Description
0000h	Vendor-specific amount of time.
0001h to FFFEh	Time in milliseconds.
FFFFh	The port shall never recognize an I_T nexus loss (i.e., it shall retry the connection requests forever).

Table 301 — STP SMP L T NEXUS LOSS TIME field

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 629

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE the s/b

Author: Isi-gpenokie Subject: Highlight Date: 7/17/2008 7:19:48 PM -07'00'

then the

PACCEPT - DONE (field returned if an SMP REPORT GENERAL function were processed at this time)

This << field that would be returned by >> should be << field that's returned by >>

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

ACCEPT - DONE

This << time), the management >> should be << time), then the management >>

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

This << count, the management device >> should be << count, then the management device >>

Author: Isi-gpenokie Date: 5/6/2008 1:07:50 PM -07'00' TACCEPT - DONE

629

This << is exceeded, the STP target >> should be << is exceeded, then the STP target >>

NOTE 123 - The default value of the STP SMP I_T NEXUS LOSS TIME field should be non-zero. It is recommended that this value be 2 000 ms.

NOTE 124 - An STP initiator port should retry connection requests for at least the time indicated by the STP SMP_LT NEXUS LOSS TIME field in the SMP REPORT GENERAL response for the STP target port to which it is trying to establish a connection.

The INITIAL TIME TO REDUCED FUNCTIONALITY field specifies the minimum period of time, in 100 ms increments, that an expander device shall wait from originating a Broadcast (Expander) to reducing functionality (see 4.6.8). This value is reported in the INITIAL TIME TO REDUCED FUNCTIONALITY field in the SMP REPORT GENERAL response (see 10.4.3.4).

The STP REJECT TO OPEN LIMIT field specifies the minimum time in 10 µs increments that an STP port shall want to establish a connection request with an initiator port on an I_T nexus after receiving an OPEN_REJECT (RETRY), OPEN_REJECT (CONTINUE 0), or OPEN_REJECT (CONTINUE 1). This value may be rounded as defined in SPC-4. An STP REJECT TO OPEN LIMIT field set to 0000h specifies that the minimum time is vendor specific. This minimum time is enforced by the port layer (see 8.2.3). This value is reported in the STP REJECT TO OPEN LIMIT field in the SMP REPORT GENERAL response (see 10.4.3.4).

The CRC field is defined in 10.4.3.2.8.

Table 300 defines the response format.

Byte\Bit 7 0 5 6 0 SMP FRAME TYPE (41h) FUNCTION (80h) 1 2 FUNCTION RESULT 3 RESPONSE ENGTH (00h) 4 (MSB) CRC 7 (LSB)

Table 302 — CONFIGURE GENERAL response

The SMP FRAME TYPE field is defined in 10.4.3/3.2 and shall be set to the value defined in table 302.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 302.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 302. A RESPONSE LENGTH field set to 00b does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The CRC field is defined in 10.4.3.3.8.

10.4.3.19 ENABLE DISABLE ZONING function

The ENABLE DISABLE ZONING function enables or disables zoning. This SMP function shall be supported by SMP target pox's in zoning expander devices (see 4.9). Other SMP target ports shall not support this SMP function.

This function is an SMP zone configuration function (see 4.9.6.3).

630

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 630

Author: RElliott Subject: Note Date: 9/3/2008 3:58:01 PM -07'00'

1) ENABLE DISABLE ZONING function is missing this paragraph:

SMP zone configuration functions change the zoning expander shadow values, which do not become zoning expander current values until the zoning expander device processes the activate step (see 4.9.6.4).

(from Brad Besmer, LSI)

Table 303 defines the request format.

Table 303 — ENABLE DISABLE ZONING request

Byte\Bit	7	6	6 5 4 3 2 1 0									
0				SMP FRAM	E TYPE (40h))						
1				FUNCT	ion (81h)							
2			AL	LOCATED RI	ESPONSE LEN	IGTH						
3		REQUEST LENGTH (02h)										
4	(MSB)	/ISB) EXPECTED EXPANDER CHANGE COUNT										
5		EXPECTED EXPANDER CHANGE COUNT (LSB)										
6			Res	erved			Si	AVE				
7				Re	served							
8			Res	erved				DISABLE NING				
9				Pas	erved /	/						
11		•		1103	erveu /							
12	(MSB)				RC							
15		•			<u> </u>			(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in able 303.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 303.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10 4.3.2.5 and shall be set to the value defined in table 303.

The EXPECTED EXPANDER CHANGE COUNT field is defined in the CONFIGURE ENERAL request (see 10.4.3.18).

The SAVE field specifies whether the management device server shall apply the specified changes to the current value, and/or the saved value of the zoning enable setting and is defined in table 304.

Table 304 — SAVE field

Code	Values updated	Return function result of SAVING NOT SUPPORTED it saving is not supported
00b	Current	no
01b	Saved ^a	yes
10b	Saved ^a , if saving is supported, and current.	ñò
11b	Saved ^a and current.	yes
a The	management device server shall return the function resul	It without waiting for the save to complete

and set the SAVING bit to one in the REPORT GENERAL response until the save is complete.

Page: 631

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' TREJECT (it's not a question of whether the changes happen or not - something is always updated. The field dictates which values are updated) whether s/b whether or not Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' TREJECT setting and setting. The SAVE field Author: RElliott Subject: Highlight
Date: 9/3/2008 3:56:02 PM -07'00' current value s/b shadow value (from Brad Besmer, LSI) Author: RElliott Subject: Highlight Date: 9/3/2008 3:56:33 PM -07'00' ACCEPT - DONE current s/b shadow (from Brad Besmer, LSI) Author: RElliott Subject: Highlight
Date: 9/3/2008 3:56:11 PM -07'00' current s/b shadow (from Brad Besmer, LSI) Author: RElliott Subject: Highlight
Date: 9/3/2008 3:56:21 PM -07'00'

Comments from page 631 continued on next page

Table 303 defines the request format.

Table 303 — ENABLE DISABLE ZONING request

Byte\Bit	7	6	5	4	3	2	1	0			
0		SMP FRAME TYPE (40h)									
1				FUNCT	ION (81h)						
2		ALLOCATED RESPONSE LENGTH									
3		REQUEST LENGTH (02h)									
4	(MSB)	MSB) EXPECTED EXPANDER CHANGE COUNT									
5		(LSB)									
6		Reserved SAVE									
7				Res	served						
8			Res	erved		,		DISABLE			
9				Res	enved						
11		Reserved ———									
12	(MSB)				CRC /						
15		-						(LSB)			

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 303.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 303.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3/2.5 and shall be set to the value defined in table 303.

The EXPECTED EXPANDER CHANGE COUNT field is defined in the CONFIGURE GENERAL request (see 10.4.3.18).

The SAVE field specifies whether the management device server shall apply the specified changes to the current value and/or the saved va/ue of the zoning enabled setting and is defined in table 304.

Table 304 — SAVE field

Code	Values undated	Return function result of SAVING NOT SUPPORTED if saving is not supported
00b	Cyrent	no
01b	Saved ^a	yes
10b	Saved ^a , if saving is supported, and current.	no
/1b	Saved ^a and <mark>current.</mark>	yes

^a The management device server shall return the function result without waiting for the save to complete, and set the SAVING bit to one in the REPORT GENERAL response until the save is complete.

Working Draft Serial Attached SCSI - 2 (SAS-2)

current s/b shadow

(from Brad Besmer, LSI)

Author: RElliott
Subject: Note
Date: 9/3/2008 4:21:36 PM -07'00'
ACCEPT - DONE

Add to a:

Saving only begins during the activate step (see 4.9.6.4).

to match comment in activate step section

T10/1760-D Revision 14

28 January 2008

The ENABLE DISABLE ZONING field is defined in table 305.

Table 305 — ENABLE DISABLE ZONING field

Code	Description	
00b	No change	
01b	Enable zoning	
10b	Disable zoning	
11b	Reserved	

If the ENABLE DISABLE ZONING field is set to 11b (i.e., reserved), the management device server shall return a function result of UNKNOWN ENABLE DISABLE ZONING VALUE in the response frame (see table 245 in 10.4.3.3).

The CRC field is defined in 10.4.3.2.8.

Table 306 defines the response format.

Table 306 — ENABLE DISABLE ZONING response

Byte\Bit	7	6	5	4	3	2	1	0					
0		SMP FRAME TYPE (41h)											
1		FUNCTION (81h)											
2		FUNCTION RESULT											
3			F	RESPONSE L	ENGTH (00h))							
4	(MSB)	MSB)											
7		=		CR	C			(LSB)					

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 306.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 306.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 306. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The CRC field is defined in 10.4.3.3.8.

10.4.3.20 ZONED BROADCAST function

The ZONED BROADCAST function requests that the specified Broadcast (see 4.1.13) be forwarded as specified in 4.9.5. This SMP function shall be supported by management device servers in zoning expander devices (see 4.9). Other management device servers shall not support this SMP function. This SMP function shall only be processed from SMP initiator ports that have access to zone group 3 (see 4.9.3.2).

Page: 632

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
s/b
then the

Table 307 defines the request format.

Table 307 — ZONED BROADCAST request

Byte\Bit	7	6	5	4	3	2	1	0				
0	<u> </u>			SMP FRAM	E TYPE (40h	1)						
1				FUNCT	ION (85h)							
2			Al	LLOCATED RE	ESPONSE LE	NGTH						
3		REQUEST LENGTH ((n - 7) / 4)										
4		-										
5		Restricted ———										
6		Reserved BROADCAST TYPE										
7			NUMBER C	F BROADCAS	ST SOURCE Z	ONE GROUPS	;					
'			Broadcas	st source zo	ne group lis	t						
8			BROAD	CAST SOUR	CE ZONE GRO	OUP (first)						
			BROAD	CAST SOUR	CE ZONE GR	OUP (last)						
				PAD (if	needed)							
n - 4		PAD (if needed)										
n - 3	(MSB)				:RC							
n				C	, KC			(LSB				

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 307.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 307.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 307.

T10/1760-D Revision 14

The BROADCAST TYPE field specifies the type of Broadcast that shall be forwarded and is defined in Table 308.

Table 308 — BROADCAST TYPE field

Code	Description
0000b	Broadcast (Change)
0001b	Broadcast (Reserved Change 0)
0010b	Broadcast (Reserved Change 1)
0011b	Broadcast (SES)
0100b	Broadcast (Expander)
0101b	Broadcast (Asynchronous Event)
0110b	Broadcast (Reserved 3)
0111b	Broadcast (Reserved 4)
1000b	Broadcast (Zone Activate)
All others	Reserved for Broadcasts only supported by the ZONED BROADCAST function

The NUMBER OF BROADCAST SOURCE ZONE GROUPS field specifies the number of zone groups to which the specified Broadcast is to be forwarded.

The broadcast source zone group list contains BROADCAST SOURCE ZONE GROUP fields.

Each BROADCAST SOURCE ZONE GROUP field specifies a source zone group for the Broadcast. The expander device forwards the Broadcast to each destination zone group accessible to that source zone group.

The PAD field contains zero, one, two, or three bytes set to 00h such that the total length of the SMP request is a multiple of four.

The CRC field is defined in 10.4.3.2.8.

Table 309 defines the response format.

Table 309 — ZONED BROADCAST response

Byte\Bit	7	6	5	4	3	2	1	0					
0		SMP FRAME TYPE (41h)											
1		FUNCTION (85h)											
2		FUNCTION RESULT											
3			F	RESPONSE L	ENGTH (00h))							
4	(MSB)	MSB)											
7		=		CR	C			(LSB)					

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 309.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 309.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 309. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 634

28 January 2008

Author: hpq-reliiott
Subject: Note
Date: 6/20/2008 4:56:28 PM -07'00'
ACCEPT - DONE (Added:
"The Broadcast source zone group list shall contain no more than one entry for each source zone group."

6/11 require that no source zone group be included more than once. Don't require sorting.)

Require the broadcast source zone group list to be sorted in ascending order.

Author: Relliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
at end of sentence with "forwards" add: "as specified in 4.9.5"

Author: wdc-mevans Subject: Highlight
Date: 5/26/2008 9:35:30 AM -07'00'

> four. s/b four bytes.

28 January 2008

T10/1760-D Revision 14

635

The CRC field is defined in 10.4.3.3.8.

10.4.3.21 ZONE LOCK function

The ZONE LOCK function locks a zoning expander device to provide exclusive access to SMP zone configuration functions (see 4.9.6.3) for one zone manager. All zoning expander devices shall support this function

If:

- a) the ZONING ENABLED bit is set to one, the ZONE LOCKED bit is set to zero in the REPORT GENERAL
 response (see 10.4.3.4), and the SMP initiator port has access to zone group 2 (see 4.9.3.2);
- b) the ZONING ENABLED bit is set to one, the ZONE LOCKED bit is set to zero in the REPORT GENERAL response (see 10.4.3.4); and the PHYSICAL PRESENCE ASSERTED bit is set to one in the REPORT GENERAL response;
- c) the ZONING ENABLED bit is set to one, the ZONE LOCKED bit is set to zero in the REPORT GENERAL response (see 10.4.3.4), and the request contains the correct zone manager password (see 4.9.1);
- d) the ZONING ENABLED bit is set to zero and the PHYSICAL PRESENCE ASSERTED bit is set to one in the REPORT GENERAL response;
- the ZONING ENABLED bit is set to one, the ZONE LOCKED bit is set to one in the REPORT GENERAL response, and the request originated from the active zone manager; or
- f) the ZONING ENABLED bit is set to zero and the request contains the correct zone manager password,

then the management device server shall:

- a) set the ACTIVE ZONE MANAGER SAS ADDRESS field to the SAS address of the SMP initiator port in the ZONE LOCK response and the REPORT GENERAL response; and
- b) set the ZONE LOCKED bit to one in the REPORT GENERAL response.

When the management device server changes the ZONE LOCKED bit from zero to one, the locked zoning expander device sets the zoning expander shadow values equal to the zoning expander active values.

Table 310 defines the request format.

Table 310 — ZONE LOCK request

Byte\Bit	7	6	5	4	3	2	1	0		
0				SMP FRAM	E TYPE (40h))				
1				FUNCT	ION (86h)					
2		ALLOCATED RESPONSE LENGTH								
3			REQUEST LENGTH (09h)							
4	(MSB)		EVDEC	TED EVDANI	DER CHANGE	COLINIT				
5		=	EXPEC	TED EXPAIN	DER CHANGE	COONT		(LSB)		
6	(MSB)		701	IE I OCK INIA	CTIVITY TIME	LIMIT				
7		=	201	IE LOCK INA	CIIVIII IIWE	LIMIT		(LSB)		
8			_	ONE MANAC	SED DASSIMO	20				
39		=	ZONE MANAGER PASSWORD							
40	(MSB)				:RC					
43				C	,r.c			(LSB)		

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 635

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

Delete this, as it is already in a) (see 10.4.3.4),

Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00'

Delete this, as it is already in a) (see 10.4.3.4),

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

swap d) and e) so all the ZONING ENABLED bit set to one cases are together

T10/1760-D Revision 14 28 January 2008

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 310.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 310.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 310.

The EXPECTED EXPANDER CHANGE COUNT field is defined in the CONFIGURE GENERAL request (see 10.4.3.18).

An ACTIVATE REQUIRED bit set to one specifies that the zoning expander device shall be unlocked only if the activate step has been completed. An ACTIVATE REQUIRED bit set to zero specifies that the zoning expander device shall be unlocked.

The ZONE LOCK INACTIVITY TIME LIMIT field specifies the minimum time that the locked expander device shall allow between any SMP zone configuration function requests or SMP ZONE LOCK requests from the active zone manager (i.e., the maximum time that a zone manager may allow to pass without accessing the locked expander device) and is reported in the SMP REPORT GENERAL response(see 10.4.3.21). This field specifies the number of 100 ms increments that a locked zoning expander device shall remain locked without processing any SMP zone configuration function or SMP ZONE LOCK function (e.g., a value of one in this field means that the time is less than or equal to 100 ms and a value of two in this field means that the time is less than or equal to 200 ms). A value of zero is this field specifies that there is no zone lock-inactivity time limit (i.e., the zone lock inactivity time is disabled).

The ZONE MANAGER PASSWORD field specifies a password used to allow permission to lock without physical presence being asserted.

The CRC field is defined in 10.4.3.2.8.

Table 311 defines the response format.

Table 311 — ZONE LOCK response

Byte\Bit	7	6	5	4	3	2	1	0				
0				SMP FRAME	TYPE (41h)							
1				FUNCTIO	N (86h)							
2		FUNCTION RESULT										
3		RESPONSE LENGTH (03h)										
4				Rese	nyod							
7		=		Nese	iveu							
8			ACTIVE	ZONE MANA	CEB CAC AD	DRESS						
15		ACTIVE ZONE MANAGER SAS ADDRESS ———————————————————————————————————										
16	(MSB)	(MSB) CRC										
19		=		CR	C			(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 311.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 311.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

Author: Isi-apenokie Aution. isi-gperionice
Subject: Highlight
Date: 5/30/2008 2:03:58 PM -07'00'
"pREJECT (5/7 "this field" is OK as long as other fields are not being mentioned in the paragraph.) This << This field specifies the number of 100 ms >> should be << The ZOND LOCK INACTIVITY TIME LIMIT field specifies the number of 100 ms >> Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' one s/b 0001h Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE two s/b 0002h Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE zero s/b 0000h

This << response(see 10.4.3.21). >> should be << response (see 10.4.3.21). >> there is a missing space.

Page: 636

Author: Isi-gpenokie

Subject: Highlight
Date: 5/26/2008 9:35:50 AM -07'00'
ACCEPT - DONE

28 January 2008 T10/1760-D Revision 14

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 311. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The ACTIVE ZONE MANAGER SAS ADDRESS field is defined in the REPORT GENERAL response (see 10.4.3.4).

The CRC field is defined in 10.4.3.3.8.

10.4.3.22 ZONE ACTIVATE function

The ZONE ACTIVATE function causes the zoning expander device to set the zoning expander active values equal to the zoning expander shadow values (see 4.9.6.4). All zoning expander devices shall support this function. This function is an SMP zone configuration function (see 4.9.6.3).

Table 312 defines the request format.

Table 312 — ZONE ACTIVATE request

Byte\Bit	7	6	5	4	3	2	1	0					
0		SMP FRAME TYPE (40h)											
1				FUNCT	ION (87h)								
2		ALLOCATED RESPONSE LENGTH											
3		REQUEST LENGTH (01h)											
4	(MSB)		5/05/	TED EVDAN		001117							
5			EXPEC	TED EXPAND	DER CHANGE	COUNT		(LSB)					
6				Dee	erved								
7				Res	erveu								
8	(MSB)	(MSB)											
11		-		C	KC			(LSB)					

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 312.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 312.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 312.

The EXPECTED EXPANDER CHANGE COUNT field is defined in the CONFIGURE GENERAL request (see 10.4.3.18).

The CRC field is defined in 10.4.3.2.8.

Table 313 defines the response format.

Table 313 — ZONE ACTIVATE response

Byte\Bit	7	6	5	4	3	2	1	0					
0		SMP FRAME TYPE (41h)											
1		FUNCTION (87h)											
2		FUNCTION RESULT											
3			F	RESPONSE L	ENGTH (00h)							
4	(MSB)	(ISB) CRC											
7		5'		CR	C			(LSB)					

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 313.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 313.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 313. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The CRC field is defined in 10.4.3.3.8.

10.4.3.23 ZONE UNLOCK function

The ZONE UNLOCK function unlocks a zoning expander device (see 4.9.6.5). All zoning expander devices shall support this function is an SMP zone configuration function (see 4.9.6.3).

If a locked zoning expander device processes a ZONE UNLOCK request from the active zone manager then the maragement device server shall set the ZONE LOCKED bit to zero in the REPORT GENERAL response [see 10.4.3.4). If the CONFIGURING bit is set to one in the REPORT GENERAL response then the zoning expander device shall set the CONFIGURING bit to zero and originate a Broadcast (Change) from either:

- a) each zone group whose zone permission table entries or zone phy information has changed; or
- b) zone group 1.

Page: 638

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

CONFIGURING bit

ZONE CONFIGURING bit

to match Isi-bbesmer comment on first page

Author: RElliott Subject: Note

Date: 8/31/2008 3:38:03 PM -07'00'

ACCEPT - DONE (7/14 yes, keep the Broadcast rule in the model section only. See comment in that section about preserving the if configuring bit was set to one rule.)

Should this Broadcast (Change) rule just refer to 4.9.6.5?

Author: RElliott

Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

CONFIGURING bit

ZONE CONFIGURING bit

to match Isi-bbesmer comment on first page

28 January 2008 T10/1760-D Revision 14

Table 314 defines the request format.

Table 314 — ZONE UNLOCK request

Byte\Bit	7	6	5	4	3	2	1	0					
0		SMP FRAME TYPE (40h)											
1		function (88h)											
2		ALLOCATED RESPONSE LENGTH											
3		REQUEST LENGTH (01h)											
4		Restricted ————											
5		-		Res	irictea			-					
6				Reserved				ACTIVATE REQUIRED					
7		Reserved											
8	(MSB)				RC								
11		-		C	.RC			(LSB)					

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 314.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 312.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 312.

An ACTIVATE REQUIRED bit set to one specifies that the management device server shall unlock the zoning expander device only if the activate step has been completed. An ACTIVATE REQUIRED bit set to zero specifies that the management device server shall unlock the zoning expander device regardless of whether the activate step has been completed.

The CRC field is defined in 10.4.3.2.8.

Table 315 defines the response format.

Table 315 — ZONE UNLOCK response

Byte\Bit	7	6	5	4	3	2	1	0					
0		SMP FRAME TYPE (41h)											
1		function (88h)											
2		FUNCTION RESULT											
3			F	RESPONSE L	ENGTH (00h)							
4	(MSB)	(MSB) CRC											
7		=		CR	·			(LSB)					

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 315. The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 315.

Working Draft Serial Attached SCSI - 2 (SAS-2)

T10/1760-D Revision 14 28 January 2008

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 315. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The CRC field is defined in 10.4.3.3.8.

10.4.3.24 CONFIGURE ZONE MANAGER PASSWORD function

The CONFIGURE ZONE MANAGER PASSWORD function configures the zone manager password (see 4.9.1). This SMP function shall be supported by SMP target ports in zoning expander devices. Other SMP target ports shall not support this SMP function. This SMP function shall only be processed if:

- a) the request is received from any SMP initiator port and specifies the correct zone manager password;
 or
- b) the request is received from any SMP initiator port while physical presence is asserted.

Table 316 defines the request format.

Table 316 — CONFIGURE ZONE MANAGER PASSWORD request

Byte\Bit	7	6	5	4	3	2	1	0			
0				SMP FRAM	E TYPE (40h))					
1				FUNCT	ION (89h)						
2		ALLOCATED RESPONSE LENGTH									
3		REQUEST LENGTH (11h)									
4	(MSB)		EXPECTED EXPANDER CHANGE COUNT								
5		(LSB)									
6		Reserved SAVE									
7				Res	served						
8			7	ONE MANAG	ER PASSWOR	·D					
39		•		ONE WANAG	EK FASSWON	.D					
40			NEV	V ZONE MAN	ACED DACOM	OBD					
71		•	NEW ZONE MANAGER PASSWORD								
72	(MSB)			_	RC						
75		•			NO.			(LSB)			

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 316.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 316.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 316.

The EXPECTED EXPANDER CHANGE COUNT field is defined in the CONFIGURE GENERAL request (see 10.4.3.18).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 640

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

SMP target ports

s/b

management device servers

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

SMP target ports

s/b

management device servers

28 January 2008 T10/1760-D Revision 14

The SAVE field specifies whether the management device server shall apply the specified changes to the current value and/or the saved value of the zone manager password and is defined in table 317.

Table 317 - SAVE field

Code	Values updated	Return function result of SAVING NOT SUPPORTED if saving is not supported
00b	Current	no
01b	Saved ^a	yes
10b	Saved ^a , if saving is supported, and surrent.	no
11b	Saved ^a and current.	yes

a The management device server shall return the function result without waiting for the save to complete, and set the save bit to one in the REPORT GENERAL response until the save is complete.

If physical presence is not asserted and the ZONE MANAGER PASSWORD field does not match the current zone manager password maintained by the management device server, then the management device server shall return a function result of NO MANAGEMENT ACCESS RIGHTS in the response frame (see table 245 in 10.4.3.3).

The NEW ZONE MANAGER PASSWORD field specifies a new value for the zone manager assword maintained by the management device server. A NEW ZONE MANAGER PASSWORD field set to <u>zero</u> specifies that the zone manager password is disabled and all zone managers have access. A NEW ZONE MANAGER PASSWORD field set to DISABLED (see table 26 in 4.9.1) specifies that the zone manager password is disabled and shall only be allowed if physical presence is asserted.

The CRC field is defined in 10.4.3.2.8.

Table 318 defines the response format.

Table 318 — CONFIGURE ZONE MANAGER PASSWORD response

Byte\Bit	7	6	5	4	3	2	1	0			
0		SMP FRAME TYPE (41h)									
1		FUNCTION (89h)									
2		FUNCTION RESULT									
3		RESPONSE LENGTH (00h)									
4	(MSB)	(MSB) CRC									
7				CR	·C			(LSB)			

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 318.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 318.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 318. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The CRC field is defined in 10.4.3.3.8.

Working Draft Serial Attached SCSI - 2 (SAS-2)

641

Page: 641

```
Subject: Note
Date: 9/2/2008 4:06:49 PM -07'00'
    ACCEPT - DONE
    Add footnote emphasizing that this does update current values, not shadow values. There is no shadow password.
Author: RElliott
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE
Subject: Underline
    zero
    ZERO (see table 26 in 4.9.1)
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
    and shall
    and access shall
Author: hpq-relliott
Subject: Note
Date: 9/2/2008 4:25:29 PM -07'00'

ACCEPT - DONE (29h assigned to DISABLED PASSWORD NOT SUPPORTED
    7/14 yes, add a new function result for this)
```

The expander device should be allowed to prohibit use of DISABLED (policy choice). If so, define which function result to return if it is attempted.

T10/1760-D Revision 14 28 January 2008

10.4.3.25 CONFIGURE ZONE PHY INFORMATION function

10.4.3.25.1 CONFIGURE ZONE PHY INFORMATION function overview

The CONFIGURE ZONE PHY INFORMATION function configures zone phy information for one or more phys in a locked zoning expander device. This function shall be supported by all zoning expander devices. This function is an SMP zone configuration function (see 4.9.6.3).

SMP zone configuration functions change the zoning expander shadow values. These do not become zoning expander active values until the activate step (see 4.9.6.4).

10.4.3.25.2 CONFIGURE ZONE PHY INFORMATION request

Table 319 defines the request format.

Table 319 — CONFIGURE ZONE PHY INFORMATION request

Byte\Bit	7	6	5	4	3	2	1	0				
0				SMP FRAM	IE TYPE (40h)							
1				FUNCT	12N (8Ah)							
2		ALOCATED RESPONSE LENGTH										
3		REQUEST LENGTH ((n - 7) / 4)										
4	(MSB)											
5		EXPECTED EXPANDER CHANGE COUNT (LSB)										
6		Reserved SAVE										
7		N	UMBER OF Z	ONE PHY CO	ONFIGURATIO	N DESCRIPTO	RS					
		2	Zone phy co	onfiguration	descriptor I	st						
8		Zone phy c	onfiguration	n descriptor	(first)(see ta	able 321 in 1	0 4 3 25 3)					
11		20.10 p.1.y 0	ornigaratio.	, accompto	(01)(000 11	.5.0 02 1 11.1	0.110.20.0)					
n - 7		Zone phy c	onfiguration	n descriptor	(last)(see ta	able 321 in 1	0 4 3 25 3)					
n - 4		_one pily o	.cigaratioi	. 2000/ipt0/	(.301)(000 18	021 111						
n - 3	(MSB)				CRC							
n		=			, NO			(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 319.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 319.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

642

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 319.

The EXPECTED EXPANDER CHANGE COUNT field is defined in the SMP CONFIGURE GENERAL request (see 10.4.3.18).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 642

values, which do

s/b

Author: RElliott Subject: Highlight Date: 9/3/2008 3:57:44 PM -07'00' ACCEPT - DONE values. These do

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Per 6/11 LB call, change the reserved bits in byte 6 to a Zone Phy Configuration Descriptor Length field.

The participants preferred not to extend the length of this frame. Since the descriptor is only 4 bytes so far, it is unlikely that restricting the field to 6 bits will cause problems.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

The 6/11 LB call discussed whether to add 4 bytes to the CONFIGURE ZONE PHY INFORMATION request frame to allow for a one-byte ZONE PHY CONFIGURATION DESCRIPTOR LENGTH field (like the others all have), and decided not to do so.

The SAVE field specifies whether the management device server shall apply the specified changes to the current value and/or the saved value of the zone phy information and is defined in table 329.

Table 320 - SAVE field

Code	Values updated	Return function result of SAVING NOT SUPPORTED if saving is not supported
00b	Current	no
01b	Saved ^a	yes
10b	Saved ^a , if saving is supported, and current.	no
11b	Saved ^a and current,	yes

The management device server shall return the function result without waiting for the save to complete, and set the saving bit to one in the REPORT GENERAL response until the save is complete.

The NUMBER OF SOME PHY CONFIGURATION DESCRIPTORS field specifies the number of zone phy configuration descriptors in the request.

The zone phy configuration descriptor list contains zone phy configuration descriptors as defined in 10.4.3.25.3.

The CRC field is defined in 10.4.3.2.8.

10.4.3.25.3 Zone phy configuration descriped

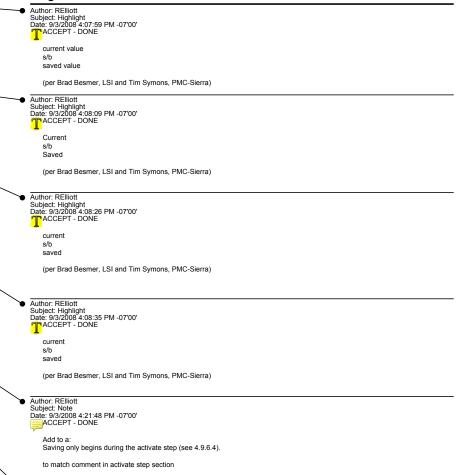
Table 321 defines the zone phy configuration descriptor

Table 321 — Zone phy configuration descriptor

Byte\Bit	7	6	5	4	3	2	1	0	
0		PHY IDENTIFIER							
1	Res	erved	INSIDE ZPSDS PERSISTENT	REQUESTED INSIDE ZPSDS	Reserved	ZONE GROUP PERSISTENT	Res	erved	
2			•	R	eserved				
3				ZOI	NE GROUP				

The PHY IDENTIFIER field specifies the phy to which the zone phy configuration descriptor information shall be applied.

The INSIDE ZPSDS PERSISTENT bit specifies the value of the INSIDE ZPSDS PERSISTENT bit in the zone phinformation (see 4.9.3.1).


The REQUESTED INSIDE ZPSDS bit specifies the value of the REQUESTED INSIDE ZPSDS bit in the zone phy information (see 4.9.3.1).

The ZONE GROUP PERSISTENT bit specifies the value of the ZONE GROUP PERSISTENT bit in the zone phy information (see 4.9.3.1).

The ZONE GROUP field specifies the value of the ZONE GROUP field in the zone phy information (see 4.9.3.1).

Page: 643

Author: RElliott

Comments from page 643 continued on next page

28 January 2008 T10/1760-D Revision 14

The SAVE field specifies whether the management device server shall apply the specified changes to the current value and/or the saved value of the zone phy information and is defined in table 320.

Table 320 - SAVE field

Code	Values updated	Return function result of SAVING NOT SUPPORTED if saving is not supported
00b	Current	no
01b	Saved ^a	yes
10b	Saved ^a , if saving is supported, and current.	no
11b	Saved ^a and current.	yes

a The management device server shall return the function result without waiting for the save to complete and set the SAVING bit to one in the REPORT GENERAL response until the save is complete.

The NUMBER OF ZONE PHY CONFIGURATION DESCRIPTORS field specifies the number of zone phy configuration descriptors in the request.

The zone phy configuration descriptor is contains zone phy configuration descriptors as defined in 10.4.3.25.3.

The CRC field is defined in 10.4.3.2.8.

10.4.3.25.3 Zone phy configuration descriptor

Table 321 defines the zone phy configuration descriptor.

Table 321 — Zone phy configuration descriptor

Byte\Bit	7	6	5	4	3	2	1	0		
0		PHY IDENTIFIER								
1	Reserved ZPSDS INSIDE REQUESTED ZONE Reserved GROUP RESISTENT ZPSDS PERSISTENT						served			
2		Reserved								
3		ZONE GROUP								

The PHY IDENTIFIER field specifies the phy to which the zone phy configuration descriptor information shall be applied.

The INSIDE ZPSDS PERSISTENT bit specifies the value of the INSIDE ZPSDS PERSISTENT bit in the zone phy information (see 4.9.3.1).

The REQUESTED INSIDE ZPSDS bit specifies the value of the REQUESTED INSIDE ZPSDS bit in the zone phy information (see 4.9.3.1).

The ZONE GROUP PERSISTENT bit specifies the value of the ZONE GROUP PERSISTENT bit in the zone phy information (see 4.9.3.1).

The ZONE GROUP field specifies the value of the ZONE GROUP field in the zone phy information (see 4.9.3.1).

Working Draft Serial Attached SCSI - 2 (SAS-2)

643

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

request

zone phy configuration descriptor list

Author: RElliott

Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

Add:

Because the maximum number of response bytes is 1 023 bytes (see 9.4.3), the length of the header is 8 bytes, and the length of the zone phy configuration descriptor is 4 bytes, the zone phy configuration descriptor list has a maximum of 254 entries.

Author: hpq-relliott

Subject: Note
Date: 6/20/2008 10:28:06 AM -07'00'
ACCEPT - DONE (

Added:

"contains... for each expander phy in the expander device."

"The zone phy configuration descriptor list shall contain no more than one zone phy configuration descriptor with the same value in the phy identifier field."

6/11 no sort needed. No duplicates allowed, though.)

Require the zone phy configuration descriptor list to be sorted in ascending order based on phy identifier

T10/1760-D Revision 14 28 January 2008

10.4.3.25.4 CONFIGURE ZONE PHY INFORMATION response

Table 322 defines the response format.

Table 322 — CONFIGURE ZONE PHY INFORMATION response

Byte\Bit	7	6	5	4	3	2	1	0		
0		SMP FRAME TYPE (41h) FUNCTION (8Ah) FUNCTION RESULT RESPONSE LENGTH (00h)								
1		FUNCTION (8Ah)								
2		FUNCTION RESULT								
3		RESPONSE LENGTH (00h)								
4	(MSB)			CR	C					
7		•		Civ	C			(LSB)		

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 322.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 322.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 322. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The CRC field is defined in 10.4.3.3.8.

10.4.3.26 CONFIGURE ZONE PERMISSION TABLE function

10.4.3.26.1 CONFIGURE ZONE PERMISSION TABLE function overview

The CONFIGURE ZONE PERMISSION TABLE function configures the zone permission table. This function shall be supported by all zoning expander devices. This function is an SMP zone configuration function (see 4.9.6.3).

SMP zone configuration functions change the zoning expander shadow values and do not become zoning expander active values until the zoning expander device processes the activate step (see 4.9.6.4).

Annex I describes examples of using multiple zone configuration descriptors.

Page: 644

Author: RElliott Subject: Highlight Date: 9/3/2008 4:09:33 PM -07'00' ACCEPT - DONE values and do not

s/b values, which do not 28 January 2008 T10/1760-D Revision 14

10.4.3.26.2 CONFIGURE ZONE PERMISSION TABLE request

Table 323 defines the request format.

Table 323 — CONFIGURE ZONE PERMISSION TABLE request

Byte\Bit	7	6	5	4	3	2	6 5 4 3 2 1											
0			S	SMP FRAME T	YPE (40h)													
1		FUNCTION (8Bh)																
2		ALLOCATED RESPONSE LENGTH																
3		REQUEST LENGTH ((n - 7) / 4)																
4	(MSB)																	
5		EXPECTED EXPANDER CHANGE COUNT (LSB)																
6			STAR	TING SOURCE	E ZONE GRO	UP												
7		NUMBER OF ZONE PERMISSION CONFIGURATION DESCRIPTORS																
8	NUMBER C	OF ZONE GROUPS		Rese	erved		SA	VE										
9				Reser	ved													
15		-		Reser	veu													
		Zone	permission	configuratio	n descripto	list												
16		Zone perr	nission con	figuration de		st)(see tabl	e 326 in											
31		-		10.4.3.	26.3)		/											
n - 20		Zone perr	nission con	figuration de		st)(see tabl	e/326 in											
n - 4		-		10.4.3.	26.3)													
n - 3	(MSB)			CRO	,													
n		='		CKI		/		(LSB)										

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 323.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 323.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3/2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 323.

The EXPECTED EXPANDER CHANGE COUNT field is defined in the SMP CONFIGURE GENERAL request (see 10.4.3.18).

The STARTING SOURCE GROUP field specifies the first source zone group (i.e., s) to be written with the first zone permission configuration descriptor.

The NUMBER OF ZONE PERMISSION CONFIGURATION DESCRIPTORS field specifies the number of zone permission configuration descriptors that follow.

Working Draft Serial Attached SCSI - 2 (SAS-2)

645

Page: 645

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' REJECT

> The 6/11 LB call discussed whether to move the NUMBER OF ZONE CONFIGURATION DESCRIPTORS field to byte 15 (immediately in front of the descriptor list), and decided not to do so.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

> Per the 6/11 LB call, add a Zone Permission Configuration Descriptor Length field (in byte 9). Do not move the Number Of field to byte 14.

> The Number Of Zone Groups field sort of does the same thing, but this will let the descriptor grow beyond just having zone group bits. Also, this field is always understandable while the Reserved values for the Number Of Zone Groups field (which could be defined in the future) cannot be understood by current software.

Author: Isi-gpenokie
Subject: Cross-Out
Date: 5/29/2008 2:52:19 PM -07'00'
Date: 5/29/

This << that follow >> is not needed.

The NUMBER OF ZONE GROUPS field specifies the number of elements in each zone permission configuration descriptor and is defined in table 324.

Table 324 — NUMBER OF ZONE GROUPS field

	Code	Description
	00b	128 zone groups
	01b	258 zone groups
4	All others	Reserved

The SAVE field specifies whether the management device server shall apply the specified changes to the current value and/or the saved value of the zone permission table and is defined in table 325.

Table 325 - SAVE field

Code	Values updated	Return function result of SAVING NOT SUPPORTED if saving is not supported
00b	Current	no
01b	Saved ^a	yes
10b	Saved ^a , if saving is supported, and current.	no
11b	Saved ^a and current.	yes

a The management device server shall return the function result without waiting for the save to complete, and set the saving bit to one in the REPORT GENERAL response until the save is complete.

The zone permission configuration descriptor list contains zone permission configuration descriptors as defined in 10.43.26.3. The device server shall process the zone permission configuration descriptors in order (i.e., a subsequent zone permission configuration descriptor) overrides a previous zone permission configuration descriptor).

The CRC field is defined in 10.4.3.2.8.

10.4.3.26.3 Zone permission configuration descriptor

Table 326 defines the zone permission configuration descriptor containing 128 zone groups.

Table 326 — Zone permission configuration descriptor for source zone group (i.e., s) for 128 zone groups

Byte\Bit	7	6	5	4	3	2	1	0		
0	ZP[s, 127]	ZP[s, 126]	ZP[s, 125]	ZP[s, 124]	ZP[s, 123]	ZP[s, 122]	ZP[s, 121]	ZP[s, 120]		
15	ZP[s, 7] (ignored)	ZP[s, 6] (ignored)	ZP[s, 5] (ignored)	ZP[s, 4] (ignored)	ZP[s, 3]	ZP[s, 2]	ZP[s, 1] (ignored)	ZP[s, 0] (ignored)		

Author: RElliott
Subject: Highlight
Date: 97/3/2008 4:44:35 PM -07'00'
TACCEPT - DONE
current
s/b
shadow
(per Brad Besmer)

◆ Author: REllicitt
Subject: Highlight
Date: 9/3/2008 4:44:32 PM -07'00'

TACCEPT - DONE
current
s/b
shadow

(per Brad Besmer)

Author: RElliott
Subject: Highlight
Date: 9/3/2008 4:44:40 PM -07'00'
TACCEPT - DONE
current
s/b
shadow

(per Brad Besmer)

Author: RElliott
Subject: Highlight
Date: 9/3/2008 4:44:44 PM -07'00'

ACCEPT - DONE
current
s/b
shadow

(per Brad Besmer)

Author: RElliott
Subject: Note
Date: 9/3/2008 4:21:55 PM -07'00'
ACCEPT - DONE
Add to a:

to match comment in activate step section

Saving only begins during the activate step (see 4.9.6.4).

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00'

Comments from page 646 continued on next page

T10/1760-D Revision 14 28 January 2008

The NUMBER OF ZONE GROUPS field specifies the number of elements in each zone permission configuration descriptor and is defined in table 324.

Table 324 — NUMBER OF ZONE GROUPS field

Code	Description
00b	128 zone groups
01b	256 zone groups
All others	Reserved

The SAVE field specifies whether the management device server shall apply the specified changes to the current value and/or the saved value of the zone permission table and is defined in table 325.

Table 325 - SAVE field

Code	Values updated	Return function result of SAVING NOT SUPPORTED if saving is not supported
00b	Current	no
01b	Saved ^a	yes
10b	Saved ^a , if saving is supported, and carrent.	no
11b	Saved ^a and current.	yes
a Thou	nongament device conver aboll return the function requi	It without waiting for the save to complete

^a The management device server shall return the function result without waiting for the save to complete, and set the SAVING bit to one in the REPORT GENERAL response until the save is complete.

The zone permission configuration descriptor list contains zone permission configuration descriptors as defined in 10.43.26.3. The device server shall process the zone permission configuration descriptors in order (i.e., a subsequent zone permission configuration descriptor).

The CRC field is defined in 10.4.3.2.8.

646

10.4.3.26.3 Zone permission configuration descriptor

Table 326 defines the zone permission configuration descriptor containing 128 zone groups.

Table 326 — Zone permission configuration descriptor for source zone group (i.e., s) for 128 zone groups

Byte\Bit	7	6	5	4	3	2	1	0	
0	ZP[s, 127]	ZP[s, 126]	ZP[s, 125]	ZP[s, 124]	ZP[s, 123]	ZP[s, 122]	ZP[s, 121]	ZP[s, 120]	
15	ZP[s, 7] (ignored)	ZP[s, 6] (ignored)	ZP[s, 5] (ignored)	ZP[s, 4] (ignored)	ZP[s, 3]	ZP[s, 2]	ZP[s, 1] (ignored)	ZP[s, 0] (ignored)	

Working Draft Serial Attached SCSI - 2 (SAS-2)

The zone permission configuration descriptor list contains zone permission configuration descriptors as defined in 10.4.3.26.3.

The zone permission configuration descriptor list contains a zone permission configuration descriptor as defined in 10.4.3.26.3 for each source zone group in ascending order starting with the source zone group specified in the starting source group field.

so the sorting order is explicit.

