
 08-149r6 1 of 34

To

To: INCITS Technical Committee T10
From: Fred Knight, Network Appliance
Email: knight@netapp.com
Date: Nov 20, 2008
Subject: SBC-3 Thin Provisioning Commands

1) Revision history

Revision 0 (July 7, 2008) First revision (r0)
Revision 1 (Aug 22, 2008) Revision 1
 Split the data path from the management path (create a new proposal for

management path). Remove all pools and pool management constructs.
This proposal now covers the data path only. Also use the already existing
ATA TRIM terminology.

Revision 2 (Sept 5, 2008) Revision 2
 Move text from the command clause to the model clause and clarify some

language.
Revision 3 (Oct 2, 2008) Revision 3
 Introduce LBA state machine with 2 states (hole and allocated) and

descriptions of state changes. Remove references to application client and
retaining or discarding data, and replace with LBA state changes. Change
TRIM back to PUNCH

Revision 4 (Nov 4, 2008) Revision 4
 Convert to mapped/unmapped terminology, convert state machine to

standard format, redefine read after unmap (previously trim) to match
ATA, add PR conflict table entry, CbCS permission table entry, clarify
impact of Write Protect on UNMAP command (it fails if write protected),
add TPRZ bit (indicating unmapped LBAs read as zero), clarify VERIFY
command operation on unmapped LBA, add field to specify max number
of extents per UNMAP command to the blocks VPD page, and account for
XCOPY (SPC).

Revision 5 (Nov 17, 2008)
 Create unmap operation used by UNMAP command, create lists from

several long sentences, propose specific ASC/Q values, update the PRE-
FETCH command, add the REASSIGN BLOCKS command behavior for
unmapped LBAs, clarify the VERIFY command.

Revision 6 (Nov 20, 2008)

 08-149r6 2 of 34

 Incorporate comments from 11/19 con-call. Make the threshold crossing
Unit Attention a 1 time event (until specific external events occur to reset
it, and allow another 1 time event); to solve the problem of bouncing
around the threshold point.

2) Related documents

spc4r16 – SCSI Primary Commands – 4
sbc3r15 – SCSI Block Commands – 3
ssc3r04a – SCSI Sequential Commands – 3
08-341r0 – Thin Provisioning Management Commands
T13/e07154r6 – ATA8-ACS2 TRIM proposal (accepted)
T13/e08137 – ATA8-ACS2 DRAT – Deterministic Read After Trim (proposal).

3) Overview
Traditional storage devices pre-allocate physical storage for every possible logical
block. There is a fixed one-to-one relationship between the physical storage and
the logical storage (every logical block is permanently mapped to a physical
block). Generally speaking, the physical capacity of the device is always the
same as the logical capacity of the device (plus spares if any). The READ
CAPACITY command reports the usable number of logical blocks to the
application client. Historically, this has been referred to simply as the capacity of
the device. These devices are fully provisioned.

Thinly provisioned devices also report the capacity in the READ CAPACITY
command, but they do not allocate (or map) their physical storage in the same
way that fully provisioned devices do. Thinly provisioned devices do not
necessarily have a permanent one-to-one relationship between the physical
storage and the logical storage. Thinly provisioned devices may report a different
capacity (in the READ CAPACITY command), than their actual physical
capacity. These devices often report a larger capacity than the actual physical
capacity for storing user data.

One typical use of storage is a creation and deletion process. Files are created,
possibly modified, and saved as new files (with the old one being deleted).
Databases are created, where records are added, updated, and deleted.

Fully provisioned storage must allocate space to retain all possible data
represented by every block described by the logical capacity (their physical
capacity must be the same (or greater) than their reported logical capacity). These
devices are always capable of receiving write data into the pre-defined and pre-
allocated space.

Thinly provisioned devices may or may not pre-allocate space to retain write data.
When a write is received, physical storage may be allocated from a pool of
available storage to retain the write data and a mapping established between the

 08-149r6 3 of 34

location of that physical storage and the appropriate location within the logical
capacity (a physical to LBA mapping). As long as this allocation and mapping
process is successful, the write operates in the same way that it does on a fully
provisioned storage device. However, if all the available physical capacity has
been used, and no space can be allocated to retain the write data, the write
operation must fail. This failure must have a new unique ASCQ.

In addition, to aid application clients it is desired to notify the client before it
actually reaches the point when the failure occurs. These may return a UNIT
ATTENTION if the I/O needs to be retried to succeed. These are new types of
status conditions to return to the application client, and as such need new ASCQ
values to define these conditions. This is needed as part of the I/O path so that
error recovery can be synchronized. Out of band techniques would not enable the
needed synchronization for error recovery. For example, the application may be
involved in notification of a storage administrator to take corrective action, or
explicitly taking corrective action of its own. To synchronize that action with the
I/O requires this be part of the I/O path.

Event Sense Key NEW ASC/Qs ASC/Q
Temporary lack of physical
blocks – write not done, retry
required

NOT READY LOGICAL UNIT NOT
READY, SPACE
ALLOCATION IN PROCESS

04/xx

Persistent lack of physical
blocks – write not done, retry
will not help

DATA
PROTECT

SPACE ALLOCATION
FAILED WRITE PROTECT

27/xx

Soft Threshold crossed –
write not done, retry required

UNIT
ATTENTION

THIN PROVISIONING
SOFT THRESHOLD
REACHED (*)

3F/xx

(*) – a unit attention condition is established for the initiator port associated with every
I_T nexus with the ASC/Q set to PROVISIONING SOFT THRESHOLD REACHED.

Note: ASC/Q values above are suggestions to start discussion; the final values are
to be assigned by the editor.

When the host no longer needs to retain the data (such as when a host file is
deleted, or a database record is deleted), there is no specific action required by a
fully provisioned device. However, a thinly provisioned device may benefit by
knowing about this event and be able to return the physical blocks containing this
“deleted” data to a pool of available blocks. Since the data has been deleted, the
storage device need not retain the contents of those blocks. If those LBAs are
accessed by an application client (a READ is done), the storage device would be
free to return any data particular data (zeros, -1, etc). This “delete” function is
done via the UNMAP command.

Other possible use cases exist for individual disks, SSD devices, backplane RAID
controllers and external RAID controllers.

 08-149r6 4 of 34

This proposal defines commands and error codes for the operation of thinly
provisioned devices. The UNMAP command includes a method to supply a list
of extent descriptors (LBA and length) to a device server.

Management functions will be presented in a separate proposal.

Existing text is shown in BLACK, new text is shown in RED, and comments (not
to be included) are shown in BLUE.

Proposal:

3.1.22 format corrupt: a vendor-specific condition in which the application client may not be able
to perform read operations, write operations, unmap operations, or verify operations. See 4.7.

<…>

3.1.32 logical unit reset: A condition resulting from the events defined by SAM-4 in which the
logical unit performs the logical unit reset operations described in SAM-4, this standard, and other
applicable command standards (see table 13 in 5.1).

3.1.32a mapped: A state of an LBA in which there exists a known relationship to a physical
block.

3.1.33 media: Plural of medium.

<…>

3.1.54 unit attention condition: A state that a logical unit (see 3.1.30) maintains while the logical
unit has asynchronous status information to report to the initiator ports associated with one or
more I_T nexuses (see 3.1.25). See SAM-4.

3.1.54a unmapped: A state of an LBA in which the relationship to a physical block is not defined.

3.1.55 unrecovered error: An error for which a device server is unable to read or write a logical
block within the recovery limits specified in the Read-Write Error Recovery mode page (see 6.3.5)
and the Verify Error Recovery mode page (see 6.3.6).

