

To: INCITS Technical Committee T10
From: Fred Knight, Network Appliance
Email: knight@netapp.com
Date: Nov 4, 2008
Subject: SBC-3 Thin Provisioning Commands

1) Revision history

Revision 0 (July 7, 2008) First revision (r0)
Revision 1 (Aug 22, 2008) Revision 1
 Split the data path from the management path (create a new proposal for

management path). Remove all pools and pool management constructs.
This proposal now covers the data path only. Also use the already existing
ATA TRIM terminology.

Revision 2 (Sept 5, 2008) Revision 2
 Move text from the command clause to the model clause and clarify some

language.
Revision 3 (Oct 2, 2008) Revision 3
 Introduce LBA state machine with 2 states (hole and allocated) and

descriptions of state changes. Remove references to application client and
retaining or discarding data, and replace with LBA state changes. Change
TRIM back to PUNCH

Revision 4 (Nov 4, 2008) Revision 4
 Convert to mapped/unmapped terminology, convert state machine to

standard format, redefine read after unmap (previously trim) to match
ATA, add PR conflict table entry, CbCS permission table entry, clarify
impact of Write Protect on UMAP command (it fails if write protected),
add TPRZ bit (indicating unmapped LBAs read as zero), clarify VERIFY
command operation on unmapped LBA, add field to specify max number
of extents per UMAP command to the blocks VPD page, and account for
XCOPY (SPC).

2) Related documents

spc4r16 – SCSI Primary Commands – 4
sbc3r15 – SCSI Block Commands – 3
ssc3r04a – SCSI Sequential Commands – 3
08-341r0 – Thin Provisioning Management Commands

 08-149r4 1 of 25

T13/e07154r6 – ATA8-ACS2 TRIM proposal (accepted)
T13/e08137 – ATA8-ACS2 DRAT – Deterministic Read After Trim (proposal).

3) Overview
Traditional storage devices pre-allocate physical storage for every possible logical
block. There is a fixed one-to-one relationship between the physical storage and
the logical storage (every logical block is permanently mapped to a physical
block). Generally speaking, the physical capacity of the device is always the
same as the logical capacity of the device (plus spares if any). The READ
CAPACITY command reports the usable number of logical blocks to the
application client. Historically, this has been referred to simply as the capacity of
the device. These devices are fully provisioned.

Thinly provisioned devices also report the capacity in the READ CAPACITY
command, but they do not allocate (or map) their physical storage in the same
way that fully provisioned devices do. Thinly provisioned devices do not
necessarily have a permanent one-to-one relationship between the physical
storage and the logical storage. Thinly provisioned devices may report a different
capacity (in the READ CAPACITY command), than their actual physical
capacity. These devices often report a larger capacity than the actual physical
capacity for storing user data.

One typical use of storage is a creation and deletion process. Files are created,
possibly modified, and saved as new files (with the old one being deleted).
Databases are created, where records are added, updated, and deleted.

Fully provisioned storage must allocate space to retain all possible data
represented by every block described by the logical capacity (their physical
capacity must be the same (or greater) than their reported logical capacity). These
devices are always capable of receiving write data into the pre-defined and pre-
allocated space.

Thinly provisioned devices may or may not pre-allocate space to retain write data.
When a write is received, physical storage may be allocated from a pool of
available storage to retain the write data and a mapping established between the
location of that physical storage and the appropriate location within the logical
capacity (a physical to LBA mapping). As long as this allocation and mapping
process is successful, the write operates in the same way that it does on a fully
provisioned storage device. However, if all the available physical capacity has
been used, and no space can be allocated to retain the write data, the write
operation must fail. This failure must have a new unique ASCQ.

