

Western Digital Corporation 5863 Rue Ferrari San Jose, CA, 95138

To: T10 SAS Protocol Working Group

Contact: Mark Evans

Phone: 408.363.5257

Email: mark.evans@wdc.com

Date: <u>17 November 2008</u>

Subject: SAS-2.1 / SPL, Low power transceiver options, phy states

1 Related documents

SAS-2r14h - Serial Attached SCSI - 2, revision 14h T10/08-015r5, SAS: Add low power transceiver options T10/08-249r3, SAS 2.1 / SPL+: Link Layer Power Management

2 Introduction

This proposal is a first pass at adding what is required in proposal 08-015 for the phy layer state diagrams to include the low power transceiver options of partial and slumber conditions for SAS.

Revision 1 of this proposal removes all link layer state elements, as those are now described in 08-249. These deletions are not shown in this revision.

Revision 2 of this proposal includes resolution to the comments received since revision 1 was posted.

Revision 3 of this proposal includes input from the SAS Protocol working group on 3 November 08 and all clause, figure, and table numbers were updated to be consistent with SAS-2r15.

3 Proposal

The following are the proposed changes based on the heading numbers in SAS-2r15:

6.7.1 Phy reset sequences overview

. . . .

A phy shall originate a phy reset sequence after:

- a) power on;
- b) hard reset (i.e., receiving a HARD_RESET primitive sequence before an IDENTIFY address frame) (see 4.4.2);
- c) management application layer request (see 6.8.1);
- d) losing dword synchronization and not attempting to re-acquire dword synchronization (see 6.8.4.9 and 6.8.5.8);
- e) Receive Identify Timeout timer expires (see 7.10); or
- f) for expander phys, after a hot-plug timeout occurs for an expander phy (see 6.7.5);
- g) a hot-plug timeout occurs while in a SAS phy power management state (see 6.8.5); or
- h) the SNLT timer expires while in a SAS phy power management state (see 6.8.5).

.

<u>Change Table 96 — Phy reset sequence timing specifications as follows:</u>

Parameter	Minimum	Maximum	Comments
Hot-plug timeout	10 ms	500 ms	The time after which: a) an expander phy shall retry an unsuccessful phy reset sequence; b) a SAS initiator phy should retry an unsuccessful phy reset sequence (see 6.7.5); or c) a phy shall initiate a phy reset sequence if the phy does not receive a COMWAKE Completed message while in a SAS phy power management state (see 6.8.5).

....

6.7.4.2.2 SAS speed negotiation sequence timing specifications

...

<u>In Table 98 — SAS speed negotiation sequence timing specifications, change the wording in the "Speed negotiation lock time" row to be as follows:</u>

Parameter	Acronym	Time ^a	Comments
Speed negotiation lock time	10 ms	500 ms	 a) The maximum time for a phy to reply with ALIGN (1) during SNW-1, SNW-2, and Final-SNW; or b) The maximum time for a phy to reply with an ALIGN (0) or ALIGN (1) while in a SAS phy power management state (see 6.8.5).

. . . .

6.8.1 SP state machine overview

The SP state machine controls the phy reset sequence. This state machine consists of three-four sets of states:

- c) OOB sequence (OOB) states;
- d) SAS speed negotiation (SAS) states-;
- e) SAS phy power management (PS) states; and
- f) SATA host emulation (SATA) states; and.

This state machine consists of the following states

. . . .

- ad) SP29:SAS_Train (see 6.8.4.12); and
- ae) SP30:SAS_TrainingDone (see 6.8.4.13)-:
- af) SP31:SAS PS Phy Low Power state (see 6.8.5.2);
- ag) SP32:SAS PS ALIGN0 state (see 6.8.5.3); and
- ah) SP33:SAS PS ALIGN1 state (see 6.8.5.4).

. . . .

If the phy supports SAS phy power management, then this state machine shall maintain a SASPhyPwrMgmt state machine variable to determine the current power condition of the phy.

....

6.8.2 SP transmitter and receiver

....

The SP transmitter receives the following messages from the SP state machine:

.....