4 Direct-access block device type model

4.1 Direct-access block device type model overview

SCSI devices that conform to this standard are referred to as direct-access block devices. This
includes the category of logical units commonly referred to as rigid disks and removable rigid
disks. MMC-4 is typically used by CD-ROM devices.

This standard is intended to be used in conjunction with SAM-4, SPC-4, SCC-2, SES-2, and
SMC-2.

 08-149r6 5 of 34

Direct-access block devices store data for later retrieval in logical blocks. Logical blocks contain
user data, may contain protection information accessible to the application client, and may
contain additional information not normally accessible to the application client (e.g., an ECC). The
number of bytes of user data contained in each logical block is the logical block length. The
logical block length is greater than or equal to one byte and should be even. Most direct-access
block devices support a logical block length of 512 bytes and some support additional logical
block lengths (e.g., 520 or 4096 bytes). The logical block length does not include the length of
protection information and additional information, if any, that are associated with the logical block.
The logical block length is the same for all logical blocks on the medium.

Each logical block is stored at a unique LBA, which is either four bytes (i.e., a short LBA) or eight
bytes (i.e., a long LBA) in length. The LBAs on a logical unit shall begin with zero and shall be
contiguous up to the last logical block on the logical unit. An application client uses commands
performing write operations to store logical blocks and commands performing read operations to
retrieve logical blocks. A write operation causes one or more logical blocks to be written to the
medium. A read operation causes one or more logical blocks to be read from the medium and
return the most recent data value written in the addressed logical blocks. A verify operation
confirms that one or more logical blocks were correctly written and are able to be read without
error from the medium. An unmap operation causes a change in the relationship between LBAs
and physical blocks and may cause a change in the data returned by a subsequent read
operation.

Logical blocks are stored by a process that causes localized changes or transitions within a
medium. The changes made to the medium to store the logical blocks may be volatile (i.e., not
retained through power cycles) or non-volatile (i.e., retained through power cycles). The medium
may contain vendor-specific information that is not addressable through an LBA. Such data may
include defect management data and other device management information.

<…>

4.4 Logical Blocks

Logical blocks are stored on the medium along with additional information that the device server
uses to manage storage and retrieval. The format of the additional information is defined by other
standards or is vendor-specific and is hidden from the application client during normal read, write,
and verify operations. This additional information may be used to identify the physical location of
the blocks of data, the address of the logical block, and to provide protection against the loss of
user data and protection information, if any (e.g., by containing ECC bytes).

The first LBA is zero. The last LBA is [n-1], where [n] is the number of logical blocks on the
medium accessible by the application client. The READ CAPACITY (10) parameter data (see
5.12.2 and 5.13.2) RETURNED LOGICAL BLOCK ADDRESS field indicates the value of [n-1].

LBAs are no larger than 8 bytes. Some commands support only 4-byte (i.e., short) LOGICAL BLOCK
ADDRESS fields (e.g., READ CAPACITY (10), READ (10), and WRITE (10)). If the capacity
exceeds that accessible with short LBAs, then the device server returns a capacity of
FFFF_FFFFh in response to a READ CAPACITY (10) command, indicating that:

a) the application client should enable descriptor format sense data (see SPC-4) in the
Control mode page (see SPC-4) and in any REQUEST SENSE commands (see
SPC-4) it sends; and

b) the application client should use commands with 8-byte LOGICAL BLOCK ADDRESS fields
(e.g., READ CAPACITY (16), READ (16), and WRITE (16)).

 08-149r6 6 of 34

NOTE 2 - If a command with a 4-byte LOGICAL BLOCK ADDRESS field accesses logical blocks
beyond LBAs FFFF_FFFFh and fixed format sense data is used, there is no field in the sense data
large enough to report the LBA of an error (see 4.14).

If a command is received that references or attempts to access a logical block not within the
capacity of the medium, then the device server terminates the command with CHECK
CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code
set to LOGICAL BLOCK ADDRESS OUT OF RANGE. The device server may terminate the
command before processing or after the device server has transferred some or all of the data.

The number of bytes of user data contained in a logical block is the logical block length. The
parameter data returned by the device server in response to a READ CAPACITY command (see
5.12) describes the logical block length that is used on the medium. The mode parameter block
descriptor (see 6.3.2) is used by an application client to change the logical block length in direct-
access block devices that support changeable logical block lengths. The logical block length
should be used to determine does not include the length of protection information and additional
information, if any.

The location of a logical block on the medium is not required to have a relationship to the location
of any other logical block. However, in a typical direct-access block device, the time to access a
logical block at LBA [x+1] after accessing LBA [x] is often less than the time to access some other
logical block. The time to access the logical block at LBA [x] and then the logical block at LBA
[x+1] need not be less than time to access LBA [x] and then LBA [x+100]. The READ CAPACITY
command issued with a PMI bit set to one may be useful in determining where longer access
times occur.

4.4.1 Logical Block Provisioning

4.4.1.1 Provisioning Overview

Each LBA may be mapped or unmapped. For LBAs that are mapped, there is a known
relationship to a physical block. For LBAs that are unmapped, the relationship between an LBA
and a physical block is not defined. Figure A shows the relationships of LBAs to physical blocks
in these two states.

LBA 0 LBA 1 LBA 2 LBA 3 LBA 4 LBA 5 LBA 6 LBA 7

PB PB UNMAPPED PB UNMAPPED UNMAPPED PB PB

LBA 0 LBA 1 LBA 2 LBA 3 LBA 4 LBA 5 LBA 6 LBA 7

PB UNMAPPED PB UNMAPPED

Key:
LBA n = logical block with LBA n
PB = a unique physical block
UNMAPPED = the relationship to a physical block is not defined

Figure A – Mapped and Unmapped Logical Blocks

Transitions between the mapped and unmapped state are shown in figure b.

 08-149r6 7 of 34

Figure B – Logical Block State Transitions

4.4.1.2 TP2: Mapped state

When in the mapped state, a relationship exists between the LBA and a physical block. User
data and protection information read without error from a logical block in the mapped state shall
be the user data and protection information that was most recently written to that LBA. If data
has not been written to that LBA, user data and protection information read from the LBA shall be
the user data and protection information that was established during initialization (see 4.7).

4.4.1.2.1 Transition TP2:Mapped state to TP1:Unmapped state

This transition occurs when an unmap operation completes without error (see 4.4.1.5.2). As a
result of this transition, the user data retrieved by the next read operation or verify operation is
indeterminate.

4.4.1.3 TP1: Unmapped state

When in the unmapped state, no relationship is defined between the LBA and a physical block
(see figure A). For an LBA in the unmapped state, user data and protection information retrieved
during a read operation or verify operation:

a) shall not be retrieved from data that was previously written to any other LBA; and
b) shall not change until:

A. a subsequent write operation to that LBA occurs (i.e., all read operations or verify
operations to an LBA shall retrieve the same data until a subsequent write
operation to that LBA occurs);

If protection information is enabled, the device server shall use a default value of
FFFF_FFFF_FFFF_FFFFh as the protection information for logical blocks that are in the
unmapped state.

If the TPRZ bit is set to one in the READ CAPACITY (16) parameter data (see 5.13.2), then for an
LBA in the unmapped state, the user data retrieved during a read operation or verify operation
shall have all bits set to zero.

TP1:
Unmapped

TP2:
Mapped

Write
operation

Unmap
operation

 08-149r6 8 of 34

4.4.1.3.1 Transition TP1:Unmapped state to TP2:Mapped state

This transition:

a) shall occur when a write operation occurs. As part of processing a write operation, the
device server may cause LBAs other than those specified by that write operation to
transition from unmapped state to mapped state; or

b) may occur at any other time for vendor specific reasons.