Author: RElliott
Subject: Note
Date: 6/30/2008 3:16:52 PM -07'00'

Add:

The zone permission configuration descriptor format is based on the number of zone groups field as defined in table 328. with a table showing:

Number Of Zone Groups field Zone permission configuration descriptor format

00b Table 329 01b Table 330 All others Reserved 28 January 2008 T10/1760-D Revision 14

Table 327 defines the zone permission configuration descriptor containing 256 zone groups.

Table 327 — Zone permission configuration descriptor for source zone group (i.e., s) for 256 zone groups

Byte\Bit	7	6	5	4	3	2	1	0
0	ZP[s, 255]	ZP[s, 254]	ZP[s, 253]	ZP[s, 252]	ZP[s, 251]	ZP[s, 250]	ZP[s, 249]	ZP[s, 248]
31	ZP[s, 7] (ignored)	ZP[s, 6] (ignored)	ZP[s, 5] (ignored)	ZP[s, 4] (ignored)	ZP[s, 3]	ZP[s, 2]	ZP[s, 1] (ignored)	ZP[s, 0] (ignored)

The zone permission configuration descriptor contains all of the zone permission table entries for the source zone group (i.e., s). To preserve symmetry about the ZP[s, s] table axis, the management device server shall apply the same value to both the source and destination zone groups for the zone permission entries.

Table 328 defines how the zone permission descriptor bits shall be set by the management application client and processed by the management device server.

Table 328 — Zone permission configuration descriptor bit requirements

Source zone group (i.e., s)	Management application client requirement(s) ^a	Management device server requirement(s) ^a				
0	ZP[s, 0] shall be set to zero. ZP[s, 1] shall be set to one. ZP[s, 2 through (z-1)] shall be set to zero.	ZP[s, 0 through (z-1)] shall be ignored.				
1	ZP[s, 0 through (z-1)] shall be set to one.	ZP[s, 0 through (z-1)] shall be ignored.				
4, 5, 6 or 7	ZP[s, 0] shall be set to zero. ZP[s, 1] shall be set to one. ZP[s, 4 through (z-1)] shall be set to zero.	ZP[s, 0 through (z-1)] shall the ignored.				
ZP[s, 0] shall be set to zero. ZP[s, 1] shall be set to one. ZP[s, 1] shall be set to one. ZP[s, 2 through 3] may be set to zero or one. ZP[s, 4 through 7] shall be set to zero. ZP[s, 8 through (z-1)] may be set to zero or one.		ZP[s, 0 through 1] shall be ignored. ZP[s, 2 through 3] shall processed. ZP[s, 4 through 7] shall be ignored. ZP[s, 8 through (z-1)] shall processed. For each source zone group t other than s, ZP[t, s] shall be set to ZP[s, t].				
a The n	a The number of zone groups (i.e., z) is specified in NUMBER OF ZONE GROUPS field.					

Page: 647

```
Author: RElliott
Subject: Highlight
Date: 71772008 3:05:23 PM -07'00'
TACCEPT - DONE
shall
s/b
shall be
```

T10/1760-D Revision 14 28 January 2008

10.4.3.26.4 CONFIGURE ZONE PERMISSION TABLE response

Table 329 defines the response format.

Table 329 — CONFIGURE ZONE PERMISSION TABLE response

Byte\Bit	7	6	5	4	3	2	1	0			
0		SMP FRAME TYPE (41h)									
1		FUNCTION (8Bh)									
2		FUNCTION RESULT									
3		RESPONSE LENGTH (00h)									
4	(MSB)										
7	CRC((LSB)					

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 329.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 329.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 329. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The CRC field is defined in 10.4.3.3.8.

10.4.3.27 CONFIGURE ROUTE INFORMATION function

The CONFIGURE ROUTE INFORMATION function sets an expander route entry within the expander route table of a configurable expander device. This SMP function shall be supported by management device servers in expander devices if the CONFIGURABLE ROUTE TABLE field is set to one in the SMP REPORT GENERAL response (see 10.4.3.4). Other management device servers shall not support this SMP function.

Table 330 — CONFIGURE ROUTE INFORMATION request

Byte\Bit	7	6	5	4	3	2	1	0		
0			5	SMP FRAME	TYPE (40h)					
1				FUNCTION	v (90h)					
2		ALLOCATED RESPONSE LENGTH								
3		REQUEST LENGTH (00h or 09h)								
4	(MSB)		EXPECTED EXPANDER CHANGE COUNT (LSB)							
5										
6	(MSB)		EVALUETE DOUTE UPEY							
7			EXPANDER ROUTE INDEX (LSE					(LSB)		
8				Resei	ved					
9				PHY IDEN	ITIFIER					
10				Rese	nyod					
11		=		Nese	iveu					
12	DISABLE EXPANDER ROUTE ENTRY				Reserved					
13				Rese	rved					
15				11000	vea					
16				ROUTED SAS	SADDRESS					
23				NOOTED OA	ADDITEOU					
24				Rese	rved					
39				11000						
40	(MSB)	_		CR	С					
43								(LSB)		

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 330.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 330.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

If the ALLOCATED RESPONSE LENGTH field is set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field to 00h in the response frame; and
- b) return the first 4 bytes defined in table 331 plus the CRC field as the response frame.

T10/1760-D Revision 14 28 January 2008

If the ALLOCATED RESPONSE LENGTH field is not set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field in the response frame to the value defined in table 331 (i.e., 00h); and
- b) return the response frame as specified by the ALLOCATED RESPONSE LENGTH field.

NOTE 125 - Future versions of this standard may change the value defined in table 331

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to one of the values defined in table 330 based on the LONG RESPONSE bit in the REPORT GENERAL response (see 10.4.3.4). A REQUEST LENGTH field set to 00h specifies that there are 9 dwords before the CRC field.

The EXPECTED EXPANDER CHANGE COUNT field is defined in the SMP CONFIGURE GENERAL request (see 10.4.3.18).

The EXPANDER ROUTE INDEX field specifies the expander route index for the expander route entry being configured (see 4.6.7.3).

The PHY IDENTIFIER field specifies the phy for which the expander reute entry is being configured (see 4.6.7.3).

The DISABLE EXPANDER ROUTE ENTRY bit specifies whether the ECM shall use the expander route entry to route connection requests (see 4.6.7.3). If the DISABLE EXPANDER ROUTE ENTRY bit is set to zero, then the ECM shall use the expander route entry to route connection requests. If the DISABLE EXPANDER ROUTE ENTRY bit is set to one, the ECM shall not use the expander route entry to route connection requests.

The ROUTED SAS ADDRESS field specifies the SAS address for the expander route entry being configured (see 4.6.7.3).

The CRC field is defined in 10.4.3.2.8.

Table 331 defines the response format.

Table 331 — CONFIGURE ROUTE INFORMATION response

Byte\Bit	7	6	5	4	3	2	1	0			
0		SMP FRAME TYPE (41h)									
1		FUNCTION (90h)									
2		FUNCTION RESULT									
3		RESPONSE LENGTH (00h)									
4	(MSB)	(MSB) CRC									
7		•		CR				(LS/3)			

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 331

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 331.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 331.

The CRC field is defined in 10.4.3.3.8.

10.4.3.28 PHY CONTROL function

650

The PHY CONTROL function requests actions by the specified phy. This SMP function may be implemented by any management device server. In zoning expander devices, if zoning is enabled then this function shall only be processed from SMP initiator ports that have access to zone group 2 or the zone group of the specified phy (see 4.9.3.2).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 650

Author: Isi-gpenokie

Subject: Cross-Out Date: 5/6/2008 1:07:50 PM -07'00'

REJECT (it's a warning, so software might avoid the stupid mistakes that led to this field being added)

Predicting the future in not a good idea so delete this note << NOTE 125 - Future versions of this standard may change the value defined in table 331. >>

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

TACCEPT - DONE

This << one, the ECM shall not use >> should be << one, then the ECM shall not use >>

Author: RElliott

Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00'

enabled then

enabled, then

Table 332 defines the request format.

Table 332 — PHY CONTROL request

Byte\Bit	7	6	5	4	3	2	1	0			
0				SMP FRAME	TYPE (40h)						
1				FUNCTIO	ท (91h)						
2		ALLOCATED RESPONSE LENGTH									
3		REQUEST LENGTH (00h or 09h)									
4	(MSB)	(MSB) EXPECTED EXPANDER CHANGE COUNT —									
5		-	EXPECT	ED EXPANDE	R CHANGE	COUNT		(LSB)			
6											
8		Reserved ——									
9				PHY IDE	NTIFIER						
10				PHY OPI	ERATION						
11		Reserved									
12 23		Reserved									
24 31		ATTACHED DEVICE NAME									
32	PROGRAM	MMED MINIMUM	1 PHYSICAL L	INK RATE		Res	served				
33	PROGRAM	MMED MAXIMUN	I PHYSICAL I	LINK RATE		Res	served				
34				Rese	niod						
35		-		rese	ı veu						
36		Reser	rved		PAR	TIAL PATHW	AY TIMEOUT	VALUE			
37		Reserved ————									
39		-		rese	ı veu						
40	(MSB)			0.0	0						
43		-		CR	C			(LSB)			

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 332.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 332.

Working Draft Serial Attached SCSI - 2 (SAS-2)

T10/1760-D Revision 14 28 January 2008

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

If the ALLOCATED RESPONSE LENGTH field is set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field to 00h in the response frame; and
- b) return the first 4 bytes defined in table 335 plus the CRC field as the response frame.

If the ALLOCATED RESPONSE LENGTH field is not set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field in the response frame to the value defined in table 335 (i.e., 261); and
- b) return the response frame as specified by the ALLOCATED RESPONSE LENGTH field.

NOTE 126 - Future versions of this standard may change the value defined in table 335.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to one of the values defined in table 332 based on the LONG RESPONSE bit in the REPORT GENERAL response (see 10.4.3.4). A REQUEST LENGTH field set to 00h specifies that there are 9 dwords before the CRC field.

The EXPECTED EXPANDER CHANGE COUNT field is defined in the SMP CONFIGURE GENERAL request/see 10.4.3.18).

The PHY IDENTIFIER field specifies the phy (see 4.2.8) to which the SMP PHY CONTROL reguest applies.

Table 333 defines the PHY OPERATION field.

Table 333 — PHY OPERATION field (part 1 of 3)

Code	Operation	Description
00h	NOP	No operation.

Phys compliant with previous versions of this standard did not reject this phy operation due to

Page: 652

Author: Isi-gpenokie

Subject: Cross-Out Date: 5/6/2008 1:07:50 PM -07'00'

REJECT (this is a warning to software to not make the same mistake that led to this field being added)

Predicting the future in not a good idea so delete this note << NOTE 126 - Future versions of this standard may change the value defined in table 335. >>

Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 2:04:53 PM -07'00'

You should change the orphans on this table so that you don't get one row all be it's self on one page << Table 333 — PHY OPERATION field (part 1 of 3) >>

b Phys compliant with previous versions of this standard returned SMP FUNCTION REJECTED.

Table 333 — PHY OPERATION field (part 2 of 3)

Tr.		Table 333 — PHY OPERATION field (part 2 of 3)	Page: 653
Code	Operation	Description	Author: RElliott
		If: a) a SAS phy is attached; b) a SATA phy is attached and there is no affiliation; or c) a SATA phy is attached and an affiliation exists for the STP initiator port with the same SAS address as the SMP initiator port that opened this SMP connection,	Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE perform s/b then perform
		then: a) if the specified phy is a physical phy, perform a link reset sequence (see 4.4) on the specified phy and enable the specified phy; and b) if the specified phy is a virtual phy, perform arrinternal reset and enable the specified phy.	Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' CACCEPT - DONE perform
01h	LINK RESET	If a SATA phy is attached and an affiliation does not exist for the STP initiator port with the same SAS address as the SMP initiator port that opened this SMP connection, then the management device server shall return a function result of AFFILIATION VIOLATION in the response frame (see table 245 in 10.4.3.3). ^a	s/b then perform Author: Isi-bday
		See 7.11 for Broadcast (Change) requirements related to this phy operation in an expander device.	Subject: Cross-Out Date: 6/30/2008 3:08:17 PM -07'00' TACCEPT - DONE (Deleted.
		Any affiliation (see 7.17.4) shall continue to be present. The phy shall bypass the SATA spinup hold state, if implemented (see 6.8.3.9).	5/5 either weaken to a "sometimes sets", or remove) While the LINK RESET phy operation is in progress, the management device server sets the NEGOTIATED PHYSICAL LINK RATE field and the NEGOTIATED PHYSICAL LINK RATE field to RESET. IN PROGRESS in the SMP DISCOVER response (see
		The management device server shall return the PHY CONTROL response without waiting for the LINK RESET phy operation to complete.	10.4.3.10). This is only true for certain cases based on SP state machine ResetStatus variable.
		While the LINK RESET phy operation is in progress, the management device server sets the NEGOTIATED PHYSICAL LINK RATE field and the NEGOTIATED PHYSICAL LINK RATE field to RESET_IN_PROGRESS in the SMP_DISCOVER-response (see 10-4.3-10).	Author: Isi-genekie Subject: Highlight Date: 56/2008 1:07:50 PM -07'00'
		If the specified phy is a physical phy, perform a link reset sequence (see 4.4) on the specified phy and enable the specified phy. If the attached phy is a SAS phy or an expander phy, the link reset sequence stall include a hard reset sequence	This << expander phy, the link reset sequence >> should be << expander phy, then the link reset sequence >>
		(see 4.4.2). If the attached phy is a SATA phy, the phy shall bypass the SATA spinup hold state. See 7.11 for Broadcast (Change) requirements related to this phy operation in an expander device.	Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE
02h	HARD	If the specified phy is a virtual phy, perform an internal reset and enable the specified phy.	s/b then the
-	RESET	Any affiliation (see 7.17.4) shall be cleared.	Author: RElliott Subject: Highlight
		The management device server shall return the PHY CONTROL response without waiting for the HARD RESET phy operation to complete.	Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE
		While the HARD RESET phy operation is in progress, the management device server sets the NEGOTIATED PHYSICAL LINK RATE field and the NEGOTIATED PHYSICAL LINK RATE field to RESET_IN_PROGRESS in the SMP DISCOVER response (see	perform s/b then perform
a Phy	vs compliant with	h previous versions of this standard did not reject this phy operation due to	Author: Isi-bday Subject: Cross-Out Date: 6/30/2008 3:08:29 PM -07'00'
affil	liations.	h previous versions of this standard returned SMP FUNCTION REJECTED.	
<u></u>	•	<u>·</u>	Comments from page 653 continued on next page

28 January 2008 T10/1760-D Revision 14

Table 333 — PHY OPERATION field (part 2 of 3)

Code	Operation	Description
		If: a) a SAS phy is attached; b) a SATA phy is attached and there is no affiliation; or c) a SATA phy is attached and there is no affiliation; or c) a SATA phy is attached and an affiliation exists for the STP initiator port with the same SAS address as the SMP initiator port that opened this SMP connection, then: a) if the specified phy is a physical phy, perform a link reset sequence (see 4.4) on the specified phy and enable the specified phy; and b) if the specified phy is a virtual phy, perform an internal reset and enable the specified phy.
01h	LINK RESET	If a SATA phy is attached and an affiliation does not exist for the STP initiator point with the same SAS address as the SMP initiator port that opened this SMP connection, then the management device server shall return a function result of AFFILIATION VIOLATION in the response frame (see table 245 in 10.4.3.3). a See 7.11 for Broadcast (Change) requirements related to this phy operation in an expander device.
		Any affiliation (see 7.17.4) shall continue to be present. The phy shall bypass the SATA spinup hold state, if implemented (see 6.8.3.9).
		The management device server shall return the PHY CONTROL response without waiting for the LINK RESET phy operation to complete.
		While the LINK-RESET phy operation is in progress, the management device server sets the NEGOTIATED PHYSICAL LINK RATE field and the NEGOTIATED PHYSICAL LINK RATE field to RESET_IN_PROGRESS in the SMP DISCOVER response (see 10.4.3.10).
		If the specified phy is a physical phy, perform a link reset sequence (see 4.4) on the specified phy and enable the specified phy. If the attached phy is a SAS phy or an expander phy, the link reset sequence shall include a hard reset sequence (see 4.4.2). If the attached phy is a SATA phy, the phy shall bypass the SATA spinup hold state. See 7.11 for Broadcast (Change) requirements related to this phy operation in an expander device.
02h	HARD	If the specified phy is a virtual phy, perform an internal reset and enable the specified phy.
	RESET	Any affiliation (see 7.17.4) shall be cleared.
		The management device server shall return the PHY CONTROL response without waiting for the HARD RESET phy operation to complete.
		While the HARD RESET phy operation is in progress, the management device server sets the NEGOTIATED PHYSICAL LINK RATE field and the NEGOTIATED PHYSICAL LINK RATE field to RESET_IN_PROGRESS in the SMP DISCOVER response (se 10.4.3.10).

653

Working Draft Serial Attached SCSI - 2 (SAS-2)

ACCEPT - DONE (Deleted. See LINK RESET comment above)

While the HARD RESET phy operation is in progress, the management device server sets the NEGOTIATED PHYSICAL LINK RATE field and the NEGOTIATED PHYSICAL LINK RATE field to RESET_IN_PROGRESS in the SMP DISCOVER response (see 10.4.3.10).

b Phys compliant with previous versions of this standard returned SMP FUNCTION REJECTED.

T10/1760-D Revision 14

28 January 2008

Table 333 — PHY OPERATION field (part 3 of 3)

Code	Operation	Description
03h	DISABLE	Disable the specified phy (i.e., stop transmitting valid dwords and receiving dwords on the specified phy). The LINK RESET and HARD RESET operations may be used to enable the phy. See 7.11 for Broadcast (Change) requirements
		related to this phy operation in an expander device.
04h	Reserved	
05h	CLEAR ERROR LOG	Clear the error log counters reported in the REPORT PHY ERROR LOG function (see 10.4.3.11) for the specified phy.
06h	CLEAR AFFILIATION	Clear an affiliation (see 7.17.4) from the STP initiator port with the same SAS address as the SMP initiator port that opened this SMP connection. If there is no such affiliation, the management device server shall return a function result of AFFILIATION VIOLATION b in the response frame (see table 245 in 10.4.3.3).
		This function shall only be supported by phys in an expander device.
	TRANSMIT SATA PORT	If the expander phy incorporates an STP/SATA-bridge and supports SATA port selectors, the phy shall transmit the SATA port selection signal (see 6.6) which causes the SATA port selector to select the attached phy as the active host phy and make its other host phy inactive. See 7.11 for Broadcast (Change) requirements related to this phy operation in an expander device.
07h	SELECTION SIGNAL	Any affiliation (see 7.17.4) shall be cleared. If the expander phy does not support SATA port selectors, then the management device server shall return a function result of PATY DOES NOT SUPPORT SATA.
		If the expander phy supports SATA port selectors but is attached to a SAS phy or an expander phy, the management device server shall return a function result of SMP FUNCTION FAILED in the response frame (see table 245 in 10.4.3.3).
08h	CLEAR STP I_T NEXUS LOSS	The STP I_T NEXUS LOSS OCCURRED bit in the REPORT PHY SATA function (see 10.4.3.12) shall be set to zero.
09h	SET ATTACHED DEVICE NAME	If the expander phy is attached to a SATA phy, set the ATTACHED DEVICE NAME field reported in the DISCOVER response (see 10.4.3.10) to the value of the ATTACHED DEVICE NAME field in the PHY CONTROL request.
All others	Reserved	

a Phys compliant with previous versions of this standard did not reject this phy operation due to affiliations

If the operation specified by the PHY OPERATION field is unknown, the management device sever shall refurn a function result of SMP FUNCTION FAILED in the response frame (see table 245 in 10.4.3.3) and not process any other fields in the request.

If the PHY IDENTIFIER field specifies the phy which is being used for the SMP consection and a phy operation of LINK RESET, HARD RESET, or DISABLE is requested, the management device server shall not perform the requested operation and shall return a function result of SMP FUNCTION FAILED in the response frame (see table 245 in 10.4.3.3).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 654

```
Author: Isi-gpenokie
Subject: Cross-Out
Date: 5/6/2008 1:07:50 PM -07'00'
 REJECT (there could be affiliations for other ports)
     This term << such >> adds nothing and should be deleted.
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
     s/b
    then the
Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
     This << selectors, the phy shall transmit >> should be << selectors, then the phy shall transmit >>
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
    s/h
    then the
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
     set
     s/b
     , then set
Author: RElliott
Author: Reliiott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
the
     s/n
    then the
 Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
     This << is requested, the management >> should be << is requested, then the management >>
```

b Phys compliant with previous versions of this standard returned SMP FUNCTION REJECTED.

AN UPDATE PARTIAL PATHWAY TIMEOUT VALUE bit set to one specifies that the PARTIAL PATHWAY TIMEOUT VALUE field shall be honored. An UPDATE PARTIAL PATHWAY TIMEOUT VALUE bit set to zero specifies that the PARTIAL PATHWAY TIMEOUT VALUE field shall be ignored.

The ATTACHED DEVICE NAME field is used by the SET ATTACHED DEVICE NAME phy operation and is reserved for all other phy operations. If a management application client detects the ATTACHED DEVICE NAME field set to zero in the DISCOVER response when a SATA device is attached, it shall set the ATTACHED DEVICE NAME field based on the IDENTIFY (PACKET) DEVICE data retrieved by an ATA application client in the same SAS initiator device as follows:

- a) if IDENTIFY (PACKET) DEVICE data word 255 (i.e., the Integrity word) is correct and words 108-111 (i.e., the World Wide Name field) are not set to zero, set this field to the world wide name indicated by words 108-111 according to table 12 in 4.2.5;
- b) if IDENTIFY (PACKET) DEVICE data word 255 (i.e., the Integrity word) is correct and words 108-111 (i.e., the World Wide Name) are set to zero, set this field to \$0000000 00000000; or
- if IDENTIFY (PACKET) DEVICE data word 255 (i.e., the Integrity word) is not correct, set this field to 0000000 0000000h.

The PROGRAMMED MINIMUM PHYSICAL LINK RATE field specifies the minimum physical link rate the phy shall support during a link reset sequence (see 4.4.1). Table 334 defines the values for this field. This value is reported in the DISCOVER response (see 10.4.3.10). If this field is changed along with a phy operation of LINK RESET or HARD RESET, that phy operation sall utilize the new value for this field.

The PROGRAMMED MAXIMUM PHYSICAL LINK RATE field specifies the maximum physical link rates the phy shall support during a link reset sequence (see 4.4.1). Table 334 defirines the values for this field. This value is reported in the DISCOVER response (see 10, 4.3.10). If this field is changed along with a phy operation of LINK RESET or HARD RESET, that phy operation shall utilize the new value for this field.

Table 334 — PROGRAMMED MINIMUM PHYSICAL LINK RATE and PROGRAMMED MAXIMUM PHYSICAL LINK RATE fields

Code	Description
0h	Do not change current value
1h - 7h	Reserved
8h	1.5 Gbps
9h	3 Gbps
Ah	6 Gbps
Bh - Fh	Reserved for future physical link rates

If the PROGRAMMED MINIMUM PHYSICAL LINK RATE field or the PROGRAMMED MAXIMUM PHYSICAL LINK RATE field is set to an unsupported or reserved value, or the PROGRAMMED MINIMUM PHYSICAL LINK RATE field and PROGRAMMED MAXIMUM PHYSICAL LINK RATE field are set to an invalid combination of values (e.g., the minimum is greater than the maximum), the management device sever shall not change either of their values and may return a function result of SMP FUNCTION FAILED in the response frame (see table 245 in 10.4.3.3). If it returns a function result of SMP FUNCTION FAILED, it shall not perform the requested phy operation.

The PARTIAL PATHWAY TIMEOUT VALUE field specifies the amount of time in microseconds the expander phy shall wait after receiving an Arbitrating (Blocked On Partial) confirmation from the ECM before requesting that the ECM resolve pathway blockage (see 7.12.4.5). A PARTIAL PATHWAY TIMEOUT VALUE field value of zero (i.e., 0 µs) specifies that partial pathway resolution shall be requested by the expander phy immediately upon reception of an Arbitrating (Blocked On Partial) confirmation from the ECM. This value is reported in the DISCOVER response (see 10.4.3.10). The PARTIAL PATHWAY TIMEOUT VALUE field is only honored when the UPDATE PARTIAL PATHWAY TIMEOUT VALUE bit is set to one.

The CRC field is defined in 10.4.3.2.8.

Page: 655

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' ACCEPT - DONE (keeping "it") This << device is attached, it shall set the ATTACHED >> should be << device is attached, then the management application client shall set the ATTACHED >> Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE zero s/h 00000000 00000000h Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 2:06:01 PM -07'00' ACCEPT - DONE (added "then" but kept "this field") This << set to zero, set this field to the >> should be << set to zero, then set the ATTACHED DEVICE NAME field to the >> Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 2:06:05 PM -07'00' ACCEPT - DONE (added "then" but kept "this field") This << set to zero, set this field to >> should be << set to zero, then set the ATTACHED DEVICE NAME field to >> Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 2:06:11 PM -07'00' ACCEPT - DONE (added "then" but kept "this field") This << correct, set this field to >> should be << correct, then set the ATTACHED DEVICE NAME field to >> Author: Isi-apenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' ACCEPT - DONE This << HARD RESET, that phy operation >> should be << HARD RESET, then that phy operation >> Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' ACCEPT - DONE This << HARD RESET, that phy >> should be << HARD RESET, then that phy >> Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' This << the maximum), the management device >> should be << the maximum), then the management device >> Author: Isi-gpenokie Subject: Highlight

T10/1760-D Revision 14

T10/1760-D Revision 14 28 January 2008

An UPDATE PARTIAL PATHWAY TIMEOUT VALUE bit set to one specifies that the PARTIAL PATHWAY TIMEOUT VALUE field shall be honored. An UPDATE PARTIAL PATHWAY TIMEOUT VALUE bit set to zero specifies that the PARTIAL PATHWAY TIMEOUT VALUE field shall be ignored.

The ATTACHED DEVICE NAME field is used by the SET ATTACHED DEVICE NAME phy operation and is reserved for all other phy operations. If a management application client detects the ATTACHED DEVICE NAME field set to zero in the DISCOVER response when a SATA device is attached, it shall set the ATTACHED DEVICE NAME field based on the IDENTIFY (PACKET) DEVICE data retrieved by an ATA application client in the same SAS initiator device as follows:

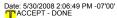
- a) if IDENTIFY (PACKET) DEVICE data word 255 (i.e., the Integrity word) is correct and words 108-111 (i.e., the World Wide Name field) are not set to zero, set this field to the world wide name indicated by words 108-111 according to table 12 in 4.2.5;
- b) if IDENTIFY (PACKET) DEVICE data word 255 (i.e., the Integrity word) is correct and words 108-111 (i.e., the World Wide Name) are set to zero, set this field to 00000000 00000000h; or
- c) if IDENTIFY (PACKET) DEVICE data word 255 (i.e., the Integrity word) is not correct, set this field to

The PROGRAMMED MINIMUM PHYSICAL LINK RATE field specifies the minimum physical link rate the phy shall support during a link reset sequence (see 4.4.1). Table 334 defines the values for this field. This value is reported in the DISCOVER response (see 10.4.3.10). If this field is changed along with a phy operation of LINK RESET or HARD RESET, that phy operation shall utilize the new value for this field.

The PROGRAMMED MAXIMUM PHYSICAL LINK RATE field specifies the maximum physical link rates the phy shall support during a link reset sequence (see 4.4.1). Table 334 defines the values for this field. This value is reported in the DISCOVER response (see 10.4.3.10). If this field is changed along with a phy operation of LINK RESET of HARD RESET, that phy operation shall utilize the new value for this field.

Table 334 - PROGRAMMED MINIMUM PHYSICA	AL LINK RATE and PROGRAMMED MAXIMUM PHYSICAL LINK	PATE fields

Code	Description
0h	Do not change current value
1h - 7h	Reserved
8h	1.5 Gbps
9h	3 Gbps
Ah	6 Gbps
Bh - Fh	Reserved for future physical link rates /


If the PROGRAMMED MINIMUM PHYSICAL LINK RATE field or the PROGRAMMED MAXIMUM PHYSICAL LINK RATE field is set to an unsupported or reserved value, or the PROGRAMMED MINIMUM PHYSICAL LINK RATE field and PROGRAMMED MAXIMUM PHYSICAL LINK RATE field are set to an invalid combination of values (e.g., the minimum is greater than the maximum), the management device server shall not char/ge either of their values and may return a function result of SMP FUNCTION FAILED in the response frame/see table 245 in 10.4.3.3). If it returns a function result of SMP FUNCTION FAILED, it shall not perform the requested phy operation.

The PARTIAL PATHWAY TIMEOUT VALUE field specifies the amount of time in microseconds the expander phy shall wait after receiving an Arbitrating (Blocked On Partial) confirmation from the ECM before requesting that the ECM resolve pathway blockage (see 7.12.4.5). A PARTIAL PATHWAY TIMEOUT VALUE field value of zero (i.e., 0 µs) specifies that partial pathway resolution shall be requested by the expander phy immediately upon reception of an Arbitrating (Blocked On Partial) confirmation from the ECM. This value is reported in the DISCOVER response (see 10.4.3.10). The PARTIAL PATHWAY TIMEOUT VALUE field is only honored when the UPDATE PARTIAL PATHWAY TIMEOUT VALUE bit is set to one.

The CRC field is defined in 10.4.3.2.8.

Working Draft Serial Attached SCSI - 2 (SAS-2)

655

This << If it returns a function >> should be << If the management device server returns a function >>

Author: Isi-gpenokie
Subject: Highlight
Date: 5/30/2008 2:07:21 PM -07'00'
PT REJECT (but added "then". After accepting the previous comment in this sentence, the first noun/subject convention holds, justifying keeping "it"))

This << FAILED, it shall not perform >> should be << FAILED, then the management device server shall not perform >>

T10/1760-D Revision 14

Table 335 defines the response format.

Table 335 — PHY CONTROL response

Byte\Bit	7	6	5	4	3	2	1	0			
0		SMP FRAME TYPE (41h)									
1		FUNCTION (91h)									
2		FUNCTION RESULT									
3		RESPONSE LENGTH (00h)									
4	(MSB)										
7		-	CRC (LSB)								

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 335.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 335.

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 335.

The CRC field is defined in 10.4.3.3.8.

10.4.3.29 PHY TEST FUNCTION function

The PHY TEST FUNCTION function requests actions by the specified phy. This SMP function may be implemented by any management device server. In zoning expander devices, if zoning is enabled then this function shall only be processed from SMP initiator ports that have access to zone group 2 or the zone group of the specified phy (see 4.9.3.2).

Page: 656

28 January 2008

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
TACCEPT - DONE
enabled then
s/b
enabled, then

Table 336 — PHY TEST FUNCTION request

Byte\Bit	7	6	5	4	3	2	1	0				
-	-	· ·		-				U				
0				SMP FRAME	TYPE (40h)							
1		FUNCTION (92h)										
2		ALLOCATED RESPONSE LENGTH										
3		REQUEST LENGTH (00h or 09h)										
4	(MSB)											
5		•	EXPECTED EXPANDER CHANGE COUNT (LSB)									
6				Rese	rved							
8				11030	IVEG							
9				PHY IDE	NTIFIER							
10				PHY TEST I	FUNCTION							
11				PHY TEST	PATTERN							
12			Reserved									
14				11030	IVEG							
15	Reserved	PHY TEST PATTERN SATA		PATTERN	PHY TE	ST PATTERN	I PHYSICAL	LINK RATE				
16				Rese	nyod							
18		•		Nese	iveu			-				
19			PHY TES	ST PATTERN	DWORDS CC	NTROL						
20			DU	Y TEST PATT	EDN DWODE	ne						
27		•	rn	LILOTEATI	LIN DWORL			-				
28				Rese	rved							
39		•		11030	1100			-				
40	(MSB)			CR								
43		•		CR	.0			(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.2.2 and shall be set to the value defined in table 336.

The FUNCTION field is defined in 10.4.3.2.3 and shall be set to the value defined in table 336.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

If the ALLOCATED RESPONSE LENGTH field is set to 00h, then the management device server shall:

a) set the RESPONSE LENGTH field to 00h in the response frame; and

Working Draft Serial Attached SCSI - 2 (SAS-2)

b) return the first 4 bytes defined in table 339 plus the CRC field as the response frame.

If the ALLOCATED RESPONSE LENGTH field is not set to 00h, then the management device server shall:

- a) set the RESPONSE LENGTH field in the response frame to the value defined in table 339 (i.e., 00h); and
- b) return the response frame as specified by the ALLOCATED RESPONSE LENGTH field.

NOTE 127 - Future versions of this standard may change the value defined in table 339.

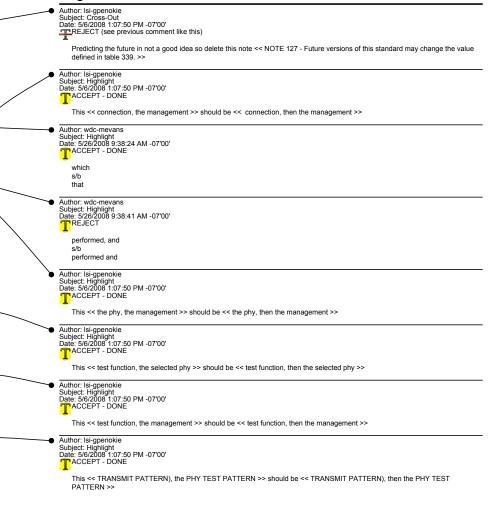
The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to one of the values defined in table 336 based on the LONG RESPONSE bit in the REPORT GENERAL response (see 10.4.3.4). A REQUEST LENGTH field set to 00h specifies that there are 9 dwords before the CRC field.

The EXPECTED EXPANDER CHANGE COUNT field is defined in the SMP CONFIGURE GENERAL request (see 10.4.3.18).

The PHY IDENTIFIER field specifies the phy (see 4.2.8) to which the SMP PHY TEST PATTERN request applies.

If the PHY IDENTIFIER field specifies the phy which is being used for the SMP connection, the management device server shall not perform the requested operation and shall return a function result of SMP FUNCTION FAILED in the response frame (see table 245 in 10.4.3.3).

The PHY TEST FUNCTION field specifies the phy test function to be performed, and is defined in table 337. If the PHY TEST FUNCTION field specifies a phy test function that is not supported by the phy, the management server shall return a function result of UNKNOWN PHY TEST FUNCTION in the response frame (see table 245 in 10.4.3.3).


Table 337 - PHY TEST FUNCTION field

Code	Name	Description
00h	STOP	If the selected phy is performing a phy test function, then the selected phy shall stop performing the phy test function and originate a link reset sequence. If the selected phy is not performing a phy test function, then this function has no effect on the selected phy.
		If the selected phy is not performing a phy test function, the selected phy shall be set to transmit the phy test pattern specified by the PHY TEST
01h	TRANSMIT PATTERN	PATTERN field at the physical link rate specified by the PHY TEST PATTERN PHYSICAL LINK RATE field and set to ignore its receiver. If the selected phy receives data while transmitting the pattern, then the selected phy shall ignore the received data.
		If the selected phy is performing a phy test function, the management device server shall return a function result of PHY TEST FUNCTION IN
		PROGRESS in the response frame (see table 245 in 10.4.3.3).
02h - EFh	Reserved	
F0h - FFh	Vendor spec	ific

If the PHY TEST FUNCTION field is set to 01h (i.e., TRANSMIT PATTERN), the PHY TEST PATTERN field specifies the phy test pattern to be performed, and is the same as that defined in table 231 for the Protocol-Specific diagnostic page (see 10.2.9.2). The phy test pattern shall be sent at the physical link rate specified by the PHY TEST PATTERN PHYSICAL LINK RATE field.

The PHY TEST PATTERN SATA bit is as defined in the Protocol-Specific diagnostic page (see 10.2.9.2).

The PHY TEST PATTERN SSC field is as defined in table 232 for the Protocol-Specific diagnostic page (see 10.2.9.2).

Page: 658

28 January 2008

T10/1760-D Revision 14

659

The PHY TEST PATTERN PHYSICAL LINK RATE field specifies the physical link rate at which the phy test function, if any, shall be performed. Table 338 defines the values for this field.

Table 338 - PHY TEST PATTERN PHYSICAL LINK RATE field

Code	Description
0h - 7h	Reserved
8h	1.5 Gbps
9h	3 Gbps
Ah	6 Gbps
Bh - Fh	Reserved for future physical link rates

The PHY TEST PATTERN DWORDS CONTROL field and the PHY TEST PATTERN DWORDS field are as defined in table 231 for the Protocol-Specific diagnostic page (see 10.2.9.2).

The CRC field is defined in 10.4.3.2.8.

Table 339 defines the response format.

Table 339 — PHY TEST FUNCTION response

Byte\Bit	7	6	5	4	3	2		0				
0		SMP FRAME TYPE (41h)										
1		FUNCTION (92h)										
2		FUNCTION RESULT										
3		RESPONSE LENGTH (00h)										
4	(MSB)	(MSB)										
7		•			C		,	(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 339.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 33/2.

The FUNCTION RESULT field is defined in 19.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 339.

The CRC field is defined in 10.4.3.2.8.

10.4.3.30 CONFIGURE PHY EVENT function

10.4.3.30.1 CONFIGURE PHY EVENT function overview

The CONFIGURE HY EVENT function configures phy events (see 4.11) about the specified phy. This SMP function may be implemented by any management device server. In zoning expander devices, if zoning is enabled then this function shall only be processed from SMP initiator ports that have access to zone group 2 or the zone group of the specified phy (see 4.9.3.2).

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 659

Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' TACCEPT - DONE about s/b for Author: wdc-mevans Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' TACCEPT - DONE enabled then enabled, then

10.4.3.30.2 CONFIGURE PHY EVENT request

Table 340 defines the request format.

Table 340 — CONFIGURE PHY EVENT request

Byte\Bit	7	6	5	4	3	2	1	0				
0		SMP FRAME TYPE (40h)										
1		FUNCTION (93h)										
2		ALLOCATED RESPONSE LENGTH										
3		REQUEST LENGTH 4(7 - 7) / 4)										
4	(MSB)		EVDE03									
5		-	EXPEC	EXPANDE	R CHANGE (COUNT		(LSB)				
6				Reserved				CLEAR DEAKS				
7				Rese	rved							
8				/	yeu .							
9				PHY IDE	NTIFIER							
10				Rese	erved							
11		NU	MBER OF PH	Y EVENT COI	NFIGURATION	N DESCRIPT	ORS					
		P	hy event co	nfiguration (descriptor li	st						
12		Phy event c	enfiguration	descriptor	first)(see ta	ble 341 in	10.4.3.30.3)					
					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		//					
	\											
		Phy event c	onfiguration	descriptor	last)(sea ta	bl= 341 in	10.4.3.30.3)					
n-4		, 5101110	ga			,						
n - 3	(MSB)			/cr	<i></i>							
n								(LSB)				

The SMP FRAME TYPE field is defined in 10.4.3,2.2 and shall be set to the value defined in table 340.

The FUNCTION field is defined in 10.4.3.2.2 and shall be set to the value defined in table 340.

The ALLOCATED RESPONSE LENGTH field is defined in 10.4.3.2.4.

The REQUEST LENGTH field is defined in 10.4.3.2.5 and shall be set to the value defined in table 340.

The EXPECTED EXPANDER CHARGE COUNT field is defined in the SMP CONFIGURE GENERAL request (see 10.4.3.18).

A CLEAR PEAKS field set to one specifies that all phy event peak value detectors shall be set to zero. A CLEAR PEAKS field set to zero specifies no change to the phy event peak value detectors.

The PHY IDENTIFIER field specifies the phy (see 4.2.7) for which information shall be reported.

Page: 660

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

Per 6/11 LB call, change byte 10 to a Phy Event Configuration Descriptor Length field

Author: Isi-gpenokie Subject: Oval Date: 5/6/2008 1:07:50 PM -07'00'

This cell should have a << 19 >> in it.

Author: Isi-gpenokie Subject: Oval Date: 5/6/2008 1:07:50 PM -07'00'

This cell should have a << n - 11 >> in it.

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE

field s/b bit

Author: Isi-bbesmer Subject: Note

Subject: Note Date: 5/26/2008 9:39:04 AM -07'00' REJECT (that's the point of them. Wrapping counters are to be multi-initiator friendly, unlike saturating counters. If clearing is allowed, then one initiator confuses the others whenever it clears a counter.)

I don't see any method to clear Wrapping Counters.

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

> field s/b bit

Author: elx-bmartin Subject: Comment on Text
Date: 5/6/2008 1:07:50 PM -07'00'
PACCEPT - DONE

This reference should be 4.2.8

28 January 2008

T10/1760-D Revision 14

The NUMBER OF PHY EVENT CONFIGURATION DESCRIPTORS field specifies the number of phy event configuration descriptors, and shall be set to the same value as the NUMBER OF PHY EVENT DESCRIPTORS field in the SMP REPORT PHY EVENT function (see 10.4.3.14).

The phy event configuration descriptor list contains phy event configuration descriptors as defined in 10.4.3.30.3.

The CRC field is defined in 10.4.3.2.8.

10.4.3.30.3 CONFIGURE PHY EVENT request phy event configuration descriptor

Table 341 defines the phy event configuration descriptor.

Table 341 — Phy event configuration descriptor

Byte\Bit	7	6	5	4	3	2	1	0			
0		Reserved									
2											
3		PHY EVENT SOURCE									
4	(MSB)	(MSB) PEAK VALUE DETECTOR THRESHOLD									
7		•	PEA	K VALUE DETE	OTOK THRES	TIOLD		(LSB)			

The PHY EVENT SOURCE field, defined in table 37 in 4.11, specifies the type of event that shall be recorded by the corresponding phy event monitor.

If the phy event source is a peak value detector, the FFAK VALUE DETECTOR THRESHOLD field specifies the value of the peak value detector that causes the expander device to originate a Producast (Expander)(see 7.2.6.4). If the phy event source is not a peak value detector, the PEAK VALUE DETECTOR THRESHOLD field is reserved.

If the PHY EVENT SOURCE field contains a value that is not supported, the management device server shall return a function result of UNKNOWN PHY EVENT SOURCE in the response frame (see table 245 in 10.4.3.3).

10.4.3.30.4 CONFIGURE PHY EVENT response

Table 342 defines the response format.

Table 342 — CONFIGURE PHY EVENT response

Byte\Bit	7	6	5	4	3	2	1	0
0	SMP FRAME TYPE (41h)							
1	FUNCTION (93h)							
2	FUNCTION RESULT							
3	RESPONSE LENGTH (00h)							
4	(MSB) CRC (LSB)							
7								

The SMP FRAME TYPE field is defined in 10.4.3.3.2 and shall be set to the value defined in table 342.

The FUNCTION field is defined in 10.4.3.3.3 and shall be set to the value defined in table 342.

Working Draft Serial Attached SCSI - 2 (SAS-2)

661

Page: 661

s/b then the

```
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 ACCEPT - DONE
    descriptors
    add
     "in the phy event configuration descriptor list"
 Author: RElliott
 Subject: Underline
 Date: 6/30/2008 3:16:52 PM -07'00'
 \mathbf{T}^{\mathsf{ACCEPT}\,	ext{-}\,\mathsf{DONE}}
    CONFIGURE PHY EVENT request phy event configuration descriptor
    Phy event configuration descriptor
    (matching comment on 10.4.3.9.4 by Data Domain)
 Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
  the
    s/b
    then the
 Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
    s/b
    then the
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

ACCEPT - DONE
the
```

The FUNCTION RESULT field is defined in 10.4.3.3.4.