- k) Transmit TRAIN DONE Pattern; and
- I) Transmit MUX Sequence:
- m) Enter Partial Power Condition; and
- n) Enter Slumber Power Condition.

....

The SP receiver receives the following messages from the SP state machine:

- a) Set Physical Link Rate with an argument specifying the physical link rate (e.g., 1.5 Gbps, 3 Gbps, or 6 Gbps);
- b) Receive Phy Capabilities Bits;
- c) Start Training; and
- d) Abort Training;
- e) Enter Partial Power Condition; and
- f) Enter Slumber Power Condition.

. . . .

6.8.3.1 OOB sequence states overview

.

In figure 166 – SP (phy layer) state machine - OOB sequences states, add a transition arrow from all SAS phy power management states to the SP0:OOB COMINIT state.

.

6.8.3.2 SP0:OOB_COMINIT state

6.8.3.2.1 State description

This state is the initial state for this state machine.

Upon entry into this state, the phy shall:

- a) set the COMWAKE_Received state machine variable to zero;
- b) set the SASPhyPwrMgmt state machine variable to Active;
- c) send a Stop DWS message to the SP_DWS state machine;
- d) send a Phy Layer Not Ready confirmation to the link layer;
- e) set the ATTACHED SATA DEVICE bit to zero in the SMP DISCOVER response (see 10.4.3.10);
- f) if this state was entered due to power on, then set the ATTACHED SATA PORT SELECTOR bit to zero in the SMP DISCOVER response (see 10.4.3.10); and
- g) if this state was not entered because of a Disable Phy request, then send a Transmit COMINIT message to the SP transmitter.

. . . .

6.8.4.1 SAS speed negotiation states overview

.

In figure 167 – SP (phy layer) state machine - SAS speed negotiation states, add:

- a) a Phy Power Management request to the SP15:SAS PHY Ready state;
- b) a transition arrow from the SP15:SAS PHY Ready state to the SP31:SAS PS Phy Low Power state; and
- c) a transition arrow from the SP33:SAS PS ALIGN1 state to the SP15:SAS PHY Ready state.

. . . .

6.8.4.2 SP8:SAS Start state

6.8.4.2.1 State description

This is the initial state for in which the SAS speed negotiation sequence begins.

....

6.8.4.9 SP15:SAS Phy Ready state

6.8.4.9.1 State description

This state waits for:

- a) a COMINIT Detected message;
- b) a DWS Lost message;, or
- c) a DWS Reset message; or
- d) a Phy Power Management request.

.

6.8.4.9.3 Transition SP15:SAS Phy Ready to SP31:SAS PS Phy Low Power

This transition shall occur after this state receives a Phy Power Management (Partial) request or a Phy Power Management (Slumber) request.

If this transition is the result of this state receiving a Phy Power Management (Partial) request, then the transition shall include a Partial argument.

If this transition is the result of this state receiving a Phy Power Management (Slumber) request, then the transition shall include a Slumber argument.

.

6.8.5 SAS phy power management states

[Editor's note: this is a new clause with a new figure. The numbers of the clauses regarding SATA that follow increment by one (e.g., 6.8.5 becomes 6.8.6), and the numbers of all subsequent figures increment by one.]

6.8.5.1 SAS phy power management states overview

Figure a shows the SAS phy power management states. These states are entered when a phy is requested to enter a low power condition (i.e., the SAS partial low power condition or the SAS slumber low power condition) and process the actions that return a phy from a low power condition to participating in an operational logical link.

These states are indicated by state names with a prefix of SAS PS.

Figure a — PS (phy layer) state machine - SAS phy power management states

6.8.5.2 SP31:SAS PS Phy Low Power state

6.8.5.2.1 State description

Upon entry into this state, this state shall send a Stop DWS message.

If this state is entered with a Partial argument, then:

- a) this state shall send an Enter Partial Power Condition message to the SP transmitter and receiver;
- b) the phy shall enter the Partial power condition (see [add a cross reference to a clause where this is defined in 08-015]); and
- c) the state shall set the SASPhyPwrMgmt state machine variable to Partial.