For each LBA that transitions from the unmapped state to the mapped state without transferring
data for the logical block from the data-out buffer, the contents of the logical block after the
transition shall be the same as if a read operation of the unmapped LBA had been followed by a
write operation to that LBA using the data retrieved by that read operation.

4.4.1.4 Full provisioning

A fully provisioned logical unit ensures that a sufficient number of physical blocks are available to
retain user data for all logical blocks within the logical unit’s reported capacity (see 5.12 - READ
CAPACITY (10) and 5.13 - READ CAPACITY(16)). Fully provisioned logical units provide a
known relationship between all logical blocks and physical blocks (see figures 2 and 3).

The initial state of all logical blocks on a fully provisioned logical unit is mapped. Logical Blocks
on fully provisioned logical units shall not transition out of the mapped state.

Support for full provisioning is indicated by the TPE bit in the READ CAPACITY (16) parameter
data, if supported, set to zero.

4.4.1.5 Thin Provisioning

4.4.1.5.1 Thin Provisioning Overview

A thin provisioned logical unit may report a capacity (see 5.12 - READ CAPACITY (10) and 5.13 -
READ CAPACITY (16)) larger than the number of mapped LBAs. A thin provisioned logical unit
may or may not have sufficient physical blocks to retain user data transferred as a result of a
write operation and storing the write data on the medium.

The initial state of each LBA on a thin provisioned logical unit is unmapped (see figure B).

A device server that supports thin provisioning may also support one or more soft threshold
values. The method of setting the soft threshold values is outside the scope of this standard.

Support for thin provisioning is indicated by the TPE bit in the READ CAPACITY (16) parameter
data. Logical units implementing thin provisioning shall:

a) support the READ CAPACITY (16) command;
b) set the TPE bit to one in the READ CAPACITY(16) parameter data (see 6.4.3);
c) support the UNMAP command (see 5.x.1); and
d) set the MAXIMUM UNMAP LBA COUNT field in the BLOCK LIMITS VPD page (see 6.4.3) to a

value greater than or equal to one; and.
e) set the MAXIMUM UNMAP DESCRIPTOR COUNT field in the BLOCK LIMITS VPD page (see

6.4.3) to a value greater than or equal to one.

 08-149r6 9 of 34

4.4.1.5.2 UNMAP Operation

An unmap operation transitions one or more LBAs to the unmapped state. More than one
physical block may be affected by an unmapped operation. The data in all other mapped logical
blocks on the medium shall be preserved.

4.4.1.5.3 Thin Provisioning and Protection Information

If protection information is enabled, the protection information for LBAs in the:

a) mapped state shall be as described in 4.17; and
b) unmapped state shall be as described in 4.4.1.3.

4.4.1.5.4 Resource Exhaustion Considerations

If a write operation is received and a temporary lack of physical block resources prevents the
logical unit from storing the write data on the medium, then the device server shall terminate the
command with the sense key set to NOT READY and the additional sense code set to SPACE
ALLOCATION IN PROCESS. The recommended application client recovery action is to issue the
command again at a later time.

If a write operation is received and a persistent lack of physical block resources prevents the
logical unit from storing the write data on the medium, then the device server shall terminate the
command with the sense key set to DATA PROTECT and the additional sense code set to
SPACE ALLOCATION FAILED WRITE PROTECT. Application client recovery actions for this
status are outside the scope of this standard.

Note Y: Since a persistent lack of physical block resources does not write protect the
medium, terminating a command due to persistent lack of physical block resources shall
not cause the WP bit in the DEVICE-SPECIFIC PARAMETER field (see 6.3.1) of the mode page
header to be set to one.

If a write operation is receivedAt the completion of a write operation that causes the number of
available logical block resources to drop below a soft threshold value, the device server shall
complete the command and if the TPNER bit (see 6.3.5) is set to zero, then the device server shall
terminate the command and establish a unit attention condition for the initiator port associated
with every I_T nexus with the additional sense code set to THIN PROVISIONING SOFT
THRESHOLD REACHED. Once established, no further unit attention conditions with the
additional sense code set to THIN PROVISIONING SOFT THRESHOLD REACHED shall be
queued to an I_T nexus until:

a) the device server receives an UNMAP command on that I_T nexus;
b) the soft threshold value is altered by means outside the scope of this standard; or
c) the number of available logical block resources is altered by means outside the scope of

this standard.

When a unit attention with the additional sense code set to THIN PROVISIONING SOFT
THRESHOLD REACHED is received by the application client, the recommended application
client recovery action is to issue the command again. Further recovery actions (e.g.,
administrator notification or actions) are outside the scope of this standard.

Editors note: New 3F/xx ASCQ.

4.5 Physical blocks

 08-149r6 10 of 34

A physical block is a set of data bytes on the medium accessed by the device server as a unit. A
physical block may contain:

a) a portion of a logical block (i.e., there are multiple physical blocks in the logical
block)(e.g., a physical block length of 512 bytes with a logical block length of 2 048
bytes);

b) a single complete logical block; or
c) more than one logical block (i.e., there are multiple logical blocks in the physical

block)(e.g., a physical block length of 4 096 bytes with a logical block length of 512
bytes).

Each physical block includes additional information not normally accessible to the application
client (e.g., an ECC) that the device server uses to manage storage and retrieval.

If the device server supports the COR_DIS bit and/or the WR_UNCOR bit in a WRITE LONG
command (see 5.35 and 5.36), then the device server shall have the capability of marking
individual logical blocks as containing pseudo uncorrectable errors with correction enabled (see
3.1.45) or with correction disabled (see 3.1.46).

Logical blocks may or may not be aligned to physical block boundaries. A mechanism for
establishing the alignment is not defined by this standard.

 08-149r6 11 of 34

Figure 2 shows examples of logical blocks and physical blocks, where LBA 0 is aligned to a
physical block boundary.

LOGICAL BLOCKS PER PHYSICAL BLOCK field (see 5.13.2) set to 0h
(indicating one or more physical blocks per logical block):

 08-149r6 12 of 34

Figure 3 shows examples of logical blocks and physical blocks, where various LBAs are aligned
to the physical block boundaries.

When there are more than one logical block per physical block, not all of the logical blocks are
aligned to the physical block boundaries. When using medium access commands, application
clients should:

a) specify an LBA that is aligned to a physical block boundary; and
b) access an integral number of physical blocks, provided that the access does not go

beyond the last LBA on the medium.

4.6 Ready state

A direct-access block device is ready when the device server is capable of processing medium
access commands (i.e., commands that perform read operations, write operations, unmap
operations, or verify operations).

 08-149r6 13 of 34

<…>

4.7 Initialization

Direct-access block devices may require initialization prior to write, read, and verify operations.
This initialization is performed by a FORMAT UNIT command (see 5.2). Parameters related to the
format (e.g., logical block length) may be set with the MODE SELECT command prior to the
format operation. Some direct-access block devices are initialized by means not specified in this
standard. The time when the initialization occurs is vendor-specific.

Direct-access block devices using a non-volatile medium may save the parameters and only need
to be initialized once. However, some mode parameters may need to be initialized after each
logical unit reset. A catastrophic failure of the direct-access block device may require the
FORMAT UNIT command to be issued.

Direct-access block devices that use a volatile medium may need to be initialized after each
logical unit reset prior to the processing of write, read, or verify operations. Mode parameters may
also need initialization after logical unit resets.

NOTE 3 - Mode parameter block descriptors read with the MODE SENSE command before a
FORMAT UNIT completes may contain information that may not reflect the true state of the medium.