In addition, to aid application clients it is desired to notify the client before it
actually reaches the point when the failure occurs. These may return a UNIT
ATTENTION if the I/O needs to be retried to succeed. These are new types of
status conditions to return to the application client, and as such need new ASCQ

 08-149r4 2 of 25

values to define these conditions. This is needed as part of the I/O path so that
error recovery can be synchronized. Out of band techniques would not enable the
needed synchronization for error recovery. For example, the application may be
involved in notification of a storage administrator to take corrective action, or
explicitly taking corrective action of its own. To synchronize that action with the
I/O requires this be part of the I/O path.

Event Sense Key ASC/Q
Temporary lack of physical blocks
– write not done, retry required

NOT READY SPACE
ALLOCATION IN
PROCESS

Persistent lack of physical blocks –
write not done, retry will not help

DATA PROTECT SPACE
ALLOCATION
FAILED

Soft Threshold crossed – write not
done, retry required

UNIT ATTENTION PROVISIONING
SOFT THRESHOLD
REACHED (*)

(*) – a unit attention condition is also established for the initiator port associated with
every I_T nexus with the ASC/Q set to PROVISIONING SOFT THRESHOLD
REACHED.

When the host no longer needs to retain the data (such as when a host file is
deleted, or a database record is deleted), there is no specific action required by a
fully provisioned device. However, a thinly provisioned device may benefit by
knowing about this event and be able to return the physical blocks containing this
“deleted” data to a pool of available blocks. Since the data has been deleted, the
storage device need not retain the contents of those blocks. If those LBAs are
accessed by an application client (a READ is done), the storage device would be
free to return any data particular data (zeros, -1, etc). This “delete” function is
done via the UNMAP command.

Other possible use cases exist for individual disks, SSD devices, backplane RAID
controllers and external RAID controllers.

This proposal defines commands and error codes for the operation of thinly
provisioned devices. The UNMAP command includes a method to supply a list
of extent descriptors (LBA and length) to a device server.

Management functions will be presented in a separate proposal.

Existing text is shown in BLACK, new text is shown in RED, and comments (not
to be included) are shown in BLUE.

 08-149r4 3 of 25

Proposal:

Glossary entry for mapped and unmapped added – also search for other references elsewhere –
no other references.

3.1.32 logical unit reset: A condition resulting from the events defined by SAM-4 in which the
logical unit performs the logical unit reset operations described in SAM-4, this standard, and other
applicable command standards (see table 13 in 5.1).

3.1.32a mapped: A state of a LBA in which there exists a known relationship to a physical block.

3.1.33 media: Plural of medium.

3.1.34 medium: The material on which data is stored (e.g., a magnetic disk).

<…>

3.1.54 unit attention condition: A state that a logical unit (see 3.1.30) maintains while the logical
unit has asynchronous status information to report to the initiator ports associated with one or
more I_T nexuses (see 3.1.25). See SAM-4.

3.1.54a unmapped: A state of a LBA in which this standard does not define a relationship to a
physical block.

3.1.55 unrecovered error: An error for which a device server is unable to read or write a logical
block within the recovery limits specified in the Read-Write Error Recovery mode page (see 6.3.5)
and the Verify Error Recovery mode page (see 6.3.6).

4 Direct-access block device type model

4.1 Direct-access block device type model overview

SCSI devices that conform to this standard are referred to as direct-access block devices. This
includes the category of logical units commonly referred to as rigid disks and removable rigid
disks. MMC-4 is typically used by CD-ROM devices.

This standard is intended to be used in conjunction with SAM-4, SPC-4, SCC-2, SES-2, and
SMC-2.

Direct-access block devices store data for later retrieval in logical blocks. Logical blocks contain
user data, may contain protection information accessible to the application client, and may
contain additional information not normally accessible to the application client (e.g., an ECC). The
number of bytes of user data contained in each logical block is the logical block length. The
logical block length is greater than or equal to one byte and should be even. Most direct-access
block devices support a logical block length of 512 bytes and some support additional logical
block lengths (e.g., 520 or 4096 bytes). The logical block length does not include the length of
protection information and additional information, if any, that are associated with the logical block.
The logical block length is the same for all logical blocks on the medium.