The RESPONSE LENGTH field is defined in 10.4.3.3.5 and shall be set to the value defined in table 342. A RESPONSE LENGTH field set to 00h does not have a special meaning based on the ALLOCATED RESPONSE LENGTH field in the request frame.

The CRC field is defined in 10.4.3.3.8.

Annex A (normative)

Jitter tolerance patterns

A.1 Jitter tolerance pattern (JTPAT)

The jitter tolerance pattern (JTPAT) consists of:

- 1) a long run of low transition density pattern;
- 2) a long run of high transition density pattern; and
- 3) another short run of low transition density pattern.

The transitions between the pattern segments stress the receiver. The JTPAT is designed to contain the phase shift in both polarities, from 0 to 1 and from 1 to 0. The critical pattern sections with the phase shifts are underlined in table A.1 and table A.2.

Table A.1 shows the JTPAT when there is positive running disparity (RD+) (see 6.2) at the beginning of the pattern. The 8b and 10b values of each character are shown.

Table A.1 — JTPAT for RD+

Dword(s)	Beginning RD	First character	Second character	Third character	Fourth character	Ending RD	
	RD+	D30.3 (7Eh)	D30.3 (7Eh)	D30.3 (7Eh)	D30.3 (7Eh)	RD+	
0 to 40	KD+	1000011100b	0111100011b	1000011100b	0111100011b	KD+	
	The abo	ve dword of lov	v transition den	sity pattern is s	sent a total of 4	1 times	
	RD+	D30.3 (7Eh)	D30.3 (7Eh)	D30.3 (7Eh)	D20.3 (74h)	RD-	
41	KD+	1000011100b	0111100011b	10000 <u>11100</u> b	<u>001011</u> 1100b	KD-/	
	The a	bove dword co	ntaining phase	shift <u>11100001</u>	<u>011</u> b is <mark>sent 1</mark> 1	time /	
	RD-	D30.3 (7Eh)	D11.5 (ABh)	D21.5 (B5h)	D21.5 (B5h)	RD+	
42		01111 <u>00011</u> b	<u>110100</u> 1010b	1010101010b	1010101010b	KD+	
	The above dword containing phase shift 00011110100b is sent 1 time						
	BD.	D21.5 (B5h)	D21.5 (B5h)	D21.5 (B5h)	D21.5 (B5h)	RD+	
43 to 54	RD+	1010101010b	1010101010b	1010101010b	1010101010b	KD+	
	The abov	e dword of hig	h transition der	sity pattern is:	sent a total of 1	2 times	
55	BD.	D21.5 (B5h)	D30.2 (5Eh)	D10.2 (4Ah)	D30.3 (7Eh)	RD+	
	RD+	1010101 <u>010</u> b	<u>10000</u> 10101b	0101010 <u>101</u> b	<u>01111</u> 00011b	KD+	
	The above of	dword containir	ng phase shift 0	<u>11010000</u> b and	<u>10101111</u> b is s	ent 1 time	

Page: 663

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

see 6.2) at

point to new RD section

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

REJECT (I dislike mixing numbers and words for the same basic statement. Since many entries here "41", "12", etc., this entry uses
"1")

Global in annex A tables

This << sent 1 time >> should be << sent one time >>

T10/1760-D Revision 14 28 January 2008

If the same 8b characters specified in table A.1 are used when there is negative running disparity (RD-) at the beginning of the pattern, the resulting 10b pattern is different and dues not provide the critical phase shifts. To achieve the same phase shift effects with RD-, a different 8b pattern is required. Table A.2 shows the JTPAT when there is negative running disparity (RD-) at the beginning of the pattern. The 8b and 10b values of each character are shown.

Table A.2 — JTPAT for RD-

Dword(s)	Beginning RD	First character	Second character	Third character	Fourth character	Ending RD	
	RD-	D30.3 (7Eh)	D30.3 (7Eh)	D30.3 (7Eh)	D30.3 (7Eh)	RD-	
0 to 40	KD-	0111100011b	1000011100b	0111100011b	1000011100b	KD-	
	The abo	ve dword of lov	v transition den	sity pattern is s	sent a total of 4	1 times	
	RD-	D30.3 (7Eh)	D30.3 (7Eh)	D30.3 (7Eh)	D11.3 (6Bh)	RD+	
41	KD-	0111100011b	1000011100b	01111 <u>00011</u> b	<u>110100</u> 0011b	KD+	
	The a	bove dword co	ntaining phase	shift <u>00011110</u>	100b is sent 1	time	
	RD+	D30.3 (7Eh)	D20.2 (54h)	D10.2 (4Ah)	D10.2 (4Ah)	RD-	
42		10000 <u>11100</u> b	<u>001011</u> 0101b	0101010101b	0101010101b	KD-	
	The above dword containing phase shift 11100001011 b is sent 1 time						
	RD-	D10.2 (4Ah)	D10.2 (4Ah)	D10.2 (4Ah)	D10.2 (4Ah)	RD-	
43 to 54	KD-	0101010101b	0101010101b	0101010101b	0101010101b	KD-	
	The abov	e dword of hig	h transition der	sity pattern is	sent a total of 1	2 times	
55	RD-	D10.2 (4Ah)	D30.5 (BEh)	D21.5 (B5h)	D30.3 (7Eh)	RD-	
	KD-	0101010 <u>101</u> b	<u>01111</u> 01010b	1010101 <u>010</u> b	<u>10000</u> 11100b	KD-	
	The above of	dword containir	ng phase shift 1	0101111b and	<u>01010000</u> b is s	ent 1 time	

Page: 664

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
TACEPT - DONE
This << of the pattern, the resulting 10b >> should be << of the pattern, then the resulting 10b >>

T10/1760-D Revision 14 28 January 2008

Table A.3 shows a pattern containing both JTPAT for RD+ and JTPAT for RD-. The 10b pattern resulting from encoding the 8b pattern contains the desired bit sequences for the phase shifts with both starting running disparities.

Table A.3 - .ITPAT for RD+ and RD-

Dword(s)	First character	Second character	Third character	Fourth character	Notes	
0.1- 40	D30.3(7Eh)	D30.3(7Eh)	D30.3(7Eh)	D30.3(7Eh)	This decord is sent a total of 44 times of	
0 to 40					This dword is sent a total of 41 times.	
41	D30.3(7Eh)	D30.3(7Eh)	D30.3(7Eh)	D20.3(74h)	This dword is sent once.	
42	D30.3(7Eh)	D11.5(ABh)	D21.5(B5h)	D21.5(B5h)	This dword is sent once.	
42 += 54	D21.5(B5h)	D21.5(B5h)	D21.5(B5h)	D21.5(B5h)	This divised is seen to have set 42 times	
43 to 54					This dword is sent a total of 12 times.	
55	D21.5(B5h)	D30.2(5Eh)	D10.2(4Ah)	D30.3(7Eh)	This dword is sent once.	
FC += 0C	D30.3(7Eh)	D30.3(7Eh)	D30.3(7Eh)	D30.3(7Eh)	This disease is seen a secol of 44 sizes	
56 to 96					This dword is sent a total of 41 times.	
97	D30.3(7Eh)	D30.3(7Eh)	D30.3(7Eh)	D11.3(6Bh)	This dword is sent once.	
98	D30.3(7Eh)	D20.2(54h)	D10.2(4Ah)	D10.2(4A/1)	This dword is sent once.	
00 1- 440	D10.2(4Ah)	D10.2(4Ah)	D10.2(4Ah)	D10.2.(4Ah)	This day of the state of	
99 to 110				/	This dword is sent a total of 12 time	
111	D10.2(4Ah)	D30.5(BEh)	D21.5(B5h)/	D30.3(7Eh)	This dword is sent once.	

- 4)

transmitted should be as small as possible so that the percentage of the transfer that is the JTPAT is as bigh as possible.

- a) the SSP frame transmission format defined by the SSP link layer (see figure 189 in 7.16.3).

scrambler before transmission (see 7.6). It does not modify primitives and it re-initializes the scrambler at the beginning of each frame (e.g., at SOF). If the application layer XORs the desired 8b pattern with the expected output of the scrambler prior to submitting it to the transmitter, then the transmitter transmits the desired pattern. The 8b data dwords are scrambled by XORing the pattern with the expected scrambler dword output, taking into account the position of the 8b data dwords within the frame.

Author: wdc-meyans Subject: Highlight A.2 Compliant jitter tolerance pattern (CJTPAT) Date: 5/6/2008 1:07:50 PM -07'00' REJECT The compliant litter tolerance pattern (CJTPAT) is the JTPAT (or RD+ and RD- (see table A.3 in A.1) included as the payload in an SSP DATA frame or an SMP frame. The CJTPAT is: s/b the phy 2) 6 data dwords containing either: Author: wdc-mevans A) an SSP DATA frame header; or, Subject: Cross-Out Date: 5/25/2008 4:57:36 PM -07'00' ACCEPT - DONE (see response to Isi-gpenokie comment) 3) 112 data dwords containing JPAT for RD+ and RD-; 1 data dword containing a CRC value; and EOF. [Delete the unnecessary word.] Deletable primitives may be included in the transmission of the CJTPAT, but the number of deletable primitives Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' Because the SOF, EOF, and CRC are the same in SSP and SMP, CJTPAT complies with: CCEPT - DONE (as "The phy re-initializes the scrambler at the beginning of each frame (e.g., at SOF) and does not modify primitives b) the SSP frame format defined by the SSP transport layer (see table 163 in 9.2.1) c) the SMP frame transmission forms defined by the SMP link layer (see figure 203 in 7.18.1); and This << It does not modify primitives >> should be << The phy does not modify primitives >> d) the SMP frame format defined by the SMP transport layer (see table 191 in .4.1). Author: wdc-mevans When a phy transmits a frame, it XORs the 8b data provided by the application layer with the output of a Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

Page: 665

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

REJECT (keeping all numbers in this list)

ACCEPT - DONE (7/15 "23 vendor specific bytes". Don't care for purposes of getting CJPAT on the wire) B) an SMP frame header followed by 23 bytes;

Author: stx-ghoulder Subject: Highlight Date: 7/17/2008 3:09:08 PM -07'00'

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' REJECT (keeping all numbers in this list)

Author: Isi-gpenokie Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

This << 6 data dwords containing >> should be << six data dwords containing >>

This << 1 data dword containing >> should be << one data dword containing >>

ACCEPT - DONE (a rare victory for the anti-because cause)

CRC being the same in SSP and SMP, CJTPAT >>

Are the 23 bytes random data bytes or is there a restriction on what they should be that needs to be stated here?

This << Because the SOF, EOF, and CRC are the same in SSP and SMP, CJTPAT >> should be << As a result of SOF, EOF, and

Table A.3 shows a pattern containing both JTPAT for RD+ and JTPAT for RD-. The 10b pattern resulting from encoding the 8b pattern contains the desired bit sequences for the phase shifts with both starting running disparities.

Table A.3 — JTPAT for RD+ and RD-

Dword(s)	First character	Second character	Third character	Fourth character	Notes	
0 to 10	D30.3(7Eh)	D30.3(7Eh)	D30.3(7Eh)	D30.3(7Eh)	This decord is south a total of 44 times	
0 to 40		***			This dword is sent a total of 41 times.	
41	D30.3(7Eh)	D30.3(7Eh)	D30.3(7Eh)	D20.3(74h)	This dword is sent once.	
42	D30.3(7Eh)	D11.5(ABh)	D21.5(B5h)	D21.5(B5h)	This dword is sent once.	
42 to 54	D21.5(B5h)	D21.5(B5h)	D21.5(B5h)	D21.5(B5h)	This description and a total of 40 times	
43 to 54					This dword is sent a total of 12 times.	
55	D21.5(B5h)	D30.2(5Eh)	D10.2(4Ah)	D30.3(7Eh)	This dword is sent once.	
FC += 0C	D30.3(7Eh)	D30.3(7Eh)	D30.3(7Eh)	D30.3(7Eh)	This description and a total of 44 times	
56 to 96					This dword is sent a total of 41 times.	
97	D30.3(7Eh)	D30.3(7Eh)	D30.3(7Eh)	D11.3(6Bh)	This dword is sent once.	
98	D30.3(7Eh)	D20.2(54h)	D10.2(4Ah)	D10.2(4Ah)	This dword is sent once.	
00 1- 440	D10.2(4Ah)	D10.2(4Ah)	D10.2(4Ah)	D10.2.(4Ah)	This dword is sent a total of 12 times	
99 to 110						
111	D10.2(4Ah)	D30.5(BEh)	D21.5(B5h)	D30.3(7Eh)	This dword is sent once.	

A.2 Compliant jitter tolerance pattern (CJTPAT)

The compliant jitter tolerance pattern (CJTPAT) is the JTPAT for RD+ and RD- (see table A.3 in A.1) included as the payload in an SSP DATA frame or an SMP frame. The CJTPAT is:

- 1) SOF
- 2) 6 data dwords containing either:
 - A) an SSP DATA frame header; or
 - B) an SMP frame header followed by 23 bytes:
- 3) 112 data dwords containing JTPAT for RD+ and RD-;
- 4) 1 data dword containing a CRC value; and
- 5) EOF.

Deletable primitives may be included in the transmission of the CJTPAT, but the number of deletable primitives transmitted should be as small as possible so that the percentage of the transfer that is the JTPAT is as high as possible.

Because the SOF, EOF, and CRC are the same in SSP and SMP, CJTPAT complies with:

- a) the SSP frame transmission format defined by the SSP link layer (see figure 189 in 7.16.3);
- b) the SSP frame format defined by the SSP transport layer (see table 163 in 9.2.1);
- c) the SMP frame transmission format defined by the SMP link layer (see figure 203 in 7.18.1); and
- d) the SMP frame format defined by the SMP transport layer (see table 191 in 9.4.1).

When a phy transmits a frame, it XORs the 8b data provided by the application layer with the output of a scrambler before transmission (see 7.6). It does not modify primitives and it re-initializes the scrambler at the beginning of each frame (e.g., at SOF). If the application layer XORs the desired 8b pattern with the expected output of the scrambler prior to submitting it to the transmitter, then the transmitter transmits the desired pattern. The 8b data dwords are scrambled by XORing the pattern with the expected scrambler dword output, taking into account the position of the 8b data dwords within the frame.

Working Draft Serial Attached SCSI - 2 (SAS-2)

665

s/b The phy T10/1760-D Revision 14 28 January 2008

Figure A.1 shows how to pre-scramble CJTPAT into the phy transmitter so CJTPAT results on the physical link.

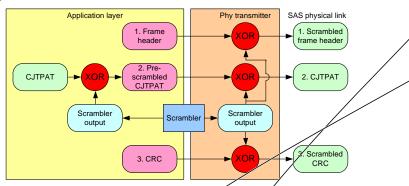


Figure A.1 — CJTPAT pre-scrambling

Table A.4 defines CJTPAT.

The "SSP frame contents" column in table A.4 shows the interpretation of the frame if viewed as an SSP DATA frame.

The "SMP frame contents" column in table A.4 shows the interpretation of the frame if viewed as an SMP frame.

The "Pre-scrambled CJTPAT" column in table A.4 shows the sult of XORing CJTPAT with the expected scrambler output before presenting the frame to the phy transmitter. If the data in this column is supplied to the phy transmitter and it is scrambled again, the data in the CJTPAT" column is transmitted onto the physical link. The frame header is not pre-scrambled, and the CRC is calculated over the frame header and the pre-scrambled CJTPAT.

The "Scrambler output" column in table A.4 shows the scrambler output for each data dword in the frame. The scrambler output is independent of the data pattern.

Page: 666

```
Author: Isi-gpenokie
Subject: Highlight
Date: 56/2008 1:07:50 PM -07'00'
TACCEPT - DONE

This << scrambled again, the data in the >> should be << scrambled again, then the data in the >>

Author: wdc-mevans
Subject: Highlight
Date: 56/2008 1:07:50 PM -07'00'
TREJECT (changing "and it" to "where it" instead, which reads better)

it
s/b
the data
```

The "CJTPAT" column in table A.4 shows CJTPAT, transmitted on the physical link.

Table A.4 — CJTPAT (part 1 of 4)

Data dword number	SSP frame contents	SMP frame contents	Pre-scrambled CJTPAT	Scrambler output	CJTPAT
Not applicable	so)F	SOF	Not applicable	SOF
0		SMP frame header and 3 frame-type dependent bytes	unknown	C2D2768Dh	unknown
1	SSP frame		unknown	1F26B368h	unknown
2	header	_	unknown	A508436Ch	unknown
3		Frame-type dependent bytes	unknown	3452D354h	unknown
4		dependent bytes	unknown	8A559502h	unknown
5			unknown	BB1ABE1Bh	unknown
6			8428C943h	FA56B73Dh	7E7E7E7Eh
7			2D887565h	53F60B1Bh	7E7E7E7Eh
8	INFORMATION UNIT Frame-type		8EFEE23Fh	F0809C41h	7E7E7E7Eh
9		Frame-type	0A01BD34h	747FC34Ah	7E7E7E7Eh
10	field (dwords 0 - 7)	dependent bytes	C0F82CEFh	BE865291h	7E7E7E7Eh
11	,		0411D9C8h	7A6FA7B6h	7E7E7E7Eh
12			4F1D98A8h	3163E6D6h	7E7E7E7Eh
13			8E488072h	F036FE0Ch	7E7E7E7Eh
14		608D945	608D9457h	1EF3EA29h	7E7E7E7Eh
15			954A58EAh	EB342694h	7E7E7E7Eh
16			2DFB4569h	53853B17h	7E7E7E7Eh
17	INFORMATION UNIT	Frame-type	9734A233h	E94ADC4Dh	7E7E7E7Eh
18	(dwords 8-15)	dependent bytes	235E70F6h	5D200E88h	7E7E7E7Eh
19	,		177F93AEh	6901EDD0h	7E7E7E7Eh
20			84E046A0h	FA9E38DEh	7E7E7E7Eh
21			16A53579h	68DB4B07h	7E7E7E7Eh
22			3B743D05h	450A437Bh	7E7E7E7Eh
23			E873A976h	960DD708h	7E7E7E7Eh
24			414B98E6h	3F35E698h	7E7E7E7Eh
25	INFORMATION UNIT	Frame-type	8008E6DBh	FE7698A5h	7E7E7E7Eh
26	field (dwords 16 - 23)	dependent bytes	B670896Bh	C80EF715h	7E7E7E7Eh
27	,		181EEED1h	666090AFh	7E7E7E7Eh
28			848EABB5h	FAF0D5CBh	7E7E7E7Eh
29			55FC7EE1h	2B82009Fh	7E7E7E7Eh

Table A.4 — CJTPAT (part 2 of 4)

Data dword number	SSP frame contents	SMP frame contents	Pre-scrambled CJTPAT	Scrambler output	CJTPAT
30			704F0AEFh	0E317491h	7E7E7E7Eh
31			088A1460h	76F46A1Eh	7E7E7E7Eh
32			8A131736h	F46D6948h	7E7E7E7Eh
33	INFORMATION UNIT	Frame-type	05B3F4Edh	7BCD8A93h	7E7E7E7Eh
34	(dwords 24 - 31)	dependent bytes	6B6DD300h	1513AD7Eh	7E7E7E7Eh
35	,		600C8090h	1E72FEEEh	7E7E7E7Eh
36			DE6AD445h	A014AA3Bh	7E7E7E7Eh
37			5DD4AA99h	23AAD4E7h	7E7E7E7Eh
38			CEA2E019h	B0DC9E67h	7E7E7E7Eh
39			9EDB0D85h	E0A573FBh	7E7E7E7Eh
40			78B4EA31h	06CA944Fh	7E7E7E7Eh
41	INFORMATION UNIT	Frame-type	1D9CEC6Ch	63E29212h	7E7E7E7Eh
42	field (dwords 32 - 39)	dependent bytes	3B061C13h	4578626Dh	7E7E7E7Eh
43			2D5872EDh	53260C93h	7E7E7E7Eh
44			40275C7Ch	3E592202h	7E7E7E7Eh
45			5510B41Dh	2B6ECA63h	7E7E7E7Eh
46			1D146161h	636A1F1Fh	7E7E7E7Eh
47			4BCBD799h	35B5A9EDh	7E7E7E74h
48			34091548h	4AA2A0FDh	7EABB5B5h
49	INFORMATION UNIT	Frame-type	C41A5423h	71AFE196h	B5B5B5B5h
50	(dwords 40 - 47)	dependent bytes	5460CED7h	E1D57B62h	B5B5B5B5h
51	,		E015E33Fh	55A0568Ah	B5B5B5B5h
52			37643CDDh	82D18968h	B5B5B5B5h
53			96F9014Ah	234CB4FFh	B5B5B5B5h
54			36FDABCAh	83481E7Fh	B5B5B5B5h
55			07AF5DCAh	B21AE87Fh	B5B5B5B5h
56			1C705F78h	A9C5EACDh	B5B5B5B5h
57	INFORMATION UNIT	Frame-type	D7B41976h	6201ACC3h	B5B5B5B5h
58	(dwords 48 - 55)	dependent bytes	43BC8C7Bh	F60939CEh	B5B5B5B5h
59	,		8CEAC3C8h	395F767Dh	B5B5B5B5h
60			9A10EDF4h	2FA55841h	B5B5B5B5h
61			36330004h	836D4A7Ah	B55E4A7Eh

Table A.4 — CJTPAT (part 3 of 4)

Data dword number	SSP frame contents	SMP frame contents	Pre-scrambled CJTPAT	Scrambler output	CJTPAT
62			46F32604h	388D587Ah	7E7E7E7Eh
63			09438122h	773DFF5Ch	7E7E7E7Eh
64			425DE2CDh	3C239CB3h	7E7E7E7Eh
65	INFORMATION UNIT field	Frame-type	2833EFDEh	564D91A0h	7E7E7E7Eh
66	(dwords 56 - 63)	dependent bytes	3D93759Fh	43ED0BE1h	7E7E7E7Eh
67	,		E60A57D9h	987429A7h	7E7E7E7Eh
68			9B53A5DCh	E52DDBA2h	7E7E7E7Eh
69			99F3B601h	E78DC87Fh	7E7E7E7Eh
70			74C6B817h	0AB8C669h	7E7E7E7Eh
71		Frame-type dependent bytes	1AAEFDB7h	64D083C9h	7E7E7E7Eh
72			7B438744h	053DF93Ah	7E7E7E7Eh
73	INFORMATION UNIT		9097A794h	EEE9D9Eah	7E7E7E7Eh
74	field (dwords 64 - 71)		3AC345E9h	44BD3B97h	7E7E7E7Eh
75	,		719C35F2h	0FE24B8Ch	7E7E7E7Eh
76			8CF328EAh	F28D5694h	7E7E7E7Eh
77			1D6EC8A7h	6310B6D9h	7E7E7E7Eh
78			69ECD0B0h	1792AECEh	7E7E7E7Eh
79			742850DFh	0A562EA1h	7E7E7E7Eh
80			CE36A117h	B048DF69h	7E7E7E7Eh
81	INFORMATION UNIT	Frame-type	68645606h	161A2878h	7E7E7E7Eh
82	field (dwords 72 - 79)	dependent bytes	2B67B52Fh	5519CB51h	7E7E7E7Eh
83	,		678BC028h	19F5BE56h	7E7E7E7Eh
84			9181CAC8h	EFFFB4B6h	7E7E7E7Eh
85			CDFC100Ch	B3826E72h	7E7E7E7Eh
86			9A0C53A4h	E4722DDAh	7E7E7E7Eh
87			1EC12F57h	60BF5129h	7E7E7E7Eh
88			5AF3EE8Bh	248D90F5h	7E7E7E7Eh
89	INFORMATION UNIT	Frame-type	3378AC62h	4D06D21Ch	7E7E7E7Eh
90	field (dwords 80 - 87)	dependent bytes	00E86812h	7E96166Ch	7E7E7E7Eh
91	,		21D19DCAh	5FAFE3B4h	7E7E7E7Eh
92			2E12C62Bh	506CB855h	7E7E7E7Eh
93			258E4EE6h	5BF03098h	7E7E7E7Eh

T10/1760-D Revision 14

Table A.4 — CJTPAT (part 4 of 4)

28 January 2008

Data dword number	SSP frame contents	SMP frame contents	Pre-scrambled CJTPAT	Scrambler output	CJTPAT
94			38AAC8CDh	46D4B6B3h	7E7E7E7Eh
95			7B65E06Fh	051B9E11h	7E7E7E7Eh
96			7F22BB28h	015CC556h	7E7E7E7Eh
97	INFORMATION UNIT	Frame-type	9C6E4B91h	E21035EFh	7E7E7E7Eh
98	(dwords 88 - 95)	dependent bytes	281E330Bh	56604D75h	7E7E7E7Eh
99	,		50081922h	2E76675Ch	7E7E7E7Eh
100			796A088Eh	071476F0h	7E7E7E7Eh
101			D18EF995h	AFF087EBh	7E7E7E7Eh
102			651CA57Fh	1B62DB01h	7E7E7E7Eh
103			5D186107h	23661F6Ch	7E7E7E6Bh
104	INFORMATION UNIT		8623FA6Dh	F877B027h	7E544A4Ah
105		Frame-type	BFA9C3E8h	F5E389A2h	4A4A4A4Ah
106	field (dwords 96 - 103)	dependent bytes	A48D7C5Bh	EEC73611h	4A4A4A4Ah
107	(4.1.1.1.1.1.1.1.1)		064EB1D9h	4C04FB93h	4A4A4A4Ah
108			A29D4578h	E8D70F32h	4A4A4A4Ah
109			F5BA761Eh	BFF03C54h	4A4A4A4Ah
110			A90A764Bh	E3403C01h	4A4A4A4Ah
111			6AB08034h	20FACA7Eh	4A4A4A4Ah
112			D3080FC6h	9942458Ch	4A4A4A4Ah
113	INFORMATION UNIT	Frame-type	7DA881C3h	37E2CB89h	4A4A4A4Ah
114	(dwords 104 -	dependent bytes	1050DDC9h	5A1A9783h	4A4A4A4Ah
115	111)		8402E075h	CE48AA3Fh	4A4A4A4Ah
116			4C83ED2Bh	06C9A761h	4A4A4A4Ah
117			4C7E8BD5h	06C03EABh	4ABEB57Eh
118	CRC field ^a		depends on contents of first 6 data dwords	3D2D7984h	depends on contents of first 6 data dwords
Not applicable	EC)F	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
a The CF	RC field shall be se	t to a valid value f	or the frame.		

A phy or test equipment transmitting CJTPAT outside connections may transmit it with fixed content as defined in table A.5.

Table A.5 shows CJTPAT with fixed content:

 a) interpreted as an SSP frame, with the FRAME TYPE field in the frame header set to 01h (i.e., DATA), each other field in the frame header set to zero, the INFORMATION UNIT field containing JTPAT for RD+ and RD-, and the CRC field set to a fixed value; and

 interpreted as an SMP frame, with the SMP FRAME TYPE field in the frame header set to 01h (i.e., reserved), the frame-type dependent bytes containing JTPAT for RD+ and RD-, and the CRC field set to a fixed value

Table A.5 — CJTPAT with fixed content

Data dword number	SSP frame contents	SMP frame contents	Pre-scrambled CJTPAT	Scrambler output	CJTPAT
Not applicable	SC)F	SOF	Not applicable	SOF
0			01000000h	C2D2768Dh	C3D2768Dh
1	FRAME TYPE field set	SMP FRAME TYPE field set to 01h (i.e/	00000000h	1F26B368h	1F26B368h
2	to 01h (i.e., DATA frame) and 23	reserved) and 23 subsequent frame-type dependent bytes each set to 00h	00000000h	A508436Ch	A508436Ch
3	subsequent bytes		00000000h	3452D354h	3452D354h
4	each set to 00h		00000000h	8A559502h	8A559502h
5			00000000h	BB1ABE1Bh	BB1ABE1Bh
6	INFORMATION UNIT field	Frame-type dependent bytes	See the INFOR	RMATION UNIT fiel	d in table A.4
178	CRC	field	79C211AAh	3D2D7984h	44EF68/2Eh/
Not applicable	EC	DF .	EOF	Not applicable	j. OF

A.3 Considerations for a phy transmitting JTPAT and CJTPAT

A phy may be configured to transmit JTPAT for RD+ and RD- (see A.2) by:

- a) using the SMP PHY TEST FUNCTION function (see 10.4.3.29) or the Protocol-Specific diagnostic page (see 10.2.9.2) specifying the phy, with the PHY TEST FUNCTION field set to 01h (i.e., TRANS/IIT PATTERN), and the PHY TEST PATTERN field set to 01h (i.e., JTPAT); and
- b) vendor-specific mechanisms.

A phy may be configured to transmit CJTPAT (see A.2) by:

- a) using the SMP PHY TEST FUNCTION function (see 10.4.3.29) or the Protocol-Spedific diagnostic page (see 10.2.9.2) specifying the phy, with the PHY TEST FUNCTION field set to 011 (i.e., TRANSMIT PATTERN), and the PHY TEST PATTERN field set to 02h (i.e., CJTPAT);
- b) including CJTPAT as a data pattern while perform SCSI commands (e.g. *Mg/WRITE BUFFER command if the phy is in an initiator port, of the SCSI READ BUFFER command if the phy is in a target port). The frame length and scrambling need to be predictable to shour the desired pattern is transmitted on the physical link; and
- c) vendor-specific mechanisms.

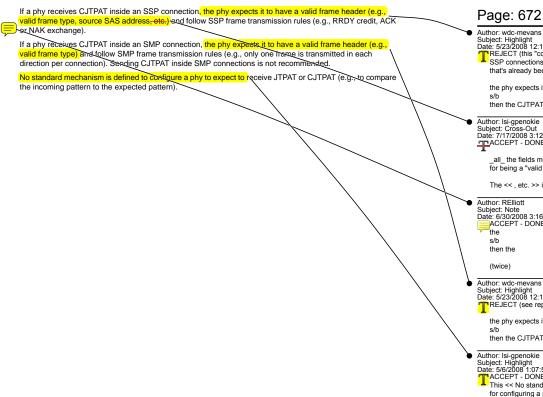
A.4 Considerations for a phy receiving JTPAT and CJTPAT

If a phy receives JTPAT (see A.1) inside or outside a connection, it considers the data dwords to be idle dwords and ignores them.

If a phy receives CJTPAT (see A.2) outside a connection, the SL receiver (see 7.14.2) considers the SOF and EOF to be unexpected dwords and ignores them, and considers the data dwords to be idle dwords and ignores them.

Phy-layer based phy event counters (e.g., invalid dword count, running disparity error count, loss of dword synchronization count, elasticity buffer overflow count, and received ERROR count) count events that occur while receiving idle dwords, so may be used to count events while receiving JTPAT or CTPAT.

Working Draft Serial Attached SCSI - 2 (SAS-2)


671

Page: 671

the

then the

```
Author: hpq-relliott
Subject: Note
Date: 5/6/2008 1:07:50 PM -07'00'
    ACCEPT - DONE (and fixed my C program output format that caused this confusion)
    (Leon Krantz, Marvell)
    In dword 118, 79C211AAh should be swapped with 44EF682Eh
Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
 ACCEPT - DONE
 This << and >> should be << or >> as this is one or the other not both.
Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
 ACCEPT - DONE
    This << and >> should be << or >> as this is one or the other not both.
Author: wdc-mevans
Subject: Highlight
Date: 5/23/2008 12:11:26 PM -07'00'
 REJECT (first noun/subject convention)
    the phy
Author: intc-mseidel
Subject: Highlight
 TREJECT (this is emphasizing that they are idle dwords both inside and outside connections - the fact that there is a connection
    doesn't matter. This differs for CJTPAT in the next sentence.)
    It is not necessary to require that a phy receiving JTPAT inside a connection to treat the data dwords as idle dwords and ignore
    them; "inside or outside" in the first sentence s/b "outside".
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
```


Page: 672 Author: wdc-mevans Subject: Highlight Date: 5/23/2008 12:13:36 PM -07'00' TREJECT (this "considerations for a phy receiving" section is describing the rules in other places of the standard that frames inside SSP connections must look like SSP frames. This is not a place to mandate that a transmitter place CJTPAT inside an SSP frame; that's already been communicated earlier in this annex.) the phy expects it to have a valid frame header (e.g., valid frame type, source SAS address, etc.) then the CJTPAT shall be contained in an SSP DATA frame (e.g., including valid frame type, source SAS address, etc.) Author: Isi-gpenokie Subject: Cross-Out Date: 7/17/2008 3:12:02 PM -07'00' ACCEPT - DONE (7/15 change to "i.e., all fields in the frame header including frame type and source SAS address"... _all_ the fields must be valid, but they're not all listed here - just two of them. Each one does not individually serve as an example for being a "valid frame header") The << , etc. >> is redundant and should be deleted.

Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE the s/b then the

(twice)

Subject: Highlight Date: 5/23/2008 12:13:52 PM -07'00' REJECT (see reply on previous paragraph)

the phy expects it to have a valid frame header (e.g., valid frame type)

then the CJTPAT shall be contained in an SMP frame (e.g., including svalid frame type)

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
TACCEPT - DONE
This << No standard mechanism is defined to configure a phy to expect to >> should be << This standard defines no mechanism for configuring a phy to expect to >>

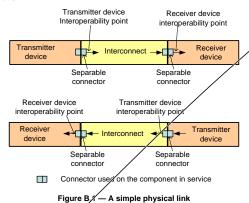
Annex B (informative)

Signal performance measurements

B.1 Signal performance measurements overview

This annex specifies the configuration requirements for making electrical performance measurements. These measurements consist of signal output, signal tolerance, and return loss. Standard loads are used in all cases so that independent specification of connection components and transportability of the measurement results are possible.

B.2 Simple physical link


B.2.1 Simple physical link overview

The physical link is considered to consist of the following component parts:

- a) the transmitter device;
- b) the interconnect; and
- c) the receiver device.

Each of those components is connected by a separable connector. On a TxRx connection, signals travel in opposite directions down the same nominal path.

Figure B.1 shows a physical link and the location of the connectors.

Since connectors are always used in the mated condition, the only access to the signals is before the signal enters the mated connector (i.e., upsy-deam) or after the signal exits the connector (i.e., downstream). Even if signals were able to be practically accessed at the point of mating within the connector, such access would/disturb the connector to the point that the measurement of the signal would be compromised (e.g., attempting to access the unmated connector with probes does not provide valid results because the connector is not in the same condition when unmated as when mated and the probe contact points are not at the same location as the connector contact points).

In this annex, signal outputs are always measured downstream of the mated connector (see figure B.1) so that the contribution of the mated connector to the signal properties is included in the measurement. This

Working Draft Serial Attached SCSI - 2 (SAS-2)

673

Page: 673

Author: RElliott Subject: Highlight Date: 8/28/2008 12:47:48 PM -07'00'

**ACCEPT - DONE (changed this to "methodologies". Added comments for other "requir*" changes that seemed acceptable)

Get rid of "requirements" and "requir*" everywhere where they might be viewed as placing requirements

Author: RElliott
Subject: Highlight
Date: 91/7/2008 1:23:16 PM -07'00'
 ACCEPT - DONE
 specifies

specifies s/b describes (from Alvin)

Author: wdc-mevans
Subject: Cross-Out
Date: 5/25/2008 4:59:13 PM -07'00'
Date: 5/25/2008 4:59:13 PM -07'00'
CCEPT - DONE (Alvin: Accept. Remove "practically and add practical in the first sentence of the paragraph)

practically [Delete the unnecessary word.]

Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 2:12:00 PM -07'00'

"TACCEPT - DONE (as " may disturb the connector to the point that the measurement of the signal is compromised")

This << such access would disturb the connector to the point that the measurement of the signal would be compromised >> should be << such access disturbs the connector to the point that the measurement of the signal is compromised >>

T10/1760-D Revision 14 28 January 2008

approach assigns a portion of the connector losses to the upstream component, but it also makes the signal measurement conservative. If the connectors on both ends of the interconnect are the same, the additional loss at the downstream connector is offset by the reduced loss at the upstream connector. For transmitter devices, a clightly stronger transmitter is required to pass the signal through the downstream half of the connector that does not belong to the transmitter device. The signal coming into receiver devices is specified after the signal has passed through the connector.

Examination of the details of the measurement methods described in this annex shows that the mated connector issue may not be as severe as it appears.

B.2.2 Assumptions for the structure of the transmitter device and the receiver device

Figure B.2 shows the details of a transmitter device.

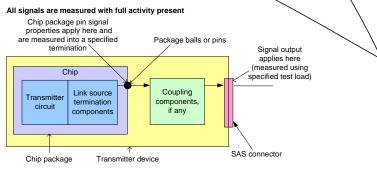
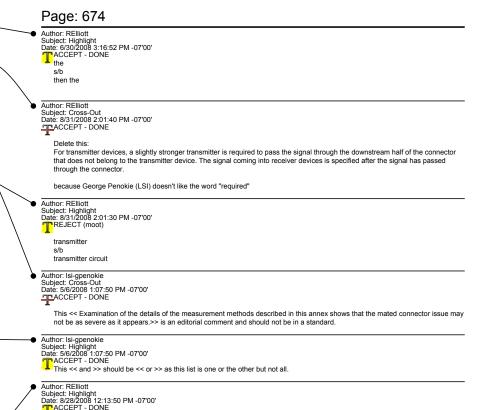


Figure B.2 — Transmitter device details

As figure B.2 shows, any of the following internal parts of this transmitter device may be labeled as the transmitter:

- a) the transmitter circuit in the chip;
- b) the chip itself; and -
- c) the chip and its associated chip package.


The term transmitter is therefore not well defined and is not used in the terminology without a modifier.

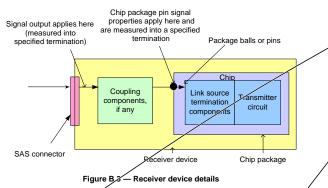
The transmitter device contains:

- a) a connector (i.e., half a mated pair);
- b) coupling components. if any;
- c) PCB traces and vias;
- d) the chip package;
- e) ESD protection devices, if any;
- f) the source termination; and
- g) the transmitter circuit.

It is assumed that the source termination is contained within the chip package.

Interoperability points may be defined at the chip package pins in some standards (e.g., Ethernet XAUI). This standard does not define requirements at chip package pins.

Interoperability points may be defined at the chip package pins in some standards (e.g., Ethernet XAUI). This


Although interoperability points are defined at the chip package pins in some standards (e.g., Ethernet XAUI), this standard does

standard does not define requirements at chip package pins.

not define requirements at chip package pins.

Figure B.3 shows the details of a receiver device. It is similar to the transmitter device.

All signals measured with full activity present

As figure B.3 shows, any of the following internal parts of this receiver device may be labeled as the receiver:

- a) the receiver circuit in the chip;
- b) the chip itself; and
- c) the chip and its associated chip package.

The term receiver is therefore not well defined and is not used in the terminology without a modifier.

The receiver device contains:

- a) a connector (i.e., half a mated pair);
- b) coupling components, if any;
- c) PCB traces and vias;
- d) the chip package;
- e) ESD protection devices, if any;
- f) the physical link termination; and

It is assumed that the physical link termination is contained within the chip package.

B.2.3 Definition of receiver sensitivity and receiver device sensitivity

The term receiver sensitivity is problematic in common usage. This term is not used for interoperability in standards. A related term applicable to the receiver device input signal is receiver device sensitivity. While these two terms are related, they are significantly different because of the noise environment assumed. The description in this subclause is used to uniquely define these terms with the understanding that this standard discourages usage of either term.

For 1.5 Gbps and 3 Gbps, receiver device sensitivity is defined as the minimum vertical inner eye opening measured at the signal output point for the input to the receiver device at which the receiver chip (i.e., the receiver circuit in the chip package on the board containing the receiver device interoperability point as shown in figure B.3) delivers the required BER (see 5.3.3) with:

- a) the minimum horizontal eye opening;
- b) all activity expected in the application for the receiver circuit present (i.e., not quiesced as for the receiver sensitivity definition); and
- c) the CJTPAT pattern being received (see Annex A).

Working Draft Serial Attached SCSI - 2 (SAS-2)

675

Page: 675

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' ACCEPT - DONE

This << and >> should be << or >> as this list is one or the other but not all.

Author: Isi-apenokie

Date: 9/4/2008 8:22:31 AM -07'00'
TO ACCEPT - DONE (Alvin: Accept. Change the first two sentences to read:

"The term receiver sensitivity is not a well defined term and therefore is not used for interoperability in this standard. " Also changed "stressed receiver sensitivity" to "stressed receiver device sensitivity" throughout chapter 5)

This << receiver sensitivity is problematic in common usage. This term is not used for interoperability in standards.>> should be << receiver sensitivity is not a well defined term and therefore is not used for interoperability in this standard. >>

T10/1760-D Revision 14 28 January 2008

For 6 Gbps, receiver device sensitivity is defined as the minimum vertical inner eye opening determined by simulation. The signal measured at the input to the receiver device is processed in a manner to simulate the additional interconnect losses (e.g., board traces, chip package). Then, the equalization function provided by the receiver circuit is applied to determine the resulting eye opening.

Special test conditions are required to measure these sensitivities (see B.8). The terminology used in this standard is signal tolerance instead of receiver device sensitivity.

B.3 Measurement architecture requirements

B.3.1 General

Signal specifications are only meaningful if the signals are able to be measured with practical instrumentation.

Another requirement is that slifterent laboratories making measurements on the same signal get the same results within acceptable measurement error (i.e., the measurements need to be accessible, regifiable, and transportable). As of the publishing of this standard, there are no accepted standard for creating signals with traceable properties and with all the properties required for an effective signal specification architecture for high speed serial applications.

Some of the elements required for practical, verifiable, and transportable signal measurements are included in this standard.

Having signal specifications at interoperability points that do not depend on the actual properties of the other physical link components not under test requires that specified known test loads be used for the signal measurements. In service, the load presented to the interoperability point is that of the actual component and environment.

Interfacing with practical instruments-also sequires that specified impedance environments be used. This forces a signal measurement architecture where the impedance environment is 50 ohm single-ended (i.e. 100 ohm differential). It also forces the requirement for instrumentation-quality loads of the correct value.

Instrumentation-quality loads are readily available for single transmission line termination. However, none are available for more complex loads that include specified propagation time, insertion loss properties, crosstalk properties, and itter creation properties.

For signal tolerance measurements, the signal is calibrated before applying it to the interoperability point under test. This signal calibration is done by adjusting the properties of the specified signal source system as measured into a laboratory-quality test load until the desired signal tolerance specifications are met. The signal source system is then disconnected from the laboratory-quality test load and connected to the interoperability point under test. It is assumed that any changes to the signal from the calibration state to the measurement state are caused by the interoperability point under test and are therefore part of the performance sought by the measurement.

B.3.2 Relationship between signal compliance measurements at interoperability points and operation in systems

The signal measurements in this standard apply under specified test conditions that simulate some parts of the conditions existing in service (e.g., this simulation includes full-duplex traffic on all phys and under all applicable environmental conditions). Other features existing in service (e.g., non-ideal return loss in parts of the physical link that are not present when measuring signals in the specified test conditions) may be included in the specifications themselves. This methodology is required to specify signal performance requirements for each side of the interoperability point that do not depend on knowing the properties of the other side.