A direct-access block device may become format corrupt after processing a MODE SELECT
command that changes parameters related to the medium format. During this time, the device
server may terminate medium access commands with CHECK CONDITION status with the sense
key set to NOT READY and the appropriate additional sense code for the condition.

Any time the parameter data to be returned by a device server in response to a READ
CAPACITY (10) command (see 5.12) or a READ CAPACITY (16) command (see 5.13) changes
(e.g., when a FORMAT UNIT command or a MODE SELECT command completes changing the
number of logical blocks, logical block length, protection information, or reference tag ownership
values, or when a vendor-specific mechanism causes a change), then the device server shall
establish a unit attention condition for the SCSI initiator port (see SAM-4) associated with each
I_T nexus, except the I_T nexus on which the command causing the change was received, with
the additional sense code set to CAPACITY DATA HAS CHANGED.

NOTE 4 - Logical units compliant with previous versions of this standard were not required to
establish a unit attention condition.

4.8 Write protection

Write protection prevents the alteration of the medium by commands issued to the device server.
Write protection is usually controlled by the user of the medium through manual intervention (e.g.,
mechanical lock) or may result from hardware controls (e.g., tabs on the media housing) or
software write protection. All sources of write protection are independent. When present, any
write protection shall cause otherwise valid commands that request alteration of the medium to be
rejected with CHECK CONDITION status with the sense key set to DATA PROTECT. Only when
all write protections are disabled shall the device server process unmap operations, or commands
that request alteration of the medium.

Hardware write protection results when a physical attribute of the drive or medium is changed to
specify that writing shall be prohibited. Changing the state of the hardware write protection
requires physical intervention, either with the drive or the medium. If allowed by the drive,

 08-149r6 14 of 34

changing the hardware write protection while the medium is mounted results in vendor-specific
behavior that may include the writing of previously buffered data (e.g., data in cache).

Software write protection results when the device server is marked as write protected by the
application client using the SWP bit in the Control mode page (see SPC-4). Software write
protection is optional. Changing the state of software write protection shall not prevent previously
accepted data (e.g., data in cache) from being written to the media.

The device server reports the status of write protection in the device server and on the medium
with the DEVICE-SPECIFIC PARAMETER field in the mode parameter header (see 6.3.1).

<…>

4.10 Write failures

If one or more commands performing write operations are in the task set and are being
processed when power is lost (e.g., resulting in a vendor-specific command timeout by the
application client) or a medium error or hardware error occurs (e.g., because a removable
medium was incorrectly unmounted), then the:

a) mapped state of the LBA (see 4.4.1) is indeterminate, if thin provisioning is supported;
and

b) data in the logical blocks being written by those commands is indeterminate.

When accessed by a command performing a read or verify operation (e.g., after power on or after
the removable medium is mounted), the device server may return old data, new data, or vendor-
specific data in those logical blocks.

Before reading or verifying logical blocks which encountered such a failure, an application client
should reissue any commands performing write operations that were outstanding.

4.11 Caches

Direct-access block devices may implement caches. A cache is an area of temporary storage in
the direct-access block device with a fast access time that is used to enhance performance.
Cache exists separately from the medium and is not directly accessible by the application client.
Use of cache for write or read operations may reduce the access time to a logical block and
increase the overall data throughput.

<…>

During read operations, the device server uses the cache to store logical blocks that the
application client may request at some future time. The algorithm used to manage the cache is
not part of this standard. However, parameters are provided to advise the device server about
future requests, or to restrict the use of cache for a particular request.

During write operations, the device server uses the cache to store data that is to be written to the
medium at a later time. This is called write-back caching. The command may complete prior to
logical blocks being written to the medium. As a result of using a write-back caching there is a
period of time when the data may be lost if power to the SCSI target device is lost and a volatile
cache is being used or a hardware failure occurs. There is also the possibility of an error
occurring during the subsequent write operation. If an error occurred during the write operation, it
may be reported as a deferred error on a later command. The application client may request that
write-back caching be disabled with the Caching mode page (see 6.3.4) to prevent detected write
errors from being reported as deferred errors. Even with write-back caching disabled, undetected

 08-149r6 15 of 34

write errors may occur. The VERIFY commands and the WRITE AND VERIFY commands may
be used to detect those errors.

During unmap operations, the device server updates cache to prevent retrieval of stale data
during a subsequent read operation.

When the cache becomes full of logical blocks, new logical blocks may replace those currently in
the cache. The disable page out (DPO) bit in the CDB of commands performing write, read, or
verify operations allows the application client to influence the replacement of logical blocks in the
cache. For write operations, setting the DPO bit to one specifies that the device server should not
replace existing logical blocks in the cache with the new logical blocks being written. For read and
verify operations, setting the DPO bit to one specifies that the device server should not replace
logical blocks in the cache with the logical blocks that are being read.

NOTE 5 - This does not mean that stale data is allowed in the cache. If a write operation accesses
the same LBA as a logical block in the cache, the logical block in the cache is updated with the new
write data. If an unmap operation accesses the same LBA as a logical block in the cache, the
logical block in the cache is updated with the new read data (see 4.1.3) or removed from the cache.

<…>

4.13 RESERVATIONS

Reservation restrictions are placed on commands as a result of access qualifiers associated with
the type of reservation. See SPC-4 for a description of reservations. The details of commands
that are allowed under what types of reservations are described in table 3.

Commands from I_T nexuses holding a reservation should complete normally. Table 3 specifies
the behavior of commands from registered I_T nexuses when a registrants only or all registrants
type persistent reservation is present.

For each command, this standard or SPC-4 defines the conditions that result in the device server
completing the command with RESERVATION CONFLICT status.

 08-149r6 16 of 34

Add UNMAP command matching WRITE (6/10/12/16/32) -

 UNMAP Conflict Conflict Allowed Conflict Conflict

 <…>

4.20 Association between commands and CbCS permission bits

Table 12 defines the Capability based Command Security (i.e., CbCS) permissions required for
each command defined in this standard to be processed by a secure CDB processor. The
permissions shown in table 12 are defined in the PERMISSIONS BIT MASK field in the capability

 08-149r6 17 of 34

descriptor of a CbCS extension descriptor (see SPC-4). This standard does not define any
permission specific to block commands.

Add UNMAP command as follows (DATA WRITE permissions required):

 UNMAP v

<…>

5 Commands for direct-access block devices

5.1 Commands for direct-access block devices overview

The commands for direct-access block devices are listed in table 13. Commands with CDB or
parameter data fields that support protection information (see 4.17) or for which protection
information may be a factor in the processing of the command are indicated by the fourth (i.e,
Protection information) column.

 08-149r6 18 of 34

<…>

<…>

Add UNMAP command as follows:

 UNMAP 42h X(g) yes 5.x

(d) READ CAPACITY (16) is mandatory if protection information or thin provisioning (see 4.4.1.5)
is supported and optional otherwise.

<…>

 (g) UNMAP is mandatory if thin provisioning is supported (see 4.4.1.5) and optional otherwise.

<…>

5.4 PRE-FETCH (10) command

The PRE-FETCH (10) command (see table 32) requests that the device server:

 08-149r6 19 of 34

a) for any LBAs in the mapped state, transfer the specified logical blocks from the medium
to the volatile cache and/or non-volatile cache; and

b) for any LBAs in the unmapped state, update the volatile cache and/or non-volatile cache
to prevent retrieval of stale data.

Logical blocks include user data and, if the medium is formatted with protection information
enabled, protection information. No data shall be transferred to the data-in buffer.

The OPERATION CODE field is defined in SPC-4 and shall be set to the value defined in table 32.