Each logical block is stored at a unique LBA, which is either four bytes (i.e., a short LBA) or eight
bytes (i.e., a long LBA) in length. The LBAs on a logical unit shall begin with zero and shall be
contiguous up to the last logical block on the logical unit. An application client uses commands

 08-149r4 4 of 25

performing write operations to store logical blocks and commands performing read operations to
retrieve logical blocks. A write operation (e.g., WRITE(10), WRITE AND VERIFY(16), UMAP)
causes one or more logical blocks to be written to the medium. A read operation (e.g., READ(6))
causes one or more logical blocks to be read from the medium. A verify operation (e.g.,
VERIFY(16)) confirms that one or more logical blocks were correctly written and are able to be
read without error from the medium.

Logical blocks are stored by a process that causes localized changes or transitions within a
medium. The changes made to the medium to store the logical blocks may be volatile (i.e., not
retained through power cycles) or non-volatile (i.e., retained through power cycles). The medium
may contain vendor-specific information that is not addressable through an LBA. Such data may
include defect management data and other device management information.

<…>

4.4 Logical Blocks

Logical blocks are stored on the medium along with additional information that the device server
uses to manage storage and retrieval. The format of the additional information is defined by other
standards or is vendor-specific and is hidden from the application client during normal read, write,
and verify operations. This additional information may be used to identify the physical location of
the blocks of data, the address of the logical block, and to provide protection against the loss of
user data and protection information, if any (e.g., by containing ECC bytes).

The first LBA is zero. The last LBA is [n-1], where [n] is the number of logical blocks on the
medium accessible by the application client. The READ CAPACITY (10) parameter data (see
5.12.2 and 5.13.2) RETURNED LOGICAL BLOCK ADDRESS field indicates the value of [n-1].

LBAs are no larger than 8 bytes. Some commands support only 4-byte (i.e., short) LOGICAL BLOCK
ADDRESS fields (e.g., READ CAPACITY (10), READ (10), and WRITE (10)). If the capacity
exceeds that accessible with short LBAs, then the device server returns a capacity of
FFFF_FFFFh in response to a READ CAPACITY (10) command, indicating that:

a) the application client should enable descriptor format sense data (see SPC-4) in the
Control mode page (see SPC-4) and in any REQUEST SENSE commands (see
SPC-4) it sends; and

b) the application client should use commands with 8-byte LOGICAL BLOCK ADDRESS fields
(e.g., READ CAPACITY (16), READ (16), and WRITE (16)).

NOTE 2 - If a command with a 4-byte LOGICAL BLOCK ADDRESS field accesses logical blocks
beyond LBAs FFFF_FFFFh and fixed format sense data is used, there is no field in the sense data
large enough to report the LBA of an error (see 4.14).

If a command is received that references or attempts to access a logical block not within the
capacity of the medium, then the device server terminates the command with CHECK
CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code
set to LOGICAL BLOCK ADDRESS OUT OF RANGE. The device server may terminate the
command before processing or after the device server has transferred some or all of the data.

The number of bytes of user data contained in a logical block is the logical block length. The
parameter data returned by the device server in response to a READ CAPACITY command (see
5.12) describes the logical block length that is used on the medium. The mode parameter block
descriptor (see 6.3.2) is used by an application client to change the logical block length in direct-
access block devices that support changeable logical block lengths. The logical block length

 08-149r4 5 of 25

should be used to determine does not include the length of protection information and additional
information, if any.

The location of a logical block on the medium is not required to have a relationship to the location
of any other logical block. However, in a typical direct-access block device, the time to access a
logical block at LBA [x+1] after accessing LBA [x] is often less than the time to access some other
logical block. The time to access the logical block at LBA [x] and then the logical block at LBA
[x+1] need not be less than time to access LBA [x] and then LBA [x+100]. The READ CAPACITY
command issued with a PMI bit set to one may be useful in determining where longer access
times occur.