Measuring signals in an actual functioning system at an interoperability point does not verify compliance for the components on either side of the interoperability point, although it does verify that the specific combination of components in the system at the time of the measurement produces compliant signals. Interaction between components on either side of the interoperability point may allow the signal measured to be compliant, but this compliance may have resulted because one component does not meet the specification while the other exceeds the specification.

```
Author: RElliott
Subject: Highlight
Date: 8/28/2008 12:18:45 PM -07'00'
 ACCEPT - DONE
    The terminology used in this
    standard is signal tolerance instead of receiver device sensitivity.
    This standard uses the term signal tolerance instead of receiver device sensitivity.
Author: RElliott
Subject: Highlight
Date: 8/28/2008 12:18:32 PM -07'00'
ACCEPT - DONE
    Special test conditions are required to measure these sensitivities (see B.8).
    B.8 describes special test conditions to measure these sensitivities.
Author: RElliott
Subject: Cross-Out
Date: 8/28/2008 12:19:32 PM -07'00'
ACCEPT - DONE
    requirements
Author: RElliott
Subject: Highlight
Date: 8/28/2008 12:20:59 PM -07'00'
 ACCEPT - DONE
    Measurement
    Signal measurement
Author: RElliott
Subject: Highlight
Date: 9/17/2008 1:24:48 PM -07'00'
ACCEPT - DONE
    Another requirement is that
    join with previous sentence (per Alvin)
Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'
ACCEPT - DONE
   standard
    s/b
    standards
Author: Isi-gpenokie
Subject: Cross-Out
Date: 5/25/2008 5:02:39 PM -07'00'
ACCEPT - DONE (per Alvin)
```

Page: 676

Delete << also >> as it adds nothing.

T10/1760-D Revision 14 28 January 2008

For 6 Gbps, receiver device sensitivity is defined as the minimum vertical inner eye opening determined by simulation. The signal measured at the input to the receiver device is processed in a manner to simulate the additional interconnect losses (e.g., board traces, chip package). Then, the equalization function provided by the receiver circuit is applied to determine the resulting eye opening.

Special test conditions are required to measure these sensitivities (see B.8). The terminology used in this standard is signal tolerance instead of receiver device sensitivity.

B.3 Measurement architecture requirements

B.3.1 General

676

Signal specifications are only meaningful if the signals are able to be measured with practical instrumentation.
Another requirement is that different laboratories making measurements on the same signal of the same results within acceptable measurement error (i.e., the measurements need to be accessible, verifiable, and transportable). As of the publishing of this standard, there are no accepted standard for cleating signals with traceable properties and with all the properties required for an effective signal specifications architecture for high speed serial applications.

Some of the elements required for practical, verifiable, and transportable signal pleasurements are included in this standard.

Having signal specifications at interoperability points that do not depend on the actual properties of the other physical link components not under test requires that specified known test loads be used for the signal measurements. In service, the load presented to the interoperability point is that of the actual component and environment.

Interfacing with practical instruments—also requires that specified impedance environments—be used. This forces a signal measurement architecture where the impedance environment is 50 ohm single-ender (i.e., 100 ohm differential). It also forces the requirement for instrumentation-quality loads of the correct value.

Instrumentation-quality loads are readily available for simple transmission line termination. However, none are available for more complex loads that include specified propagation time, insertion loss properties, crosstalk properties, and jitter creation properties.

For signal tolerance measurements, the signal is calibrated before applying it to the interoperability point under test. This signal calibration is done by adjusting the properties of the specified signal/source system as measured into a laboratory-quality test load until the desired signal tolerance specifications are me. The signal source system is then disconnected from the laboratory-quality test load and convected to the interoperability point under test. It is assumed that any changes to the signal from the delibration state to the measurement state are caused by the interoperability point under test and are therefore part of the performance sought by the measurement.

B.3.2 Relationship between signal compliance measurements at interoperability points and operation in systems

The signal measurements in this standard apply under specified test conditions that simulate some parts of the conditions existing in service (e.g., this simulation includes full-duplex traffic on all phys and under all applicable environmental conditions). Other features existing in service (e.g., non-ideal return loss/in parts of the physical link that are not present when measuring signals in the specified test conditions) maybe included in the specifications memselves. This methodology required to specify signal performance requirements for each side of the interoperability point that do not septend on knowing the properties of the other side.

Measuring signals in an actual functioning system at an interoperability point does not verify compliance for the components on either side of the interoperability point, although it does verify that the specific combination of components in the system at the time of the measurement produces compliant signals. Interaction between components on either side of the interoperability point may allow the signal measured to be compliant, but this compliance may have resulted because one component does not meet the specification while the other exceeds the specification.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: Isi-gpenokie Subject: Highlight Date: 8/29/2008 3:31:04 PM -07'00' ACCEPT - DONE (merge into previous sentence with "and also forces") This << It also forces the requirement for in >> should be << Interfacing with practical instruments also forces the requirement for in Author: RElliott Subject: Highlight Date: 9/17/2008 1:31:09 PM -07'00' is required to specify results in (per Alvin) Author: Isi-gpenokie Subject: Highlight Date: 7/17/2008 2:50:54 PM -07'00' TACCEPT - DONE (7/15 "in the signal specifications.") What << specifications >> are being talked about here? Author: Isi-apenokie Subject: Highlight Date: 7/17/2008 2:51:57 PM -07'00' ACCEPT - DONE (7/15 "signal specifications") What << specifications >> are being talked about here? Subject: Highlight Date: 7/17/2008 2:52:03 PM -07'00' ACCEPT - DONE (7/15 "signal specifications")

What << specifications >> are being talked about here?

T10/1760-D Revision 14 28 January 2008

It is recommended that additional margin be allowed when performing signal compliance measurements to account for conditions existing in service that may not have been accounted for in the specified measurements and specifications.

B.4 De-embedding connectors in test fixtures

Connectors are part of the test fixtures (e.g. test loads) required for obtaining access to the interoperability points. This is intrinsic for most practical measurements because the connectors used on the service components are different from those used on the instrumentation.

The effects of the portions of the connector that is used on the test fixture need to be accounted for in order to not penalize the interoperability point under test by the performance of the test fixture connector. This accounting process is termed de-embedding.

Figure B.4 shows two cases that apply.

Case 1: De-embedding a test fixture that includes a mated connector (e.g., for the measurement test fixture calibration for transmitter device output)

Case 2: De-embedding a test fixture that includes the mounting pads for a mated connector when the mated connector is part of the device under tes

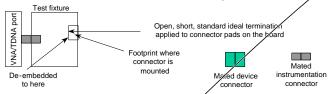


Figure B.4 — De-embedding of connectors in test fixtures

The de-embedding process assumes that the test fixture is linear and that S-parameter methodologies (see B.9) are used. Fundamentally, an S-parameter model for the test fixture with or without the connector in place is the result. Knowing this model for the test fixture, with or without the connector in place, allows simulation of the impact of the test fixture on the signal measurement.

B.5 Measurement conditions for signal output at the transmitter device

The measurement conditions required for a differential transmitter device signal output are shown in figure B.5. Figure B.5 applies to the following cases:

- a) the transmitter device is directly attached to the zero length test load (see 5.3.2.2); and
- b) the transmitter device is attached to the TCTF test load (see 5.3.2.3).

Working Draft Serial Attached SCSI - 2 (SAS-2)

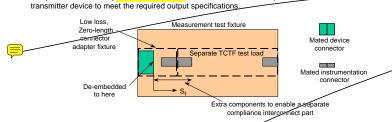
Page: 677

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE It is recommended that additional margin be allowed Additional margin should be allowed

Author: Isi-gpenokie Subject: Highlight Date: 7/17/2008 2:52:27 PM -07'00' TACCEPT - DONE (7/15 "signal specifications")

What << specifications >> are being talked about here?

Author: RElliott Subject: Cross-Out
Date: 8/28/2008 12:23:52 PM -07'00' required


677

T10/1760-D Revision 14 28 January 2008

To simulate the properties of the interconnect assembly, instrumentation-quality test loads as shown in figure

B.6 are used. Author: RElliott Measurement of eignal output at the transmitter device: Subject: Note Date: 10/17/2008 6:58:57 PM -07'00' Transmitter device under test Measurement test fixture Transmitter device signal ACCEPT - DONE output measured here into nominal impedance check figure size of B.5 instrument input Author: Isi-gpenokie Subject: Highlight
Date: 6/9/2008 11:22:46 AM -07'00'
ACCEPT - DONE (delete "here") ero length or TCTF test load with nominal impedance Calibration for the measurement test fixture: Measurement test fixture In the statement << measured here >> it is not clear where << here >> is. This needs to be fixed. Test fixture for Mated device TDNA calibrating the connector TDNA Author: RElliott port Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' test fixture Mated ACCEPT - DONE instrumentation De-embedded S_{ii} scheme to here s/b Note: Measurement test fixture contains either the TCTF method test load or the zero length test load to match Isi-gpenokie comment in next sentence Figure B.5 — Measurement conditions for signal output at the transmitter device Author: Isi-gpenokie An instrumentation-quality cable assembly connecting the measurement test fixture to the instrumentation, Subject: Highlight Date: 5/30/2008 2:15:53 PM -07'00' port is usually required. This cable assembly is considered part of the instrumentation and is not specified ACCEPT - DONE shown in figure B.5, figure B.6, figure B.7, figure B.8, figure B.9, figure B.10, and figure B.44. A measurement test fixture may be constructed from an instrumentation-quality TCTF test load with

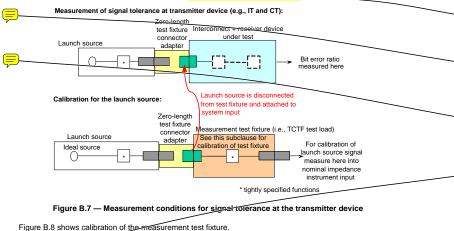
Page: 678

instrumentation-quality connectors and a connector adapter as shown in figure B.6. This scheme may be

useful when using multiple device connector types but adds extra components that may increase loss and

delay. For best accuracy, this scheme is not recommended. Extra components make it more difficult for the

Figure B.6 — Transmitter device signal output measurement test fixture details


B.6 Measurement conditions for signal tolerance at the transmitter device

The measurement conditions required for the signal tolerance at the differential transmitter device interoperability point are shown in figure B.7. Figure B.7 shows the test signal is launched into the interconnect assembly (e.g., cable assembly or PCB) that is attached to the receiver device.

Subject: Highlight

active State Sta

This standard does not include this performance requirement but is included here for completeness.

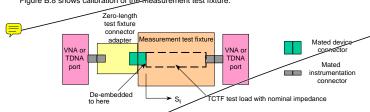


Figure B.8 — Calibration of test fixture for signal tolerance at the transmitter device

B.7 Measurement conditions for signal output at the receiver device

Figure B.9 shows the measurement conditions for the signal output at the receiver device.

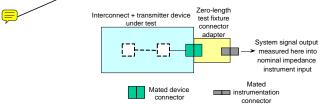


Figure B.9 — Measurement conditions for signal output at the receiver device

Page: 679

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

TACCEPT - DONE
This <- requirement but is included here >> should be << requirement but it is included here >>

Author: RElliott
Subject: Note
Date: 10/17/2008 7:05:17 PM -07'00'

ACCEPT - DONE

Check figure size of B.7

Author: hpq-relliott
Subject: Note
Date: 8/28/2008 12:46:05 PM -07'00'

ACCEPT - DONE

add more shading on figures in chapter B

Author: RElliott
Subject: Note
Date: 10/17/2008 7:03:15 PM -07'00'

ACCEPT - DONE

Check figure size of B.8

Author: RElliott
Subject: Note
Date: 10/17/2008 7:03:26 PM -07'00'

ACCEPT - DONE

Check Figure size of B.8

Check figure size of B.9

T10/1760-D Revision 14 28 January 2008

The interconnect may be the zero-length connector adaptor where the transmitter device is connected directly to the receiver device.

B.8 Measurement conditions for signal tolerance at the receiver device

Figure B.10 shows the measurement conditions required for the signal tolerance at the differential receiver device interoperability point (see 5.3.7.3).

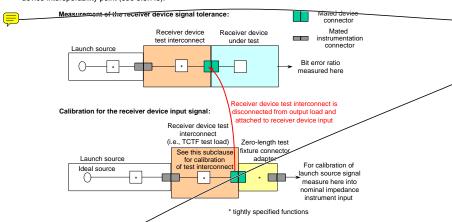
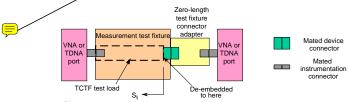



Figure B.10 — Mezsurement conditions for signal tolerance at the receiver device

Figure B.11 shows calibration of the measurement test fixture.

Notes:

- 1 This is not identical to the measurement test fixture used for the transmitter output signal even though the connector genders are the same. The pins used in the SAS connector are for the Rx (i.e., not the Tx) signals and the signals flow the other way. The $S_{\rm 22}$ measurement here is the same as the $S_{\rm 11}$ measurement for the transmitter output signal but on different pins.
- $2\,\text{The}\,S_{21}$ and S_{12} are used to create the desired jitter in this application and are not as critical.

Figure B.11 — Calibration of test fixture for signal tolerance at the receiver device

Page: 680

Author: RElliott
Subject: Cross-Out
Date: 8/28/2080 12:24:44 PM -07'00'
PACCEPT - DONE
required

Author: RElliott
Subject: Note
Date: 10/17/2008 7:01:41 PM -07'00'
ACCEPT - DONE
Check figure size of B.10

Author: RElliott
Subject: Note
Date: 10/17/2008 6:58:49 PM -07'00'
ACCEPT - DONE
Check figure size of B.11

B.9 S-parameter measurements

B.9.1 S-parameter overview

Properties of physical link elements that are linear may be represented by S-parameter (i.e., scattering parameter) spectra. There are two problematic areas when applying S-parameters to differential electrical physical links:

- a) naming conventions; and
- b) use of single-ended vector network methods on differential and common-mode systems.

This subclause explores both of these areas.

Measurement configurations for the most common conditions are described in some detail.

B.9.2 S-parameter naming conventions

There are two types of measurements performed with S-parameters:

- a) return loss from the same port of the element; and
- b) insertion loss across the element.

Each S-parameter is a function of frequency returning complex numbers and is expressed with:

- a) a magnitude component, usually expressed in dB; and
- b) a phase component.

For a two-port linear element having ports i and j with the signals being either differential or common-mode, S_{ij} is the ratio of the signal coming out of the ith port (i.e., the response) to the signal coming into the jth port (i.e., the stimulus)

A port number convention is used where the downstream port is always port 2 and the upstream port is always port 1. The stream direction is determined by the direction of the primary signal launched from the transmitter device to the receiver device (e.g., in this standard, since each differential pair carries a signal in only one direction, the port nearest the transmitter device is port 1 and the port nearest the receiver device is

There are four combinations of ports for a two-ported system yielding the following S-parameters:

- a) S₁₁ (i.e., negative return loss): measured at port 1;
- b) S₂₁ (i.e., negative insertion loss): measured at port 1;
- c) S₂₂ (i.e., negative upstream return loss): measured at port 2 of the element. The measurement is the same kind of measurement that is done at port 1 to measure S₁₁; and
- d) S₁₂ (i.e., negative upstream insertion loss): measured at port 2 of the element. The measurement is the same kind of measurement that is done at port 1 to measure S₂₁.

Page: 681

Author: RElliott Subject: Note Date: 9/4/2008 2:39:57 PM -07'00'

Reword B.9.1 to merge in B.9.5 content as:

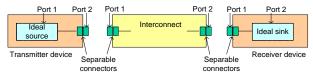
Properties of physical link elements that are linear may be represented by S-parameter (i.e., scattering parameter) spectra. S-parameters are the preferred method of capturing the linear properties of physical link elements. A frequency domain spectrum output is used for all S-parameters and specifying pass/fail limits to such a spectrum may overconstrain the system because some peaks and properties are benign to the application.

There are two problematic areas when applying S-parameters to differential electrical physical links:

- a) naming conventions (see B.9.2); and
- b) use of single-ended vector network methods on differential and common-mode systems (see B.9.3).
- B.9.4 describes using special test fixtures to make S-parameter measurements.

Author: Isi-gpenokie Subject: Highlight Date: 9/4/2008 2:39:16 PM -07'00' TRJECT (9/4 moot - major rewording

"this subclause" is B.9.1 - it needs to mean B.9)


This << are described in some detail. >> should be << are described in this subclause. >>

Author: stx-alvin-cox Subject: Note Date: 5/30/2008 2:17:31 PM -07'00'

Should we use the term "return loss" here?

T10/1760-D Revision 14 28 January 2008

Figure B.12 shows the port naming conventions for physical link elements, loads, and where those elements

The transmitter device port 1 and receiver device port 2 are internal and are not defined.

Port definitions for loads used for signal output testing and S-parameter measurements in multiline configurations:

This load has ideal differential and common mode properties

Figure B.12 — S-parameter port naming conventions

B.9.3 Use of single-ended instrumentation in differential applications

There are four categories of S-parameters for a differential system:

- a) S_{DDij}: differential stimulus, differential response;
- S_{DDij} differential stimulus, common-mode response (i.e., mode conversion causing emissions);
 S_{DCij}: common-mode stimulus, differential response (i.e., mode conversion causing susceptibility);
- S_{CCii}: common-mode stimulus, common-mode response.

Figure B.13 shows the connections that are made to a four port VNA or TDNA for measuring S-parameters on a four single-ended port black box device.

T10/1760-D Revision 14

VNA ports are all single-ended; the differential and common-mede properties for differential ports are calculated internal to the VNA or may mathematically derived. If using a TDNA, consult the details for the specific instrument. Four analyzer ports are required to measure the properties of two differential ports.

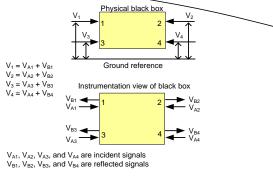


Figure B.13 — Four single-ended port or two differential port element

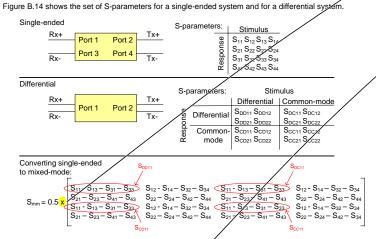
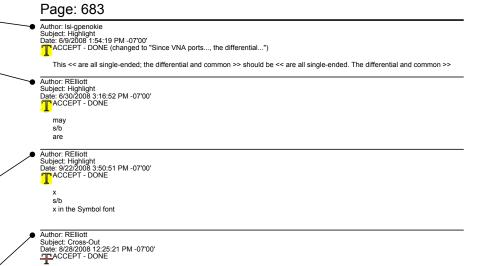
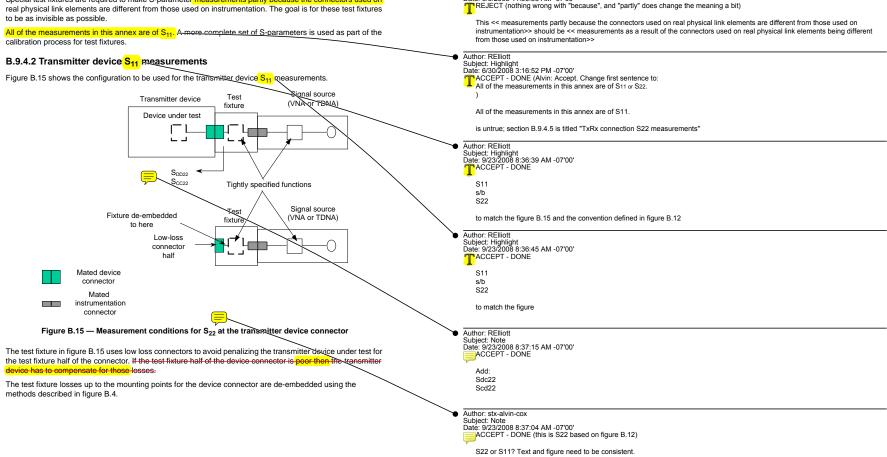



Figure B.14 — S-parameters for single-ended and differential systems

See SFF-8416 for details on connections required for differential S-parameter measurements.


connections required for

T10/1760-D Revision 14 28 January 2008

B.9.4 Measurement configurations for physical link elements

B.9.4.1 Measurement configuration overview

Special test fixtures are required to make S-parameter measurements partly because the connectors used on real physical link elements are different from those used on instrumentation. The goal is for these test fixtures

Page: 684

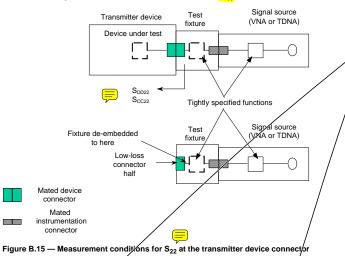
Author: Isi-gpenokie Subject: Highlight Date: 6/6/2008 11:56:58 AM -07'00'

Comments from page 684 continued on next page

T10/1760-D Revision 14 28 January 2008

B.9.4 Measurement configurations for physical link elements

B.9.4.1 Measurement configuration overview


Special test fixtures are required to make S-parameter measurements partly because the connectors used on real physical link elements are different from those used on instrumentation. The goal is for these test fixtures to be as invisible as possible.

All of the measurements in this annex are of S₁₁. A more complete set of S-parameters is used as part of the calibration process for test fixtures.

B.9.4.2 Transmitter device S₁₁ measurements

684

Figure B.15 shows the configuration to be used for the transmitter device S₁₁ measurements.

The test fixture in figure B.15 uses low loss connectors to avoid penalizing the transmitter device under test for

the test fixture half of the connector. If the test fixture half of the device connector is poor the device has to compensate for those losses.

The test fixture losses up to the mounting points for the device connector are de-embedded using the methods described in figure B.4.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott Subject: Cross-Out
Date: 6/30/2008 3:16:52 PM -07'00'
Date: 6/30/2008 3:16:52 PM -07'00'
Date: 6/30/2008 3:16:52 PM -07'00' If the test fixture half of the device connector is poor then the transmitter device has to compensate for those losses. Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' REJECT (moot, sentence deleted) poor then poor, then

Author: Isi-gpenokie Subject: Highlight Date: 6/6/2008 12:05:40 PM -07'00'

*REJECT (this is really a "must" expressing a statement of fact type requirement. The transmitter device doesn't make any extra TREJECT (this is really a "must" expressing a statement or raci type requirement. In a distinct the distinct and if it isn't good effort here or comply with any particular new requirement; however, its output is degraded by the test fixture and if it isn't good enough to overcome that, it may be declared a failure even though it works fine in a real system. However, deleting the whole sentence.)

This << device has to compensate for those >> should be << device should compensate for those >>

B.9.4.3 Receiver device S₁₁ measurements

Figure B.16 shows the configuration to be used for the receiver device S₁₁ measurements.

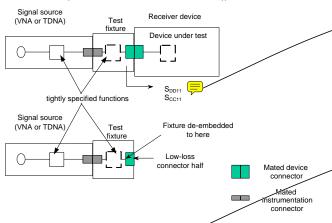
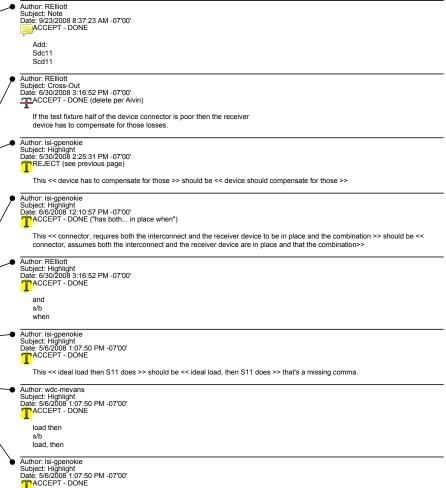


Figure B.16 — Measurement conditions for S₁₁ at the receiver device connector

The test fixture in figure B.16 uses low loss connectors to avoid penalizing the receiver device under test for the test fixture half of the connector. If the test fixture half of the device connector is poor then the receiver device has to compensate for those losses.


The test fixture losses up to the mounting points for the device connector are de-embedded using the methods described in figure B.4.

B.9.4.4 TxRx connection S₁₁ measurements at IT or CT

Figure B.17 shows the conditions for making S₁₁ measurements of the interconnect attached to the transmitter device.

This measurement, like the signal tolerance measurement at the transmitter device connector, requires both the interconnect and the receiver device to be in place and the combination is measured. If the receiver device is replaced by an ideal load then C₁₁ does not represent inservice conditions. If the interconnect is very lossy then the effects of the load on the far end (i.e., where the receiver device is located) are not significant and an ideal load may be used. However, if the interconnect is not very lossy (e.g., the zero length test load), then the measured S₁₁ may be dominated by the properties of the receiver device and not the properties of the interconnect.

Page: 685

Comments from page 685 continued on next page

B.9.4.3 Receiver device S₁₁ measurements

Figure B.16 shows the configuration to be used for the receiver device S₁₁ measurements.

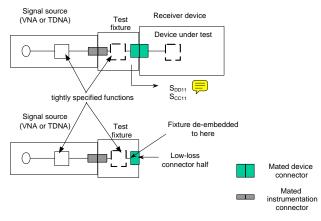


Figure B.16 — Measurement conditions for S₁₁ at the receiver device connector

The test fixture in figure B.16 uses low loss connectors to avoid penalizing the receiver device under test for the test fixture half of the connector. If the test fixture half of the device connector is poor then the receiver device has to compensate for those losses.

The test fixture losses up to the mounting points for the device connector are de-embedded using the methods described in figure B.4.

B.9.4.4 TxRx connection S₁₁ measurements at IT or CT

Figure B.17 shows the conditions for making \mathbf{S}_{11} measurements of the interconnect attached to the transmitter device.

This measurement, like the signal tolerance measurement at the transmitter device connector, requires both the interconnect and the receiver device to be in place and the combination is measured. If the receiver device is replaced by an ideal load then S₁₁ does not represent in-service conditions. If the interconnect is very lossy then the effects of the load on the far end (i.e., where the receiver device is located) are not significant and an ideal load may be used. However, if the interconnect is not very lossy (e.g., the zero length test load), then the measured S₁₁ may be dominated by the properties of the receiver device and not the properties of the interconnect.

685

Working Draft Serial Attached SCSI - 2 (SAS-2)

This << very lossy then the effects >> should be << very lossy, then the effects >>. Missing comma.

Author: wdc-mevans
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

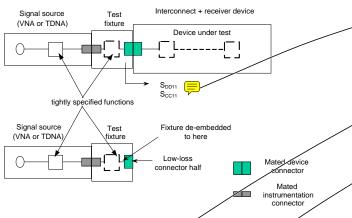
TACCEPT - DONE

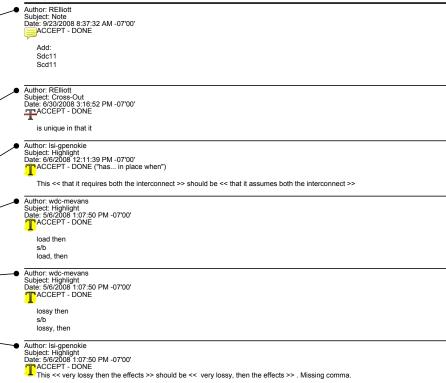
lossy then
s/b
lossy, then

T10/1760-D Revision 14

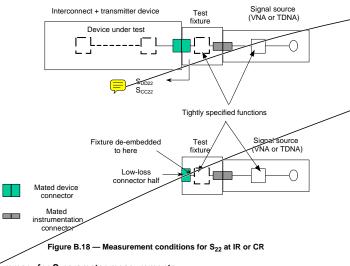
28 January 2008

For short physical links, S_{11} performance may be the limiting factor for the entire physical link due to severe unattenuated reflections that create large DJ.




Figure B.17 — Measurement conditions for S₁₁ at IT or CT

B.9.4.5 TxRx connection S₂₂ measurements at IR or CR


Figure B.18 shows the conditions for making S₂₂ measurements of the interconnect attached to the receiver device.

This measurement is unique in that it requires both the interconnect and the transmitter device to be in place as the combination is measured. This may be considered a possible direction signal tolerance measurement. If the transmitter device is replaced by an ideal transmitter device is replaced by an ideal transmitter device is replaced by an ideal transmitter device is located) are not significant and an ideal load may be used. However, if the interconnect is not very lossy (e.g., the zero length test load), then the measured S_{22} may be dominated by the properties of the transmitter device and not the properties of the interconnect.

For short physical links, S₂₂ may be the limiting factor for the entire physical link due to severe unattenuated reflections that create large DJ.

B.9.5 Summary for S-parameter measurements

-5-parameters are the preferred method of capturing the linear properties of physical link elements. Complex but tractable, methods are required to use single-ended instruments for differential and common-mode applications. Careful attention to test configuration details is required.

A frequency domain spectrum output is required for all S-parameters and specifying pass/fail limits to such a spectrum may overconstrain the system because some peaks and spoperties are benign to the application.

B.10 Calibration of jitter measurement devices (JMDs)

B.10.1 Calibration of JMDs overview

The response of a jitter measurement device (JMD) to known jitter levels is calibrated and verified in two frequency bands:

- a) the lower frequency band is at the fundamental of the SSC modulation frequency (i.e., 30 kHz); and
- b) the second-higher frequency band is in the transition region between the reference clock tracking and not tracking the jitter (i.e., approximately 2.6 MHz).

The reference clock is part of the JMD and may be implemented in hardware or software. By calibrating the JMD to these two bands, the response to jitter is calibrated and allows for improved correlation among JMDs.

The lower frequency band requirement is tested with a D24.3 pattern on which 20.8 ns peak-to-peak sinusoidal phase (time) modulation at 30 kHz ± 1 % is added. The ratio of the reported jitter to the amount actually applied (which is measured independently) is the attenuation and shall meet the requirement expertised in 5.3.5.2.

The frequency deviation of the clock in the data source is related to the SSC frequency deviation by the following equation:

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 687

Author: RElliott
Subject: Note
Date: 9/23/2008 8:37:39 AM -07'00'
 ACCEPT - DONE

Add:
 Sdc22
Scd22

Author: RElliott
Subject: Note
Date: 9/4/2008 2:37:49 PM -07'00'
ACCEPT - DONE

Move remaining sentences of B.9.5 into B.9.1

Author: RElliott
Subject: Cross-Out
Date: 9/4/2008 2:37:07 PM -07'00'

Delete:

Complex,

but tractable, methods are required to use single-ended instruments for differential and common-mode applications. Careful attention to test configuration details is required.

which is basically stated already in B.9.1.

Author: Isi-gpenokie Subject: Highlight Date: 9/4/2008 2:37:26 PM -07'00' TREJECT (9/14 moot; sentence deleted

7/15 add "However," too.

"Careful attention" is not related to single-ended. That's a general statement for the whole paragraph. Adding "however" with incorrect punctuation tying it to the single-ended sentence would be a mistake. Agree to change the middle sentence to simply " It is possible to use single-ended instruments for differential and common-mode applications.")

This << Complex, but tractable, methods are required to use single-ended instruments for differential and common-mode applications. Careful attention to test configuration details is required.>> should be << With complex, but tractable, methods it is possible to use single-ended instruments for differential and common-mode applications, however, careful attention to test configuration details is essential.>>

Author: Isi-gpenokie Subject: Highlight Date: 6/6/2008 12:14:30 PM -07'00'

This << output is required for all S-parameters >> should be << output is used for all S-parameters >>

Author: Isi-gpenokie Subject: Highlight Date: 5/30/2008 2:7:53 PM -07'00' PREJECT (Alvin: Reject. Leave "because".)

This << the system because some peaks and >> should be << the system as some peaks and >>

Comments from page 687 continued on next page

For short physical links, S₂₂ may be the limiting factor for the entire physical link due to severe unattenuated reflections that create large DJ.

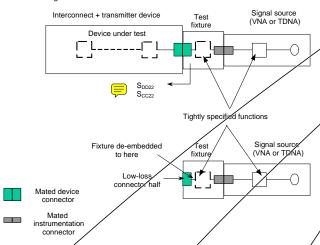


Figure B.18 — Measurement conditions for S₂₂ at IR or CR

B.9.5 Summary for S-parameter measurements

S-parameters are the preferred method of capturing the linear properties of physical link elements. Complex, but tractable, nethods are required to use single-encied instruments for differential and common-mode applications. Careful attention to test configuration details is required.

A frequency domain spectrum output is required for all S-parameters and specifying pass/fail limits to such a spectrum may overconstrain the system because some peaks and properties are benign to the application.

B.10 Calibration of jitter measurement devices (JMDs)

B.10.1 Calibration of JMDs overview

The response of a jitter measurement device (JMD) to known jitter levels is calibrated and verified in two frequency bands:

- a) the lower frequency band is at the fundamental of the SSC modulation frequency (i.e., 30 k/4z); an/s
- b) the second-righer frequency band is in the transition region between the reference clock tracking on not tracking the jitter (i.e., approximately 2.6 MHz).

The reference clock is part of the JMD and may be implemented in hardware or software. By calibrating the JMD to these two bands, the response to jitter is calibrated and/allows for improved correlation among JMDs.

The lower frequency band requirement is tested with a D24.3 pattern on which 20.8 ps peak-to-peak sinusoidal phase (time) modulation at 30 kHz ± 1 % is added. The ratio of the reported jitter to the amount actually applied (which is measured independently) is the attenuation and shall preet the requirement specified in 5.3.5.2.

The frequency deviation of the clock in the data source is related to the SSC frequency deviation by the following equation:

Working Draft Serial Attached SCSI - 2 (SAS-2)

687

Author: hpq-relliott
Subject: Note
Date: 6/9/2008 10:17:04 AM -07'00'
ACCEPT - DONE (reworded to avoid shalls) shalls in informative annex Author: RElliott Subject: Cross-Out Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE second Author: Isi-gpenokie Subject: Highlight
Date: 6/9/2008 1:44:52 PM -07'00'

REJECT (wdc-mevans wording used instead) This << actually applied (which is measured independently) is the >> should be << actually applied, measured independently, is the Author: Isi-gpenokie Subject: Highlight Date: 6/9/2008 9:42:48 AM -07'00' ACCEPT - DONE (wdc-mevans wording used instead) This is an informative annex and therefore is not allowed to contains requirements and the statement << and shall meet the requirement specified in 5.3.5.2. >> is a requirement. This has to be deleted or reworded to eliminate any notion that this is a requirement. Author: wdc-mevans Subject: Highlight Date: 6/9/2008 9:44:04 AM -07'00' ACCEPT - DONE actually applied (which is measured independently) is the attenuation and shall meet the requirement specified in 5.3.5.2. of jitter applied is the attenuation, which is specified in 5.3.5.2. Author: stx-alvin-cox Subject: Inserted Text Date: 6/9/2008 9:42:35 AM -07'00'

REJECT (wdc-mevans wording used instead)

should

 $\Delta f = SSC_{tol} \times f_{baud}$

where:

 Δf is the frequency deviation in Hz

is the baud rate (e.g., 6 GHz for 6 Gbps)(see 5.3.3.1) f_{baud}

SSCtol is the SSC frequency deviation (see 5.3.8.1)

The sinusoidal phase modulation is related to frequency modulation by the following equation:

 $\Delta f = f_m \times \Delta \phi$

where:

is the frequency deviation in Hz Δf

 f_{m} is the modulation frequency in Hz

is the phase deviation in radians $\Delta \phi$

Assuming a triangular SSC modulation profile, the phase deviation is related to the phase modulation in time by the following equation:

$$\Delta \phi = 2 \times \pi \times f_{baud} \times \Delta T$$

where:

is the phase deviation in radians $\Delta \phi$

is the baud rate (e.g., 6 GHz for 6 Gbps) f_{baud}

is the integral of a triangular, 5 000 ppm, center-spread SSC modulation profile at

30 kHz which is equivalent to a sinusoidal phase (time) modulation with a ΛT

peak-to-peak amplitude of 20.83 ns, independent of fbaud

From these relationships, the SSC frequency deviation from the JTF test parameters is as/follows:

$$SSC_{tol} = 2 \times \pi \times f_m \times \Delta T$$

Calculated for the test conditions, SSC_{tol} is within the specification limits:

$$SSC_{tol} = 2 \times \pi \times (3.0 \times 10^4) \times (20.83 \times 10^{-9}) = 3926 \text{ ppm}$$

From these calculations, either frequency or phase modulation may be used a separate means of verifying the level of the modulation is used to make sure the test conditions are confect. The independent, separate means of verification of the 30 kHz test signal is equivalent to a frequency demodulator or wide range, phase demodulator

Two tests are performed in the upper frequency band:

a) the adjustment of the 3 dB bandwidth of the J

b) the verification of the peaking (see 5.3.5.2).

Both of these tests use a D24.3 pattern with sinusoidal periodic phase modulation or periodic jitter (PJ) that has been independently verified to produce 0.3 UI ± 10 % neak-to-peak consistently over a frequency range of 0.5 MHz to 50 MHz. In both tests, a 0 dB reference level is initially determined so all other measurements are relative to this level, not the absolute level of the source. It is important that the PJ source level does not vary in amplitude over this test range, or the variation needs to be extracted in the final calculations.

For the tests in the upper frequency band it is necessary to have a phase or jitter modulator. The independent separate means of verification of the 2.6 MHz and 50 MHz test signals is equivalent to a DJ measurement with constant clock

There are two typical JMD adjustments for clock recovery: loop bandwidth and peaking (i.e., damping). These adjustments may refer to the closed loop response or be specific to a particular design, so they may not be used directly to ensure the JTF response to jitter. The loop bandwidth should be adjusted initially (with the peaking fixed) and if both the low frequency band requirements and the high frequency band requirements are Page: 688

Author: RElliott

Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE

center-spread

center-spreading

Author: RElliott Subject: Note

Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

upper

higher

Author: pmcs-gfortin

Subject: Highlight Date: 6/9/2008 9:45:26 AM -07'00'

REJECT (Alvin: Reject. Although the proportional characteristics indicate the goodness of the measurement device, the are some measurement devices that will provide adequate results without meeting absolute limits on proportionality.)

Section B.10 only mandates the use of a D24.3 pattern to adjust the -3dB bandwidth of the JTF and does not describe how to verify that the JTF -3dB corner varies proportionally to the transition density of the pattern.

It is proposed to replace the highlighted text with:

"Three tests are performed in the upper frequency band:

a) the adjustment of the -3 dB bandwidth of the JTF; and

b) the verification of the peaking (see 5.3.5.2); and

c) the verification of the displacement of the -3 dB bandwidth of the JTF with varying pattern density."

This will bring the JTF calibration procedure in line with the last paragraph of section 5.3.5.2 (page 185) that states:

"A proportional decrease of the JTF -3 dB corner frequency should be observed for a decrease in pattern transition density compared to a 0.5 transition density. If a JMD shifts the JTF -3 dB corner frequency in a manner that does not match this characteristic, or does not shift at all, measurements of jitter with patterns with transition densities different than 0.5 may lead to discrepancies in reported jitter levels. In the case of reported jitter discrepancies between JMDs, the JMD with the shift of the -3 dB corner frequency that is closest to the proportional characteristic of the reference channel shall be considered correct. This characteristic may be measured with the conditions defined above for measuring the -3 dB corner frequency, but substituting other patterns with different transition densities."

Further comments target the same objective of consistency between B.10 and 5.3.5.2.

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE

Delete the "the"s in the a)b) list

Author: pmcs-gfortin Subject: Cross-Out
Date: 6/9/2008 9:45:45 AM -07'00'

PEREJECT (Alvin: Reject due to tests not being changed.)

To account for the addition of a 3rd test.

Comments from page 688 continued on next page

T10/1760-D Revision 14 28 January 2008

 $\Delta f = SSC_{tol} \times f_{baud}$

where:

 Δf is the frequency deviation in Hz

f_{baud} is the baud rate (e.g., 6 GHz for 6 Gbps)(see 5.3.3.1)

SSC_{tol} is the SSC frequency deviation (see 5.3.8.1)

The sinusoidal phase modulation is related to frequency modulation by the following equation:

 $\Delta f = f_{\mathsf{m}} \times \Delta \phi$

where:

 Δf is the frequency deviation in Hz $f_{
m m}$ is the modulation frequency in Hz

 $\Delta \phi$ is the phase deviation in radians

Assuming a triangular SSC modulation profile, the phase deviation is related to the phase oddulation in time by the following equation:

$$\Delta \phi = 2 \times \pi \times f_{baud} \times \Delta T$$

where:

 $\Delta \phi$ is the phase deviation in radians

 $f_{\mbox{\scriptsize baud}}$ is the baud rate (e.g., 6 GHz for 6 Gbps)

is the integral of a triangular, 5 000 ppm, center-spream SSC modulation profile at

ΔT 30 kHz which is equivalent to a sinusoidal phase (time) modulation with a

peak-to-peak amplitude of 20.83 ns, independent of fbaud

From these relationships, the SSC frequency deviation from the J/F test parameters is as follows:

$$SSC_{tol} = 2 \times \pi \times f_m \times \Delta T$$

Calculated for the test conditions, SSC_{tol} is within the specification limits:

$$SSC_{tol} = 2 \times \pi \times (3.0 \times 10^4) \times (20.83 \times 10^{-9}) = 3.926 \text{ ppm}$$

From these calculations, either frequency or phase modulation may be used. A separate means of verifying the level of the modulation is used to make sure the test conditions are correct. The independent, separate means of verification of the 30 kHz test signal is equivalent to a frequency demodulator or wide range, phase demodulator

Two tests are performed in the upper frequency band:

a) the adjustment of the -3 dB bandwidth of the JTF; and

b) the verification of the peaking (see 5.3.5.2).

Both of these tests use a D24.3 pattern with sinusoidal periodic phase modulation or periodic jitter (PJ) that has been independently verified to produce 0.3 UI ± 10 % peak-to-peak consistently over a frequency range of 0.5 MHz. In both to star, a 0 dB reference level is initially determined so all other measurements are relative to this level, not the absolute level of the source. It is important that the PJ source level does not vary in amplitude over this test range, or the variation needs to be extracted in the final calculations.

For the tests in the upper requency band it is necessary to have a phase or jitter modulator. The independent separate means of verification of the 2.6 MHz and 50 MHz test signals is equivalent to a DJ measurement with constant clock.

There are two typical JMD adjustments for clock recovery: loop bandwidth and peaking (i.e., dampi//g). These adjustments may refer to the closed loop response or be specific to a particular design, so they m//y) not be used directly to ensure the JTF response to jitter. The loop bandwidth should be adjusted initially (with the peaking fixed) and if both the low frequency band requirements and the high frequency band requirements are

Working Draft Serial Attached SCSI - 2 (SAS-2)

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

TACCEPT - DONE

upper
s/b
higher

Author: Isi-gpenokie
Subject: Highlight
Date: 6/9/2008 9:53:21 AM -07'00'
ACCEPT - DONE (Alvin: Accept)

Make this <<There are two typical JMD adjustments for clock recovery: loop bandwidth and peaking (i.e., damping). >> into an a.b. c list.

Author: RElliott
 Subject: Underline
 Date: 630/2008 3:16:52 PM -07'00'
 TACCEPT - DONE
 should be adjusted initially s/b
 is initially adjusted

Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

(with the peaking fixed) and if both

s/b with the peaking fixed. If both

T10/1760-D Revision 14 28 January 2008

not able to be simultaneously met, the peaking should be adjusted to modify the .ITF shape in the upper band. In the case of hardware based reference clocks, moderate levels of peaking may be required to achieve the proper attenuation at 30 kHz. The peaking setting is usually specific to the JMD. With software based clock recovery, the suggested starting peaking level may be low, close to the critically demped condition of peaking of 0.707.