<…>

5.5 PRE-FETCH (16) command

The PRE-FETCH (16) command (see table 33) requests that the device server:

a) for any LBAs in the mapped state, transfer the specified logical blocks from the medium
to the volatile cache and/or non-volatile cache; and

b) for any LBAs in the unmapped state, update the volatile cache and/or non-volatile cache
to prevent retrieval of stale data.

Logical blocks include user data and, if the medium is formatted with protection information
enabled, protection information. No data shall be transferred to the data-in buffer.

<…>

5.7 READ (6) command

The READ (6) command (see table 36) requests that the device server read the specified logical
block(s) and transfer them to the data-in buffer. Each logical block read includes user data and, if
the medium is formatted with protection information enabled, protection information. Each logical
block transferred includes user data but does not include protection information. The most recent
data value written, or to be written, if cached, in the addressed logical blocks shall be returned.

The OPERATION CODE field is defined in SPC-4 and shall be set to the value defined in table 36.

<…>

5.8 READ (10) command

The READ (10) command (see table 38) requests that the device server read the specified logical
block(s) and transfer them to the data-in buffer. Each logical block read includes user data and, if
the medium is formatted with protection information enabled, protection information. Each logical
block transferred includes user data and may include protection information, based on the
RDPROTECT field and the medium format. The most recent data value written in the addressed
logical block shall be returned.

<…>

5.13 READ CAPACITY (16) command

5.13.1 READ CAPACITY (16) command overview

 08-149r6 20 of 34

The READ CAPACITY (16) command (see table 46) requests that the device server transfer
parameter data describing the capacity and medium format of the direct-access block device to
the data-in buffer. This command is mandatory if the logical unit supports protection information
(see 4.17) and is optional otherwise. This command is implemented as a service action of the
SERVICE ACTION IN operation code (see A.2). This command may be processed as if it has a
HEAD OF QUEUE task attribute (see 4.12).

Table 46 – READ CAPACITY (16) command

 Bit
Byte

 7 6 5 4 3 2 1 0

0
OPERATION CODE (9Eh)

1 Reserved Service Action (10h)

2

9

(MSB)
 LOGICAL BLOCK ADDRESS
 (LSB)

10

13

(MSB)
 ALLOCATION LENGTH
 (LSB)

14 Reserved PMI

15 Control

The OPERATION CODE field and SERVICE ACTION field are defined in SPC-4 and shall be set
to the values defined in table 46.

See the READ CAPACITY (10) command (see 5.12) for definitions of the LOGICAL BLOCK
ADDRESS field and the PMI bit.

The ALLOCATION LENGTH field specifies the maximum number of bytes that the application
client has allocated for returned parameter data. An allocation length of zero indicates that no
data shall be transferred. This condition shall not be considered as an error. The device server
shall terminate transfers to the data-in buffer when the number of bytes specified by the
ALLOCATION LENGTH field have been transferred or when all available data has been
transferred, whichever is less. The contents of the parameter data shall not be altered to reflect
the truncation, if any, that results from an insufficient allocation length.

The contents of the CONTROL byte are defined in SAM-4.

5.13.2 READ CAPACITY (16) parameter data

The READ CAPACITY (16) parameter data is defined in table 47. Any time the READ CAPACITY
(16) parameter data changes, the device server should establish a unit attention condition as
described in 4.7.

 08-149r6 21 of 34

Table 47 – READ CAPACITY (16) parameter data

 Bit
Byte

 7 6 5 4 3 2 1 0

0

7

(MSB)

 RETURNED LOGICAL BLOCK ADDRESS
 (LSB)

8

11

(MSB)

 LOGICAL BLOCK LENGTH IN BYTES
 (LSB)

12

Reserved

P_TYPE

PROT_EN

13

Reserved

LOGICAL BLOCKS PER PHYSICAL BLOCK
EXPONENT

14

TPE

TPRZ

(MSB)

15

(LSB)

16

31

Reserved

The RETURNED LOGICAL BLOCK ADDRESS field and LOGICAL BLOCK LENGTH IN BYTES field of the READ
CAPACITY (16) parameter data are the same as the in the READ CAPACITY (10) parameter
data (see 5.12). The maximum value that shall be returned in the RETURNED LOGICAL BLOCK
ADDRESS field is FFFF_FFFF_FFFF_FFFEh.

The protection type (P_TYPE) field and the protection enable (PROT_EN) bit (see table 48) indicate
the logical unit’s current type of protection.

A thin provisioning enabled (TPE) bit set to one indicates that the logical unit implements thin
provisioning (see 4.4.1.5).

 LOWEST ALIGNED LOGICAL BLOCK ADDRESS

 08-149r6 22 of 34

A TPE bit set to zero indicates that the logical unit implements full provisioning (see 4.4.1.4).

A thin provisioning read zeros (TPRZ) bit set to one indicates that a read operation or verify
operation of an LBA that is in the unmapped state shall retrieve user data with all bits set to zero
and protection information, if enabled, set to FFFF_FFFF_FFFF_FFFFh.

A TPRZ bit set to zero indicates that a read operation or verify operation of an LBA that is in the
unmapped state may retrieve user data with bits of other than all zeros and protection
information, if enabled, of FFFF_FFFF_FFFF_FFFFh .

The LOWEST ALIGNED LOGICAL BLOCK ADDRESS field indicates the LBA of the first logical block that
is located at the beginning of a physical block (see 4.5).

NOTE 14 - The highest LBA that the lowest aligned logical block address field supports is
3FFFh (i.e., 16383).

<…>

5.18 REASSIGN BLOCKS command

5.18.1 REASSIGN BLOCKS command overview

The REASSIGN BLOCKS command (see table 56) requests that the device server reassign
defective logical blocks to another area on the medium set aside for this purpose. The device
server should also record the location of the defective logical blocks in the GLIST, if supported.
This command shall not alter the contents of the PLIST (see 4.9).

The parameter list provided in the data-out buffer contains a defective LBA list that contains the
LBAs of the logical blocks to be reassigned. The device server shall reassign the parts of the
medium used for each logical block in the defective LBA list. More than one physical block may
be relocated by each LBA. If the device server is able to recover user data and protection
information, if any, from the original logical block, then the device server shall write the recovered
user data and any protection information to the reassigned logical blockLBA that was reassigned.
If the LBA is in the unmapped state, the device server shall transition the LBA to the mapped
state and write the data retrieved during a read operation (see 4.4.1.3) to the LBA that was
reassigned. If the device server is unable to recover user data and protection information, if any,
then the device server shall write vendor-specific data as the user data and shall write a default
value of FFFF_FFFF_FFFF_FFFFh as the protection information, if enabled. The data in all other
logical blocks on the medium shall be preserved.

<…>

5. x UNMAP command

5. x. 1 UNMAP command overview

The UNMAP command specifies that the device server should transition one or more logical
blocks to the unmapped state. The UNMAP command shall be implemented by device servers
supporting thin provisioning (see 4.4.1.5).

 08-149r6 23 of 34

Table x.1 – UNMAP Command

 Bit
Byte

 7 6 5 4 3 2 1 0

0 OPERATION CODE (42h)

1 Reserved

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 Reserved GROUP NUMBER

7

8

(MSB)

PARAMETER LIST LENGTH

(LSB)

9 Control

The OPERATION CODE field is defined in SPC-4 shall be set to the value defined in table x.1.

See the PRE-FETCH (10) command (see 5.4) and 4.18 for the definition of the GROUP NUMBER
field.

The PARAMETER LIST LENGTH field specifies the length in bytes of the UNMAP PARAMETER LIST that
shall be transferred from the application client to the device server. A PARAMETER LIST LENGTH of
zero specifies that no data shall be transferred.

