SAS-2 S-Parameters of Cable Assemblies and Backplanes (08-187r0)

Barry Olawsky
Hewlett Packard
(5/6/2008)
Assertion

• The common mode return loss S_{cc22} and differential to common mode return loss S_{cd22} proposed in the SAS-2 letter ballot do appear to be attainable using existing SAS connector designs.

• In addition, common layout practices and techniques used to reduce electromagnetic emissions conflict with the proposed S_{cc22} limits.
SAS-2 Letter Ballot Specifications

Scc22 and Scd22 Specifications

- dB vs GHz graph showing different types of specifications.

- The graph compares Scc22 and Scd22 with dB values ranging from -30 to 0 dB at various GHz frequencies.
Cable Assembly Data

miniSAS Scc22 Cable Assembly Measurements

- dB vs. GHz for different cable lengths and configurations.

- Key data points:
 - 0.5m_a
 - 0.5m_b
 - 0.5m_c
 - 2m_a
 - 2m_b
 - 2m_c
 - 6m_a
 - 6m_b
 - 6m_c
Cable Assembly Data Notes

- Samples consisting of three cable lengths from three different suppliers were measured.
- Fixturing was not de-embedded but the test board traces maintained a well controlled 25-ohm common mode impedance up to the miniSAS connector footprint.
- The miniSAS connector/cable interface has at least three unique coupled regions with each one yielding a unique common mode impedance ... PBC mounted connector, paddle card and bulk cable.
Common Mode Impedance Variations in Board Design

- Trace structure variation is a common layout practice
- Trace width and spacing are varied in order to access all points in connector and BGA pinfields
- Differential impedance is maintained while common mode impedance variations are tolerated
Trace Structure Simulations

• To better characterize the effects of such layout practices, three separate designs are simulated.
 • One inch uncoupled microstrip + one inch 100-ohm differential coupled microstrip with a single ended impedance of 54-ohms + 50-ohm termination for each leg
 • One inch uncoupled microstrip + one inch 100-ohm differential coupled microstrip with a single ended impedance of 70-ohms + 50-ohm termination for each leg
 • One inch uncoupled microstrip + one inch 100-ohm differential coupled microstrip with a single ended impedance of 80-ohms + 50-ohm termination for each leg

• The model is driven by a common mode source and then converted to S_{CC22} format.
Trace Structure Simulations

Scc21 vs. Coupled Pair Impedance

GHz

dB

54-Ohms (SE)

70-Ohms (SE)

80-Ohms (SE)
Reflection Coefficient (∙) and S_{22}

- The reflection coefficient (Γ) is the ratio of the amplitudes of the reflected wave to the incident wave.
- It can be computed from the impedances of the incident media and termination.
- For the case of a common mode impedance of 40-ohms we obtain,

$$\rho = 0.23 \&$$

$$S_{CC22} = -12.7 \text{ dB}$$

$$\Gamma = \frac{V_{\text{reflected}}}{V_{\text{incident}}} = \frac{Z_t - Z_i}{Z_t + Z_i}$$

$$S_{22} = 20 \log(\rho)$$
Multiple Impedance Discontinuities

- Each change in common mode impedance will introduce a wave back to the compliance point. Multiple changes between 25 and 40 ohms will result in a return loss greater than -12.7 dB at specific frequency points.
Potential Scd22 Issues

• Imperfect twin-axial cable termination is very common. Any imbalance introduced during the assembly process can result in non-ideal mode conversion parameters (all S_{CD} and S_{DC} terms).
Cable Assembly Data

miniSAS Scd22 Cable Assembly Measurements

GHz

dB
Conclusions

• The S_{CC22} data presented indicates letter ballot specification will be difficult to meet.

• However, the S_{CD22} cable assembly data supports the letter ballot specification numbers.