4.4.1 Logical Block Provisioning

4.4.1.1 Provisioning Overview

Each logical block may be mapped or unmapped. For logical blocks that are mapped, there is a
known relationship to a physical block. For logical blocks that are unmapped, this standard does
not specify the relationship between a logical block and a physical block. Figure a shows the
relationships of physical blocks to logical blocks in these two states.

UM UMPB-e PB-f PB-g PB-h

 PB-d PB-c UNMAPPED UNMAPPED

PB-a

 PB-b PB-a

PB-c PB-d UMPB-b

Figure a – Mapped and Unmapped Logical Blocks

Transitions between the mapped and unmapped state are shown in figure b.
.

TP1:
Unmapped

TP2:
Mapped

Write
operation

Unmap
operation

Figure b – Logical Bl ck State Transitions

o

 08-149r4 6 of 25

4.4.1.2 TP2: Mapped state

When in the mapped state, an association exists between the LBA and a PB. Data and
protection information read from a LBA in the mapped state shall be the data and protection
information that was most recently written to that LBA. If data has not been written to that LBA,
data and protection information read from the LBA shall be the data and protection information
that was established during initialization (see 4.7).

4.4.1.2.1 Transition TP1:Unmapped state to TP2:Mapped state

This transition shall occur when a successful write operation occurs. The transition of one LBA to
the mapped state may also cause other LBAs to also transition to the mapped state (see figure
a). A logical unit may cause a LBA to transition from unmapped to mapped for vendor specific
reasons.

4.4.1.3 TP1: Unmapped state

When in the unmapped state, no association exists between the LBA and a PB (see figure a).
Data and protection information provided during a read operation or used during a verify
operation from a LBA in the unmapped state:

a) shall not be retrieved from data that was previously written to any other LBA, and
b) shall not change until a subsequent write command to that logical block successfully

completes (i.e., all read operations to a logical block shall return the same data until a
subsequent write operation to that logical block successfully completes).

4.4.1.3.1 Transition TP2:Mapped state to TP1:Unmapped state

This transition occurs when a successful unmap operation occurs (see 4.4.1.5.2).

4.4.1.4 Full provisioning

A fully provisioned logical unit ensures that a sufficient number of physical blocks are available to
retain user data for all logical blocks within the logical unit’s reported capacity (see 5.12 - READ
CAPACITY (10) and 5.13 - READ CAPACITY(16)). Fully provisioned logical units provide a
known association between all logical blocks and physical blocks (see figures 2 and 3).

The initial state of all logical blocks on a fully provisioned logical unit is mapped. Logical Blocks
on fully provisioned logical units shall not transition out of the mapped state.

4.4.1.5 Thin Provisioning

4.4.1.5.1 Thin Provisioning Overview

A thin provisioned logical unit may report a capacity (see 5.12 - READ CAPACITY (10) and 5.13 -
READ CAPACITY (16)) larger than the number of logical blocks available to store user data. A
thin provisioned logical unit may or may not have sufficient physical blocks to retain user data
transferred as a result of a write operation and storing the write data on the medium.

The initial state of each logical block on a thin provisioned logical unit is unmapped (see figure b).

A device server that supports thin provisioning may also support a soft threshold value. The
method of setting the soft threshold value is outside the scope of this standard.

 08-149r4 7 of 25

Support for thin provisioning is indicated by the TPE bit in the READ CAPACITY(16) parameter data.
Logical units implementing thin provisioning shall:

a) support the UNMAP command (see 5.x.1),
b) set the TPE bit to one in the READ CAPACITY(16) parameter data (see 6.4.3), and
c) set the MAXIMUM UNMAP PARAMETER LIST LENGTH field in the Block Device Characteristics

VPD page (see 6.4.3).

4.4.1.5.2 UNMAP Operation

Match “extents” with existing SPC/SBC usage (extent is already in the definitions). Replace
punched w/unmapped.