The contents of the CONTROL byte are defined in SAM-4.

For each specified LBA:

a) a mapped LBA should be unmapped, or may remain mapped; and
b) an unmapped LBA shall remain unmapped.

5. x. 2 UNMAP parameter list

The UNMAP parameter list (see table x.3) contains a parameter list header followed by a UNMAP
DESCRIPTOR LIST containing one or more UNMAP LBA DESCRIPTOR fields.

 08-149r6 24 of 34

Table x.3 – UNMAP parameter list

 Bit
Byte

 7 6 5 4 3 2 1 0

0
1

UNMAP DESCRIPTOR LIST LENGH (n-3)

2

7

Reserved

 UNMAP DESCRIPTOR LIST

8
23

UNMAP LBA DESCRIPTOR

… …
n-15

n

UNMAP LBA DESCRIPTOR

The UNMAP DESCRIPTOR LIST LENGTH describes the length of the UNMAP DESCRIPTOR LIST.

The UNMAP DESCRIPTOR LIST contains a list of LBA extents to be operated on. The UNMAP LBA
DESCRIPTOR is described in table x.4. The LBAs in the UNMAP DESCRIPTOR LIST may contain
overlapping extents, and may be in any order. If the number of LBAs exceeds the allowed
number, the command shall be terminated with CHECK CONDITION status, with the sense key
set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN
PARAMETER LIST.

Table x.4 – UNMAP DESCRIPTOR

 Bit
Byte

 7 6 5 4 3 2 1 0

0
7

(MSB)
LOGICAL BLOCK ADDRESS

(LSB)
8

11

(MSB)
NUMBER OF LOGICAL BLOCKS

(LSB)
12
15

RESERVED

If the LBA plus the count number of logical blocks exceeds the capacity of the medium, then the
device server shall terminate the command with CHECK CONDITION status with the sense key
set to ILLEGAL REQUEST and the additional sense code set to LOGICAL BLOCK ADDRESS
OUT OF RANGE.

If the total number of LBAs represented in the UNMAP DESCRIPTOR LIST exceeds the value of the
MAXIMUM UNMAP LBA COUNT field (see 6.4.2), or if the number of UNMAP DESCRIPTORs exceeds the
value of the MAXIMUM UNMAP DESCRIPTOR COUNT field (see 6.4.2), then the device server shall
terminate the command with CHECK CONDITION status with the sense key set to ILLEGAL
REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

A number of logical blocks set to zero shall not be considered an error.

<…>

 08-149r6 25 of 34

5.22 VERIFY (10) command

The VERIFY (10) command (see table 66) requests that the device server verify the specified
logical block(s) on the medium. Each logical block includes user data and may include protection
information, based on the VRPROTECT field and the medium format.

Logical units that contain cache shall write referenced cached logical blocks to the medium for the
logical unit (e.g., as they would do in response to a SYNCHRONIZE CACHE command (see 5.20
and 5.21) with the SYNC_NV bit set to zero, the LOGICAL BLOCK ADDRESS field set to the value of the
VERIFY command’s LOGICAL BLOCK ADDRESS field, and the NUMBER OF BLOCKS field set to the
value of the VERIFY command’s VERIFICATION LENGTH field).

The OPERATION CODE field is defined in SPC-4 and shall be set to the value defined in table 66.

See the READ (10) command (see 5.8) for the definition of the DPO bit. See the PRE-FETCH (10)
command (see 5.4) for the definition of the LOGICAL BLOCK ADDRESS field. See the PRE-FETCH
(10) command (see 5.4) and 4.18 for the definition of the GROUP NUMBER field.

If the Verify Error Recovery mode page (see 6.3.6) is implemented, then the current settings in
that page specify the verification criteria. If the Verify Error Recovery mode page is not
implemented, then the verification criteria is vendor-specific.

If the byte check (BYTCHK) bit is set to zero, then:

for referenced LBAs that are in the mapped state, the device server shall:

a) perform a medium verification with no data comparison and not transfer any data from
the data-out buffer; and

b) check protection information read from the medium based on the VRPROTECT field as
described in table 67.

and

for referenced LBAs that are in the unmapped state, the device server shall:

a) not transfer any data from the data-out buffer;
b) consider the medium verification to be successful; and
c) consider the protection information check to be successful.

 08-149r6 26 of 34

If the BYTCHK bit is set to one, then:

for referenced LBAs that are in the mapped state, the device server shall:

a) perform a byte-by-byte comparison of user data read from the medium and user data
transferred from the data-out buffer;

b) check protection information read from the medium based on the VRPROTECT field as
described in table 68;

c) check protection information transferred from the data-out buffer based on the
VRPROTECT field as described in table 69; and

d) perform a byte-by-byte comparison of protection information read from the medium and
transferred from the data-out buffer based on the VRPROTECT field as described in table
70.

and

If any referenced LBA is in the unmapped state, the device server shall terminate the command
with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the
additional sense code set to MISCOMPARE VERIFY OF UNMAPPED LBA. (ed note: 1D/xx)

For each referenced LBA, operation of the BYTCHK field is defined in table Y.

 08-149r6 27 of 34

 Table Y – BYTCHK Operation

BYTCHK = 0

BYTCHK = 1

LBA State Mapped(a) Unmapped(b) Mapped(a) Unmapped(b)

Perform media
verification

Yes No(c) Yes

Transfer user data
from the data-out

buffer

No No Yes

Comparing of
transferred user data

None None Perform a byte-by
byte comparison
of user data read
from the medium

and user data
transferred from

the data-out buffer

Handling of Protection Information, if enabled.

Transfer user data and
protection information
from data-out buffer

No No Yes

Checking of protection
information read from

the medium

Based on the
VRPROTECT

field as
described in

table 67

None(d) Based on the
VRPROTECT field
as described in

table 68

Checking of protection
information transferred

from the data-out
buffer

None None Based on the
VRPROTECT field as
described in table

69
Comparing of

transferred protection
information

None None Perform a byte-by-
byte comparison

of protection
information read
from the medium
and transferred

from the data-out
buffer based on
the VRPROTECT

field as described
in table 70

The command

shall be
terminated with

a CHECK
CONDITION

status with the
sense key set to

ILLEGAL
REQUEST and
the additional

sense code set
to

MISCOMPARE
VERIFY OF
UNMAPPED
LBA (1D/xx)

(a) – Referenced LBAs are in the mapped state, or protection information, if enabled, is other
than FFFF_FFFF_FFFF_FFFFh.

(b) – Referenced LBAs are in the unmapped state, or protection information, if enabled, is
FFFF_FFFF_FFFF_FFFFh.

(c) – Medium verification of referenced LBAs in the unmapped state shall be considered good.
(d) – Referenced LBAs in the unmapped state retrieve protection information of

FFFF_FFFF_FFFF_FFFFh (see 4.4.1.3), which disables protection checking.

The order of the user data and protection information checks and comparisons is vendor-specific.

 08-149r6 28 of 34

If a byte-by-byte comparison is unsuccessful for any reason, then the device server shall
terminate the command with CHECK CONDITION status with the sense key set to
MISCOMPARE and the additional sense code set to the appropriate value for the condition.

The VERIFICATION LENGTH field specifies the number of contiguous logical blocks that shall be
verified, starting with the logical block specified by the LOGICAL BLOCK ADDRESS field. If the BYTCHK
bit is set to one, then the VERIFICATION LENGTH field also specifies the number of logical blocks that
the device server shall transfer from the data-out buffer. A VERIFICATION LENGTH field set to zero
specifies that no logical blocks shall be verified. This condition shall not be considered as an
error. Any other value specifies the number of logical blocks that shall be verified. If the LBA plus
the verification length exceeds the capacity of the medium, then the device server shall terminate
the command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST
and the additional sense code set to LOGICAL BLOCK ADDRESS OUT OF RANGE. The
VERIFICATION LENGTH field is constrained by the MAXIMUM TRANSFER LENGTH field in the Block Limits
VPD page (see 6.4.2).