The test sequence for all measurements also removes the baseline DJ. DJ of the source, and DJ of the JMD such that what is being measured is the reported jitter only due to the added test jitter and not any baseline residual jitter in the test system. This is important to insure the accuracy of the measurement at low reported jitter levels.

B.10.2 JMD Calibration Procedure

This calibration procedure is based on the following performance requirements:

- a) the -3 dB corner frequency of the JTF shall be 2.6 MHz ± 0.5 MHz;
- the magnitude peaking of the JTF shall be 3.5 db maximum; and
- c) the attenuation at 30 kHz ± 1 % shall be 72 dB to 73 dB.

Ele JTF -3dB corner frequency and the magnitude peaking requirements shall be measured with sinusoidal PJ applied, with a peak-to-peak emplitude of 0.3 UI ± 10 %. The relative attenuation at 30 kHz shalls measured with sinusoidal phase (time) sodulation applied, with a peak to-peak amplitude of 20.8 ns ± 10%.

Resource requirements:

- a) a pattern generator for SAS signals;
- b) a sine wave source, 30 kHz, and 0.5 MHz to 50 MHz;
- c) test cables; and
- d) a litter measurement device.

The response to jitter of the JMD (the reference clock is part of the JMD) is measured with three different jitter modulation frequencies corresponding to the three cases:

- a) SSC (full tracking);
- b) jitter (no tracking); and
- c) the boundary between SSC and jitter.

The jitter source is independently verified by separate means. This ensures the jitter response of the JMD is reproducible across different test setups.

The three test signals are:

- a) a 1.5 GHz ± 0.01 % square wave (i.e., a 6 Gbps D24.3 (i.e., 00110011) pattern) with rise time longer than 0.25 UI 20 % to 80 % and with a sinusoidal phase modulation of 20.8 ns ± 10 % peak to peak at 30 kHz ± 1%;
- b) a 1.5 GHz square wave with a sinusoidal phase modulation of 100 ps ± 10% peak to peak at 50 MHz ± 1 %: and
- c) a 1.5 GHz square wave with no modulation.

An independent, separate means of verification of the test signals is used to make sure the level of the

The following test procedure checks two conditions: the JTF attenuation and the JTF bandwidth.

- 1) adjust the pattern generator for a 6 Gbps D24.3 pattern (00110011b, with a rise time within specified limits) modulation to produce a 30 kHz ± 1 %, 20.8 ns ± 10 % peak-to-peak sinusoidal phase
- 2) verify the level of modulation meets the requirements and record the peak-to-peak level as DJ_SSC. The independent, separate means of verification of the 30 kHz test signal is equivalent to a frequency demodulator or wide range phase demodulator. This may be measured with:
 - A) a time interval error plot with constant frequency clock on a real time oscilloscope;
 - B) an equivalent time oscilloscope; or
 - C) a frequency demodulator;

Page: 689

Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE should be

s/b is

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

ACCEPT - DONE

This << simultaneously met, the peaking should >> should be << simultaneously met, then the peaking should >>

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'

CACCEPT - DONE insure s/b ensure

Author: Isi-gpenokie
Subject: Highlight
Date: 6/9/2008 9:54:06 AM -07'00'
PREJECT (Alvin: Reject. The sentence break aids in the readability.)

This << in the test system. This is important to insure the accuracy >> should be << in the test system to insure the accuracy >>

Author: Isi-gpenokie Subject: Highlight Date: 6/9/2008 9:57:18 AM -07'00' REJECT (rewritten)

This << performance requirements: >> should be << performance settings: >>

Author: Isi-gpenokie Subject: Sticky Note Date: 6/9/2008 9:56:23 AM -07'00' ACCEPT - DONE (Alvin: rewritten to remove shalls)

> There are several << shall >> in this informative annex that have to be removed. There are also several boarder line statements that are very close to stating requirements that should be looked at to make sure no requirement is implied.

Author: Isi-gpenokie Subject: Highlight Date: 6/9/2008 10:26:02 AM -07'00' REJECT (rewritten to not mention the number) This << shall be >> should be << is set to >>

Author: wdc-mevans Subject: Highlight Date: 6/9/2008 9:57:06 AM -07'00' REJECT (rewritten to not mention the number)

shall be s/b is

Comments from page 689 continued on next page

not able to be simultaneously met, the peaking should be adjusted to modify the JTF shape in the upper band. In the case of hardware based reference clocks, moderate levels of peaking may be required to achieve the proper attenuation at 30 kHz. The peaking setting is usually specific to the JMD. With software based clock recovery, the suggested starting peaking level may be low, close to the critically damped condition of peaking of 0.707.

The test sequence for all measurements also removes the baseline DJ, DJ of the source, and DJ of the JMD such that what is being measured is the reported jitter only due to the added test jitter and not any baseline residual jitter in the test system. This is important to insure the accuracy of the measurement at low reported jitter levels.

B.10.2 JMD Calibration Procedure

This calibration procedure is based on the following performance requirements

- a) the -3 dB corner frequency of the $\overline{\text{JTF}}$ shall be 2.6 MHz;
- b) the magnitude peaking of the JTF shall be 3.5 dB maximum; and
- c) the attenuation at 30 kHz ± 1 % shall be 72 dB to 75 dB.

b_TF-3dB corner frequency and the magnitude peaking requirements shall be measured with sinusoidal PJ applied, with a peak-to-peak amplitude of 0.3 UI ± 10 %. The celative attenuation at 30 kHz/shall be measured with sinusoidal phase (time) modulation applied, with a peak-to-peak amplitude of 20/8 ns ± 10 %.

Resource requirements

- a) a pattern generator for SAS signals;
- b) a sine wave source, 30 kHz, and 0.5 MHz to 50 MHz;
- c) test cables; and
- d) a jitter measurement device.

The response to jitter of the JMD (the reference clock is part of the JMD) is measured with three different of the JMD) is measured with three different of the JMD (the reference clock is part of the JMD) is measured with three different of the JMD (the reference clock is part of the JMD) is measured with three different of the JMD (the reference clock is part of the JMD) is measured with three different of the JMD (the reference clock is part of the JMD) is measured with three different of the JMD (the reference clock is part of the JMD) is measured with three different of the JMD (the reference clock is part of the JMD) is measured with three different of the JMD (the reference clock is part of the JMD) is measured with three different of the JMD (the reference clock is part of the JMD) is measured with three different of the JMD (the reference clock is part of the JMD) is measured with three difference clock is part of the JMD (the reference clock is part of the JMD) is measured with three difference clock is part of the JMD (the reference clock is part of the JMD) is measured with three difference clock is part of the JMD (the reference clock is part of the JMD) is measured with three difference clock is part of the JMD (the reference clock is part of the JMD) is measured with three difference clock is part of the JMD (the reference clock is part of the JMD) is measured with the JMD (the reference clock is part of the JMD) is measured with the JMD (the reference clock is part of the JMD) is measured with three difference clock is part of the JMD (the reference clock is part of the JMD) is measured with the JMD (the reference clock is part of the JMD) is measured with the JMD (the reference clock is part of the JMD) is measured with the JMD (the reference clock is part of the JMD) is measured with the JMD (the reference clock is part of the JMD) is measured with the JMD (the reference clock is part of the JMD) is measured with the JMD (the reference clock is part of the JMD) is measured with the JMD (the ref

- a) SSC (full tracking);
- b) jitter (no tracking); and
- c) the boundary between SSC and jitter.

The jitter source is independently verified by separate means. This ensures the jitter response of the IMD is reproducible across different test setups.

The three test signals are:

- a) a 1.5 GHz ± 0.01 % square wave (i.e., a 6 Gbps D24.3 (i.e., 00110011) pattern) with rise time longer than 0.25 UI 20 % to 80 % and with a sinusoidal phase modulation of 20.8 ns ± 10 % peak to peak at 30 kHz ± 1%;
- a 1.5 GHz square wave with a sinusoidal phase modulation of 100 ps ± 10% peak to peak at 50 MHz ± 1 %; and
- c) a 1.5 GHz square wave with no modulation.

An independent, separate means of verification of the test signals is used to <u>make sure</u> the level of the modulation is correct

The following test procedure checks two conditions: the JTF attenuation and the JTF bandwidth.

- adjust the pattern generator for a 6 Gbps D24.3 pattern (00110011b, with a rise time within specified limits) modulation to produce a 30 kHz ± 1 %, 20.8 ns ± 10 % peak-to-peak sinusoidal phase modulation:
- 2) verify the level of modulation meets the requirements and record the peak-to-peak level as DJ_SSC. The independent, separate means of verification of the 30 kHz test signal is equivalent to a frequency demodulator or wide range phase demodulator. This may be measured with:
 - A) a time interval error plot with constant frequency clock on a real time oscilloscope;
 - B) an equivalent time oscilloscope; or
 - C) a frequency demodulator;

Autiliot. Wide-Inversion Subject: Highlight Date: 6/9/2008 9:57:01 AM -07'00' shall be s/b Author: Isi-gpenokie Subject: Highlight Date: 6/9/2008 10:26:05 AM -07'00' TREJECT (rewritten to not mention the number) This << shall be >> should be << is set to >> Author: RElliott Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE Replace "This calibration ... and all text prior to "Resource requirements:" with the following: The calibration procedure is based on the JTF characteristics stated in 5.3.5.2 for: a) the -3dB corner frequency of the JTF; b) the magnitude peaking of the JTF; and c the attenuation at 30kHz. (from Alvin) Author: Isi-gpenokie Subject: Highlight Date: 6/9/2008 10:26:11 AM -07'00' REJECT (rewritten to not mention the number) This << shall be >> should be << is set to >> Subject: Highlight Date: 6/9/2008 9:56:51 AM -07'00' REJECT (rewritten to not mention the number) shall be s/b is Author: stx-alvin-cox Subject: Note Date: 6/9/2008 9:59:52 AM -07'00' REJECT (complete rewrite instead) Add sentence here: "See 5.3.4.2 for actual specified values. The values given above are for reference purposes only and may not reflect the actual standard requirements. Author: stx-alvin-cox Subject: Cross-Out Date: 6/9/2008 1:52:11 PM -07'00' REJECT (sentence deleted) Author: Isi-gpenokie Subject: Highlight Date: 6/9/2008 9:58:00 AM -07'00'

Author: wdc-mevans

Comments from page 689 continued on next page

This << shall be measured >> should be << are measured >>

REJECT (sentence deleted)

not able to be simultaneously met, the peaking should be adjusted to modify the JTF shape in the upper band. In the case of hardware based reference clocks, moderate levels of peaking may be required to achieve the proper attenuation at 30 kHz. The peaking setting is usually specific to the JMD. With software based clock recovery, the suggested starting peaking level may be low, close to the critically damped condition of peaking of 0.707.

The test sequence for all measurements also removes the baseline DJ, DJ of the source, and DJ of the JMD such that what is being measured is the reported jitter only due to the added test jitter and not any baseline residual jitter in the test system. This is important to insure the accuracy of the measurement at low reported jitter levels.

B.10.2 JMD Calibration Procedure

This calibration procedure is based on the following performance requirements:

- a) the -3 dB corner frequency of the JTF shair De 2.6 MHz ± 0.5 MHz;
- b) the magnitude peaking of the Fr shall be 3.5 dB maximum; and
- c) the attenuation at 30 kHz ± 1 % shall be 72 dB to 75 dB.

e JTF <mark>-3dB corner frequency and the magnitude peaking requirements shall be becauted with sinusoidal PJ applied, with a peak-to-peak amplitude of 0.3 UI ± 10 %. The relative attenuation at 30 kHz shall be measured with sinusoidal phase (time) repodulation applied, with a peak-to-peak amplitude of 20.8 ns ≥ 10 %</mark>

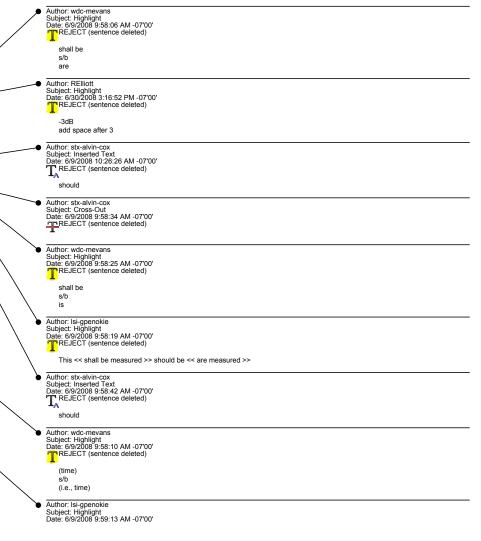
Resource requirements:

- a) a pattern generator for SAS signals;
- b) a sine wave source, 30 kHz, and 0.5 MHz to 50 MHz;
- c) test cables; and
- d) a jitter measurement device.

The response to jitter of the JMD (the reference clock is part of the JMD) is measured with three different jitter modulation frequencies corresponding to the three cases:

- a) SSC (full tracking);
- b) jitter (no tracking); and
- c) the boundary between SSC and jitter.

The jitter source is independently verified by separate means. This sources the jitter response of the JMD is reproducible across different test setups.


The three test signals are:

- a) a 1.5 GHz ± 0.01 % square wave (i.e., a 6 Gbps D24.3 (i.e., 00110011) pattern) with rise time longer than 0.25 UI 20 % to 80 % and with a sinusoidal phase modulation of 20.8 no ± 10 % peak to peak at 20 kHz + 19/2.
- b) a 1.5 GHz square wave with a sinusoidal phase modulation of 100 ps ± 10% peak to peak at 50 MHz ± 1 %; and
- c) a 1.5 GHz square wave with no modulation.

An independent, separate means of verification of the test signals is used to make sure the level of the modulation is correct

The following test procedure checks two conditions: the JTF attenuation and the JTF bandwidth.

- adjust the pattern generator for a 6 Gbps D24.3 pattern (00110011b, with a rise time within specified limits) modulation to produce a 30 kHz ± 1 %, 20.8 ns ± 10 % peak-to-peak sinusoidal phase modulation:
- 2) verify the level of modulation meets the requirements and record the peak-to-peak level as DJ_SSC. The independent, separate means of verification of the 30 kHz test signal is equivalent to a frequency demodulator or wide range phase demodulator. This may be measured with:
 - A) a time interval error plot with constant frequency clock on a real time oscilloscope;
 - B) an equivalent time oscilloscope; or
 - C) a frequency demodulator;

Comments from page 689 continued on next page

not able to be simultaneously met, the peaking should be adjusted to modify the JTF shape in the upper band. In the case of hardware based reference clocks, moderate levels of peaking may be required to achieve the proper attenuation at 30 kHz. The peaking setting is usually specific to the JMD. With software based clock recovery, the suggested starting peaking level may be low, close to the critically damped condition of peaking of 0.707.

The test sequence for all measurements also removes the baseline DJ, DJ of the source, and DJ of the JMD such that what is being measured is the reported jitter only due to the added test jitter and not any baseline residual jitter in the test system. This is important to insure the accuracy of the measurement at low reported jitter levels.

B.10.2 JMD Calibration Procedure

This calibration procedure is based on the following performance requirements:

- a) the -3 dB corner frequency of the JTF shall be $2.6 \text{ MHz} \pm 0.5 \text{ MHz}$;
- b) the magnitude peaking of the JTF shall be 3.5 dB maximum; and
- c) the attenuation at 30 kHz ± 1 % shall be 72 dB to 75 dB.

b JTF -3dB corner frequency and the magnitude peaking requirements shall be measured with sinusoidal PJ applied, with a peak-to-peak amplitude of 0.3 UI ± 10 %. The relative attenuation at 30 kHz shall be measured with sinusoidal phase (time) modulation applied with a peak-to-peak amplitude of 20.8 ns ± 10 %.

Resource requirements:

- a) a pattern generator for SAS signals;
- b) a sine wave source, 30 kHz, and 0.5 MHz to 50 MHz;
- c) test cables; and
- d) a jitter measurement device.

The response to jitter of the JMD (the reference clock is part of the Jiviu) is measured with three different jitter modulation frequencies corresponding to the three cases:

- a) SSC (full tracking);
- b) jitter (no tracking);
- c) the boundary between SSC and jitter.

The jitter source is independently verified by separate means. This ensures the jitter response of the JMD is reproducible across different test setups.

The three test signals are:

- a) a 1.5 GHz ± 0.01 % square wave (i.e., a 6 Gbps D24.3 (i.e., 00110011) pattern) with rise time-larger than 0.25 UI 20 % to 80 % and with a sinusoidal phase modulation of 20.8 ns ± 10 % peak to peak at 30 kHz ± 1%;
- b) a 1.5 GHz square wave with a sinusoidal phase modulation of 100 ps ± 10% peak to peak at 50 MHz ± 1 %; and
- c) a 1.5 GHz square wave with no modulation.

An independent, separate means of verification of the test signals is used to <u>make sure</u> the level of the modulation is correct

The following test procedure checks two conditions: the JTF attenuation and the JTF bandwidth.

- adjust the pattern generator for a 6 Gbps D24.3 pattern (00110011b, with a rise time within specified limits) modulation to produce a 30 kHz ± 1 %, 20.8 ns ± 10 % peak-to-peak sinusoidal phase modulation:
- 2) verify the level of modulation meets the requirements and record the peak-to-peak level as DJ_SSC. The independent, separate means of verification of the 30 kHz test signal is equivalent to a frequency demodulator or wide range phase demodulator. This may be measured with:
 - A) a time interval error plot with constant frequency clock on a real time oscilloscope;
 - B) an equivalent time oscilloscope; or
 - C) a frequency demodulator;

This << Resource requirements: >> should be<< Calibration equipment: >> Author: RElliott Addition: Reliidat Support: Underline Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE jitter measurement device JMD Author: wdc-mevans Subject: Highlight Date: 7/15/2008 2:32:29 PM -07'00' TRACCEPT - DONE (the s/b (i.e., the Author: Isi-gpenokie Subject: Highlight Date: 6/9/2008 11:10:03 AM -07'00' REJECT (that is not an in-other-words. Just deleting it instead) This << the JMD (the reference clock is part of the JMD) is measured >> should be << the JMD (i.e., the reference clock is part of the JMD) is measured >> Author: wdc-meyans Author. Woc-mevans
Subject: Highlight
Date: 6/9/2008 10:01:18 AM -07'00'
ACCEPT - DONE (Alvin: Change to: (i.e., the JMD fully tracks)) (full tracking); with full tracking; Author: Isi-gpenokie Subject: Highlight Date: 6/9/2008 10:01:24 AM -07'00' ACCEPT - DONE (Alvin: Change to: (i.e., the JMD fully tracks)) This << SSC (full tracking); >> should be << SSC (i.e., full tracking); >> Author: wdc-mevans Subject: Highlight
Date: 6/9/2008 10:01:36 AM -07'00'
ACCEPT - DONE (Alvin: Change to: (i.e., the JMD does not track)) (no tracking); with no tracking; Author: Isi-gpenokie Subject: Highlight
Date: 6/9/2008 10:00:56 AM -07'00'
ACCEPT - DONE (Alvin: Change to: (i.e., the JMD does not track))

TACCEPT - DONE (as "The JMD calibration equipment is as follows:")

Comments from page 689 continued on next page

This << jitter (no tracking) >> should be << jitter (i.e., no tracking) >>

28 January 2008 T10/1760-D Revision 14

not able to be simultaneously met, the peaking should be adjusted to modify the JTF shape in the upper band. In the case of hardware based reference clocks, moderate levels of peaking may be required to achieve the proper attenuation at 30 kHz. The peaking setting is usually specific to the JMD. With software based clock recovery, the suggested starting peaking level may be low, close to the critically damped condition of peaking of 0.707.

The test sequence for all measurements also removes the baseline DJ, DJ of the source, and DJ of the JMD such that what is being measured is the reported jitter only due to the added test jitter and not any baseline residual jitter in the test system. This is important to insure the accuracy of the measurement at low reported jitter levels.

B.10.2 JMD Calibration Procedure

This calibration procedure is based on the following performance requirements:

- a) the -3 dB corner frequency of the JTF shall be 2.6 MHz ± 0.5 MHz;
- b) the magnitude peaking of the JTF shall be 3.5 dB maximum; and
- c) the attenuation at 30 kHz ± 1 % shall be 72 dB to 75 dB.

e JTF <mark>-3dB c</mark>orner frequency and the magnitude peaking requirements shall be measured with sinuso dal PJ applied, with a peak-to-peak amplitude of 0.3 UI ± 10 %. The relative attenuation at 30 kHz shall be measured with sinusoidal phase (time) modulation applied, with a peak-to-peak amplitude of 20.8 ns ½ 10 %.

Resource requirements:

- a) a pattern generator for SAS signals;
- b) a sine wave source, 30 kHz, and 0.5 MHz to 50 MHz;
- c) test cables; and
- d) a jitter measurement device.

The response to jitter of the JMD (the reference clock is part of the JMD) is measured with thee different jitter modulation frequencies corresponding to the three cases:

- a) SSC (full tracking);
- b) jitter (no tracking); and
- c) the boundary between SSC and jitter.

The jitter source is independently verified by separate means. This ensures the jitter response of the timb is reproducible across different test setups.

The three test signals are:

- a) a 1.5 GHz ± 0.01 % square wave (i.e., a 6 Gbps D24.3 (i.e., 00110011) pattern) with rise time longer than 0.25 UI 20 % to 80 % and with a sinusoidal phase modulation of 20.8 ns ± 10 % peak to peak at 30 kHz ± 1%;
- b) a 1.5 GHz square wave with a sinusoidal phase modulation of 100 ps ± 10% peak to peak at 50 MHz ± 1 %; and
- c) a 1.5 GHz square wave with no modulation.

An independent, separate means of verification of the test signals is used to make sure the level of the modulation is correct

The following test procedure checks two conditions: the JTF attenuation and the JTF bandwidth.

- adjust the pattern generator for a 6 Gbps D24.3 pattern (00110011b, with a rise time within specified limits) modulation to produce a 30 kHz ± 1 %, 20.8 ns ± 10 % peak-to-peak sinusoidal phase modulation;
- 2) verify the level of modulation meets the requirements and record the peak-to-peak level as DJ_SSC. The independent, separate means of verification of the 30 kHz test signal is equivalent to a frequency demodulator or wide range phase demodulator. This may be measured with:
 - A) a time interval error plot with constant frequency clock on a real time oscilloscope;
 - B) an equivalent time oscilloscope; or
 - C) a frequency demodulator;

Author: Isi-gpenokie Subject: Highlight Date: 6/9/2008 10:02:27 AM -07'00' ACCEPT - DONE (adding "that" too) This << separate means. This ensures the jitter >> should be << separate means to ensure the jitter >> Author: RElliott Date: 6/30/2008 3:16:52 PM -07'00' Change: The three test signals are: a) a 1.5 GHz ± 0.01 % square wave (i.e., a 6 Gbps D24.3 (i.e., 00110011) pattern) with rise time longer than 0.25 UI 20 % to 80 % and with a sinusoidal phase modulation of 20.8 ns ± 10 % peak to peak at 30 kHz ± 1%; b) a 1.5 GHz square wave with a sinusoidal phase modulation of 100 ps ± 10% peak to peak at 50 MHz ± 1 %; and c) a 1.5 GHz square wave with no modulation. The JMD calibration pattern is a 1.5 GHz ± 0.01 % square wave (i.e., a 6 Gbps D24.3 pattern (i.e., repeating 0011b)) with rise time longer than 0.25 UI 20 % to 80 %. Refer to the amount of modulation in the 1) 6) and 13) that follow, since that's what changes. Keep the square wave +/- and rise Author: pmcs-afortin Subject: Highlight Date: 6/9/2008 10:02:51 AM -07'00' REJECT (Alvin: Reject. Added tests not incorporated.) "five" Author: pmcs-afortin Subject: Highlight
Date: 6/9/2008 10:03:09 AM -07'00'
REJECT (Alvin: Reject. Added tests not incorporated.) It is proposed to add below this line: "d) a 900 MHz square wave with a sinusoidal phase modulation of 100 ps ± 10% peak to peak at 50 MHz e) a 900 MHz square wave with no modulation." Author: RElliott Subject: Underline Date: 6/30/2008 3:16:52 PM -07'00' ACCEPT - DONE make sure s/h ensure that Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00' ACCEPT - DONE (dropping "condition" entirely)

This << checks two conditions: the JTF attenuation and the JTF bandwidth. >> should be << checks the JTF attenuation condition

Comments from page 689 continued on next page

and the JTF bandwidth condition. >>

Date: 6/30/2008 3:16:52 PM -07'00'

Author: RElliott

28 January 2008 T10/1760-D Revision 14

not able to be simultaneously met, the peaking should be adjusted to modify the JTF shape in the upper band. In the case of hardware based reference clocks, moderate levels of peaking may be required to achieve the proper attenuation at 30 kHz. The peaking setting is usually specific to the JMD. With software based clock recovery, the suggested starting peaking level may be low, close to the critically damped condition of peaking of 0.707.

The test sequence for all measurements also removes the baseline DJ, DJ of the source, and DJ of the JMD such that what is being measured is the reported jitter only due to the added test jitter and not any baseline residual jitter in the test system. This is important to insure the accuracy of the measurement at low reported jitter levels.

B.10.2 JMD Calibration Procedure

This calibration procedure is based on the following performance requirements:

- a) the -3 dB corner frequency of the JTF shall be 2.6 MHz ± 0.5 MHz;
- b) the magnitude peaking of the JTF shall be 3.5 dB maximum; and
- c) the attenuation at 30 kHz ± 1 % shall be 72 dB to 75 dB.

e JTF <mark>-3dB c</mark>orner frequency and the magnitude peaking requirements shall be measured with sinusoidal PJ applied, with a peak-to-peak amplitude of 0.3 UI ± 10 %. The relative attenuation at 30 kHz shall be measured with sinusoidal phase (time) modulation applied, with a peak-to-peak amplitude of 20.8 ns ± 10 %.

Resource requirements:

- a) a pattern generator for SAS signals;
- b) a sine wave source, 30 kHz, and 0.5 MHz to 50 MHz;
- c) test cables; and
- d) a jitter measurement device.

The response to jitter of the JMD (the reference clock is part of the JMD) is measured with three different jitter modulation frequencies corresponding to the three cases:

- a) SSC (full tracking);
- b) jitter (no tracking); and
- c) the boundary between SSC and jitter.

The jitter source is independently verified by separate means. This ensures the jitter response of the JMD is reproducible across different test setups.

The three test signals are:

- a) a 1.5 GHz ± 0.01 % square wave (i.e., a 6 Gbps D24.3 (i.e., 00110011) pattern) with rise time longer than 0.25 UI 20 % to 80 % and with a sinusoidal phase modulation of 20.8 ns ± 10 % peak to peak at 30 kHz ± 1%;
- a 1.5 GHz square wave with a sinusoidal phase modulation of 100 ps ± 10% peak to peak at 50 MHz ± 1 %; and
- c) a 1.5 GHz square wave with no modulation.

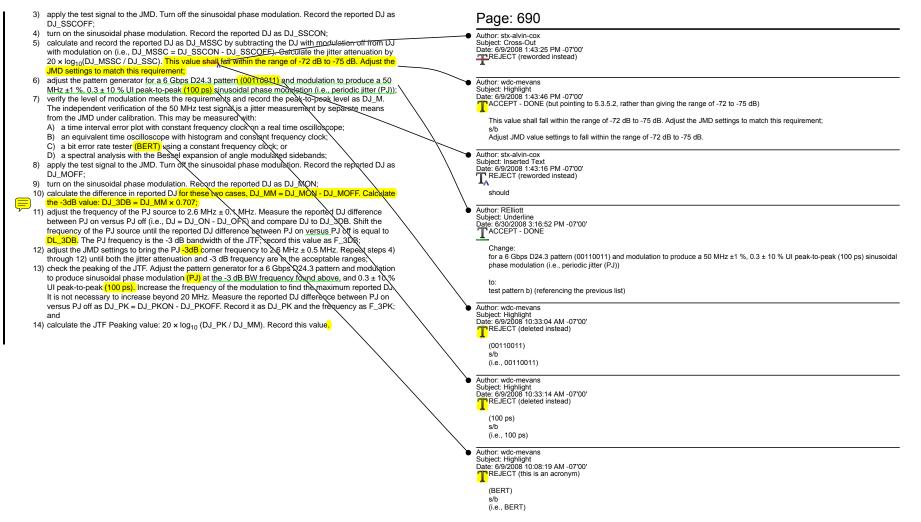
An independent, separate means of verification of the test signals is used to $\underline{\text{make sure}}$ the level of the modulation is correct.

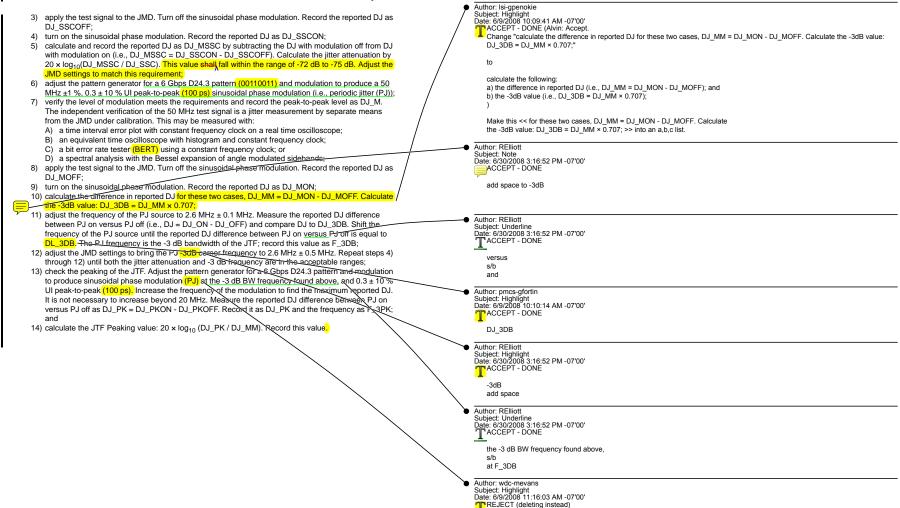
The following test procedure checks two conditions: the JTF attenuation and the JTF bandwidth.

- adjust the pattern generator for a 6 Gbps D24.3 pattern (00110011b, with a rise time within specified limits) modulation to produce a 30 kHz ± 1 %, 20.8 ns ± 10 % peak-to-peak sinusoidal phase modulation:
- 2) verify the level of modulation meets the requirements and record the peak-to-peak level as DJ_SSC. The independent, separate means of verification of the 30 kHz test signal is equivalent to a frequency demodulator or wide range phase demodulator. This may be measured with:
 - A) a time interval error plot with constant frequency clock on a real time oscilloscope;
 - B) an equivalent time oscilloscope; or
 - C) a frequency demodulator;

Working Draft Serial Attached SCSI - 2 (SAS-2)

689


$\mathbf{T}^{\mathsf{ACCEPT}\, ext{-}\,\mathsf{DONE}}$


Change:

for a $\hat{6}$ Gbps D24.3 pattern (00110011b, with a rise time within specified limits) modulation to produce a 30 kHz \pm 1 %, 20.8 ns \pm 10 % peak-to-peak sinusoidal phase modulation

to:

test pattern a) (referring to the previous list)

3) apply the test signal to the JMD. Turn off the sinusoidal phase modulation. Record the reported DJ as

- 4) turn on the sinusoidal phase modulation, Record the reported DJ as DJ SSCON:
- 5) calculate and record the reported DJ as DJ_MSSC by subtracting the DJ with modulation off from DJ with modulation on (i.e., DJ MSSC = DJ SSCON - DJ SSCOFF). Calculate the jitter attenuation by 20 x log₁₀(DJ_MSSC / DJ_SSC). This value shall fall within the range of -72 dB to -75 dB. Adjust the JMD settings to match this requirement;
- 6) adjust the pattern generator for a 6 Gbps D24.3 pattern (00110011) and modulation to produce a 50 MHz ±1 %, 0.3 ± 10 % UI peak-to-peak (100 ps) sinusoidal phase modulation (i.e., periodic jitter (P.W.
- 7) verify the level of modulation meets the requirements and record the peak-to-peak level as DJ .M. The independent verification of the 50 MHz test signal is a jitter measurement by separate measurement of the from the JMD under calibration. This may be measured with:
 - A) a time interval error plot with constant frequency clock on a real time oscilloscope
 - B) an equivalent time oscilloscope with histogram and constant frequency clock
 - C) a bit error rate tester (BERT) using a constant frequency clock; or
- D) a spectral analysis with the Bessel expansion of angle modulated sidebands:
- 8) apply the test signal to the JMD. Turn off the sinusoidal phase modulation. Record the reported DJ as
- 9) turn on the sinusoidal phase modulation. Record the reported JJ as DJ_MON;
- 10) calculate the difference in reported DJ for these two cases, ZJ_MM = DJ_MON DJ_MOFF. Calculate the -3dB value: $DJ_3DB = DJ_MM \times 0.707$;
- 11) adjust the frequency of the PJ source to 2.6 MHz ± 0.1 MHz. Measure the reported DJ difference between PJ on versus PJ off (i.e., DJ = DJ_ON - DJ_OFF) and compare DJ to DJ_3DB. Shift the frequency of the PJ source until the reported DJ difference between PJ on versus PJ off is equal to DL 3DB. The PJ frequency is the -3 dB bandwidth of the JTF; record this value as F 3DB;
- 12) adjust the JMD settings to bring the PJ 3dB corner frequency to 2.6 MHz ± 0.5 MHz. Repeat st/ps 4) through 12) until both the jitter atternation and -3 dB frequency are in the acceptable ranges;
- 13) check the peaking of the JTF. Adjust the pattern generator for a 6 Gbps D24.3 pattern and modulation to produce sinusoidal phase modulation (PJ) at the -3 dB BW frequency found above, and \$6.3 ± 10 % UI peak-to-peak (100 ps). Increase the frequency of the modulation to find the maximum reported DJ. It is not necessary to increase beyond 20 MHz. Measure the reported DJ difference between PJ on versus PJ off as DJ PK = DJ_PKON - DJ_PKOFF. Record it as DJ_PK and the frequency as F_3PK;
- 14) calculate the JTF Peaking value: 20 x log₁₀ (DJ_PK / DJ_MM). Record this value.

```
(PJ)
   (i.e., PJ)
Author: wdc-mevans
Subject: Highlight
Date: 6/9/2008 10:10:39 AM -07'00'
    (100 ps).
   (i.e., 100 ps).
Author: pmcs-afortin
Subject: Highlight
Date: 6/9/2008 10:12:12 AM -07'00'
 REJECT (Alvin: Reject, Tests to verify proportionality are not planned to be added.)
   It is proposed to add below this line:
```

"15) adjust the pattern generator for a 6 Gbps D30.3 pattern (001111000011100) and modulation to produce a 50

MHz ±1 %, 0.3 ± 10 % UI peak-to-peak (100 ps) sinusoidal phase modulation (i.e., periodic jitter (PJ)); 16) verify the level of modulation meets the requirements and record the peak-to-peak level as DJ_M_LOWTD.

The independent verification of the 50 MHz test signal is a jitter measurement by separate means from the JMD under calibration. This may be measured with:

A) a time interval error plot with constant frequency clock on a real time oscilloscope:

- B) an equivalent time oscilloscope with histogram and constant frequency clock;
- C) a bit error rate tester (BERT) using a constant frequency clock; or
- D) a spectral analysis with the Bessel expansion of angle modulated sidebands;
- 17) apply the test signal to the JMD. Turn off the sinusoidal phase modulation. Record the reported DJ as DJ MOFF LOWTD;
- 18) turn on the sinusoidal phase modulation. Record the reported DJ as DJ_MON_LOWTD;
- 19) calculate the difference in reported DJ for these two cases, DJ MM LOWTD = DJ MON LOWTD DJ MOFF LOWTD.
- the -3dB value: DJ 3DB LOWTD = DJ MM LOWTD × 0.707;
- 20) adjust the frequency of the PJ source to 1.6 MHz ± 0.1 MHz. Measure the reported DJ difference
- between PJ on versus PJ off (i.e., DJ_LOWTD = DJ_ON_LOWTD DJ_OFF_LOWTD) and compare DJ to DJ_3DB_LOWTD. Shift
- frequency of the PJ source until the reported DJ difference between PJ on versus PJ off is equal to
- DJ 3DB LOWTD. The PJ frequency is the -3 dB bandwidth of the JTF; record this value as F 3DB LOWTD; F 3DB LOWTD should be 1.6 MHz ± 0.3 MHz."

28 January 2008 T10/1760-D Revision 14

Annex C (informative)

SAS to SAS phy reset sequence examples

Figure C.1 shows a speed negotiation between a phy A that supports only SNW-1 attached to a phy B that only supports SNW-1. Both phys run:

- SNW-1, supported by both phys; and
 SNW-2, supported by neither phy.
- Both phys then select 1.5 Gbps for Final-SNW, which is used to establish the negotiated physical link rate.

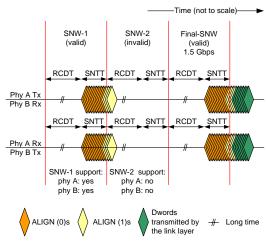


Figure C.1 — SAS speed negotiation sequence (phy A: SNW-1 only, phy B: SNW-1 only)

Figure C.2 shows a speed negotiation between a phy A that supports SNW-1 and SNW-2 attached to a phy B that supports SNW-1 and SNW-2. Both phys run:

- 1) SNW-1, supported by both phys;
- 2) SNW-2, supported by both phys; and
- 3) SNW-3, supported by neither phy.

28 January 2008 T10/1760-D Revision 14

Both phys then select 3 Gbps for Final-SNW, which is used to establish the negotiated physical link rate.

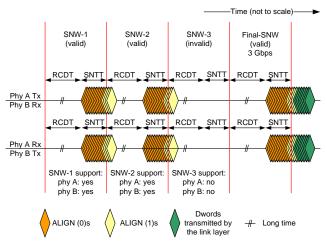


Figure C.2 — SAS speed negotiation sequence (phy A: SNW-1, SNW-2, phy B: SNW-1, SNW-2)

Figure C.3 shows a speed negotiation between a phy A that supports SNW-1 through SNW-3 attached to a phy B that only supports SNW-1 and SNW-2. Both phys run:

- SNW-1, supported by both phys;
 SNW-2, supported by both phys; and
- 3) SNW-3, supported by phy A but not by phy B.

Both phys then select 3 Gbps for Final-SNW, which is used to establish the negotiated physical link rate.

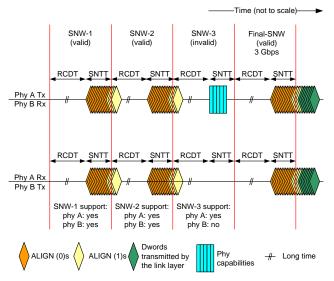


Figure C.3 — SAS speed negotiation sequence (phy A: SNW-1, SNW-2, SNW-3, phy B: SNW-1, SNW-2)

Figure C.4 shows a speed negotiation between a phy A that supports SNW-2 and SNW-3 attached to a phy B that only supports SNW-1 and SNW-2. Both phys run:

- SNW-1, supported by phy B but not by phy A;
 SNW-2, supported by both phys; and
- 3) SNW-3, supported by phy A but not by phy B.

Both phys then select 3 Gbps for Final-SNW, which is used to establish the negotiated physical link rate.

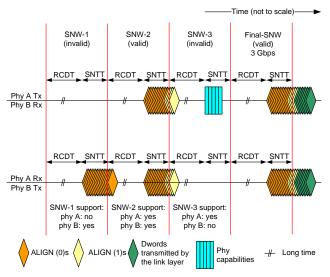


Figure C.4 — SAS speed negotiation sequence (phy A: SNW-2, SNW-3, phy B: SNW-1, SNW-2)

Figure C.5 shows a speed negotiation between a phy A that only supports SNW-1 attached to a phy B that only supports SNW-2. Both phys run:

- 1) SNW-1, supported by phy A but not by phy B; and
- 2) SNW-2, supported by phy B but not by phy A.

Phy B continues to run SNW-3, but phy A determines speed negotiation is unsuccessful and may attempt another phy reset sequence after a hot-plug timeout.

28 January 2008 T10/1760-D Revision 14

Phy B determines speed negotiation is not succeeding after SNW-3 and may retry the phy reset sequence after a hot-plug timeout.

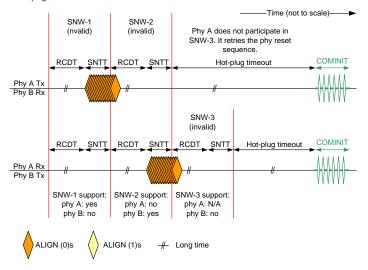


Figure C.5 — SAS speed negotiation sequence (phy A: SNW-1 only, phy B: SNW-2 only)

Annex D (informative)

CRC

D.1 CRC generator and checker implementation examples

Figure D.1 shows an example of a CRC generator.

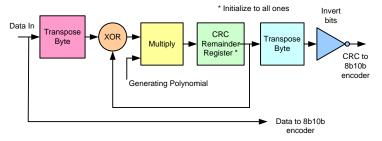


Figure D.1 — CRC generator example

Figure D.2 shows an example of a CRC checker.

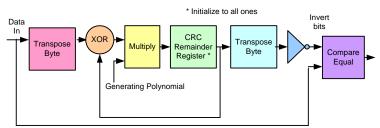


Figure D.2 — CRC checker example

D.2 CRC implementation in C

The following is an example C program that generates the value for the CRC field in frames. The inputs are the data dwords for the frame and the number of data dwords.

28 January 2008 T10/1760-D Revision 14

```
0x00000000L}; /* example data dwords */
     unsigned long calculate_crc(unsigned long *, unsigned long);
     unsigned long crc;
     crc = calculate_crc(data_dwords, 13);
     printf ("Example CRC is %x\n", crc);
/* returns crc value */
unsigned long calculate_crc(unsigned long *frame, unsigned long length) {
long poly = 0x04C11DB7L;
unsigned long crc_gen, x;
union {
     unsigned long lword;
     unsigned char byte[4];
} b_access;
static unsigned char xpose[] = {
                 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
                 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF};
unsigned int i, j, fb;
crc_gen = ~0;  /* seed generator with all ones */
for (i = 0; i < length; i++) {
     x = *frame++; /* get word */
       b_access.lword = x; /* transpose bits in byte */
        for (j = 0; j < 4; j++) {
           b_access.byte[j] = xpose[b_access.byte[j] >> 4] |
                       xpose[b_access.byte[j] & 0xF] << 4;</pre>
        x = b_access.lword;
        for (j = 0; j < 32; j++)  /* serial shift register implementation */
           fb = ((x & 0x80000000L) > 0) ^ ((crc_gen & 0x80000000L) > 0);
           crc_gen <<= 1;
           if (fb)
                 crc_gen ^= poly;
b_access.lword = crc_gen; /* transpose bits in CRC */
for (j = 0; j < 4; j++) {
     b_access.byte[j] = xpose[b_access.byte[j] >> 4]
                 xpose[b_access.byte[j] & 0xF] << 4;</pre>
crc_gen = b_access.lword;
return ~crc_gen; /* invert output */
```

D.3 CRC implementation with XORs

These equations implement the multiply function shown in figure D.1 and figure D.2. The ^ symbol represents an XOR operation.