An UNMAP operation transitions one or more LBA extents to the unmapped state. The protection
information (if present) contained in the blocks that are unmapped shall be set to
FFFF_FFFF_FFFF_FFFFh. More than one physical block may be affected by an unmapped
operation. The data in all other logical blocks on the medium shall be preserved.

It is not an error for a UNMAP command to operate on an LBA that has already been unmapped.

The device server may cause different transitions for each logical block in the extent list.

4.4.1.5.3 Resource Exhaustion Considerations

If a write operation is received and a temporary lack of physical block resources prevents the
logical unit from storing the write data on the medium, then the device server shall terminate the
command with the sense key set to NOT READY and the additional sense code set to SPACE
ALLOCATION IN PROCESS. The recommended application client recovery action is to issue the
command again at a later time.

If a write operation is received and a persistent lack of physical block resources prevents the
logical unit from storing the write data on the medium, then the device server shall terminate the
command with the sense key set to DATA PROTECT and the additional sense code set to
SPACE ALLOCATION FAILED. Application client recovery actions for this status are outside the
scope of this standard.

If a write operation is received that causes the number of available logical block resources to drop
below the soft threshold value, then the device server shall terminate the command and establish
a unit attention condition for the initiator port associated with every I_T nexus with the additional
sense code set to THIN PROVISIONING SOFT THRESHOLD REACHED. The recommended
application client recovery action is to issue the command again. Further recovery actions (e.g.,
administrator notification) are outside the scope of this standard.

4.4.1.5.4 Thin Provisioning and Protection Information

If protection information is enabled, the device server shall use a default value of
FFFF_FFFF_FFFF_FFFFh as the protection information for logical blocks that are in the
unmapped state.

4.5 Physical blocks

A physical block is a set of data bytes on the medium accessed by the device server as a unit. A
physical block may contain:

 08-149r4 8 of 25

a) a portion of a logical block (i.e., there are multiple physical blocks in the logical

block)(e.g., a physical block length of 512 bytes with a logical block length of 2 048
bytes);

b) a single complete logical block; or
c) more than one logical block (i.e., there are multiple logical blocks in the physical

block)(e.g., a physical block length of 4 096 bytes with a logical block length of 512
bytes).

Each physical block includes additional information not normally accessible to the application
client (e.g., an ECC) that the device server uses to manage storage and retrieval.

If the device server supports the COR_DIS bit and/or the WR_UNCOR bit in a WRITE LONG
command (see 5.35 and 5.36), then the device server shall have the capability of marking
individual logical blocks as containing pseudo uncorrectable errors with correction enabled (see
3.1.45) or with correction disabled (see 3.1.46).

Logical blocks may or may not be aligned to physical block boundaries. A mechanism for
establishing the alignment is not defined by this standard. The LOWEST ALIGNED LOGICAL BLOCK
ADDRESS field and LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT of the READ CAPACITY (16)
parameter data (see 5.13.2) may be used by an application client to determine the logical block
alignment.

 08-149r4 9 of 25

 08-149r4 10 of 25

<…>

4.7 Initialization

Direct-access block devices may require initialization prior to write, read, and verify operations.
This initialization is performed by a FORMAT UNIT command (see 5.2). Parameters related to the
format (e.g., logical block length) may be set with the MODE SELECT command prior to the
format operation. Some direct-access block devices are initialized by means not specified in this
standard. The time when the initialization occurs is vendor-specific.

 08-149r4 11 of 25

Direct-access block devices using a non-volatile medium may save the parameters and only need
to be initialized once. However, some mode parameters may need to be initialized after each
logical unit reset. A catastrophic failure of the direct-access block device may require the
FORMAT UNIT command to be issued.

Direct-access block devices that use a volatile medium may need to be initialized after each
logical unit reset prior to the processing of write, read, or verify operations. Mode parameters may
also need initialization after logical unit resets.

NOTE 3 - Mode parameter block descriptors read with the MODE SENSE command before a
FORMAT UNIT completes may contain information that may not reflect the true state of the medium.