<…>

6.3 Mode parameters

6.3.1 Mode parameters overview

This subclause defines the block descriptors and mode pages used with direct-access block
devices.

The mode parameter list, including the mode parameter header, is described in SPC-4. Direct-
access block devices support zero or one mode parameter block descriptors (i.e., the block
descriptor is shared by all the logical blocks on the medium).

The MEDIUM TYPE field in the mode parameter header (see SPC-4) shall be set to 00h.

The DEVICE-SPECIFIC PARAMETER field in the mode parameter header (see SPC-4) is defined for
direct-access block devices in table 119.

Table 119 — DEVICE-SPECIFIC PARAMETER field for direct-access block devices

Bit 7 6 5 4 3 2 1 0

 WP Reserved DPOFUA Reserved

When used with the MODE SELECT command, the write protect (WP) bit is not defined.

When used with the MODE SENSE command, a WP bit set to one indicates that the medium is
write-protected. A WP bit set to zero indicates that the medium is not write-protected. When the
software write protect (SWP) bit in the Control mode page (see SPC-4) is set to one, the WP bit
shall be set to one. When the SWP bit in the Control mode page is set to zero, the WP bit shall be
set to one if the medium is write-protected (e.g., due to mechanisms outside the scope of this
standard) or zero if the medium is not write-protected.

When used with the MODE SELECT command, the DPOFUA bit is reserved.

When used with the MODE SENSE command, a DPOFUA bit set to zero indicates that the device
server does not support the DPO and FUA bits. When used with the MODE SENSE command, a
DPOFUA bit set to one indicates that the device server supports the DPO and FUA bits (see 4.11).

<…>

 08-149r6 29 of 34

6.3.5 Read-Write Error Recovery mode page

The Read-Write Error Recovery mode page (see table 127) specifies the error recovery
parameters the device server shall use during any command that performs a read or write
operation to the medium (e.g., READ command, WRITE command, or a WRITE AND VERIFY
command).

Table 127 — Read-Write Error Recovery mode page

 Bit
Byte

7 6 5 4 3 2 1 0

0

PS

SPF(0b)

PAGE CODE (01h)

1

PAGE LENGTH (0Ah)

 Error Recovery Bits 2
AWRE

ARRE

TB

RC

EER

PER

DTE

DCR

3

READ RETRY COUNT

4

OBSOLETE

5

OBSOLETE

6

OBSOLETE

7

TPER

RESERVED

Restricted for MMC-6

8

WRITE RETRY COUNT

9

Reserved

10
11

(MSB)
RECOVERY TIME LIMIT

(LSB)

The parameters savable (PS) bit is only used with the MODE SENSE command. This bit is
reserved with the MODE SELECT command. A PS bit set to one indicates that the device server
is capable of saving the mode page in a non-volatile vendor-specific location.

The SubPage Format (SPF) bit, PAGE CODE field, and PAGE LENGTH field are defined in SPC-4 and
shall be set to the values defined in table 127.

An automatic write reallocation enabled (AWRE) bit set to zero specifies that the device server
shall not perform automatic reallocation of defective logical blocks during write operations.

An AWRE bit set to one specifies that the device server shall enable automatic reallocation of
defective logical blocks during write operations. The automatic reallocation shall be performed
only if the device server has the valid data (e.g., original data in a buffer or recovered from the
medium). The valid data shall be placed in the reallocated logical block. The device server shall
report any failures that occur during the reallocation operation. Error reporting as specified by the
error recovery bits (i.e., the EER bit, the PER bit, the DTE bit, and the DCR bit) shall be performed
only after completion of the reallocation. See the REASSIGN BLOCKS command (see 5.18) for
error procedures.

An automatic read reallocation enabled (ARRE) bit set to zero specifies that the device server shall
not perform automatic reallocation of defective logical blocks during read operations.

 08-149r6 30 of 34

An ARRE bit set to one specifies that the device server shall enable automatic reallocation of
defective logical blocks during read operations. All error recovery actions required by the error
recovery bits (i.e., the EER bit, the PER bit, the DTE bit, and the DCR bit) shall be processed. The
automatic reallocation shall then be performed only if the device server successfully recovers the
data. The recovered data shall be placed in the reallocated logical block. The device server shall
report any failures that occur during the reallocation operation. Error reporting as specified by the
error recovery bits (i.e., the EER bit, the PER bit, the DTE bit, and the DCR bit) shall be performed
only after completion of the reallocation operation. See the REASSIGN BLOCKS command (see
5.18) for error procedures.

A transfer block (TB) bit set to zero specifies that if an unrecovered read error occurs during a
read operation, then the device server shall not transfer any data for the logical block to the data-
in buffer. A TB bit set to one specifies that if an unrecovered read error occurs during a read
operation, then the device server shall transfer pseudo read data before returning CHECK
CONDITION status. The data returned in this case is vendor-specific. The TB bit does not affect
the action taken for recovered read errors.

A read continuous (RC) bit set to zero specifies that error recovery operations that cause delays
during the data transfer are acceptable. Data shall not be fabricated.

An RC bit set to one specifies the device server shall transfer the entire requested length of data
without adding delays during the data transfer to perform error recovery procedures. The device
server may transfer pseudo read data in order to maintain a continuous flow of data. The device
server shall assign priority to the RC bit over conflicting bits within this byte.

NOTE 24 - The RC bit may be set to one in image processing, audio, or video applications.

An enable early recovery (EER) bit set to one specifies that the device server shall use the most
expedient form of error recovery first. An EER bit set to zero specifies that the device server shall
use an error recovery procedure that minimizes the risk of error mis-detection or mis-correction.
This bit only applies to data error recovery and it does not affect positioning retries.

NOTE 25 - An EER bit set to one may imply an increase in the probability of error mis-detection or
mis-correction. An EER bit set to zero allows the specified retry limit to be exhausted prior to using
additional information (e.g., ECC bytes) to correct the error.

A post error (PER) bit set to one specifies that if a recovered read error occurs during a command
performing a read or write operation, then the device server shall terminate the command with
CHECK CONDITION status with the sense key set to RECOVERED ERROR. A PER bit set to
zero specifies that if a recovered read error occurs during a command performing a read or write
operation, then the device server shall perform error recovery procedures within the limits
established by the error recovery parameters and only terminate the command with CHECK
CONDITION status if the error becomes uncorrectable based on the established limits. If the DTE
bit is set to one, then the PER bit shall be set to one.

A data terminate on error (DTE) bit set to one specifies that the device server shall terminate the
data-in or data-out buffer transfer of a command performing a read or write operation upon
detection of a recovered error. A DTE bit set to zero specifies that the device server shall not
terminate the data-in or data-out buffer transfer of a command performing a read or write
operation upon detection of a recovered error.

A disable correction (DCR) bit set to one specifies that additional information (e.g., ECC bytes)
(see 4.4) shall not be used for data error recovery. A DCR bit set to zero allows the use of
additional information (e.g., ECC bytes) for data error recovery. If the EER bit is set to one, the
DCR bit shall be set to zero.

 08-149r6 31 of 34

The combinations of the error recovery bits (i.e., the EER bit, the PER bit, the DTE bit, and the DCR
bit) are explained in table 128.

<…>

The READ RETRY COUNT field specifies the number of times that the device server shall attempt its
recovery algorithm during read operations.