697

Working Draft Serial Attached SCSI - 2 (SAS-2)

```
crc02 = d00^d01^d02^d06^d07^d08^d09^d13^d14^d16^d17^d18^d24^d26^d30^d31;
crc03 = d01^d02^d03^d07^d08^d09^d10^d14^d15^d17^d18^d19^d25^d27^d31;
crc04 = d00^d02^d03^d04^d06^d08^d11^d12^d15^d18^d19^d20^d24^d25^d29^d30^d31;
crc05 = d00^d01^d03^d04^d05^d06^d07^d10^d13^d19^d20^d21^d24^d28^d29;
crc06 = d01^d02^d04^d05^d06^d07^d08^d11^d14^d20^d21^d22^d25^d29^d30;
crc07 = d00^d02^d03^d05^d07^d08^d10^d15^d16^d21^d22^d23^d24^d25^d28^d29;
crc08 = d00^d01^d03^d04^d08^d10^d11^d12^d17^d22^d23^d28^d31;
crc09 = d01^d02^d04^d05^d09^d11^d12^d13^d18^d23^d24^d29;
crc10 = d00^d02^d03^d05^d09^d13^d14^d16^d19^d26^d28^d29^d31;
\verb|crc11| = d00^d01^d03^d04^d09^d12^d14^d15^d16^d17^d20^d24^d25^d26^d27^d28^d31; \\
crc12 = d00^d01^d02^d04^d05^d06^d09^d12^d13^d15^d17^d18^d21^d24^d27^d30^d31;
\verb|crc13| = d01^d02^d03^d05^d06^d07^d10^d13^d14^d16^d18^d19^d22^d25^d28^d31; \\
crc14 = d02^d03^d04^d06^d07^d08^d11^d14^d15^d17^d19^d20^d23^d26^d29;
crc15 = d03^d04^d05^d07^d08^d09^d12^d15^d16^d18^d20^d21^d24^d27^d30;
crc16 = d00^d04^d05^d08^d12^d13^d17^d19^d21^d22^d24^d26^d29^d30;
crc17 = d01^d05^d06^d09^d13^d14^d18^d20^d22^d23^d25^d27^d30^d31;
crc18 = d02^d06^d07^d10^d14^d15^d19^d21^d23^d24^d26^d28^d31;
crc19 = d03^d07^d08^d11^d15^d16^d20^d22^d24^d25^d27^d29;
crc20 = d04^d08^d09^d12^d16^d17^d21^d23^d25^d26^d28^d30;
crc21 = d05^d09^d10^d13^d17^d18^d22^d24^d26^d27^d29^d31;
crc22 = d00^d09^d11^d12^d14^d16^d18^d19^d23^d24^d26^d27^d29^d31;
crc23 = d00^d01^d06^d09^d13^d15^d16^d17^d19^d20^d26^d27^d29^d31;
crc24 = d01^d02^d07^d10^d14^d16^d17^d18^d20^d21^d27^d28^d30;
crc25 = d02^d03^d08^d11^d15^d17^d18^d19^d21^d22^d28^d29^d31;
crc26 = d00^d03^d04^d06^d10^d18^d19^d20^d22^d23^d24^d25^d26^d28^d31;
crc27 = d01^d04^d05^d07^d11^d19^d20^d21^d23^d24^d25^d26^d27^d29;
crc28 = d02^d05^d06^d08^d12^d20^d21^d22^d24^d25^d26^d27^d28^d30;
crc29 = d03^d06^d07^d09^d13^d21^d22^d23^d25^d26^d27^d28^d29^d31;
crc30 = d04^d07^d08^d10^d14^d22^d23^d24^d26^d27^d28^d29^d30;
crc31 = d05^d08^d09^d11^d15^d23^d24^d25^d27^d28^d29^d30^d31;
```

D.4 CRC examples

Table D.1 shows several CRC examples. Data is shown in dwords, from first to last.

Table D.1 — CRC examples

Frame contents	CRC	Frame contents	CRC
<sof> 00010203h 04050607h 08090A0Bh 0C0D0E0Fh 10111213h 14151617h 18191A1Bh 1C1D1E1Fh <crc> <eof></eof></crc></sof>	8A7E2691h	<sof> 0000000h 0000000h 0000000h 0000000h 000000</sof>	3B650D6Eh
<sof> 00000001h 0000000h 0000000h 0000000h 0000000h 000000</sof>	898C0D7Ah	<sof> 06D08992h 00B5DF59h 0000000h 0000000h 1234FFFFh 00000000h 0000000h 0000000h 0000000h 000000</sof>	3F4F1C26h

Annex E (informative)

SAS address hashing

E.1 SAS address hashing overview

See 4.2.2 for a description of hashed SAS addresses and the algorithm used to create them.

E.2 Hash collision probability

The following are Monte-Carlo simulations evaluating the probability of collision in a system containing 128 addressable SAS ports. Four models were used for the models for the simulations:

- a) random model;
- b) sequential mode;
- c) lots model; and
- d) three lots model.

The random model uses a system with 128 randomly chosen 64-bit integers as SAS addresses.

The sequential model uses a system with 128 sequentially-assigned SAS addresses starting from a random 64-bit base.

The lots model uses:

- a) Two sequentially assigned SAS addresses with unique company IDs and random vendor-specific identifiers;
- b) 125 randomly drawn SAS addresses from a 10 000-unit production lot. The vendor-specific identifiers within the lot were assigned by 10 SAS address-writers, randomly drawn from a pool of 4 096 possible SAS address-writers. Each SAS address-writer assigns vendor-specific identifiers sequentially within its own subset of the vendor-specific identifiers, starting from a randomly chosen base at the beginning of the production run; and
- c) One randomly chosen SAS address with another unique company ID, representing a replacement unit.

The three lots model uses:

700

- a) Two sequentially assigned SAS addresses with unique company IDs and random vendor-specific identifiers;
- b) 125 randomly drawn SAS addresses from three 10 000-unit lots. The vendor-specific identifiers within each lot were assigned by 10 SAS address-writers, randomly drawn from a pool of 4 096 possible SAS address-writers for that vendor. Each SAS address-writer assigns vendor-specific identifiers sequentially within its own subset of the vendor-specific identifiers, starting from a randomly chosen base at the beginning of the production run. Each of the three lots has a different company ID; and
- c) One randomly chosen SAS address with another unique company ID, representing a replacement

Table E.1 lists the results of Monte-Carlo simulation.

Table E.1 — Monte-Carlo simulation results

SAS address model	Trials	Collisions	Average collisions per system	
lots	2 000 000 000	45 063	0.000 022 531 5	
three lots	2 000 000 000	662 503	0.000 331 251 5	
random	10 000 000	4 882	0.000 488 2	
sequential	10 000 000	0	0	

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 700

Author: Isi-gpenokie

Subject: Rectangle Date: 5/6/2008 1:07:50 PM -07'00'

REJECT (with long numbers like this it's better to line up their decimal points)

These cells should all be centered.

28 January 2008 T10/1760-D Revision 14

E.3 Hash generation

One way to implement the hashing encoder in hardware is to use serial shift registers as shown in figure E.1. For error correction purposes, the number of data bits is limited to 39. For hashing purposes, the circuit shown serves as a divider. Because the period of this generator polynomial is 63, any binary sequence of length exceeding 63 is treated as a 63-bit sequence with (bit 63) \times L + k added to (bit k modulo 2) for k = 0, 1, ..., 62 and any integer L. Therefore, using this generator polynomial to hash a 64-bit address is equivalent to hashing a 63-bit sequence with bit 63 added modulo 2 to bit 0. With this wrapping, a binary sequence of any length is treated as an equivalent binary sequence of 63 bits, which, in turn, is treated as a degree-62 polynomial. After feeding this equivalent degree-62 polynomial into the circuit shown, the shift register contains the remainder from dividing the degree-62 input polynomial by the generator polynomial. This remainder is the hashed result.

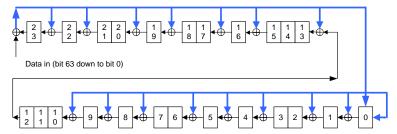


Figure E.1 — BCH(69, 39, 9) code generator

E.4 Hash implementation in C

The following is an example C program that generates a 24-bit hashed value from a 64-bit value.

```
typedef unsigned int uint32 t;
uint32_t hash(uint32_t upperbits, uint32_t lowerbits)
      const unsigned distance_9_poly = 0x01DB2777;
     uint32_t msb = 0x010000000;
     uint32_t moving_one, leading_bit;
     int i;
     unsigned regg;
     regg = 0;
     moving_one = 0x80000000;
     for (i = 31; i >= 0; i--) {
           leading_bit = 0;
           if (moving_one & upperbits) leading_bit = msb;
           regg <<= 1;
           regg ^= leading_bit;
           if (regg & msb) regg ^= distance_9_poly;
           moving_one >>= 1;
      moving\_one = 0x80000000;
      for (i = 31; i >= 0; i--) { // note lower limit of i = 0; }
           leading_bit = 0;
           if (moving_one & lowerbits) leading_bit = msb;
           regg <<= 1;
           regg ^= leading_bit;
           if (regg & msb) regg ^= distance_9_poly;
```

701

Working Draft Serial Attached SCSI - 2 (SAS-2)

This page contains no comments

```
moving_one >>= 1;
}
return regg & 0x00FFFFFF;
}
```

E.5 Hash implementation with XORs

These equations generate the 24-bit hashed SAS address for the SSP frame header from a 64-bit SAS address. The ^ symbol represents an XOR.

hash00=d00^d01^d03^d05^d07^d09^d10^d11^d12^d15^d16^d17^d18^d19^d20^d21^d22^d23^d24^d25^d28^d30^d31^d33^d34^d36^d38^d39^d63;

 $\label{lambda} $$ hash01=d00^d02^d03^d04^d05^d06^d07^d08^d09^d13^d15^d26^d28^d29^d30^d32^d33^d35^d36^d37^d38^d40^d63;$

 $\label{eq:hash02=d00^d04^d06^d08^d11^d12^d14^d15^d17^d18^d19^d20^d21^d22^d23^d24^d25^d27^d28^d29^d37^d41^d63;$

hash03=d01^d05^d07^d09^d12^d13^d15^d16^d18^d19^d20^d21^d22^d23^d24^d25^d26^d28^d29^d30^d38^d42;

hash04=d00^d01^d02^d03^d05^d06^d07^d08^d09^d11^d12^d13^d14^d15^d18^d26^d27^d28^d29^d33^d34^d36^d38^d43^d63;

hash05=d00^d02^d04^d05^d06^d08^d11^d13^d14^d17^d18^d20^d21^d22^d23^d24^d25^d27^d29^d31^d33^d35^d36^d37^d38^d44^d63;

 $hash06 = d00^*d06^*d10^*d11^*d14^*d16^*d17^*d20^*d26^*d31^*d32^*d33^*d37^*d45^*d63;\\$

hash07=d01^d07^d11^d12^d15^d17^d18^d21^d27^d32^d33^d34^d38^d46;

hash08=d00^d01^d02^d03^d05^d07^d08^d09^d10^d11^d13^d15^d17^d20^d21^d23^d24^d25^d30^d31^d35^d36^d38^d47^d63;

hash09=d00^d02^d04^d05^d06^d07^d08^d14^d15^d17^d19^d20^d23^d26^d28^d30^d32^d33^d34^d37^d38^d48^d63;

hash10=d00^d06^d08^d10^d11^d12^d17^d19^d22^d23^d25^d27^d28^d29^d30^d35^d36^d49^d63;

hash11=d01^d07^d09^d11^d12^d13^d18^d20^d23^d24^d26^d28^d29^d30^d31^d36^d37^

hash12=d02^d08^d10^d12^d13^d14^d19^d21^d24^d25^d27^d29^d30^d31^d32^d37^d38^d51;

hash13=d00^d01^d05^d07^d10^d12^d13^d14^d16^d17^d18^d19^d21^d23^d24^d26^d32^d34^d36^d52^d63;

hash14=d01^d02^d06^d08^d11^d13^d14^d15^d17^d18^d19^d20^d22^d24^d25^d27^d33^d35^d37^d53;

hash15=d02^d03^d07^d09^d12^d14^d15^d16^d18^d19^d20^d21^d23^d25^d26^d28^d34^d36^d38^d54;

hash16=d00^d01^d04^d05^d07^d08^d09^d11^d12^d13^d18^d23^d25^d26^d27^d28^d29^d30^d31^d33^d34^d35^d36^d37^d38^d55^d63;

hash17=d00^d02^d03^d06^d07^d08^d11^d13^d14^d15^d16^d17^d18^d20^d21^d22^d23^

hash18=d01^d03^d04^d07^d08^d09^d12^d14^d15^d16^d17^d18^d19^d21^d22^d23^d24^d26^d27^d28^d30^d33^d34^d36^d38^d57;

hash19=d00^d01^d02^d03^d04^d07^d08^d11^d12^d13^d21^d27^d29^d30^d33^d35^d36^d37^d38^d58^d63;

hash20=d00^d02^d04^d07^d08^d10^d11^d13^d14^d15^d16^d17^d18^d19^d20^d21^d23^d24^d25^d33^d37^d59^d63;

hash21=d01^d03^d05^d08^d09^d11^d12^d14^d15^d16^d17^d18^d19^d20^d21^d22^d24^d25^d26^d34^d38^d60;

hash22=d00^d01^d02^d03^d04^d05^d06^d07^d11^d13^d24^d26^d27^d28^d30^d31^d33^d34^d35^d36^d38^d61^d63;

hash23=d00^d02^d04^d06^d08^d09^d10^d11^d14^d15^d16^d17^d18^d19^d20^d21^d22^d23^d24^d27^d29^d30^d32^d33^d35^d37^d38^d62^d63;

Working Draft Serial Attached SCSI - 2 (SAS-2)

E.6 Hash examples

Table E.2 shows examples using simple SAS addresses as input values. Two of the input values hash to the same value.

Table E.2 — Hash results for simple 3AS addresses

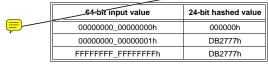


Table E.3 shows examples using realistic SAS addresses as input values.

Table E.3 — Hash results for realistic SAS addresses

-	
64-bit input value	24-bit hashed value
50010753_4F0CFC88h	D0B992h
50010B92_B3CBF639h	B5DF59h
5002037E_157FEC63h	B064F7h
50004CF6_FBCE3889h	88FF12h
50020374_C4657EC7h	F36570h
50010D92_A016E450h	9F9571h
50002A58_850ACC66h	64B6B9h
50008C7B_EE7910DEh	8D6135h
500508BD_C22CAC94h	86ECF1h
500805F3_334B0AD3h	752AB2h
500A0B8A_FAA6A820h	5543A7h
500805E6_BCC55C68h	463DEDh

Page: 703

Author: RElliott Subject: Note Date: 6/30/2008 3:16:52 PM -07'00'

Change _ to non-blocking space in the hex numbers in tables E.2 and E.3 to follow the prevailing convention.

Table E.4 shows examples using a walking ones pattern to generate the input values.

Table E.4 — Hash results for a walking ones pattern

64-bit input value	24-bit hashed value	64-bit input value	24-bit hashed value
000000000000001h	DB2777h	0000000100000000h	8232C2h
00000000000000002h	6D6999h	0000000200000000h	DF42F3h
0000000000000004h	DAD332h	0000000400000000h	65A291h
000000000000008h	6E8113h	0000000800000000h	CB4522h
000000000000010h	DD0226h	0000001000000000h	4DAD33h
00000000000000020h	61233Bh	0000002000000000h	9B5A66h
0000000000000040h	C24676h	0000004000000000h	ED93BBh
0000000000000080h	5FAB9Bh	0000008000000000h	000001h
000000000000100h	BF5736h	0000010000000000h	000002h
0000000000000200h	A5891Bh	00000200000000000h	000004h
0000000000000400h	903541h	0000040000000000h	000008h
0000000000000800h	FB4DF5h	0000080000000000h	000010h
000000000001000h	2DBC9Dh	00001000000000000h	000020h
0000000000002000h	5B793Ah	00002000000000000h	000040h
0000000000004000h	B6F274h	00004000000000000h	000080h
000000000008000h	B6C39Fh	0000800000000000h	000100h
000000000010000h	B6A049h	00010000000000000h	000200h
0000000000020000h	B667E5h	00020000000000000h	000400h
0000000000040000h	B7E8BDh	00040000000000000h	000800h
0000000000080000h	B4F60Dh	0008000000000000h	001000h
000000000100000h	B2CB6Dh	00100000000000000h	002000h
0000000000200000h	BEB1ADh	0020000000000000h	004000h
0000000000400000h	A6442Dh	0040000000000000h	008000h
00000000008000000h	97AF2Dh	0080000000000000h	010000h
000000001000000h	F4792Dh	01000000000000000h	020000h
0000000002000000h	33D52Dh	02000000000000000h	040000h
0000000004000000h	67AA5Ah	04000000000000000h	080000h
0000000008000000h	CF54B4h	0800000000000000h	100000h
000000010000000h	458E1Fh	10000000000000000h	200000h
0000000020000000h	8B1C3Eh	20000000000000000h	400000h
0000000040000000h	CD1F0Bh	40000000000000000h	800000h
0000000080000000h	411961h	8000000000000000h	DB2777h

Table E.5 shows examples using a walking zeros pattern to generate the input values.

Table E.5 — Hash results for a walking zeros pattern

64-bit input value	24-bit hashed value	64-bit input value	24-bit hashed value
FFFFFFFFFFFEh	000000h	FFFFFFFFFFF	5915B5h
FFFFFFFFFFDh	B64EEEh	FFFFFFFFFFFF	046584h
FFFFFFFFFFBh	01F445h	FFFFFFFFFFFFF	BE85E6h
FFFFFFFFFFFF7h	B5A664h	FFFFFFFFFFFFF	106255h
FFFFFFFFFFFFF	062551h	FFFFFFFFFFFF	968A44h
FFFFFFFFFFFFFF	BA044Ch	FFFFFFFFFFFFF	407D11h
FFFFFFFFFFFBFh	196101h	FFFFFFBFFFFFFFh	36B4CCh
FFFFFFFFFFFFFF	848CECh	FFFFFFFFFFFFF	DB2776h
FFFFFFFFFFFFF	647041h	FFFFFFFFFFFFF	DB2775h
FFFFFFFFFFFFFF	7EAE6Ch	FFFFFFFFFFFFFF	DB2773h
FFFFFFFFFFFBFFh	4B1236h	FFFFBFFFFFFFFh	DB277Fh
FFFFFFFFFFFFFF	206A82h	FFFF7FFFFFFFh	DB2767h
FFFFFFFFFFFFF	F69BEAh	FFFFEFFFFFFFF	DB2757h
FFFFFFFFFFFFF	805E4Dh	FFFFDFFFFFFFFFh	DB2737h
FFFFFFFFFFFFFF	6DD503h	FFFFBFFFFFFFF	DB27F7h
FFFFFFFFFFFFFF	6DE4E8h	FFFF7FFFFFFFFh	DB2677h
FFFFFFFFFFFFF	6D873Eh	FFFEFFFFFFFFF	DB2577h
FFFFFFFFFFFFFF	6D4092h	FFFDFFFFFFFFFh	DB2377h
FFFFFFFFFFFFFF	6CCFCAh	FFFBFFFFFFFFF	DB2F77h
FFFFFFFFFFFFFF	6FD17Ah	FFF7FFFFFFFFh	DB3777h
FFFFFFFFFFFF	69EC1Ah	FFEFFFFFFFFF	DB0777h
FFFFFFFFFFFFFF	6596DAh	FFDFFFFFFFFF	DB6777h
FFFFFFFFFFFFF	7D635Ah	FFBFFFFFFFFF	DBA777h
FFFFFFFFFFFFF	4C885Ah	FF7FFFFFFFFFFh	DA2777h
FFFFFFFFFFFF	2F5E5Ah	FEFFFFFFFFFF	D92777h
FFFFFFFFFFFFF	E8F25Ah	FDFFFFFFFFFh	DF2777h
FFFFFFFFFFFF	BC8D2Dh	FBFFFFFFFFFF	D32777h
FFFFFFFFFFFFF	1473C3h	F7FFFFFFFFFFFh	CB2777h
FFFFFFFFFFFF	9EA968h	EFFFFFFFFFF	FB2777h
FFFFFFFFFFFF	503B49h	DFFFFFFFFFF	9B2777h
FFFFFFFFFFFF	16387Ch	BFFFFFFFFFF	5B2777h
FFFFFFFFFFFFF	9A3E16h	7FFFFFFFFFFFh	000000h

Annex F (informative)

Scrambling

F.1 Scrambler implementation example

Figure F.1 shows an example of a data scrambler. This example generates the value to XOR with the dword input with two 16 bit parallel multipliers. 16 bits wide is the maximum width for the multiplier as the generating polynomial is 16 bits.

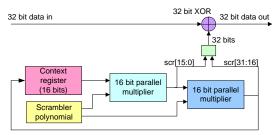


Figure F.1 — Scrambler

The generator polynomial is:

$$G(x) = x^{16} + x^{15} + x^{13} + x^4 + 1$$

For all implementations, the context register is initialized to produce a first dword output of C2D2768Dh for a dword input of all zeros.

F.2 Scrambler implementation in C

The following is an example C program that generates the scrambled data dwords for transmission. The inputs are the data dword to scramble and control indication to reinitialize the residual value (e.g., following an SOF).

```
#include <stdio.h>
unsigned long scramble(int reset, unsigned long dword);
void main(void)
{
  int i;

for (i = 0; i < 12; i++)
        printf(" %08X \n",scramble(i==0, 0));/* scramble all 0s */
}

#define poly 0xA011
unsigned long scramble(int reset, unsigned long dword) {
  static unsigned short scramble;
  int i;

  if (reset)
        scramble = 0xFFFF;</pre>
```

28 January 2008 T10/1760-D Revision 14

F.3 Scrambler implementation with XORs

These equations generate the scrambled dwords to XOR with dwords before transmission and dword reception to recover the original data. The ^ symbol represents an XOR operation. The initialized value for d[15:0] is F0F6h (i.e., 0xF0F6) in this example.

```
scr0=d15^d13^d4^d0;
scr1=d15^d14^d13^d5^d4^d1^d0;
scr2=d14^d13^d6^d5^d4^d2^d1^d0;
scr3=d15^d14^d7^d6^d5^d3^d2^d1;
scr4=d13^d8^d7^d6^d3^d2^d0;
scr5=d14^d9^d8^d7^d4^d3^d1;
scr6=d15^d10^d9^d8^d5^d4^d2;
scr7=d15^d13^d11^d10^d9^d6^d5^d4^d3^d0;
scr8=d15^d14^d13^d12^d11^d10^d7^d6^d5^d1^d0;
scr9=d14^d12^d11^d8^d7^d6^d4^d2^d1^d0;
scr10=d15^d13^d12^d9^d8^d7^d5^d3^d2^d1;
scr11=d15^d14^d10^d9^d8^d6^d3^d2^d0;
scr12=d13^d11^d10^d9^d7^d3^d1^d0;
scr13=d14^d12^d11^d10^d8^d4^d2^d1;
scr14=d15^d13^d12^d11^d9^d5^d3^d2;
scr15=d15^d14^d12^d10^d6^d3^d0;
scr16=d11^d7^d1^d0;
scr17=d12^d8^d2^d1;
scr18=d13^d9^d3^d2;
scr19=d14^d10^d4^d3;
scr20=d15^d11^d5^d4;
scr21=d15^d13^d12^d6^d5^d4^d0;
scr22=d15^d14^d7^d6^d5^d4^d1^d0;
scr23=d13^d8^d7^d6^d5^d4^d2^d1^d0;
scr24=d14^d9^d8^d7^d6^d5^d3^d2^d1;
scr25=d15^d10^d9^d8^d7^d6^d4^d3^d2;
scr26=d15^d13^d11^d10^d9^d8^d7^d5^d3^d0;
scr27=d15^d14^d13^d12^d11^d10^d9^d8^d6^d1^d0;
scr28=d14^d12^d11^d10^d9^d7^d4^d2^d1^d0;
scr29=d15^d13^d12^d11^d10^d8^d5^d3^d2^d1;
scr30=d15^d14^d12^d11^d9^d6^d3^d2^d0;
scr31=d12^d10^d7^d3^d1^d0;
```

F.4 Scrambler examples

Table F.1 shows several scrambler examples. Data is shown in dwords, from first to last.

Table F.1 — Scrambler examples

Frame contents	Scrambled output
Frame contents	Scrambled output
<sof></sof>	<sof></sof>
06D0B992h	C402CF1Fh
00B5DF59h	1F936C31h
00000000h	A508436Ch
00000000h	3452D354h
1234FFFFh	98616AFDh
00000000h	BB1ABE1Bh
00000000h	FA56B73Dh
00000000h	53F60B1Bh
00000000h	F0809C41h
08000012h	7C7FC358h
01000000h	BF865291h
00000000h	7A6FA7B6h
00000000h	3163E6D&n
3F4F1C26h a	CF79E2ZAh ^a
<eof></eof>	< ₹ OF>
<sof></sof>	<sof></sof>
00000000h	/ C2D2768Dh
00000000h	1F26B368h
00000000h /	A508436Ch
000000001	3452D354h
000000%0h	8A559502h
0000 x 0000h	BB1ABE1Bh
0%000000h	FA56B73Dh
/00000000h	53F60B1Bh
/ 00000000h	F0809C41h
00000000h	747FC34Ah
00000000h	BE865291h
00000000h	7A6FA7B6h
00000000h	3163E6D6h
B00F2BCCh a	4039D5C0h a
<eof></eof>	<eof></eof>
a The last dword re	presents a CRC dword.

Page: 708

Author: RElliott Subject: Note Date: 11/5/2008 10:45:00 PM

Add table showing the first 58 (or 64) scrambler outputs (no SOF/EOF/frame header/CRC concerns), since that number of dwords is now used in physical layer testing. It will be easier to provide the pattern to the pattern generator by copying it from the standard rather than running the C or Verilog programs.

Patterns provided from the .c program in this annex.

Annex G (informative)

ATA architectural notes

G.1 STP differences from Serial ATA (SATA)

Some of the differences of STP compared with SATA are:

- a) STP adds addressing of multiple SATA devices. Each SATA device is assigned a SAS address by its, attached expander device with STP/SATA bridge functionality. The STP initiator port understands addressing more than one STP target port;
- b) STP allows multiple STP initiator ports to share access to a SATA device behind an STP/SATA bridge using affiliations (see 7.17.4);
- c) interface power management is not supported;
- d) far-end analog loopback testing is not supported:
- e) far-end retimed loopback testing is not supported;
- f) near-end analog loopback testing is not supported;
- g) use of SATA_CONT is required; and
- h) BIST Activate frames are not supported.

G.2 STP differences from Serial ATA II

The following features of Serial ATA II are specifically excluded from SAS STP or handled differently in a SAS domain:

- a) extended differential voltages;
- b) enclosure services;
- c) staggered spin-up (see 6.11);
- d) device activity indication;
- e) presence detect; and
- power management improvements.

G.3 Affiliation policies

G.3.1 Affiliation policies overview

SATA is based on a model that assumes a SATA device is controlled by a single SATA host, and does not address the notion of multiple SATA hosts having the ability to access any given SATA device.

With STP/SATA bridges, SATA devices are cast into an environment where multiple STP initiator ports, by sharing the SATA host port of the STP/SATA bridge, have access to the same SATA device. The SATA protocol used inside STP connections does not account for the possibility that more than one STP initiator port might be vying for access to the SATA device. Affiliations provide away to ensure contention for a SATA device does not result in incoherent access to the SATA device when commands from different STP initiator ports collide at the SATA device.

To prevent a SATA device from confusing commands from one STP initiator port with commands from another, an STP initiator port needs a means to maintain exclusive access to a SATA or STP device for the duration of the processing of a command.

For example, consider the case where an STP initiator port establishes a connection to send a command (e.g., a read), and then closes the connection while the SATA device (e.g., a disk drive) retriexes the data (e.g., performs a seek operation to the track containing the data). If, after the connection is closed, another STP initiator port is allowed to establish a connection and send another command, the SATA device would no longer have a means to determine which STP initiator port should receive the data when the device requests the connection to send the data for the first command. This is because, unlike SCSI target devices, SATA devices have no notion of multiple SATA hosts.

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 709

Author: wdc-mevans Subject: Highlight Date: 5/22/2008 2:07:38 PM -07'00' ACCEPT - DONE understands addressing

is capable of addressing

Author: wdc-mevans Subject: Cross-Out Date: 5/22/2008 2:07:55 PM -07'00' ACCEPT - DONE

specifically

[Delete the unnecessary word.]

Author: wdc-mevans

Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

REJECT (these are not logically being ANDed, this is joining two independent clauses)

host, and s/b host and

Author: wdc-mevans

Subject: Highlight Date: 5/22/2008 2:09:36 PM -07'00' TACCEPT - DONE

might be s/b

is

Author: wdc-meyans Subject: Highlight Date: 5/22/2008 2:12:29 PM -07'00'

REJECT (this matches the "means" defined in the last paragraph of the section)

needs a means implements a method

Author: RElliott Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE

the s/b then the

The consequences are worse for write commands since the result could be wrong data written to media, with the original data being overwritten and permanently lost.

Affiliations provide a means for an STP initiator port to establish atomic access to a SATA device across the processing of a command or series of commands to the SATA device, without requiring the STP initiator port to maintain a connection open to the STP target port for the duration of command processing.

G.3.2 Affiliation policy for static STP initiator port to STP target port mapping

Affiliations should not be used to enforce policies establishing fixed associations between STP initiator ports and STP target ports.

G.3.3 Affiliation policy with SATA queued commands and multiple STP initiator ports

When sharing an affiliation context, STP initiator ports using queued commands when other STP initiator ports may be accessing the same STP target port should, at vendor-specific intervals, allow commands to complete and release the affiliation to allow other STP initiator ports access to the STP target port.

G.3.4 Applicability of affiliation for STP target ports

Affiliation may or may not be necessary for STP target ports depending on whether the STP target port tracks the STP initiator port's SAS address on each command received. If the STP target port has the means to manage and track commands from each STP initiator port independently, then affiliations are not necessary because the STP target port is capable of associating each information transfer with the appropriate STP initiator port, and is capable of establishing a connection to the appropriate STP initiator port when sending information back for a command.

An STP target port capable of tracking commands may support a limited number of STP initiator ports (i.e., more than one, but less than one per command) and use multiple affiliations in order to manage that restriction.

An STP target port that behaves the same as a SATA device, in that it maintains only a single ATA task file / register context to be shared among all STP initiator ports, supports, a single affiliation in order to provide a way for STP initiator ports to maintain exclusive access to the STP target port while commands remain outstanding. In this model, an STP target port is capable of establishing connections to an STP initiator port, but is only capable of remembering the SAS address of the last STP initiator port to establish a connection, and therefore is only capable of requesting a connection back to that same STP initiator port.

See 10.4.3.12 for an explanation of how an STP target port reports support for affiliations.

G.4 SATA port selector considerations

710

Not all the protocol elements for STP initiator ports to manage a SATA port selector (see SATA-2) in a SAS domain are defined in this standard. Additional coordination between STP initiator ports may be needed to avoid conflicting usage of the SATA port selector between STP initiator ports (e.g., between two SAS domains). Such additional coordination is outside the scope of this standard.

G.5 SATA device not transmitting initial Register Device-to-Host FIS

Some SATA devices do not return the initial Register Device-to-Host FIS after a link reset sequence if they did not detect the COMINIT during the link reset sequence (e.g., if the SATA device originated the link reset sequence). While waiting for the initial Register Device-to-Host FIS, an STP/SATA bridge responds as follows:

- a) In the SMP DISCOVER response (see 10.4.3.10):
 - A) the ATTACHED DEVICE TYPE field is set to 000b;
 - B) the NEGOTIATED LOGICAL LINK RATE field and the NEGOTIATED PHYSICAL LINK RATE field are set to a value indicating the phy is enabled at a valid link rate (e.g., G1 (i.e., 8h), G2 (i.e., 9h), or G3 (i.e., Ah));
 - C) the ATTACHED SATA DEVICE bit is set to one; and
 - D) the ATTACHED SAS ADDRESS field is set to the SAS address of the STP target port of the STP/SATA bridge;

Working Draft Serial Attached SCSI - 2 (SAS-2)

```
Page: 710
Author: wdc-mevans
Subject: Highlight
Date: 5/22/2008 2:13:04 PM -07'00'
 REJECT (there's no guarantee that they will result in data loss)
    since the result could be
    s/b
    resulting in
Author: wdc-meyans
Subject: Cross-Out
Date: 5/22/2008 2:15:22 PM -07'00'
TREJECT (a native STP target port would allow each command to come from a new initiator. This is describing the more likely case for STP/SATA bridges where the STP target port is forced to limit the number of STP initiators to something less than one per
    (i.e., more than one, but less than one per command)
    [Delete this confusing parenthetical statement. It is not possible to have "less than one [initiator port] per command.]
Author: RElliott
Subject: Highlight
Date: 6/30/2008 3:16:52 PM -07'00'
ACCEPT - DONE
    ATA task file register context
    affiliation context
    and delete "supports a single affiliation in order to"
Author: wdc-mevans
Subject: Highlight
Date: 5/22/2008 2:16:20 PM -07'00'
 REJECT (that would turn this into an incomplete sentence)
    ports, supports
    ports and supports
 Author: RElliott
Subject: Underline

<u>Date</u>: 6/30/2008 3:16:52 PM -07'00'
    ACCEPT - DONE
    s/b
    in
```

(part of global change to lowercase a)b)c) entries)

28 January 2008 T10/1760-D Revision 14

and

b) returns OPEN_REJECT (NO DESTINATION) for connection requests to the SAS address of the STP target port.

If an STP initiator port detects this situation for a vendor-specific amount of time, an SMP application client should send an SMP PHY CONTROL function requesting a phy operation of LINK RESET or HARD RESET to originate a new link reset sequence. The SATA device is expected to detect the COMINIT during this link reset sequence and provide the initial Register Device-to-Host FIS.

T10/1760-D Revision 14

Annex H

28 January 2008

(informative)

Minimum deletable primitive insertion rate summary

Table H.1 shows all the possible combinations of deletable primitive (see 7.2.5) insertion rates for physical link rate tolerance management (see 7.3) and rate matching (see 7.13).

Table H.1 — Minimum deletable primitive insertion rate examples

Physical link rate	Connection rate	Deletable primitive insertion rate (per specified number of dwords)
	6 Gbps	4 per 512 (physical link rate tolerance management)
6 Gbps	3 Gbps	4 per 512 (physical link rate tolerance management) + 1 per 2 (rate matching)
	1.5 Gbps	4 per 512 (physical link rate tolerance management) + 3 per 4 (rate matching)
	3 Gbps	2 per 256 (physical link rate tolerance management)
3 Gbps 1.5 Gbps		2 per 256 (physical link rate tolerance management) + 1 per 2 (rate matching)
1.5 Gbps	1.5 Gbps	1 per 128 (physical link rate tolerance management)

Zone permission configuration descriptor examples

This annex provides examples of using multiple zone permission configuration descriptors in the SMP CONFIGURE ZONE PERMISSION TABLE function (see 10.4.3.26) if the number of zone groups is 128.

Table I.1 shows an example initial value of the zone permission table.

Table I.1 — Zone permission table example initial value

									1
Zone group	0 a	1 ^a	2 to 3	4 to 7 a	8	9	10	11	12 to 127
0 ^a	0	1	0	0	0	0	0	0	0
1 ^a	1	1	1	1	1	1	1	1	1
2 to 3	0	1	0	0	0	0	0	0	0
4 to 7 a	0	1	0	0	0	0	0	0	0
8	0	1	0	0	0	0	0	0	0
9	0	1	0	0	0	0	0	0	0
10	0	1	0	0	0	0	0	0	0
11	0	1	0	0	0	0	0	0	0
12 to 127	0	1	0	0	0	0	0	0	0
^a Zone pe	^a Zone permission table entries for this zone group are not changeable.								

Table I.2 shows an example SMP CONFIGURE ZONE PERMISSION TABLE request where the STARTING ZONE GROUP field is set to 10 (i.e., 0Ah) and the zone permission configuration descriptor list contains two zone permission configuration descriptors.

Table I.2 — CONFIGURE ZONE PERMISSION TABLE request example

Byte\Bit	7	6	5	4	3	2	1	0	
0		SMP FRAME TYPE (40h)							
1		FUNCTION (8Bh)							
2	-			Rese	erved				
3				REQUEST LE	NGTH (0Bh)				
4	(MSB)		EVDE	OTED EVDAND	ED CHANGE C	OUNT			
5		=	EXPE	JIED EXPAND	ER CHANGE C	JOUNT		(LSB)	
6			START	ING SOURCE	ZONE GROUP	(0Ah)			
7	-	NUMBER OF ZONE PERMISSION CONFIGURATION DESCRIPTORS (02h)							
	Zor	ne permissio	n configurati	on descripto	r (first)(sourc	e zone grou	p 10)		
8				F	Fh				
				(each byte	set to FFh)				
23				01	Ēh				
	Zone	e permission	configuration	n descriptor	(second)(sou	rce zone gr	oup 11)		
24		00h							
		(each byte set to 00h)							
47		00h							
48	(MSB)			C	RC				
51		=		Ci	λ.			(LSB)	

Table I.3 shows the zone permission table after processing the first zone permission configuration descriptor (i.e., source zone group 10).

Table I.3 — Zone permission table after processing the first zone permission configuration descriptor

Zone group	0 ^a	1 ^a	2 to 3	4 to 7 a	8	9	10 b	11	12 to 127
0 ^a	0	1	0	0	0	0	0	0	0
1 ^a	1	1	1	1	1	1	1	1	1
2 to 3	0	1	0	0	0	0	1	0	0
4 to 7 a	0	1	0	0	0	0	0	0	0
8	0	1	0	0	0	0	1	0	0
9	0	1	0	0	0	0	1	0	0
10 b	0	1	1	0	1	1	1	1	1
11	0	1	0	0	0	0	1	0	0
12 to 127	0	1	0	0	0	0	1	0	0

 ^a Zone permission table entries for this zone group are not changeable.
 ^b Changeable entries in this zone group are changed by the descriptor.

Table I.4 shows the zone permission table after processing the second zone permission configuration descriptor (i.e., source zone group 11).

 ${\it Table 1.4-Zone \ permission \ table \ after \ processing \ the \ second \ zone \ permission \ configuration \ descriptor }$

Zone group	0 ^a	1 ^a	2 to 3	4 to 7 a	8	9	10	11 b	12 to 127
0 a	0	1	0	0	0	0	0	0	0
1 ^a	1	1	1	1	1	1	1	1	1
2 to 3	0	1	0	0	0	0	1	0	0
4 to 7 a	0	1	0	0	0	0	0	0	0
8	0	1	0	0	0	0	1	0	0
9	0	1	0	0	0	0	1	0	0
10	0	1	1	0	1	1	1	0	1
11 b	0	1	0	0	0	0	0	0	0
12 to 127	0	1	0	0	0	0	1	0	0

 ^a Zone permission table entries for this zone group are not changeable.
 ^b Changeable entries in this zone group are changed by the descriptor.

Annex J (informative)

Expander device handling of connections

J.1 Expander device handling of connections overview

This annex provides examples of how expander devices process connection requests.

Figure J.1 shows the topology used by examples in this annex.

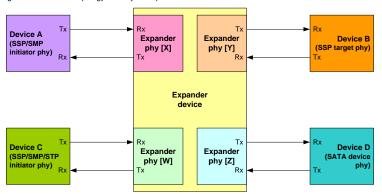


Figure J.1 — Example topology

Table J.1 defines the column headers used within the figures contained within this annex.

Table J.1 — Column descriptions for connection examples

Column header	Description
Phy [W] Rx	Expander phy [W] Receive from device C
Phy [W] Tx	Expander phy [W] Transmit to device C
Phy [W] XL state	Expander phy [W] XL state machine state (see 7.15)
Phy [W] XL req/rsp	Expander phy [W] XL requests and responses (see 4.6.6)
Phy [W] XL cnf/ind	Expander phy [W] XL confirmations and indications (see 4.6.6)
Phy [X] Rx	Expander phy [X] Receive from device A
Phy [X] Tx	Expander phy [X] Transmit to device A
Phy [X] XL state	Expander phy [X] XL state machine state (see 7.15)
Phy [X] XL req/rsp	Expander phy [X] XL requests and responses (see 4.6.6)
Phy [X] XL cnf/ind	Expander phy [X] XL confirmations and indications (see 4.6.6)
Phy [Y] XL cnf/ind	Expander phy [Y] XL confirmations and indications (see 4.6.6)
Phy [Y] XL req/rsp	Expander phy [Y] XL requests and responses (see 4.6.6)
Phy [Y] XL state	Expander phy [Y] XL state machine state (see 7.15)
Phy [Y] Tx	Expander phy [Y] Transmit to device B
Phy [Y] Rx	Expander phy [Y] Receive from device B
Phy [Z] XL cnf/ind	Expander phy [Y] XL confirmations and indications (see 4.6.6)
Phy [Z] XL req/rsp	Expander phy [Y] XL requests and responses (see 4.6.6)
Phy [Z] XL state	Expander phy [Y] XL state machine state (see 7.15)
Phy [Z] Tx	Expander phy [Y] Transmit to device D
Phy [Z] Rx	Expander phy [Y] Receive from device D

	Rx	idle dwords														OPEN_ACCEPT	connection	dwords				
۲	Τ×	idle dwords								SOAF	OPEN (A to B)	EOAF	idle dwords		generated)			idle dwords	(forwarded)			connection dwords
Expander phy [Y]	XL state	XL0:Idle								XI.5:	Forward_Open		XL6:	Open_Rsp_Wait				XL7:Connected				
Û	XL req/rsp													Arb Status	(Waiting	On Device)	Open Accept	Forward Dword	(connection	dwords)		
	XL cnf/ind								Formard Open	nado namo		Forward Dword	(idle dwords)								Forward Dword	(connection dwords)
	XL cnf/ind					Arbitrating (Normal)		Arb Won							Arb Status	(Waiting On Device)		Open Accept	Forward Dword	(connection	(5)	
×	XL req/rsp				Request Path				Forward Open		Forward Dword	(idle dwords)									Forward Dword (connection	dwords)
Expander phy [X]	XL state	XL0:Idle			XL1:	Kednesi_Pain			XL2: Reguest Open		XL3:	_Cnf_Wait								XL7:Connected		
Ú	Ϋ́	idle dwords				AIP (NORMAL)	dwords									AIP (WAITING ON DEVICE)	idle dwords		OPEN_ACCEPT	connection	awaias	
	Rx	idle dwords SOAF	OPEN (A to B)	EOAF	idle dwords															connection	awolas	

J.3 Connection request - OPEN_REJECT by end device

	ũ	expander pny [x]	_			ם	Expander pny [Y]	_	
Rx	Ϋ́	XL state	XL req/rsp	XL cnf/ind	XL cnf/ind	XL req/rsp	XL state	Ϋ́	æ
idle dwords	idle dwords	XL0:Idle					XL0:Idle	idle dwords	idle dwords
SOAF									
OPEN (A to B)									
EOAF									
idle dwords		XL1:	Request Path						
	AIP (NORMAL)	Request_Path		Arbitrating (Normal)					
	dwords								
				Arb Won					
		XL2:	Forward Open						
		Request_Open			Forward Open				
								SOAF	
		XL3:	Forward Dword				Forward_Open	OPEN (A to B)	
		_Cnf_Wait	(idle dwords)		Forward Dword			EOAF	
					(idle dwords)		XL6:	idle dwords	
							Open_Rsp_Wait	(forwarded or	
				Arb Status		(Waiting On		generated)	
	AIP (WAITING			(Waiting On		Device)			
	ON DEVICE)			Device)					OPEN_REJECT
	idle dwords					Open Reject			idle dwords
				Open Reject			XL0:Idle	idle dwords	
	OPEN_REJECT								
	idle dwords	XL0:Idle							

ure J.3 — Connection request - OPEN_REJECT by end device

28 January 2008

CT by expander device

Г				
	Rx	idle dwords		
F	Υ	idle dwords		
Expander phy [Y]	XL state	XL0:Idle		
ũ	XL req/rsp			
	XL cnf/ind			
	XL cnf/ind		(Normal)	Arb Reject
፟	XL req/rsp		Request Path	
Expander phy [X]	XL state	XL0:Idle	XL1: Request_Path	XI.40pen_Reject
Ex	Ϋ́	idle dwords	AIP (NORMAL) and/or idle dwords	OPEN_REJECT
	Rx	idle dwords SOAF OPEN (A to B) EOAF	idle dwords	

Figure J.4 — Connection request - OPEN_REJECT by expander device

nnection request - arbitration lost

Figure J.5 shows two end devices attempting to establish a connection at the same time. This example assumes that the OPEN (A to B) address frame has higher priority than the OPEN (B to A) address frame and therefore device A wins arbitration and device B loses arbitration.

