1 Related documents

SAS-2r15 - Serial Attached SCSI - 2, revision 15
T10/08-015r6, SAS: Add low power transceiver options
T10/08-249r5, SAS 2.1 / SPL+: Link Layer Power Management

2 Introduction

This proposal is a first pass at adding what is required in proposal 08-015 for the phy layer state diagrams to include the low power transceiver options of partial and slumber conditions for SAS.

Revision 1 of this proposal removes all link layer state elements, as those are now described in 08-249. These deletions are not shown in this revision.

Revision 2 of this proposal includes resolution to the comments received since revision 1 was posted.

Revision 3 of this proposal includes input from the SAS Protocol working group on 3 November 08 and all clause, figure, and table numbers were updated to be consistent with SAS-2r15.

Revision 4 of this proposal includes input from the SAS Protocol working group on 12 January 2009. The additions based on this input are in green undelined text.

3 Proposal

The following are the proposed changes based on the heading numbers in SAS-2r15:

6.7.1 Phy reset sequences overview

A phy shall originate a phy reset sequence after:

a) power on;
b) hard reset (i.e., receiving a HARD_RESET primitive sequence before an IDENTIFY address frame) (see 4.4.2);
c) management application layer request (see 6.8.1);
d) losing dword synchronization and not attempting to re-acquire dword synchronization (see 6.8.4.9 and 6.8.5.8);
e) Receive Identify Timeout timer expires (see 7.10);
f) for expander phys, after a hot-plug timeout occurs for an expander phy (see 6.7.5);
g) a hot-plug timeout occurs while in a SAS phy power management state (see 6.8.5); or
h) the SNLT timer expires while in a SAS phy power management state (see 6.8.5).

Change Table 96 — Phy reset sequence timing specifications as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Hot-plug timeout | 10 ms | 500 ms | The time after which:
 a) an expander phy shall retry an unsuccessful phy reset sequence;
 b) a SAS initiator phy should retry an unsuccessful phy reset sequence (see 6.7.5); or
 c) a phy shall initiate a phy reset sequence if the phy does not receive a COMWAKE Completed message while in a SAS phy power management state (see 6.8.5). |
| Phy wakeup | na | 10 us | When a phy is in the partial phy power condition, the time within which a phy shall transmit a COMWAKE after detecting a COMWAKE. |
| (partial) time | | | |
| Phy wakeup | na | 10 ms | When a phy is in the slumber phy power condition, the time within which a phy shall transmit a COMWAKE after detecting a COMWAKE. |
| (slumber) time | | | |

6.7.4.2.2 SAS speed negotiation sequence timing specifications

In Table 98 — SAS speed negotiation sequence timing specifications, change the wording in the “Speed negotiation lock time” row to be as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Acronym</th>
<th>Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed negotiation</td>
<td>SNLT</td>
<td>153</td>
<td>The maximum time for a phy to reply with ALIGN (1) during SNW-1, SNW-2, and Final-SNW; or</td>
</tr>
<tr>
<td>lock time</td>
<td></td>
<td>60</td>
<td>b) The maximum time for a phy to reply with an ALIGN (0) or ALIGN (1) while in a SAS phy power management state (see 6.8.5).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OOBI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

6.8.1 SP state machine overview

The SP state machine controls the phy reset sequence. This state machine consists of three four sets of states:

c) OOB sequence (OOB) states;
d) SAS speed negotiation (SAS) states;
e) SAS phy power management (PS) states; and
f) SATA host emulation (SATA) states; and

This state machine consists of the following states
If the phy supports SAS phy power management, then this state machine shall maintain a SASPhyPwrMgmt state machine variable to determine the current power condition of the phy.

6.8.2 SP transmitter and receiver

The SP transmitter receives the following messages from the SP state machine:

k) Transmit TRAIN_DONE Pattern; and
l) Transmit MUX Sequence;
m) Enter Partial Power Condition; and
n) Enter Slumber Power Condition.