A thin provisioning no error report (TPNER) bit set to one specifies that if a thin provisioning soft
threshold is crossed, that a UNIT ATTENTION, with the additional sense code set to
PROVISIONING SOFT THRESHOLD REACHED shall not be queued. A TPNER bit set to zero
specifies that if the thin provisioning soft threshold is crossed, a UNIT ATTENTION with the
additional sense code set to PROVISIONING SOFT THRESHOLD REACHED shall be queued.

The WRITE RETRY COUNT field specifies the number of times that the device server shall attempt its
recovery algorithm during write operations.

The RECOVERY TIME LIMIT field specifies in milliseconds the maximum time duration that the device
server shall use for data error recovery procedures. The device server may round this value as
described in SPC-4. The limit in this field specifies the maximum error recovery time allowed for
any individual logical block. A RECOVERY TIME LIMIT field set to zero specifies that the device server
shall use its default value.

When both a retry count and a recovery time limit are specified, the field that specifies the
recovery action of least duration shall have priority.

NOTE 26 - To disable all types of correction and retries the application client should set the EER bit
to zero, the PER bit to one, the DTE bit to one, the DCR bit to one, the READ RETRY COUNT field to
00h, the WRITE RETRY COUNT field to 00h, and the RECOVERY TIME LIMIT field to 0000h.

<…>

6.4 Vital product data (VPD) parameters

6.4.1 VPD parameters overview

<…>

6.4.2 Block Limits VPD page

The Block Limits VPD page (see table 132) provides the application client with the means to
obtain certain operating parameters of the logical unit.

Table 132 — Block Limits VPD page

 Bit
Byte

7 6 5 4 3 2 1 0

0 PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE

1 PAGE CODE (B0h)

2 Reserved

3 PAGE LENGTH (18h)

 08-149r6 32 of 34

4
5

Reserved

6
7

(MSB)
OPTIMAL TRANSFER LENGTH GRANULARITY

(LSB)
8

11
(MSB)

MAXIMUM TRANSFER LENGTH
(LSB)

12
15

(MSB)
OPTIMAL TRANSFER LENGTH

(LSB)
16
19

(MSB)
MAXIMUM PREFETCH XDREAD XDWRITE TRANSFER LENGTH

(LSB)
20
23

(MSB)
MAXIMUM UNMAP LBA COUNT

(LSB)
24
27

(MSB)
MAXIMUM UNMAP DESCRIPTOR COUNT

(LSB)

The PERIPHERAL QUALIFIER field and the PERIPHERAL DEVICE TYPE field are defined in SPC-4.

The PAGE CODE field and PAGE LENGTH field are defined in SPC-4 and shall be set to the values
defined in table 132.

The OPTIMAL TRANSFER LENGTH GRANULARITY field indicates the optimal transfer length granularity
in blocks for a single ORWRITE command, PRE-FETCH command, READ command, VERIFY
command, WRITE command, WRITE AND VERIFY command, XDREAD command, XDWRITE
command, XDWRITEREAD command, or XPWRITE command. Transfers with transfer lengths
not equal to a multiple of this value may incur significant delays in processing.

The MAXIMUM TRANSFER LENGTH field indicates the maximum transfer length in blocks that the
device server accepts for a single ORWRITE command, READ command, VERIFY command,
WRITE command, WRITE AND VERIFY command, XDWRITEREAD command, or XPWRITE
command. Requests for transfer lengths exceeding this limit result in CHECK CONDITION status
with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID
FIELD IN CDB. A MAXIMUM TRANSFER LENGTH field set to zero indicates that there is no reported
limit on the transfer length.

The OPTIMAL TRANSFER LENGTH field indicates the optimal transfer length in blocks for a single
ORWRITE command, PRE-FETCH command, READ command, VERIFY command, WRITE
command, WRITE AND VERIFY command, XDREAD command, XDWRITE command,
XDWRITEREAD command, or XPWRITE command. Transfers with transfer lengths exceeding
this value may incur significant delays in processing.

The MAXIMUM PREFETCH XDREAD XDWRITE TRANSFER LENGTH field indicates:

a) the maximum transfer length in blocks that the device server accepts for a single PRE-
FETCH command;

b) if the XOR Control mode page (see 6.3.7) is implemented, then the maximum value
supported by the MAXIMUM XOR WRITE SIZE field in the XOR Control mode page; and

c) if the XOR Control mode page is not implemented, then the maximum transfer length in
blocks that the device server accepts for a single XDWRITE command or XDREAD
command.

The device server should set the MAXIMUM PREFETCH XDREAD XDWRITE TRANSFER LENGTH field to
less than or equal to the MAXIMUM TRANSFER LENGTH field.

 08-149r6 33 of 34

The MAXIMUM UNMAP LBA COUNT field indicates the maximum number of LBAs that may be
represented in the parameter data transferred to the device server in the UNMAP PARAMETER LIST
(see 5.x.2). If there is no limit on the number of LBAs that may be represented, then the device
server shall set the MAXIMUM UNMAP LBA COUNT field to FFFF_FFFFh. If the logical unit
implements thin provisioning, then this value shall be greater than or equal to one.

The MAXIMUM UNMAP DESCRIPTOR COUNT field indicates the maximum number of UNMAP
DESCRIPTORs (see 5.x.2). If there is no limit on the number of UNMAP DESCRIPTORs that may be
transferred, then the device server shall set the MAXIMUM UNMAP DESCRIPTOR COUNT field to
FFFF_FFFFh. If the logical unit implements thin provisioning, then this value shall be greater
than or equal to one.

 08-149r6 34 of 34

SPC4 Changes

<…>

7.2.13 Statistics and Performance log pages

7.2.13.1 Statistics and Performance log pages overview

The Statistics and Performance log pages consist of a General Statistics and Performance log
page and up to 31 Group Statistics and Performance log pages. Each Group Statistics and
Performance log pages only collects statistics and performance information for the group number
specified in a read CDB or a write CDB.

The General Statistics and Performance log page (see 7.2.13.2) provides the following statistics
and performance results associated to the addressed logical unit:

a) Number of read commands;
b) Number of write commands;
c) Number of read logical blocks transmitted by a target port;
d) Number of write logical blocks received by a target port;
e) Read command processing time;
f) Write command processing time;
g) Sum of the command weights of the read commands plus write commands;
h) Sum of the weighted command time of the read commands plus write commands;
i) Idle time; and
j) Time interval.

The Group Statistics and Performance log pages (see 7.2.13.3) provide the following statistics
and performance results associated to the addressed logical unit and the GROUP NUMBER field:

a) Number of read commands;
b) Number of write commands;
c) Number of read logical blocks transmitted by a target port;
d) Number of write logical blocks received by a target port;
e) Read command processing time; and
f) Write command processing time.

In the Statistics and Performance log pages, read and write commands are those shown in table
309.

Table 309 – Statistics and Performance log pages read and write commands

Read commands (a) Write commands(a)
READ(6)
READ(10)
READ(12)
READ(16)
READ(32)

UNMAP
WRITE(6)
WRITE(10)
WRITE(12)
WRITE(16)
WRITE(32)
WRITE AND VERIFY (10)
WRITE AND VERIFY (12)
WRITE AND VERIFY (16)
WRITE AND VERIFY (32)

(a) See SBC-3.

	4.4 Logical Blocks
	4.4.1 Logical Block Provisioning
	4.4.1.1 Provisioning Overview
	4.4.1.2 TP2: Mapped state
	4.4.1.3 TP1: Unmapped state
	4.4.1.4 Full provisioning
	4.4.1.5 Thin Provisioning