	Ä	Expander phy [X]				Ä	Expander phy [Y]	, Al	
Rx	¥	XL state	XL req/rsp	XL cnf/ind	XL cnf/ind	XL req/rsp	XL state	×	æ
idle dwords	idle dwords	XI0:Idle					XI 0:Idle	idle dwords	idle dwords
SOAF									SOAF
OPEN (A to B)									OPEN (B to A)
EOAF									EOAF
idle dwords		XL1:	Request Path	Achibodino	Achibodino	Request Path	XL1:		idle dwords
	AIP (NORMAL) and/or idle	Rednest_Path		(Normal)	(Normal)		Request_Path	AIP (NORMAL) and/or idle	
	dwords							dwords	
				Arb Won	ArbLost				
		XL2:	Forward Open				XL0:Idle	idle dwords	
		Request_Open			Forward Open				
							XL5:	SOAF	
		XL3:	Forward Dword				Forward_Open	OPEN (A to B)	
		_Cnf_Wait	(idle dwords)		Forward Dword			EOAF	
					(idle dwords)		XL6:	idle dwords	
						Arb Status	Open_Rsp_Wait		
				Arb Status		(Waiting On		generated)	
	AIP (WAITING			(Waiting On		Device)			1000
	ON DEVICE)			Device)					OPEN_ACCEP!
	idle dwords					Open Accept			connection
	ide dirotas			Open Accept		Forward Dword	XL7:Connected	idle dwords	dwords
	OPEN_ACCEPT			Forward Dword		(connection		(forwarded)	
connection	connection	XL7:Connected		(connection		dwords)			
dwords	dwords		puc	awaras)					
			(connection		Forward Dword				
			dwords)		(connection dwords)			connection dwords	

Figure J.5 — Connection request - arbitration lost

28 January 2008 T10/1760-D Revision 14

J.6 Connection request - backoff and retry Figure J.6 shows a higher priority OPEN address frame (B to C) received by a phy which has previously forwarded an OPEN address frame (A to B) whose source (A) differs from the winning destination (C). In this case expander phy [X] is required to back off and retry path arbitration (see 7.15.9).

	û	Expander phy [X]	፟			û	Expander phy [Y]	Y	
Š	ĭ	XL state	XL req/rsp	XL cnf/ind	XL cnf/ind	XL req/rsp	XL state	ř	Ϋ́
idle dwords	idle dwords	XL0:Idle					XL0:Idle	idle dwords	idle dwords
SOAF									
OPEN (A to B)									
EOAF									
idle dwords		XL1:	Request Path	Arbitrating					
	AIP (NORMAL) and/or idle	Request_Path		(Normal)					
	dwords			Arb Won					
		XL2:	Forward Open						
		Request_Open			Forward Open			SOAF	
							XL5:	SUAF	
		XL3:	Forward Dword				Forward_Open	OPEN (A to B)	
		_Cnf_Wait	(idle dwords)		Forward Dword			EOAF	
					(idle dwords)		XL6:	idle dwords	
						Arb Status	Open_Rsp_Wait	(forwarded or	
				Arb Status		(Waiting On Device)		generated)	
	AIP (WAITING			(Waiting On Deutro)		Oll Device)			
	ON DEVICE)			Oil Device)					SOAF
	idle dwords							•	OPEN (B to C)
									EOAF
						Backoff Retry			idle dwords
				Backoff Retry		Request Path	XL1:		
		XL1:	Reduest Path		Arbitrating		Rednest_Path	(IVWOONJGIV	
	AIP (NORMAL)	Request_Path		Arbitrating	(Normal)			and/or idle	
	and/or idle			(MOIIIIGA)				dwords	
	Sminwin				ArbWon				
						Forward Open	XL2:		

gure J.6 — Connection request - backoff and ret

T10/1760-D Revision 14

28 January 2008

ee 7.15.9).		Rx
der phy [X] (s		×
OPEN to expar	Expander phy [Y	XL state
igher priority (Ш	XL reg/rsp
forwards the h		XL cnf/ind
ander phy [Y]		XL cnf/ind
n this case exp		XL red/rsp
source (A) matches the winning destination (A). In this case expander phy [Y] forwards the higher priority OPEN to expander phy [X] (see 7.15.9).	xpander phy [X	XL state XL reg/rsp XL cnf/ind XL cnf/ind
the winning de		×L
(A) matches		Rx
source		

		V 201001				ш	Expander phy [Y]	_	
ords	ř	XL state	XL req/rsp	XL cnf/ind	XL cuf/ind	XL req/rsp	XL state	×	χ
vords	I								
1	idle dwords	XL0:Idle					XL0:Idle	idle dwords	idle dwords
1									
OPEN (A to B)									
EOAF									
idle dwords A	AIP (NORMAL)	XL1:	Rednest Path	Arbitrating					
	and/or idla	Dominert Dath		(Normal)					
	dwords	in Franksi		ArbWon					
,		XL2:	Forward Open						
		Request_Open			Forward Open				
							XL5:	SOAF	
		XL3:	Forward Dword				Forward_Open	OPEN (A to B)	
		Cnf Wait	(idle dwords)		Forward Dword			EOAF	
					(idle dwords)		XL6:	idle dwords	
						Arb Status (Wait	Open_Rsp_Wait		
				Arh Status (Mait		On Device)		generated)	
<	CINITINIO			On Device)					SOAF
t C	ON DEVICE)			ì					OPEN (B to A)
	,								EOAF
.02	idle dwords					Backoff Reverse			idle dwords
				Backoff Reverse		Path			
				Path		Forward Open	XL2:	AIP (NORMAL)	
S	SOAF	XL5:		Forward Open			Request_Open		
٥	OPEN (B to A)	Forward_Open				Fonuard Dword	×13		
Ш	EOAF		•	Formord Denord		(idle dwords)	Open Cnf Wait		
9.	idle dwords	XL6:		(idle dwords)		Ì			
= 0	(forwarded or	Open_Rsp_wait	Arb Status						
n .	, and a second		(Waiting on Device)		Arb Status (Waiting on Device)			AIP (WAITING ON DEVICE)	

J.8 Connection close - single step	Figure J.8 shows an end device initiating the closing of a connection by transmitting CLOSE, followed by another end device responding with CLC	later time.	
	g with CLOSE at a		

Table Toward Close Forward Close Forward Close		Expander phy [Y]	XL cnf/ind XL req/rsp XL state Tx Rx	Forward Dword Forward Dword XLT/Comeded comection (connection (connection dwords) dwords) dwords) dwords)	Forward Close idle dwords	Forward Close XLR.CLOSE XL.0.Clde Idle dwords
	XL Stokes Walt XL 7.Connected Forward AL 7.Connected (connected forward) AL 8.Cbss_Walt XL 8.Cbss_Walt XL 8.Cbss_Walt XL 8.Cbss_Walt AL		XL cnf/ind	Forward Dword (connection dwords)	Forward Close	

	Rx	dwords	CLUSE	idle dwords			
,	Τ×	dwords				CLOSE	ide dwords
Expander phy [Y	XL state	XL7:Connected				XL8:Close_Wait	XLOide
ũ	XL req/rsp	Forward Dword (connection dwords)		Forward Close			
	XL cnf/ind	Forward Dword (connection dwords)			Forward Close		
	XL cnf/ind	Forward Dword (connection dwords)			Forward Close		
⋝	XL req/rsp	Forward Dword (connection dwords)		Forward Close	•		
Expander phy [X]	XL state	XL7:Connected		·		XL8:Close_Wait	XLO:Idle
ű	Ϋ́	connection				CLOSE	idle dwords
	Rx	dwords	CLUSE	idle dwords			

	Ď	Expander pny [x]	~			ũ	Expander phy [Y]	Ξ.	
Rx	Ϋ́	XL state	XL req/rsp	XL cnf/ind	XL cnf/ind	XL req/rsp	XL state	Τ×	Rx
idle dwords	idle dwords	XL0:Idle					XL0:Idle	idle dwords	idle dwords
SOAF									
OPEN(A to B)									
EOAF									
idle dwords	AIP (NORMAL) and/or idle	XL1: Request_Path	Request Path	Arbitrating (Normal)					
	Smown								
BREAK									
idle dwords	BREAK	XL9:Break							
	idle dwords	XL0:Idle							

Figure J.10 — BREAK handling during path arbitration when the BREAK_REPLY method is disabled

T10/1760-D Revision 14 28 January 2008

J.11 BREAK handling during connection when the BREAK_REPLY method is disabledFigure J.11 shows an expander device responding to the reception of a BREAK during a connection when the BREAK_REPLY method of responding to BREAK primitive sequences is disabled (see 7.12.5).

	Tx Rx	lon connection dwords	BREAK		ords		
Ξ		dwords		BREAK	idle dwords		
Expander phy [Y]	XL state	XL7:Connected		XL9:Break	XL0:Idle		
ű	XL req/rsp	Forward Dword (connection dwords)	Forward Break				
	XL cnf/ind	Forward Dword (connection dwords)					
	XL cnf/ind	Forward Dword (connection dwords)		Forward Break			
Σ	XL req/rsp	Forward Dword (connection dwords)					
Expander phy [X]	XL state	XL7:Connected			XL10: Break_Wait		XLOide
Ú	ř	connection			BREAK idle dwords		
	X.	dwords				BREAK	idle dwords

Figure J.11 — BREAK handling during a connection when the BREAK_REPLY method is disabled

Figure J.10 shows an expander device responding to the reception of a BREAK during path arbitration when the BREAK_REPLY method of responding to BREAK primitive sequences is enabled (see 7.12.5).

	Rx	idle dwords												
Ε.	Τ×	idle dwords												
Expander phy [Y]	XL state	XL0:Idle												
ã	XL req/rsp													
	XL cuf/ind													
	XL cuf/ind						Arbitrating (Normal)							
▽	XL req/rsp					Request Path								
Expander phy [X]	XL state	XL0:Idle				XL1:	Request_Path						XL9:Break	XL0:idle
ă	Tx	idle dwords					AIP (NORMAL) and/or idle	dwords					BREAK_REPLY	idle dwords
	Rx	idle dwords	SOAF	OPEN(A to B)	EOAF	idle dwords						BREAK	idle dwords	

Figure J.12 — BREAK handling during path arbitration when the BREAK_REPLY method is enabled

T10/1760-D Revision 14 28 January 2008

J.13 BREAK handling during connection when BREAK_REPLY method is enabledFigure J.11 shows an expander device responding to the reception of a BREAK during a connection when the BREAK_REPLY method of responding to BREAK primitive sequences is enabled (see 7.12.5).

	×	ю.		sp				
	X.	connection	BREAK	idle dwords				
Ξ	Ϋ́	dwords		BREAK REPLY	idle dwords			
Expander phy [Y]	XL state	XL7:Connected		XI 9·Break	XI 0:Idle			
ú	XL req/rsp	Forward Dword (connection dwords)		Forward Break				
	XL cnf/ind	Forward Dword (connection dwords)						
	XL cnf/ind	Forward Dword (connection dwords)		Forward Break				
×	XL req/rsp	Forward Dword (connection dwords)						
Expander phy [X]	XL state	XL7:Connected			XI 10:	Break_Wait		XLOide
Û	Ϋ́L	dwords			BREAK	idle dwords		
	Rx	connection					BREAK_REPLY	ide dwords

lo lo
STP connection dwords
(SATA device dwords)
Forward Dword (STP connection dwords)
Forward Dword (SATA device dwords)
(STP connection dwords)
SATA device dwords

T10/1760-D Revision 14 28 January 2008

J.15 STP connection - originated by STP target port in an STP/SATA bridge
Figure J.15 shows an STP target port in an STP/SATA bridge originating a connection on behalf of a SATA device which is requesting to transmit a frame.

ž					200	office and the second s			,
	ř	XL state	XL req/rsp	XL cnf/ind	XL cuf/ind	XL req/rsp	XL state	ř	ž
idle dwords	idle dwords	NL0:Idle						SYNC/CONT	SYNC/CONT
									X_RDY/CONT
						Request Path			
				•	(Normal)				
					Arb Won				
				•		Forward Open			
			•	Forward Open					
	SOAF	XL5:		-					
	OPEN (D to C)	Forward_Open				Forward Dword			
	EOAF			Forward Dword		(idle dwords)			
	idle dwords	XL6:		(idle dwords)					
	(forwarded or	Open_Rsp_Wait	Arb Status						
	generated)		(Waiting On Device)		Arb Status				
OPEN ACCEPT					Device)				
GH CH			Onen Accent						
S I P connection			open mechi						
dwords		XL7:Connected	Transmit Dword	·	Open Accept				
			(STP connection		Forward Dword	Forward Dword			
			dwords)	Forward Dword	(STP connection	(SATA device		STP connection	SATA device
	SATA device			(SATA device	dwords)	dwords a)		dwords	dwords
	dwords a			dwords 4)		Forward Dword			
				Forward Dword		(SATA device			
	SATA device dwords			(SATA device dwords)		dwords)			

Expander phy [Z] - SATA host port in an STP/SATA bridge
XL cnfind | XL red/rsp | XL state | Tx | Rx
Foward Dword | Foward Dword | SATA device Expander phy [W] - STP target port in an STP/SATA bridge
Rx Tx XL state XL req/rsp XL cnf/ind Forward Dword (SYNC/CONT)

Figure J.16 — STP connection close - originated by STP initiator port

Figure J.16 shows an STP initiator port closing a connection to an STP target port in an STP/SATA bridge.

Expander	. phy [W] - ST	P target port i	Expander phy [W] - STP target port in an STP/SATA bridge	A bridge	Expander	Phy [Z] - SAI	Expander phy [Z] - SATA host port in an STP/SATA bridge	n an STP/SA	FA bridge
Ϋ́	ř	XL state	XL req/rsp	XL cnf/ind	XL cnf/ind	XL cuffind XL req/rsp	XL state	ř	æ
STP connection dwords	SATA device dwords	XL7:Connected	Forward Dword (STP connection dwords)	Forward Dword (SATA device dwords)	Forward Dword (STP connection dwords)	Forward Dword (SATA device dwords)		STP connection dwords	SATA device dwords
				Forward Dword		Forward Dword (SYNC/CONT)			SYNC/CONT
	SYNC/CONT		(SYNC/CONT)	(SYNC/CONT)	Forward Dword (SYNC/CONT)				
SYNC/CONT						Forward Close		SYNC/CONT	
				Forward Close					
	CLOSE	XL8:Close_Wait							
	idle dwords	XL0:Idle							
130 13									
CLUSE									
idle dwords									

Figure J.17 — STP connection close - originated by STP target port in an STP/SATA bridge

	Ň	Expander phy [X]	_			ũ	Expander phy [Y]	7	
	ĭ	XL state	XL req/rsp	XL cut/jind	XL cuf/ind	XL req/rsp	XL state	Ϋ́	Rx
idle dwords	ords	XL0:Idle					XL0:Idle	Idle dwords	Idle dwords
OPEN (A to B)									7400
									SUAL ODEN (D to A)
								•	OPEN (BIOA)
AIP (NORA	AIP (NORMAL)	XL1: Request_Path	Request Path	Arbitrating (Normal)		Request Path	XL1: Reguest Path		EUAF idle dwords
dwords	,,		•)		
			•	Arb Won					
		XL2:	Forward Open						
		Request_Open			Forward Open		5	7400	
		XL3:	Forward Dword				AL3. Forward Onen	SUAL	
		Open_Confirm_	(idle dwords)		Forward Dword			OPEN (A to B)	
		Wall			(idle dwords)			EOAF	
AIP (WAITING ON DEVICE)	AIP (WAITING ON DEVICE)			Arb Status (Waiting on Device)		Arb Status (Waiting on	XL6: Open_ Response_Wait	Idle dwords (forwarded or	
idle dwords	ords			Open Accept		Device)		generated)	OPEN_ACCEPT
OPEN	DPEN_ACCEPT		•	Forward Dword	•	Forward Dword	XL7:Connected	Idle dwords	connection
connection	tion	XL7:Connected		(connection dwords)		(connection dwords)		(forwarded)	dwords
dwords			Dword		Forward Dword				
			dwords)		(connection dwords)			connection dwords	

gure J.18 — XL1:Request_Path to XL5:Forward_Open transitio

28 January 2008 T10/1760-D Revision 14

J.19 Pathway blocked and pathway recovery example

Figure J.19 shows a topology used to illustrate pathway recovery. Exp[1] and Exp[2] are expander devices. A, B, and C are end devices. A attempts to open a connection to B while B attempts to open a connection to A.

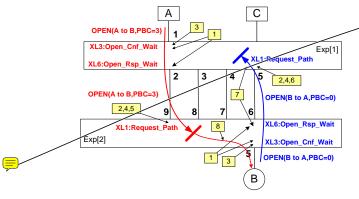


Figure J.19 — Partial pathway recovery

The sequence of events used to identify pathway blockage and to perform pathway recovery are as follows

- Exp[1].Phy[1,2] and Exp[2].Phy[5,6] each send Phy Status (Partial Pathway) responses to the EQM to indicate that they contain partial pathways;
- Exp[1].Phy[5] and Exp[2].Phy[9] each receive Arbitrating (Waiting On Partial) confirmations from the ECM which cause them to transmit AIP (WAITING ON PARTIAL):
- 3) AIP (WAITING ON PARTIAL) is received by Exp[1].Phy[2] and Exp[2].Phy[6] then forwarded to Exp[1].Phy[1] and Exp[2].Phy[5] as an Arb Status (Waiting On Partial) confirmation. Exp[7].Phy[1] and Exp[2].Phy[5] each send Phy Status (Blocked On Partial) responses to ECM as confirmation that they are blocked waiting on a partial pathway in another expander device;
- 4) Exp[1].Phy[5] and Exp[2].Phy[9] each receive Arbitrating (Blocked On Partial) confirmations from the ECM while all destination phys send Phy Status (Blocked On Partial) responses which cause them to run their Partial Pathway Timeout timers:
- 5) The Partial Pathway Timeout timer expires in Exp[2].Phy[9]. This causes a requirest to the ECM to resolve pathway blockage. The pathway recovery priority for this phy is not lower than all phys within the destination port which are also blocked (i.e., the Request Path from Exp[2].Phy[9] has higher priority than the Request Path from Exp[2].Phy[5], which is receiving Arbitrating (Blocked On Partial)). The ECM does not provide an Arb Reject (Pathway Blocked) confirmation to Exp[2].Phy[9], so this expander phy waits for pathway resolution to occur elsewhere in the topology;
- 6) the Partial Pathway Timeout timer expires in Exp[1].Phy[5]. This causes a request to the ECM to resolve pathway blockage. The pathway recovery priority for this expander phy is lower than all expander phys within the destination port which are also blocked (i.e. the Request Path from Exp[1].Phy[5] is lower priority than the Request Path from Exp[1].Phy[5], which is receiving Arbitrating (Blocked On Partial)). The ECM provides an Arb Reject (Pathway blocked) confirmation to Exp[1].Phy[5] which instructs this expander phy to reject the connection request using OPEN REJECT (PATHWAY BLOCKED):

NOTE 128 - The Partial Pathway Timeout timer in Exp[1].Phy[5] might expire before, after, or at the same time the Partial Pathway Timeout timer expires in Exp[2].Phy[9].

Page: 735

```
Author: RElliott
Subject: Note
Date: 7/9/2008 7:09:57 AM -07'00'
ACCEPT - DONE

Add Key:
Exp = expander
PBC = pathway blocked count

(from Ralph Weber, ENDL)

Author: wdc-mevans
Subject: Highlight
Date: 5/23/2008 11:10:50 AM -07'00'
TREJECT (not trying to grant permission here.)

might
s/b
may
```

T10/1760-D Revision 14 28 January 2008

7) OPEN_REJECT (PATHWAY BLOCKED) tears down partial pathway all the way to the originating end device (Device B);

8) Exp[2].Phy[9] receives Arb Won and the partial pathway is extended through Exp[2].Phy[5]; and

9) OPEN (A to B) is delivered to device B.

Annex K (informative)

Primitive encoding

Table K.1 describes a set of the K28.5-based primitive encodings whose 40-bit values (after 8b10b encoding with either starting running disparity) Harve a Hamming distance (i.e., the number of bits different in two patterns) of at least 8. At the primitive encodings in 7.2 except for TRAIN and TRAIN_DONE were selected from this list. Unassigned encodings may be used by future versions of this standard.

Table K.1 — Primitives with Hamming distance of 8 (part 1 of 3)

	Char	acter		
1 st	2 nd	3 rd	4 th	Assignment
K28.5	D01.3	D01.3	D01.3	ALIGN (2)
K28.5	D01.4	D01.4	D01.4	ACK
K28.5	D01.4	D02.0	D31.4	RRDY (RESERVED 0)
K28.5	D01.4	D04.7	D24.0	NAK (RESERVED 1)
K28.5	D01.4	D07.3	D30.0	CREDIT_BLOCKED
K28.5	D01.4	D16.7	D07.3	NAK (RESERVED 2)
K28.5	D01.4	D24.0	D16.7	RRDY (NORMAL)
K28.5	D01.4	D27.4	D04.7	NAK (CRC ERROR)
K28.5	D01.4	D30.0	D02.0	RRDY (RESERVED 1)
K28.5	D01.4	D31.4	D29.7	NAK (RESERVED 0)
K28.5	D02.0	D01.4	D29.7	ERROR
K28.5	D02.0	D02.0	D02.0	HARD_RESET
K28.5	D02.0	D04.7	D01.4	CLOSE (RESERVED 1)
K28.5	D02.0	D07.3	D04.7	CLOSE (CLEAR AFFILIATION)
K28.5	D02.0	D16.7	D31.4	MUX (LOGICAL LINK 0)
K28.5	D02.0	D24.0	D07.3	BREAK
K28.5	D02.0	D29.7	D16.7	BREAK_REPLY
K28.5	D02.0	D30.0	D27.4	CLOSE (NORMAL)
K28.5	D02.0	D31.4	D30.0	CLOSE (RESERVED 0)
K28.5	D04.7	D01.4	D24.0	BROADCAST (EXPANDER)
K28.5	D04.7	D02.0	D01.4	BROADCAST (CHANGE)
K28.5	D04.7	D04.7	D04.7	BROADCAST (ASYNCHRONOUS EVENT)
K28.5	D04.7	D07.3	D29.7	BROADCAST (SES)
K28.5	D04.7	D16.7	D02.0	BROADCAST (RESERVED 3)
K28.5	D04.7	D24.0	D31.4	BROADCAST (RESERVED CHANGE 0)
K28.5	D04.7	D27.4	D07.3	BROADCAST (RESERVED CHANGE 1)
K28.5	D04.7	D29.7	D30.0	BROADCAST (RESERVED 4)
K28.5	D04.7	D31.4	D27.4	MUX (LOGICAL LINK 1)
K28.5	D07.0	D07.0	D07.0	ALIGN (1)
K28.5	D07.3	D01.4	D31.4	
K28.5	D07.3	D02.0	D04.7	

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 737

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

This << of at least 8. >> should be << of at least eight. >>

Author: Isi-gpenokie
Subject: Highlight
Date: 5/6/2008 1:07:50 PM -07'00'

This << distance of 8 >> should be << distance of eight >>

T10/1760-D Revision 14 28 January 2008

Table K.1 — Primitives with Hamming distance of 8 (part 2 of 3)

Character				
1 st	2 nd	3 rd	4 th	Assignment
K28.5	D07.3	D04.7	D30.0	
K28.5	D07.3	D07.3	D07.3	
K28.5	D07.3	D24.0	D29.7	
K28.5	D07.3	D27.4	D16.7	
K28.5	D07.3	D29.7	D27.4	
K28.5	D07.3	D30.0	D24.0	
K28.5	D07.3	D31.4	D02.0	
K28.5	D10.2	D10.2	D27.3	ALIGN (0)
K28.5	D16.7	D01.4	D02.0	
K28.5	D16.7	D02.0	D07.3	
K28.5	D16.7	D04.7	D31.4	
K28.5	D16.7	D16.7	D16.7	OPEN_ACCEPT
K28.5	D16.7	D24.0	D27.4	
K28.5	D16.7	D27.4	D30.0	
K28.5	D16.7	D29.7	D24.0	
K28.5	D16.7	D30.0	D04.7	
K28.5	D16.7	D31.4	D01.4	
K28.5	D24.0	D01.4	D16.7	
K28.5	D24.0	D02.0	D29.7	
K28.5	D24.0	D04.7	D07.3	SOF
K28.5	D24.0	D07.3	D31.4	EOAF
K28.5	D24.0	D16.7	D27.4	EOF
K28.5	D24.0	D24.0	D24.0	
K28.5	D24.0	D27.4	D02.0	
K28.5	D24.0	D29.7	D04.7	
K28.5	D24.0	D30.0	D01.4	SOAF
K28.5	D27.3	D27.3	D27.3	ALIGN (3)
K28.5	D27.4	D01.4	D07.3	AIP (RESERVED WAITING ON PARTIAL)
K28.5	D27.4	D04.7	D02.0	
K28.5	D27.4	D07.3	D24.0	AIP (WAITING ON CONNECTION)
K28.5	D27.4	D16.7	D30.0	AIP (RESERVED 1)
K28.5	D27.4	D24.0	D04.7	AIP (WAITING ON PARTIAL)
K28.5	D27.4	D27.4	D27.4	AIP (NORMAL)
K28.5	D27.4	D29.7	D01.4	AIP (RESERVED 2)
K28.5	D27.4	D30.0	D29.7	AIP (WAITING ON DEVICE)
K28.5	D27.4	D31.4	D16.7	AIP (RESERVED 0)
K28.5	D29.7	D02.0	D30.0	OPEN_REJECT (RESERVED CONTINUE 0)
K28.5	D29.7	D04.7	D27.4	OPEN_REJECT (RESERVED STOP 1)
K28.5	D29.7	D07.3	D16.7	OPEN_REJECT (RESERVED INITIALIZE 1)

28 January 2008 T10/1760-D Revision 14

Table K.1 — Primitives with Hamming distance of 8 (part 3 of 3)

Character				Assignment
1 st	2 nd	3 rd	4 th	Assignment
K28.5	D29.7	D16.7	D04.7	OPEN_REJECT (PATHWAY BLOCKED)
K28.5	D29.7	D24.0	D01.4	OPEN_REJECT (RESERVED CONTINUE 1)
K28.5	D29.7	D27.4	D24.0	OPEN_REJECT (RETRY)
K28.5	D29.7	D29.7	D29.7	OPEN_REJECT (NO DESTINATION)
K28.5	D29.7	D30.0	D31.4	OPEN_REJECT (RESERVED INITIALIZE 0)
K28.5	D29.7	D31.4	D07.3	OPEN_REJECT (RESERVED STOP 0)
K28.5	D30.0	D01.4	D04.7	DONE (ACK/NAK TIMEOUT)
K28.5	D30.0	D02.0	D16.7	
K28.5	D30.0	D07.3	D27.4	DONE (CREDIT TIMEOUT)
K28.5	D30.0	D16.7	D01.4	DONE (RESERVED 0)
K28.5	D30.0	D24.0	D02.0	
K28.5	D30.0	D27.4	D29.7	DONE (RESERVED TIMEOUT 0)
K28.5	D30.0	D29.7	D31.4	DONE (RESERVED 1)
K28.5	D30.0	D30.0	D30.0	DONE (NORMAL)
K28.5	D30.0	D31.4	D24.0	DONE (RESERVED TIMEOUT 1)
K28.5	D31.3	D01.3	D07.0	NOTIFY (RESERVED 1)
K28.5	D31.3	D07.0	D01.3	NOTIFY (POWER LOSS EXPECTED)
K28.5	D31.3	D10.2	D10.2	NOTIFY (RESERVED 2)
K28.5	D31.3	D31.3	D31.3	NOTIFY (ENABLE SPINUP)
K28.5	D31.4	D01.4	D30.0	OPEN_REJECT (RESERVED ABANDON 3)
K28.5	D31.4	D02.0	D27.4	OPEN_REJECT (ZONE VIOLATION)
K28.5	D31.4	D04.7	D29.7	OPEN_REJECT (CONNECTION RATE NOT SUPPORTED)
K28.5	D31.4	D07.3	D02.0	OPEN_REJECT (RESERVED ABANDON 2)
K28.5	D31.4	D16.7	D24.0	OPEN_REJECT (WRONG DESTINATION)
K28.5	D31.4	D27.4	D01.4	OPEN_REJECT (STP RESOURCES BUSY)
K28.5	D31.4	D29.7	D07.3	OPEN_REJECT (PROTOCOL NOT SUPPORTED)
K28.5	D31.4	D30.0	D16.7	OPEN_REJECT (RESERVED ABANDON 1)
K28.5	D31.4	D31.4	D31.4	OPEN_REJECT (BAD DESTINATION)

Table K.2 describes the K28.5-based primitive encodings that do not have Hamming distances of 8 from the other primitives.

Table K.2 — Primitives without Hamming distance of 8

	Char	acter		Accimpment
1 st	2 nd	3 rd	4 th	Assignment
K28.5	D30.3	D30.3	D30.3	TRAIN
K28.5	D30.3	D30.3	D10.2	TRAIN_DONE

739

Working Draft Serial Attached SCSI - 2 (SAS-2)

Page: 739

Author: Isi-gpenokie Subject: Highlight Date: 5/6/2008 1:07:50 PM -07'00'

This << distances of 8 from the >> should be << distances of eight from the >>

T10/1760-D Revision 14 28 January 2008

0x08

#define SSP

28 January 2008 T10/1760-D Revision 14

```
\ensuremath{//} defines for open responses, arbitrary values, not defined in the spec
#define OPEN_ACCEPT
#define OPEN_REJECT_BAD_DESTINATION
#define OPEN_REJECT_RATE_NOT_SUPPORTED
#define OPEN_REJECT_NO_DESTINATION
#define OPEN_REJECT_PATHWAY_BLOCKED
#define OPEN_REJECT_PROTOCOL_NOT_SUPPORTED
#define OPEN_REJECT_RESERVE_ABANDON
#define OPEN REJECT RESERVE CONTINUE
#define OPEN_REJECT_RESERVE_INITIALIZE
#define OPEN_REJECT_RESERVE_STOP
#define OPEN_REJECT_RETRY
                                              10
#define OPEN_REJECT_STP_RESOURCES_BUSY
                                              11
#define OPEN_REJECT_WRONG_DESTINATION
                                             12
#define OPEN_REJECT_WAITING_ON_BREAK
// definitions for discovery algorithm use
enum
   SAS_SIMPLE_LEVEL_DESCENT = 0,
   SAS_UNIQUE_LEVEL_DESCENT
};
enum
   SAS_10_COMPATIBLE = 0,
   SAS_11_COMPATIBLE
// definitions for SMP function results
enum SMPFunctionResult
   SMP_REQUEST_ACCEPTED = 0,
                                       // from original example
   SMP_FUNCTION_ACCEPTED = 0,
   SMP_UNKNOWN_FUNCTION,
   SMP_FUNCTION_FAILED,
   SMP_INVALID_REQUEST_FRAME_LENGTH,
   SMP\_PHY\_DOES\_NOT\_EXIST = 0x10,
   SMP_INDEX_DOES_NOT_EXIST,
   SMP_PHY_DOES_NOT_SUPPORT_SATA,
   SMP_UNKNOWN_PHY_OPERATION,
   SMP_UNKNOWN_PHY_TEST_FUNCTION,
   SMP_UNKNOWN_PHY_TEST_FUNCTION_IN_PROGRESS,
   SMP_PHY_VACANT
// DeviceTypes
enum DeviceTypes
   NO DEVICE = 0,
   END_DEVICE,
   EDGE EXPANDER DEVICE,
   FANOUT_EXPANDER_DEVICE,
   END = END_DEVICE,
                                       // from original example
   EDGE = EDGE_EXPANDER_DEVICE,
                                       // from original example
```

741

Working Draft Serial Attached SCSI - 2 (SAS-2)

```
FANOUT = FANOUT_EXPANDER_DEVICE
                                      // from original example
// RoutingAttribute
enum RoutingAttribute
  DIRECT = 0,
  SUBTRACTIVE,
  TABLE,
  // this attribute is a psuedo attribute, used to reflect the function
  // result of SMP_PHY_VACANT in a fabricated discover response
  PHY_NOT_USED = 15
};
// ConnectorType
enum ConnectorType
  UNKNOWN_CONNECTOR = 0,
  SFF_8470_EXTERNAL_WIDE,
  SFF_8484_INTERNAL_WIDE = 16,
  SFF_8482_BACKPLANE = 32,
  SATA_HOST_PLUG,
  SAS_DEVICE_PLUG,
  SATA_DEVICE_PLUG
};
// RouteFlag
enum DisableRouteEntry
   ENABLED = 0,
  DISABLED
};
// PhyLinkRate(s)
enum PhysicalLinkRate
  RATE_UNKNOWN = 0,
  PHY_DISABLED,
  PHY_FAILED,
  SPINUP_HOLD_OOB,
  PORT_SELECTOR_DETECTED,
  // this is a psuedo link rate, used to reflect the function
  // result of SMP_PHY_VACANT in a fabricated discover response
  PHY_DOES_NOT_EXIST,
  GBPS 1 5 = 8,
  GBPS_3_0
// PhyOperation
enum PhyOperation
  NOP = 0,
  LINK_RESET,
  HARD_RESET,
```

```
DISABLE,
  CLEAR_ERROR_LOG = 5,
  CLEAR_AFFILIATION,
  TRANSMIT_SATA_PORT_SELECTION_SIGNAL
// provide the simple type definitions
typedef unsigned char byte;
typedef unsigned short word;
typedef unsigned long dword;
typedef unsigned _int64 quadword;
// the structures assume a char bitfield is valid, this is compiler
// dependent defines would be more portable, but less descriptive
// the Identify frame is exchanged following OOB, for this
// code it contains the identity information for the attached device
// and the initiator application client
struct Identify
   // byte 0
  byte AddressFrameType:4;
                                      // ADDRESS_IDENTIFY_FRAME
  byte DeviceType:3;
                                      // END_DEVICE
  byte RestrictedByte0Bit7:1;
   // byte 1
  byte RestrictedBytel;
  // byte 2
  union
        byte RestrictedByte2Bit0:1;
        byte SMPInitiatorPort:1;
        byte STPInitiatorPort:1;
        byte SSPInitiatorPort:1;
        byte ReservedByte2Bit4_7:4;
     byte InitiatorBits;
  };
  // byte 3
  union
      struct
        byte RestrictedByte3Bit0:1;
        byte SMPTargetPort:1;
        byte STPTargetPort:1;
        byte SSPTargetPort:1;
        byte ReservedByte3Bit4_7:4;
     byte TargetBits;
  };
```

Working Draft Serial Attached SCSI - 2 (SAS-2)

```
// byte 4-11
  byte RestrictedByte4_11[8];
  // byte 12-19
  quadword SASAddress;
  // byte 20
  byte PhyIdentifier;
  // byte 21-27
  byte ReservedByte21_27[4];
  // byte 28-31
  dword CRC;
}; // struct Identify
// the Open address frame is used to send open requests
struct OpenAddress
   // byte 0
  byte AddressFrameType:4;
                                      // ADDRESS_OPEN_FRAME
  byte Protocol:3;
                                      // SMP
                                     // STP
                                      // SSP
  byte InitiatorPort:1;
  // byte 1
                                      // GBPS_1_5
  byte ConnectionRate:4;
                                      // GBPS_3_0
  byte Features:4;
   // byte 2-3
  word InitiatorConnectionTag;
   // byte 4-11
  quadword DestinationSASAddress;
  // byte 12-19
  quadword SourceSASAddress;
  // byte 20
  byte CompatibleFeatures;
  // byte 21
  byte PathwayBlockedCount;
  // byte 22-23
  word ArbitrationWaitTime;
   // byte 24-27
  byte MoreCompatibleFeatures[4];
   // byte 28-31
  dword CRC[4];
}; // struct OpenAddress
// request specific bytes for a general input function
```

744

28 January 2008

T10/1760-D Revision 14

```
struct SMPRequestGeneralInput
   // byte 4-7
  dword CRC;
// request specific bytes for a phy input function
struct SMPRequestPhyInput
   // byte 4-7
  byte IgnoredByte4_7[4];
  byte ReservedByte8;
   // bvte 9
  byte PhyIdentifier;
  // byte 10
  byte IgnoredByte10;
  // byte 11
  byte ReservedByte11;
   // byte 12-15
  dword CRC;
}; // struct SMPRequestPhyInput
// the ConfigureRouteInformation structure is used to provide the
// expander route entry for the expander route table, it is intended
// to be referenced by the SMPRequestConfigureRouteInformation struct
struct ConfigureRouteInformation
   // byte 12
  byte IgnoredByte12Bit0_6:7;
  byte DisableRouteEntry:1;
                                // if a routing error is detected
                                // then the route is disabled by
                                // setting this bit
   // byte 13-15
  byte IgnoredByte13_15[3];
   // byte 16-23
  quadword RoutedSASAddress;
                                // identical to the AttachedSASAddress
                                // found through discovery
   // byte 24-35
  byte IgnoredByte24_35[12];
   // byte 36-39
  byte ReservedByte36_39[4];
```

// request specific bytes for SMP ConfigureRouteInformation function

Working Draft Serial Attached SCSI - 2 (SAS-2)

// byte 4-5

}; // struct ConfigureRouteInformation

struct SMPRequestConfigureRouteInformation

```
byte ReservedByte4_5[2];
  // byte 6-7
  word ExpanderRouteIndex;
   // byte 8
  byte ReservedByte8;
   // byte 9
  byte PhyIdentifier;
  // byte 10-11
  byte ReservedByte10_11[2];
   // byte 12-39
  struct ConfigureRouteInformation Configure;
  // byte 40-43
  dword CRC;
}; // struct SMPRequestConfigureRouteInformation
// the PhyControlInformation structure is used to provide the
// expander phy control values, it is intended
// to be referenced by the SMPRequestPhyControl struct
struct PhyControlInformation
   // byte 12-31
  byte IgnoredByte12_31[20];
  // byte 32
  byte IgnoredByte32Bit0_3:4;
  byte ProgrammedMinimumPhysicalLinkRate:4;
  // byte 33
  byte IgnoredByte33Bit0_3:4;
  byte ProgrammedMaximumPhysicalLinkRate:4;
   // byte 34-35
  byte IgnoredByte34_35[2];
  // byte 36
  byte PartialPathwayTimeoutValue:4;
  byte ReservedByte36Bit4_7:4;
   // byte 37-39
  byte ReservedByte37_39[3];
}; // struct PhyControlInformation
// request specific bytes for SMP Phy Control function
struct SMPRequestPhyControl
   // byte 4-7
  byte IgnoredByte4_7[4];
  // byte 8
  byte ReservedByte8;
```

28 January 2008

T10/1760-D Revision 14

```
// byte 9
  byte PhyIdentifier;
  // byte 10
  byte PhyOperation;
  byte UpdatePartialPathwayTimeoutValue:1;
  byte ReservedByte11Bit1_7:7;
  // byte 12-39
  struct PhyControlInformation Control;
  // byte 40-43
  dword CRC;
}; // struct SMPRequestPhyControl
// request specific bytes for SMP Phy Test function
struct SMPRequestPhyTest
   // byte 4-7
  byte IgnoredByte4_7[4];
  // byte 8
  byte ReservedByte8;
  // byte 9
  byte PhyIdentifier;
  // byte 10
  byte PhyTestFunction;
  // byte 11
  byte PhyTestPattern;
  // byte 12-14
  byte ReservedByte12_14[3];
  byte PhyTestPatternPhysicalLinkRate:4;
  byte ReservedByte15Bit4_7:4;
  byte ReservedByte16_39[24];
   // byte 40-43
  dword CRC;
}; // struct SMPRequestPhyTest
// generic structure referencing an SMP Request, must be initialized
// before being used
struct SMPRequest
   // byte 0
  byte SMPFrameType;
                                      // always SMP_REQUEST_FRAME
  // byte 1
```

Working Draft Serial Attached SCSI - 2 (SAS-2)

T10/1760-D Revision 14

28 January 2008

```
byte Function;
                                       // REPORT_GENERAL
                                       // REPORT_MANUFACTURER_INFORMATION
                                       // DISCOVER
                                       // REPORT_PHY_ERROR_LOG
                                       // REPORT_PHY_SATA
                                       // REPORT_ROUTE_INFORMATION
                                       // CONFIGURE_ROUTE_INFORMATION
                                       // PHY_CONTROL
                                       // PHY_TEST
   // byte 2-3
  byte ReservedByte2_3[2];
  // bytes 4-n
  union
      struct SMPRequestGeneralInput ReportGeneral;
     struct SMPRequestGeneralInput ReportManufacturerInformation;
     struct SMPRequestPhyInput Discover;
     struct SMPRequestPhyInput ReportPhyErrorLog;
     struct SMPRequestPhyInput ReportPhySATA;
     struct SMPRequestPhyInput ReportRouteInformation;
     \verb|struct SMPRequestConfigureRouteInformation ConfigureRouteInformation;|\\
     struct SMPRequestPhyControl PhyControl;
     struct SMPRequestPhyTest PhyTest;
   } Request;
}; // struct SMPRequest
// request specific bytes for SMP Report General response, intended to be
// referenced by SMPResponse
struct SMPResponseReportGeneral
   // byte 4-5
  word ExpanderChangeCount;
  // byte 6-7
  word ExpanderRouteIndexes;
   // byte 8
  byte ReservedByte8;
   // byte 9
  byte NumberOfPhys;
   // byte 10
   byte ConfigurableRouteTable:1;
  byte Configuring:1;
  byte ReservedByte10Bit2_7:6;
   // byte 11
  byte ReservedBytel1;
  // byte 12-19
  byte EnclosureLogicalIdentifier[8];
   // byte 20-27
  byte ReservedByte20_27[8];
```