The SP receiver receives the following messages from the SP state machine:

a) Set Physical Link Rate with an argument specifying the physical link rate (e.g., 1.5 Gbps, 3 Gbps, or 6 Gbps);
b) Receive Phy Capabilities Bits;
c) Start Training; and
d) Abort Training;
e) Enter Partial Power Condition; and
f) Enter Slumber Power Condition.

6.8.3.1 OOB sequence states overview

In figure 166 – SP (phy layer) state machine - OOB sequences states, add a transition arrow from all SAS phy power management states to the SP0:OOB_COMINIT state.

6.8.3.2 SP0:OOB_COMINIT state

6.8.3.2.1 State description

This state is the initial state for this state machine.

Upon entry into this state, the phy shall:

a) set the COMWAKE_Received state machine variable to zero;
b) set the SASPhyPwrMgmt state machine variable to Active;
c) send a Stop DWS message to the SP_DWS state machine;
d) send a Phy Layer Not Ready confirmation to the link layer;
e) set the ATTACHED SATA DEVICE bit to zero in the SMP DISCOVER response (see 10.4.3.10);
f) if this state was entered due to power on, then set the ATTACHED SATA PORT SELECTOR bit to zero in the SMP DISCOVER response (see 10.4.3.10); and
g) if this state was not entered because of a Disable Phy request, then send a Transmit COMINIT message to the SP transmitter.
6.8.4.1 SAS speed negotiation states overview

In figure 167 – SP (phy layer) state machine - SAS speed negotiation states, add:

a) a Phy Power Management request to the SP15:SAS_PHY_Ready state;

b) a transition arrow from the SP15:SAS_PHY_Ready state to the SP31:SAS_PS_phy_Low_Power state; and

c) a transition arrow from the SP33:SAS_PS_ALIGN1 state to the SP15:SAS_PHY_Ready state.

6.8.4.2 SP8:SAS_Start state

6.8.4.2.1 State description

This is the initial state for in which the SAS speed negotiation sequence begins.

6.8.4.9 SP15:SAS_Phy_Ready state

6.8.4.9.1 State description

This state waits for:

a) a COMINIT Detected message;

b) a DWS Lost message; or

c) a DWS Reset message; or

d) a Phy Power Management request.

6.8.4.9.3 Transition SP15:SAS_Phy_Ready to SP31:SAS_PS_phy_Low_Power

This transition shall occur after this state receives a Phy Power Management (Partial) request or a Phy Power Management (Slumber) request.

If this transition is the result of this state receiving a Phy Power Management (Partial) request, then the transition shall include a Partial argument.

If this transition is the result of this state receiving a Phy Power Management (Slumber) request, then the transition shall include a Slumber argument.

6.8.5 SAS phy power management states

[Editor’s note: this is a new clause with a new figure. The numbers of the clauses regarding SATA that follow increment by one (e.g., 6.8.5 becomes 6.8.6), and the numbers of all subsequent figures increment by one.]

6.8.5.1 SAS phy power management states overview

Figure a shows the SAS phy power management states. These states are entered when a phy is requested to enter a phy low power condition (i.e., the partial phy power condition or the slumber phy power condition), and process the actions that return a phy from a phy low power condition to the active phy power management condition (i.e., participating in an operational logical link).

These states are indicated by state names with a prefix of SAS_PS.
6.8.5.2 SP31:SAS_PS_PHY_Low_Power state

6.8.5.2.1 State description

Upon entry into this state, this state shall send a Stop DWS message.

If this state is entered with a Partial argument, then:

a) this state shall send an Enter Partial Power Condition message to the SP transmitter and receiver;
b) the phy shall enter the partial phy power condition (see [add a cross reference to a clause where this is defined in 08-015]); and
c) the state shall set the SASPhyPwrMgmt state machine variable to Partial.

If this state is entered with a Slumber argument, then:

a) this state shall send an Enter Slumber Power Condition message to the SP transmitter and receiver;
b) the phy shall enter the slumber phy power condition (see [add a cross reference to a clause where this is defined in 08-015]); and
c) the state shall set the SASPhyPwrMgmt state machine variable to Slumber.