If this state is entered with a Slumber argument, then:

- a) this state shall send an Enter Slumber Power Condition message to the SP transmitter and receiver;
- b) the phy shall enter the Slumber power condition (see [add a cross reference to a clause where this is defined in 08-015]); and
- c) the state shall set the SASPhyPwrMgmt state machine variable to Slumber.

[editor's note: I think these should be called "phy power conditions" in this and all related proposals as opposed to "power states" to minimize confusion in the state diagrams and descriptions.]

If this state receives a Phy Power Management (Exit) request or a COMWAKE Detected message, then this state shall send a Transmit COMWAKE message.

6.8.5.2.2 Transition SP31:SAS PS Phy Low Power to SP0:OOB COMINIT

This transition shall occur if:

- a) this state:
 - A) receives a COMWAKE Transmitted message; and
 - B) does not receive a COMWAKE Completed message within a hot-plug timeout (see table 96 in 6.7.1):

or

b) this state receives a COMINIT Detected message.

6.8.5.2.3 Transition SP31:SAS PS Phy Low Power to SP32:SAS PS ALIGNO

This transition shall occur after this state:

- a) receives a COMWAKE Transmitted message; and
- b) receives a COMWAKE Completed message.

6.8.5.3 SP32:SAS PS ALIGNO state

6.8.5.3.1 State description

Upon entry into this state, the phy shall:

- 1) initialize and start the SNLT timer;
- 2) send a Set Physical Link Rate message to the SP transmitter and to the SP receiver and send a Set SSC message to the SP transmitter with the arguments set to those determined from the last speed negotiation window;
- 3) if applicable, restore any vendor-unique information for the SP receiver (e.g., determined from the previous Train-SNW speed negotiation window with the arguments set to the same values as those for the previous entry into the SP28:SAS TrainSetup state (see 6.8.4.11));
- 4) send a Start DWS message; and
- 5) repeatedly send Transmit ALIGN (0) messages.

Each time this state receives a DWS Lost message, this state may send a Start DWS message to re-acquire dword synchronization without running a new link reset sequence.

6.8.5.3.2 Transition SP32:SAS PS ALIGN0 state to SP0:OOB COMINIT

This transition shall occur after this state:

- a) receives a DWS Lost message, if this state does not send a Start DWS message;
- b) receives a COMINIT Detected message; or
- c) does not receive an ALIGN Received (0) message or an ALIGN Received (1) message before the SNLT timer expires.

6.8.5.3.3 Transition SP32:SAS PS ALIGN0 to SP33:SAS PS ALIGN1

This transition shall occur:

- a) if this state receives an ALIGN Received (0) message or an ALIGN Received (1) message before the SNLT timer expires; and
- b) after this state has sent at least three Transmit ALIGN (0) messages.

6.8.5.4 SP33:SAS PS ALIGN1 state

6.8.5.4.1 State description

Upon entry into this state, the phy shall:

- 1) initialize and start the SNLT timer; and
- 2) repeatedly send Transmit ALIGN (1) messages.

Each time this state receives a DWS Lost message, this state may send a Start DWS message to re-acquire dword synchronization without running a new link reset sequence.

6.8.5.4.2 Transition SP33:SAS PS ALIGN1 state to SP0:OOB COMINIT

This transition shall occur after this state:

- a) receives a DWS Lost message, if this state does not send a Start DWS message;
- b) receives a COMINIT Detected message; or
- <u>c)</u> <u>does not receive an ALIGN Received (1) message before the SNLT timer expires.</u>

6.8.5.4.3 Transition SP33:SAS PS ALIGN1 state to SP15:SAS PHY Ready

This transition shall occur:

- a) if this state receives an ALIGN Received (1) message before the SNLT timer expires;
- b) after this state has sent at least three Transmit ALIGN (1) messages; and
- <u>c)</u> <u>after this state sets the SASPhyPwrMgmt state machine variable to Active.</u>

NOTE 1 - Receipt of the ALIGN Receive (1) message indicates that the connected phy has been able to achieve dword synchronization with the previously negotiated settings.

NOTE 2 - After the transition, the SP15:SAS_PHY_Ready state sends a Phy Layer Ready (SAS) confirmation after establishing multiplexing, if multiplexing is enabled.

.....