28 January 2008

T10/1760-D Revision 14

```
// byte 28-31
  dword CRC;
}; // struct SMPResponseReportGeneral
\verb|struct SAS11FormatReportManufacturerInformation| \\
   // byte 40-47
  byte ComponentVendorIdentification[8];
  // byte 48-49
  byte ComponentID[2];
  // byte 50
  byte ComponentRevisionID;
   // byte 51
  byte Reserved;
   // byte 52-59
  byte VendorSpecific[8];
}; // struct SAS11FormatReportManufacturerInformation
// request specific bytes for SMP Report Manufacturer Information response,
// intended to be referenced by SMPResponse
struct SMPResponseReportManufacturerInformation
   // byte 4-7
  byte IgnoredByte4_7[4];
  // byte 8
  byte SAS11Format:1;
  byte ReservedByte8_Bit1_7:7;
   // byte 9-10
  byte IgnoredByte9_10[2];
   // byte 11
  byte ReservedBytel1;
  // byte 12-19
  byte VendorIdentification[8];
  // byte 20-35
  byte ProductIdentification[16];
   // byte 36-39
  byte ProductRevisionLevel[4];
     struct SAS11FormatReportManufacturerInformation SAS11;
      // byte 40-59
     byte VendorSpecific[20];
```

Working Draft Serial Attached SCSI - 2 (SAS-2)

```
// byte 60-63
}; // struct SMPResponseReportManufacturerInformation
// the Discover structure is used to retrieve expander port information
\ensuremath{//} it is intended to be referenced by the SMPResponseDiscover structure
struct Discover
   // byte 12
  byte ReservedByte12Bit0_3:4;
  byte AttachedDeviceType:3;
  byte IgnoredByte12Bit7:1;
  // byte 13
  byte NegotiatedPhysicalLinkRate:4;
  byte ReservedByte13Bit4_7:4;
  // byte 14
  union
     struct
        byte AttachedSATAHost:1;
        byte AttachedSMPInitiator:1;
        byte AttachedSTPInitiator:1;
        byte AttachedSSPInitiator:1;
        byte ReservedByte14Bit4_7:4;
     byte InitiatorBits;
  };
   // byte 15
  union
     struct
        byte AttachedSATADevice:1;
        byte AttachedSMPTarget:1;
        byte AttachedSTPTarget:1;
        byte AttachedSSPTarget:1;
        byte ReservedByte15Bit4_6:3;
        byte AttachedSATAPortSelector:1;
     byte TargetBits;
  };
   // byte 16-23
  quadword SASAddress;
   // byte 24-31
  quadword AttachedSASAddress;
  // byte 32
  byte AttachedPhyIdentifier;
  // byte 33-39
  byte ReservedByte33_39[7];
```

28 January 2008 T10/1760-D Revision 14

```
byte HardwareMinimumPhysicalLinkRate:4;
  byte ProgrammedMinimumPhysicalLinkRate:4;
  byte HardwareMaximumPhysicalLinkRate:4;
  byte ProgrammedMaximumPhysicalLinkRate:4;
  // byte 42
  byte PhyChangeCount;
  byte PartialPathwayTimeoutValue:4;
  byte IgnoredByte36Bit4_6:3;
  byte VirtualPhy:1;
  // byte 44
  byte RoutingAttribute:4;
  byte ReservedByte44Bit4_7:4;
  // byte 45
  byte ConnectorType:7;
  byte ReservedByte45Bit7:1;
  // byte 46
  byte ConnectorElementIndex;
  // byte 47
  byte ConnectorPhysicalLink;
   // byte 48-49
  byte ReservedByte48_49[2];
  byte VendorSpecific[2];
   // byte 52-55
  dword CRC;
}; // struct Discover
// response specific bytes for SMP Discover, intended to be referenced by
// SMPResponse
struct SMPResponseDiscover
   // byte 4-7
  byte IgnoredByte4_7;
   // byte 8
  byte ReservedByte8;
  // byte 9
  byte PhyIdentifier;
  // byte 10
  byte IgnoredByte10;
```

T10/1760-D Revision 14

28 January 2008

```
// byte 11
  byte ReservedBytel1;
  union
                                   // original example used Results instead
                                   // of Result, this allows both
     // byte 12-55
     struct Discover Results;
     struct Discover Result;
}; // struct SMPResponseDiscover
// response specific bytes for SMP Report Phy Error Log, intended to be
// referenced by SMPResponse
struct SMPResponseReportPhyErrorLog
   // byte 4-7
  byte IgnoredByte4_7;
   // byte 8
  byte ReservedByte8;
  // byte 9
  byte PhyIdentifier;
  // byte 10
  byte IgnoredByte10;
  // byte 11
  byte ReservedByte11;
   // byte 12-15
  dword InvalidDwordCount;
   // byte 16-19
  dword DisparityErrorCount;
   // byte 20-23
  dword LossOfDwordSynchronizationCount;
  // byte 24-27
  dword PhyResetProblemCount;
  // byte 28-31
  dword CRC;
}; // struct SMPResponseReportPhyErrorLog
// this structure describes the Register Device to Host FIS defined in the
// SATA specification
struct RegisterDeviceToHostFIS
  // byte 24
  byte FISType;
  // byte 25
  byte ReservedByte25Bit0_5:6;
  byte Interrupt:1;
```

```
byte ReservedByte25Bit7:1;
  // byte 26
  byte Status;
  // byte 27
  byte Error;
  // byte 28
  byte SectorNumber;
  // byte 29
  byte CylLow;
   // byte 30
  byte CylHigh;
  // byte 31
  byte DevHead;
  // byte 32
  byte SectorNumberExp;
  // byte 33
  byte CylLowExp;
  // byte 34
  byte CylHighExp;
  // byte 35
  byte ReservedByte35;
  // byte 36
  byte SectorCount;
  // byte 37
  byte SectorCountExp;
   // byte 38-43
  byte ReservedByte38_43[6];
}; // struct RegisterDeviceToHostFIS
// response specific bytes for SMP Report Phy SATA, intended to be
// referenced by SMPResponse
struct SMPResponseReportPhySATA
   // byte 4-7
  byte IgnoredByte4_7;
  // byte 8
  byte ReservedByte8;
  // byte 9
  byte PhyIdentifier;
  // byte 10
  byte IgnoredByte10;
```

T10/1760-D Revision 14

// byte 11

28 January 2008

```
byte AffilationValid:1;
  byte AffilationsSupported:1;
  byte ReservedByte11Bit2_7:6;
  // byte 12-15
  byte ReservedByte12_15[4];
  // byte 16-32
  quadword STPSASAddress;
  // byte 24-43
  struct RegisterDeviceToHostFIS FIS;
  // bvte 44-47
  byte ReservedByte44_47[4];
  // byte 48-55
  quadword AffiliatedSTPInitiatorSASAddress;
  // byte 56-59
  dword CRC;
}; // struct SMPResponseReportPhySATA
struct ReportRouteInformation
   // byte 12
  byte IgnoredByte12Bit0_6:7;
  byte ExpanderRouteEntryDisabled:1;
   // byte 13-15
  byte IgnoredByte13_15[3];
  // byte 16-23
  quadword RoutedSASAddress;
   // byte 24-35
  byte IgnoredByte24_35[12];
  // byte 36-39
  byte ReservedByte36_39[4];
}; // struct ReportRouteInformation
// response specific bytes for SMP Report Route Information, intended to be
// referenced by SMPResponse
\verb|struct SMPResponseReportRouteInformation||\\
   // byte 4-5
  byte IgnoredByte4_5;
  // byte 6-7
  word ExpanderRouteIndex;
  // byte 8
  byte ReservedByte8;
```

28 January 2008

T10/1760-D Revision 14

```
// byte 9
  byte PhyIdentifier;
  // byte 10
  byte IgnoredByte10;
  // byte 11
  byte ReservedBytel1;
  // byte 12-39
  struct ReportRouteInformation Result;
   // byte 40-43
  dword CRC;
}; // struct SMPResponseReportRouteInformation
// response specific bytes for SMP Configure Route Information,
// intended to be referenced by SMPResponse
struct SMPResponseConfigureRouteInformation
   // byte 4-7
  dword CRC;
};
// response specific bytes for SMP Phy Control,
// intended to be referenced by SMPResponse
struct SMPResponsePhyControl
  // byte 4-7
  dword CRC;
// response specific bytes for SMP Phy Test,
// intended to be referenced by SMPResponse
struct SMPResponsePhyTest
  // byte 4-7
  dword CRC;
};
// generic structure referencing an SMP Response, must be initialized
// before being used
struct SMPResponse
   // byte 0
  byte SMPFrameType;
                                      // always 41h for SMP responses
  // byte 1
  byte Function;
  // byte 2
  byte FunctionResult;
   // byte 3
  byte ReservedByte3;
  // bytes 4-n
```

Working Draft Serial Attached SCSI - 2 (SAS-2)

T10/1760-D Revision 14 28 January 2008

union

```
struct SMPResponseReportGeneral ReportGeneral;
      struct SMPResponseReportManufacturerInformation
             ReportManufacturerInformation;
      struct SMPResponseDiscover Discover;
      struct SMPResponseReportPhyErrorLog ReportPhyErrorLog;
      struct SMPResponseReportPhySATA ReportPhySATA;
      struct SMPResponseReportRouteInformation ReportRouteInformation;
      struct SMPResponseConfigureRouteInformation ConfigureRouteInformation;
      struct SMPResponsePhyControl PhyControl;
      struct SMPResponsePhyTest PhyTest;
   } Response;
}; // struct SMPResponse
// this structure is how this simulation obtains its knowledge about the
// initiator port that is doing the discover, it is not defined as part of
// the standard...
struct ApplicationClientKnowledge
   quadword SASAddress;
   byte NumberOfPhys;
   byte InitiatorBits;
   byte TargetBits;
// the RouteTableEntry structure is used to contain the internal copy of
// the expander route table
struct RouteTableEntry
   byte ExpanderRouteEntryDisabled;
   quadword RoutedSASAddress;
// the TopologyTable structure is the summary of the information gathered
// during the discover process, the table presented here is not concerned
// about memory resources consumed, production code would be more concerned
// about specifying necessary elements explictly
struct TopologyTable
   // pointer to a simple list of expanders in topology
   // a walk thru this link will encounter all expanders in
   // discover order
   struct TopologyTable *Next;
   // simple reference to this device, primarily to keep identification of
   \ensuremath{//} this structure simple, otherwise, the only place the address is
   // located is within the Phy element
   quadword SASAddress;
   // information from REPORT GENERAL
   struct SMPResponseReportGeneral Device;
   // information from DISCOVER
   struct SMPResponseDiscover Phy[MAXIMUM_EXPANDER_PHYS];
   // list of route indexes for each phy
```

28 January 2008 T10/1760-D Revision 14

L.3 Source file

The following is the C source file for the discover process.

```
// SASDiscoverSimulation.cpp
// updated 2005/05/29
// This is a simple simulation and code implementation of the initiator
// based expander discovery and configuration.
// There is no attempt to handle phy errors, arbitration issues, etc.
// Production level implementation need to handle errors appropriately.
// Structure names used are equivalent to those referenced in the standard.
// Basic assumptions:
// 1. BROADCAST (CHANGE) primitives initiate rediscovery/reconfiguration
// topology only. When the topology changes, the location of a SASAddress in an ASIC table cannot be secured.
\ensuremath{//} 2. Table locations for SASAddresses are deterministic for a specific
     in an ASIC table cannot be assumed.
// 3. A complete discovery level occurs before the configuration of the
// level begins. Multiple passes are required as the levels of expanders
      encountered between the initiator and the end devices increases.
// 4. Configuration of a single expander occurs before proceeding to
// subsequent attached expanders.
// 5. The Attached structure is filled in following OOB and is available
     from the initialization routines.
// 6. The Iam structure is provide by the application client.
#include <malloc.h>
#include <memory.h>
#include <stdlib.h>
// include the SAS structures
#include "SASDiscoverSimulation.h"
// this defines the type of algorithm used for discover
int DiscoverAlgorithm = SAS_SIMPLE_LEVEL_DESCENT;
int SASCompatibility = SAS_11_COMPATIBLE;
// loaded by the application client, in this simulation it is provided
// in a text file, SASDeviceSetExample.ini
extern struct ApplicationClientKnowledge Iam[MAXIMUM_INITIATORS];
```

757

Working Draft Serial Attached SCSI - 2 (SAS-2)

T10/1760-D Revision 14 28 January 2008

```
// obtained following OOB from the attached phy, in this simulation
// it is provided in a text file, SASDeviceSetExample.ini
extern struct Identify Attached[MAXIMUM_INITIATORS];
// buffers used to request and return SMP data
extern struct SMPRequest SMPRequestFrame;
extern struct SMPResponse SMPResponseFrame;
// resulting discover information ends up in this table
extern struct TopologyTable *SASDomain[MAXIMUM_INITIATORS];
// this is the function used to send an SMPRequest and get a response back
extern byte SMPRequest(byte PhyIdentifier,
                       quadword Source,
                       quadword Destination.
                       struct SMPRequest *SMPRequestFrame,
                       struct SMPResponse *SMPResponseFrame,
                       byte *OpenStatus,
                       byte Function,
// this function is used to output error information, it mimics fprintf
// functionality to an open trace file
extern int TracePrint(char *String, ...);
\ensuremath{//} this function gets the report general and discover information for
// a specific expander, the discover process begins at the subtractive
// boundary and progress downstream
struct TopologyTable *DiscoverExpander(byte PhyIdentifier,
                                       quadword SourceSASAddress,
                                       quadword DestinationSASAddress)
   struct TopologyTable *expander = 0;
   byte phyCount = 0;
   int error = 1;
   byte openStatus = OPEN_ACCEPT;
   // get the report general information for the expander
   SMPRequest(PhyIdentifier,
              SourceSASAddress
              DestinationSASAddress,
              &SMPRequestFrame,
              &SMPResponseFrame,
              &openStatus,
              REPORT GENERAL);
   // don't worry about too much in the 'else' case for this example,
   // production code needs to handle
   if((openStatus == OPEN_ACCEPT) &&
      (SMPResponseFrame.FunctionResult == SMP_FUNCTION_ACCEPTED))
      if(SMPResponseFrame.Response.ReportGeneral.NumberOfPhys <=</pre>
         MAXIMUM_EXPANDER_PHYS)
```

T10/1760-D Revision 14

```
// allocate space to retrieve the expander information
expander = (struct TopologyTable *)
          calloc(1.
                 sizeof(struct TopologyTable));
// make sure we only do this if the allocation is successful
if(expander)
   // save the address of this expander
  expander->SASAddress = DestinationSASAddress;
  // copy the result into the topology table
  memcpy((void *)&(expander->Device),
          (void *)&SMPResponseFrame.Response.ReportGeneral,
          sizeof(struct SMPResponseReportGeneral));
   // now walk through all the phys of the expander
  for(phyCount = 0;
       (phyCount < expander->Device.NumberOfPhys);
       phyCount++)
      // get the discover information for each phy
     SMPRequest(PhyIdentifier,
                 SourceSASAddress,
                DestinationSASAddress.
                 &SMPRequestFrame,
                 &SMPResponseFrame,
                &openStatus,
                DISCOVER,
                phyCount);
      // don't worry about the 'else' case for this example,
      // production code needs to handle
     if((openStatus == OPEN_ACCEPT) &&
        (SMPResponseFrame.FunctionResult == SMP_FUNCTION_ACCEPTED))
        // clear the error flag
        error = 0;
        // copy the result into the topology table
        memcpy((void *)&(expander->Phy[phyCount]),
                (void *)&SMPResponseFrame.Response.Discover,
                sizeof(struct SMPResponseDiscover));
     else if((openStatus == OPEN_ACCEPT) &&
              (SMPResponseFrame.FunctionResult == SMP PHY VACANT))
        struct Discover *discover;
        discover = &SMPResponseFrame.Response.Discover.Result;
        // clear the error flag
        error = 0;
        // set the routing attribute and link rate to indicate that
        // the phy is not being used, this keeps it from being
        // included in the routing table information, these values
```

```
// are not defined in the spec at this time, but are listed
               // as reserved values
              discover->NegotiatedPhysicalLinkRate = PHY_DOES_NOT_EXIST;
              discover->RoutingAttribute = PHY_NOT_USED;
              // copy the result into the topology table
              memcpy((void *)&(expander->Phy[phyCount]),
                      (void *)&SMPResponseFrame.Response.Discover,
                     sizeof(struct SMPResponseDiscover));
              // if we had a problem on this link, then don't bother
              // to do anything else, production code needs to be more
              // for this simulation example, the addresses are
              // described as strings, so we can print them out...
              // not true for production code...
              TracePrint("\n"
                          "discover error, %02Xh at %s\n",
                         SMPResponseFrame.FunctionResult,
                         (char *)&DestinationSASAddress);
               // something happened so just bailout on this expander
              error = 1:
              // release the memory we allocated for this...
              free(expander);
              expander = 0;
              break;
  // the assumptions we made were exceeded, need to bump simulation
  // limits...
  else
     TracePrint("\n"
                "report general error"
                ", NumberOfPhys %d exceeded limit %d on %s\n",
                expander->Device.NumberOfPhys,
                MAXIMUM EXPANDER PHYS,
                (char *)&DestinationSASAddress);
else
  // if we had a problem getting report general for this expander,
  // something is wrong, can't go any further down this path...
  // production code needs to be more robust...
  // for this simulation example, the addresses are
  // described as strings, so we can print them out...
   // not true for production code...
  TracePrint("\n"
              "report general error, open 02Xh result 02Xh at n'',
              openStatus,
```

This page contains no comments

28 January 2008

```
SMPResponseFrame.FunctionResult,
                 (char *)&DestinationSASAddress);
   // the expander pointer is the error return, a null indicates something
   // bad happened...
   return(expander);
} // DiscoverExpander
// this routine searches upstream for the subtractive boundary that defines
// the edge expander device set
static
struct TopologyTable *FindBoundary(byte PhyIdentifier,
                                   quadword SourceSASAddress,
                                   struct TopologyTable *Expander,
                                   struct TopologyTable **DeviceSet)
   struct TopologyTable *expander = Expander;
   struct TopologyTable *nextExpander;
   struct Discover *discover;
   byte phyCount;
   int error = 0;
   int foundSubtractivePort = 0;
   quadword subtractiveSASAddress;
   byte attachedPhyIdentifier;
   // make sure the device set link is initialized
   *DeviceSet = 0;
   \ensuremath{//} outer loop searches for subtractive phys and finds the SAS addresses
   // connected to them, validates that the subtractive phys all resolve
   // to the same expander address, then moves upstream searching for the
   // edge expander device set boundary
      // initialize the subtractive address, a zero value is not valid
      subtractiveSASAddress = 0;
      attachedPhyIdentifier = 0;
      // walk through all the phys of this expander
      for(phyCount = 0;
          (phyCount < expander->Device.NumberOfPhys);
          phyCount++)
         // this is just a pointer helper
         discover = &(expander->Phy[phyCount].Result);
         // look for phys with edge or fanout devices attached...
         if((discover->RoutingAttribute == SUBTRACTIVE) &&
            ((discover->AttachedDeviceType == EDGE_EXPANDER_DEVICE) ||
             (discover->AttachedDeviceType == FANOUT_EXPANDER_DEVICE)))
            // make sure all the subtractive phys point to the same address
```

T10/1760-D Revision 14

Working Draft Serial Attached SCSI - 2 (SAS-2)

28 January 2008

```
// when we are connected to an expander device
      if(!subtractiveSASAddress)
        subtractiveSASAddress = discover->AttachedSASAddress;
        attachedPhyIdentifier = discover->AttachedPhyIdentifier;
        foundSubtractivePort = 1;
      // the addresses don't match... problem...
     else if(subtractiveSASAddress !=
             discover->AttachedSASAddress)
        // production code needs to deal with this better, for this
         // example, the SASAddresses are assumed to strings
        // so just print out the error information
        TracePrint("\n"
                    "topology error, diverging subtractive phys"
                    ", '%s' != '%s' \n",
                    (char *)&subtractiveSASAddress,
                    (char *)&discover->AttachedSASAddress);
        error = 1;
        break;
// if no error, then decide if we need to go upstream or stop
  // if we have a subtractive address then go upstream to see
   // if it is part of the edge expander device set
  if(subtractiveSASAddress)
      // get the discover information
     nextExpander = DiscoverExpander(PhyIdentifier,
                                     SourceSASAddress,
                                     subtractiveSASAddress);
      // if we successfully got the information from the next
      // expander then proceed upstream...
     if(nextExpander)
        struct Discover *discover;
        // this is just a pointer helper
        discover = &(nextExpander->Phy[attachedPhyIdentifier].Result);
         // check to see if we are connected to the subtractive
        // port of the next expander, if we are then we have two
         // expander device sets connected together, stop here
         // and save the address of next expander in device set,
        // the return is expander
        if(discover->RoutingAttribute == SUBTRACTIVE)
            *DeviceSet = nextExpander;
           break;
         // go ahead and continue upstream looking for the boundary
```

T10/1760-D Revision 14

```
else
              // release the memory we allocated for this
              free(expander);
              // move upstream to the next expander
              expander = nextExpander;
        // if there are no more upstream expanders stop here...
           break;
     // if we did not get a subtractive address this time around, stop
     else
        // if we did find a subtractive port on a previous pass,
        // then return with expander pointing to the last device
        // with the subtractive port
        if(foundSubtractivePort)
        ^{^{\prime}} // if we never found a subtractive port, then return with a
        // null indicating there are no subtractive phys, don't free
        // the memory, because it is still in use by the calling routine
        else
           expander = 0;
  // to get here, we had to see more than one subtractive phy that
     // connect to different SAS addresses, this is a topology error
     // do cleanup on any memory allocated if necessary
     if((expander != Expander) &&
        (expander != *DeviceSet))
        \ensuremath{//} release the memory we allocated for this and make sure
        // we return a null
        free(expander);
        expander = 0;
while(!error &&
     expander &&
     subtractiveSASAddress);
// on return expander contains the subtractive boundary expander
// or a null indicating there were no subtractive phys,
```

Working Draft Serial Attached SCSI - 2 (SAS-2)

28 January 2008

```
// or a null indicating there was an error
   return(expander);
} // FindBoundary
// find the table structure associated with a specific SAS address
struct TopologyTable *FindExpander(struct TopologyTable *Expander,
                                   quadword SASAddress)
   // walk the list of expanders, when we find the one that matches, stop
   while(Expander)
      // do the SASAdresses match
      if(SASAddress == Expander->SASAddress)
         break;
      Expander = Expander->Next;
   return(Expander);
} // FindExpander
\ensuremath{//} this routine searches the subtractive phys for the upstream
// expander address
int UpstreamExpander(struct TopologyTable *Expander,
                     quadword *SASAddress,
                     byte *PhyIdentifier)
   struct Discover *discover;
   byte phyCount;
   int found = 0;
   \ensuremath{//} walk through all the phys of this expander, searching for subtractive
   // phys return the SASAddress and PhyIdentifier for the first subtractive
   // phy encountered, they are all be the same if they have anything
   // attached
   for(phyCount = 0;
       (phyCount < Expander->Device.NumberOfPhys);
       phyCount++)
      // this is just a pointer helper
      discover = &(Expander->Phy[phyCount].Result);
      // look for phys with edge or fanout devices attached...
      if((discover->RoutingAttribute == SUBTRACTIVE) &&
         ((discover->AttachedDeviceType == EDGE_EXPANDER_DEVICE) ||
          (discover->AttachedDeviceType == FANOUT_EXPANDER_DEVICE)))
         *SASAddress = discover->AttachedSASAddress;
         *PhyIdentifier = discover->AttachedPhyIdentifier;
         found = 1;
```

This page contains no comments

764

T10/1760-D Revision 14

```
return(found);
} // UpstreamExpander
\ensuremath{//} this routine determines whether a SAS address is directly attached to
// an expander
static
int DirectAttached(struct TopologyTable *Expander,
                   quadword SASAddress)
   int direct = 0;
  byte phyCount;
   for(phyCount = 0;
       phyCount < Expander->Device.NumberOfPhys;
       phyCount++)
      // did we find the address attached locally
      if(SASAddress ==
         Expander->Phy[phyCount].Result.AttachedSASAddress)
         direct = 1;
        break;
   return(direct);
} // DirectAttached
// this route determines whether a SAS address is already in the route table
int AlreadyInTable(struct TopologyTable *Expander,
                   quadword *SASAddress,
                   byte PhyIdentifier)
   int inTable = 0;
   int routeIndex;
   for(routeIndex = 0;
      routeIndex < Expander->Device.ExpanderRouteIndexes;
       routeIndex++)
      struct RouteTableEntry *entry =
            &Expander->RouteTable[PhyIdentifier][routeIndex];
      if(entry->RoutedSASAddress ==
         SASAddress)
         inTable = 1;
         break;
   return(inTable);
} // AlreadyInTable
```

Working Draft Serial Attached SCSI - 2 (SAS-2)

T10/1760-D Revision 14 28 January 2008

// this routine determines whether the SAS address, can be optimized out

```
// of the route table
int QualifiedAddress(struct TopologyTable *Expander,
                    byte PhyIdentifier,
                    quadword SASAddress,
                    byte RoutingAttribute,
                    byte *DisableRouteEntry)
   int qualified = 1;
  word routeIndex;
  if(DiscoverAlgorithm == SAS_UNIQUE_LEVEL_DESCENT)
      if(((RoutingAttribute == SUBTRACTIVE) | |
          (RoutingAttribute == TABLE)) &&
        ((SASAddress == 0) ||
        (SASAddress == Expander->SASAddress)
          !memcmp(SASAddress, Expander->SASAddress, 8) |
         DirectAttached(Expander, SASAddress) |
         AlreadyInTable(Expander, SASAddress, PhyIdentifier)))
         // if we made it here then we are disqualifying the address,
         // rules 2, 3, 4, and 5
        qualified = 0;
     // if qualified, but the address is zero, then make sure it is
      // disabled
     if(qualified &&
         (SASAddress == 0))
         *DisableRouteEntry = DISABLE;
  return(qualified);
} // QualifiedAddress
// this function is the configuration cycle from the current expander to
// the hub expander
static
int ConfigureExpander(byte PhyIdentifier,
                      quadword SourceSASAddress,
                      struct TopologyTable *HubExpander,
                     struct TopologyTable *ThisExpander)
   struct TopologyTable *thisExpander = ThisExpander;
  struct TopologyTable *expander = ThisExpander;
   struct TopologyTable *configureExpander;
   struct Discover *discover;
   quadword upstreamSASAddress = 0;
  byte upstreamPhyIdentifier = 0;
```

T10/1760-D Revision 14

```
byte phyIndex;
word routeIndex;
byte openStatus = OPEN_ACCEPT;
int error = 0;
dо
   // move upstream from here to find the expander table to configure with
   // information from "thisExpander"
   if(!UpstreamExpander(thisExpander,
                        &upstreamSASAddress,
                        &upstreamPhyIdentifier))
      break;
   if(upstreamSASAddress)
      // get the expander associated with the upstream address
      configureExpander = FindExpander(HubExpander,
                                       upstreamSASAddress);
      // if we found an upstream expander, then program it's route
      // table
      if(configureExpander)
         byte disableRouteEntry = ENABLED;
         for(phyIndex = 0;
             phyIndex < configureExpander->Device.NumberOfPhys;
             phyIndex++)
            if(configureExpander->Phy[phyIndex].Result.AttachedSASAddress
           == thisExpander->SASAddress)
               // loop through all the phys of the attached expander
               for(routeIndex = 0;
                   ((routeIndex <
                     expander->Device.NumberOfPhys) &&
                    (configureExpander->RouteIndex[phyIndex] <</pre>
                     configureExpander->Device.ExpanderRouteIndexes));
                   routeIndex++)
                  discover = &(expander->Phy[routeIndex].Result);
                  // assume the route entry is enabled
                  disableRouteEntry = ENABLED;
                  \ensuremath{//} make sure if the attached device type is 0, that the
                  // SAS address is 0, to simplify the qualified address
                  // check
                  if(discover->AttachedDeviceType == 0)
                      discover->AttachedSASAddress = 0;
```

Page: 767

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE it's s/b its T10/1760-D Revision 14 28 January 2008

// check to see if the address needs to be configured

```
// in the route table, this decision is based on the
                 // optimization flag
                 if(QualifiedAddress(configureExpander,
                                    phyIndex,
                                     discover->AttachedSASAddress,
                                     discover->RoutingAttribute,
                                     &disableRouteEntry))
                   word index = configureExpander->RouteIndex[phyIndex];
                    struct RouteTableEntry *entry =
                        &configureExpander->RouteTable[phyIndex][index];
                    // configure the route indexes for the expander
                    // with the attached address information
                    SMPRequest(PhyIdentifier,
                               SourceSASAddress,
                               configureExpander->SASAddress,
                               &SMPRequestFrame,
                               &SMPResponseFrame,
                               &openStatus,
                               CONFIGURE_ROUTE_INFORMATION,
                               index,
                               phyIndex,
                               disableRouteEntry,
                               discover->AttachedSASAddress);
                    if((openStatus != OPEN_ACCEPT) ||
                       (SMPResponseFrame.FunctionResult !=
                        SMP_FUNCTION_ACCEPTED))
                       error = 1;
                       break;
                    // add the address to the internal copy of the
                    // route table, if successfully configured
                    entry->RoutedSASAddress =
                       discover->AttachedSASAddress;
                    // increment the route index for this phy
                    configureExpander->RouteIndex[phyIndex]++;
      }
   // move upstream
  thisExpander = configureExpander;
} while(!error &&
```

T10/1760-D Revision 14

```
thisExpander &&
           upstreamSASAddress);
} // ConfigureExpander
// this determines if the expander has a table routed phy attached to the
// SAS address and phyIndex provided
int CheckForTableAttribute(struct TopologyTable *Expander,
                           quadword SASAddress)
  int table = 0;
  byte phyCount;
   for(phyCount = 0;
      phyCount < Expander->Device.NumberOfPhys;
       phyCount++)
      // did we find the address attached locally
     if((SASAddress ==
         Expander->Phy[phyCount].Result.AttachedSASAddress) &&
         (phyCount == PhyIndex) &&
         (Expander->Phy[phyCount].Result.RoutingAttribute == TABLE))
         table = 1;
        break;
   return(table);
} // CheckForTableAttribute
// this discovers then configures as necessary the expanders it finds
// within the SAS domain that are "downstream"
struct TopologyTable *DiscoverAndConfigure(byte PhyIdentifier,
                                           quadword SourceSASAddress,
                                          struct TopologyTable *HubExpander,
                                          struct TopologyTable **DeviceSet)
   struct TopologyTable *currentExpander = HubExpander;
  struct TopologyTable *nextExpander;
   struct Discover *currentDiscover;
   quadword sasAddress;
  byte phyIndex;
  int error = 0;
  // this is a level descent traversal with a configuration stage
   // at each transition to a new level, if a configuration is required
  // by the expander
  // the discover process moves forward through the topology, but the
```

Working Draft Serial Attached SCSI - 2 (SAS-2)

```
// configuration process stays anchored at the hub of the
// topology, meaning the fanout expander, or the top most subtractive
// edge expander device
// this ensures that as each new expander is added to the
// topology table list, it is in the configuration chain
while(!error &&
      currentExpander)
   // start at phy 0
   // walk through all the phys of the current expander looking for
   // new expanders to add to the topology table
      // this is just a pointer helper
      currentDiscover = &(currentExpander->Phy[phyIndex].Result);
      // look for phys with edge or famout devices attached...
      if((currentDiscover->RoutingAttribute == TABLE) &&
        ((currentDiscover->AttachedDeviceType == EDGE_EXPANDER_DEVICE) ||
          (currentDiscover->AttachedDeviceType == FANOUT_EXPANDER_DEVICE)
         struct TopologyTable *thisExpander = currentExpander;
         struct TopologyTable *previousExpander = currentExpander;
         // check to see if we already have the address information
         // in our expander list
         while(thisExpander)
            // if we do, then stop here
            if(currentDiscover->AttachedSASAddress ==
               thisExpander->SASAddress)
               break;
            // setup the pointer references
            previousExpander = thisExpander;
            thisExpander = thisExpander->Next;
         // if we did not have the expander in our list, then get
         // the information
         if(!thisExpander)
            // discover all the details about the attached expander
            // and insert into the master list
            thisExpander =
               DiscoverExpander(PhyIdentifier,
                                SourceSASAddress,
                                currentDiscover->AttachedSASAddress);
            \ensuremath{//} if we got the discover information, then add it to the
```

This page contains no comments

28 January 2008

```
if(thisExpander)
      if(CheckForTableAttribute(thisExpander,
                                   currentDiscover->SASAddress))
            // output an error message
            TracePrint("\n"
                       "error table phys connected together\n");
         else
      previousExpander->Next = thisExpander;
      // go through the configure cycle progressively ascending
      // to each expander starting at "thisExpander"
      ConfigureExpander(PhyIdentifier,
                        SourceSASAddress
                        HubExpander,
                        thisExpander);
// look for subtractive phys with edge or famout devices attached...
if(DeviceSet &&
   (currentDiscover->RoutingAttribute == SUBTRACTIVE) &&
   ((currentDiscover->AttachedDeviceType == EDGE_EXPANDER_DEVICE) ||
   (currentDiscover->AttachedDeviceType == FANOUT_EXPANDER_DEVICE)))
   if(*DeviceSet == 0)
      struct TopologyTable *thisExpander = currentExpander;
      struct TopologyTable *previousExpander = currentExpander;
      // check to see if we already have the address information
      // in our expander list
      while(thisExpander)
         // if we do, then stop here
         if(!memcmp(&currentDiscover->AttachedSASAddress,
                    &thisExpander->SASAddress,
                    8))
            break;
         // setup the pointer references
         previousExpander = thisExpander;
         thisExpander = thisExpander->Next;
      \ensuremath{//} if we did not have the expander in our list, then get
      // the information
```

Working Draft Serial Attached SCSI - 2 (SAS-2)

28 January 2008

```
if(!thisExpander)
                  // discover all the details about the attached expander
                  // and insert into the master list
                  thisExpander =
                    DiscoverExpander(PhyIdentifier,
                                      SourceSASAddress,
                                      currentDiscover->AttachedSASAddress);
                  // if we got the discover information, then set it as the
                  // other device set
                  if(thisExpander)
                     *DeviceSet = thisExpander;
         // move to the next phy on this expander
         phyIndex++;
      } while(phyIndex <
              currentExpander->Device.NumberOfPhys);
      // cycle to the next expander to discover
      currentExpander = currentExpander->Next;
   // return the top of expander list
   return(HubExpander);
} // DiscoverAndConfigure
\ensuremath{//} this routine appends the leaf to the tree domain
void ConcatenateSASDomains(struct TopologyTable *Tree,
                           struct TopologyTable *Leaf)
   while(Tree)
      if(Tree->Next == 0)
         Tree->Next = Leaf;
         break;
      Tree = Tree->Next;
} // ConcatenateSASDomains
// validate the route table entries for all expanders
int ValidateRouteTables(byte PhyIdentifier,
                        quadword SourceSASAddress,
                        struct TopologyTable *Expander,
                        int SASCompatibility)
```

T10/1760-D Revision 14

```
struct ReportRouteInformation *route;
// buffers used to request and return SMP data
struct SMPRequest request = { 0 };
struct SMPResponse response = { 0 };
byte phyIndex;
word routeIndex;
byte openStatus = OPEN_ACCEPT;
int valid = 1;
if(SASCompatibility == SAS_10_COMPATIBLE)
  // this is just a pointer helper
  route = &(response.Response.ReportRouteInformation.Result);
   // walk the list of expanders
   while(valid &&
        Expander)
      if(Expander->Device.ConfigurableRouteTable)
        struct RouteTableEntry *entry;
        word expanderRouteIndexes;
         _swab( (char *)&Expander->Device.ExpanderRouteIndexes,
                (char *)&expanderRouteIndexes,
               sizeof(word) );
         for(phyIndex = 0;
             (valid &&
              (phyIndex < Expander->Device.NumberOfPhys));
            phyIndex++)
            // loop through all the phys of the expander
            for(routeIndex = 0;
               (valid &&
                 ((routeIndex <
                   Expander->RouteIndex[phyIndex]) &&
                 (routeIndex <
                  expanderRouteIndexes)));
                routeIndex++)
               openStatus = OPEN_ACCEPT;
               // report the route indexes for the expander
               SMPRequest(PhyIdentifier,
                         SourceSASAddress,
                         Expander->SASAddress,
                         &request,
                         &response,
                         &openStatus,
                         REPORT_ROUTE_INFORMATION,
                         routeIndex,
```

Working Draft Serial Attached SCSI - 2 (SAS-2)

28 January 2008

```
phyIndex);
                  if((openStatus != OPEN_ACCEPT) ||
                     (response.FunctionResult !=
                      SMP_FUNCTION_ACCEPTED))
                     break;
                  entry = &(Expander->RouteTable[phyIndex][routeIndex]);
                  if((memcmp(&entry->RoutedSASAddress,
                             &route->RoutedSASAddress,
                     (entry->ExpanderRouteEntryDisabled !=
                      route->ExpanderRouteEntryDisabled))
                     valid = 0;
         Expander = Expander->Next;
   return(valid);
} // ValidateRouteTables
\ensuremath{//} validate that the change count for the hub expander is still the same
// as when we started
static
int ChangeCount(byte PhyIdentifier,
                quadword SourceSASAddress,
                struct TopologyTable *Expander)
   // buffers used to request and return SMP data
   struct SMPRequest request = { 0 };
   struct SMPResponse response = { 0 };
   int change = 0;
   byte openStatus = OPEN_ACCEPT;
   // get the report general information for the expander
   SMPRequest(PhyIdentifier,
              SourceSASAddress,
              Expander->SASAddress,
              &request,
              &response,
              &openStatus,
              REPORT_GENERAL);
   // don't worry about too much in the 'else' case for this example,
   // production code needs to handle
   if((openStatus == OPEN_ACCEPT) &&
```

T10/1760-D Revision 14

```
(response.FunctionResult == SMP_FUNCTION_ACCEPTED))
      if(response.Response.ReportGeneral.ExpanderChangeCount !=
         Expander->Device.ExpanderChangeCount)
         change = 1;
   return(change);
} // ChangeCount
// delete all the topology information and start over
void DeleteSASDomain(struct TopologyTable **Expander)
   struct TopologyTable *expander = *Expander;
   struct TopologyTable *nextExpander = 0;
   // walk the list of expanders
   while(expander)
      nextExpander = expander->Next;
      free(expander);
      expander = nextExpander;
   *Expander = 0;
} // DeleteSASDomain
\ensuremath{//} the application client for the initiator device makes a call to
// this function to begin the discover process...
\ensuremath{//} to simplify the setup for the simulation, the DiscoverProcess gets
// the Initiator number to allow multiple initiators...
void DiscoverProcess(byte Initiator,
                     byte PhyIdentifier)
   // check to see if an expander is attached
   if((Attached[Initiator].DeviceType == EDGE_EXPANDER_DEVICE) ||
      (Attached[Initiator].DeviceType == FANOUT_EXPANDER_DEVICE))
      struct TopologyTable *connectedExpander;
      // get some local variables to keep things simple
      quadword sourceSASAddress = Iam[Initiator].SASAddress;
      quadword destinationSASAddress = Attached[Initiator].SASAddress;
      // expander is attached, so begin by getting the information about
      // the connected expander
      connectedExpander = DiscoverExpander(PhyIdentifier,
                                            sourceSASAddress,
                                           destinationSASAddress);
      // make sure we get the information from the expander
      if(connectedExpander)
```

Working Draft Serial Attached SCSI - 2 (SAS-2)

28 January 2008

```
struct TopologyTable *thisDeviceSet;
struct TopologyTable *attachedDeviceSet = 0;
int redoDiscover = 0;
int changed = 0;
do
  // go upstream on the subtractive phys until we discover that wa
  // are attached to another subtractive phy or a fanout expander
  // then begin the discover process from that point, this works
  // because any new address that we find naturally moves
  // upstream due to the subtractive addressing method/
  // if during the discover cycle, it is determined that there
  // are two device sets connected, then a second discover
   // and configuration cycle is required for the other device set
  thisDeviceSet = FindBoundary(PhyIdentifier,
                                sourceSASAdaress,
                                connected xpander,
                                &attackedDeviceSet);
   // set the root for the domain as the subtractive boundary
  if(thisDeviceSet)
      // output a little information about the subtractive boundary
     TracePrint("subtractive boundary at %s\n",
                 (char *)&thisDeviceSet->SASAddress);
     SASDomain[Initiator] = thisDeviceSet;
   // if there was no subtractive boundary, then the root is the
   // expander connected to the initiator
  else
      // output a little information about the subtractive boundary
     TracePrint("connected expander at %s\n",
                 (char *)&connectedExpander->SASAddress);
      SASDomain[Initiator] = connectedExpander;
   // begin the discover and configuration cycle
  DiscoverAndConfigure(PhyIdentifier,
                        sourceSASAddress,
                        SASDomain[Initiator],
                       &attachedDeviceSet);
  // if two device sets are connected, then the attached device set
   // has to be discovered and configured
  if(attachedDeviceSet)
      // output a little information about the attached device set
     TracePrint("attached device set at %s\n",
                 (char *)&attachedDeviceSet->SASAddress);
      // discover and configure the attached device set
     DiscoverAndConfigure(PhyIdentifier,
```

Page: 776

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE domain s/b SAS domain

T10/1760-D Revision 14

```
// put the domains together
              ConcatenateSASDomains(SASDomain[Initiator],
                                     attachedDeviceSet);
            // if the change count of the top most expander is different
           // from when we started, then the topology was not stable
            // so do the discover again
           changed = ChangeCount(PhyIdentifier,
                                  sourceSASAddress,
                                  SASDomain[Initiator]);
            // if we used the route table optimization,
           // check the route tables for each expander phy, if they are
           // incorrect then change back to the original discover algorithm
            // and redo discover, continue to use the original algorithm
            // for any new discover
           if(!changed &&
               (DiscoverAlgorithm == SAS_UNIQUE_LEVEL_DESCENT) &&
               !ValidateRouteTables(PhyIdentifier,
                                    sourceSASAddress.
                                    SASDomain[Initiator],
                                    SASCompatibility))
              redoDiscover = 1;
              // if the change count of the top most expander is the same
               \ensuremath{//} as when we started the validation of the route tables
               \ensuremath{//} then the topology was stable, so change the algorithm
               // before the rediscover
               if(!ChangeCount(PhyIdentifier,
                               sourceSASAddress,
                               SASDomain[Initiator]))
                  DiscoverAlgorithm = SAS_SIMPLE_LEVEL_DESCENT;
               // delete everything allocated and start over
               DeleteSASDomain(&SASDomain[Initiator]);
         } while(redoDiscover ||
                 changed);
} // DiscoverProcess
```

sourceSASAddress.

attachedDeviceSet,

Page: 777

Author: RElliott Subject: Highlight Date: 6/30/2008 3:16:52 PM -07'00' TACCEPT - DONE domains s/b SAS domains T10/1760-D Revision 14 28 January 2008

Annex M (informative)

SAS icons

A SAS icon should be included on or near all connectors used by devices compliant with this standard.

NOTE 129 - Contact the SCSI Trade Association at http://www.scsita.org for versions of the SAS icons in various graphics formats.

Figure M.1 shows the primary SAS icon.

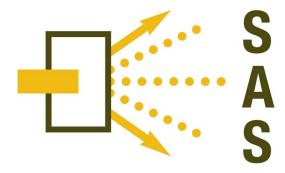


Figure M.1 — SAS primary icon

Figure M.2 shows an alternate SAS icon that may be used instead of the primary SAS icon when the area for the icon is small.

Figure M.2 — SAS alternate icon

Figure M.3 — SAS alternate icon with SAS letters