[editor's note: I think these should be called “phy power conditions” in this and all related proposals as opposed to “power states” to minimize confusion in the state diagrams and descriptions.]
If this state receives a Phy Power Management (Exit) request or a COMWake Detected message, and the phy is in partial phy power management state then this state shall send a Transmit COMWake message within a phy wakeup (partial) time (see table 96).

If this state receives a Phy Power Management (Exit) request or a COMWake Detected message, and the phy is in slumber phy power management state then this state shall send a Transmit COMWake message within a phy wakeup (slumber) time (see table 96).

6.8.5.2.2 Transition SP31:SAS_PS_Phy_Low_Power to SP0:OOB_COMINIT
This transition shall occur if:

a) this state:
 A) receives a COMWake Transmitted message; and
 B) does not receive a COMWake Completed message within a hot-plug timeout (see table 96 in 6.7.1);
 or
b) this state receives a COMINIT Detected message.

6.8.5.2.3 Transition SP31:SAS_PS_Phy_Low_Power to SP32:SAS_PS_ALIGN0
This transition shall occur after this state:

a) receives a COMWake Transmitted message; and
b) receives a COMWake Completed message.

6.8.5.3 SP32:SAS_PS_ALIGN0 state

6.8.5.3.1 State description
Upon entry into this state, the phy shall:

1) initialize and start the SNLT timer;
2) send a Set Physical Link Rate message to the SP transmitter and to the SP receiver and send a Set SSC message to the SP transmitter with the arguments set to those determined from the last speed negotiation window;
3) if applicable, restore any vendor-specific information for the SP receiver (e.g., determined from the previous Train-SNW speed negotiation window with the arguments set to the same values as those for the previous entry into the SP28:SAS_TrainSetup state (see 6.8.4.11));
4) send a Start DWS message; and
5) repeatedly send Transmit ALIGN (0) messages.

Each time this state receives a DWS Lost message, this state may send a Start DWS message to re-acquire dword synchronization without running a new link reset sequence.

6.8.5.3.2 Transition SP32:SAS_PS_ALIGN0 state to SP0:OOB_COMINIT
This transition shall occur after this state:

a) receives a DWS Lost message, if this state does not send a Start DWS message;
b) receives a COMINIT Detected message; or
c) does not receive an ALIGN Received (0) message or an ALIGN Received (1) message before the SNLT timer expires.

6.8.5.3.3 Transition SP32:SAS_PS_ALIGN0 to SP33:SAS_PS_ALIGN1
This transition shall occur:

a) if this state receives an ALIGN Received (0) message or an ALIGN Received (1) message before the SNLT timer expires; and
b) after this state has sent at least three Transmit ALIGN (0) messages.

6.8.5.4 SP33:SAS_PS_ALIGN1 state

6.8.5.4.1 State description
Upon entry into this state, the phy shall:

1) initialize and start the SNLT timer; and
2) repeatedly send Transmit ALIGN (1) messages.

Each time this state receives a DWS Lost message, this state may send a Start DWS message to re-acquire dword synchronization without running a new link reset sequence.

6.8.5.4.2 Transition SP33:SAS_PSALIGN1 state to SP0:OOB_COMINIT

This transition shall occur after this state:

a) receives a DWS Lost message, if this state does not send a Start DWS message;
b) receives a COMINIT Detected message; or
c) does not receive an ALIGN Received (1) message before the SNLT timer expires.

6.8.5.4.3 Transition SP33:SAS_PSALIGN1 state to SP15:SAS_PHY_Ready

This transition shall occur:

a) if this state receives an ALIGN Received (1) message before the SNLT timer expires;
b) after this state has sent at least three Transmit ALIGN (1) messages; and
 c) after this state sets the SASPhyPwrMgmt state machine variable to Active.

NOTE 1 - Receipt of the ALIGN Receive (1) message indicates that the connected phy has been able to achieve dword synchronization with the previously negotiated settings.

.....