A direct-access block device may become format corrupt after processing a MODE SELECT
command that changes parameters related to the medium format. During this time, the device
server may terminate medium access commands with CHECK CONDITION status with the sense
key set to NOT READY and the appropriate additional sense code for the condition.

Any time the parameter data to be returned by a device server in response to a READ
CAPACITY (10) command (see 5.12) or a READ CAPACITY (16) command (see 5.13) changes
(e.g., when a FORMAT UNIT command or a MODE SELECT command completes changing the
number of logical blocks, logical block length, protection information, or reference tag ownership
values, or when a vendor-specific mechanism causes a change), then the device server shall
establish a unit attention condition for the SCSI initiator port (see SAM-4) associated with each
I_T nexus, except the I_T nexus on which the command causing the change was received, with
the additional sense code set to CAPACITY DATA HAS CHANGED.

NOTE 4 - Logical units compliant with previous versions of this standard were not required to
establish a unit attention condition.

4.8 Write protection

Write protection prevents the alteration of the medium by commands issued to the device server.
Write protection is usually controlled by the user of the medium through manual intervention (e.g.,
mechanical lock) or may result from hardware controls (e.g., tabs on the media housing) or
software write protection. All sources of write protection are independent. When present, any
write protection shall cause otherwise valid commands that request alteration of the medium to be
rejected with CHECK CONDITION status with the sense key set to DATA PROTECT. Only when
all write protections are disabled shall the device server process commands that request
alteration of the medium.

Unmap requests an alteration of the medium.

Hardware write protection results when a physical attribute of the drive or medium is changed to
specify that writing shall be prohibited. Changing the state of the hardware write protection
requires physical intervention, either with the drive or the medium. If allowed by the drive,
changing the hardware write protection while the medium is mounted results in vendor-specific
behavior that may include the writing of previously buffered data (e.g., data in cache).

Software write protection results when the device server is marked as write protected by the
application client using the SWP bit in the Control mode page (see SPC-4). Software write
protection is optional. Changing the state of software write protection shall not prevent previously
accepted data (e.g., data in cache) from being written to the media.

The device server reports the status of write protection in the device server and on the medium
with the DEVICE-SPECIFIC PARAMETER field in the mode parameter header (see 6.3.1).

 08-149r4 12 of 25

<…>

4.13 RESERVATIONS

Reservation restrictions are placed on commands as a result of access qualifiers associated with
the type of reservation. See SPC-4 for a description of reservations. The details of commands
that are allowed under what types of reservations are described in table 3.

Commands from I_T nexuses holding a reservation should complete normally. Table 3 specifies
the behavior of commands from registered I_T nexuses when a registrants only or all registrants
type persistent reservation is present.

For each command, this standard or SPC-4 defines the conditions that result in the device server
completing the command with RESERVATION CONFLICT status.

 08-149r4 13 of 25

Add UNMAP command matching WRITE (6/10/12/16/32) -

 UNMAP Conflict Conflict Allowed Conflict Conflict

 <…>

4.17.2.1 Protection types overview

The content of protection information is dependent on the type of protection to which a logical unit
has been formatted.

 08-149r4 14 of 25

The type of protection supported by the logical unit shall be indicated in the SPT field in the
Extended INQUIRY Data VPD page (see SPC-4). The current protection type shall be indicated
in the P_TYPE field in the READ CAPACITY(16) command (see 5.13).

An application client may format the logical unit to a specific type of protection using the FMTPINFO
field and the PROTECTION FIELD USAGE field in the FORMAT UNIT command (see 5.2).

The medium access commands are processed in a different manner by a device server
depending on the type of protection in effect. When used in relation to types of protection, the
term “medium access commands” is defined as the following commands:

a) ORWRITE;
b) READ (10);
c) READ (12);
d) READ (16);
e) READ (32);
e.1) UNMAP;
f) VERIFY (10);
g) VERIFY (12);
h) VERIFY (16);
i) VERIFY (32);
j) WRITE (10);
k) WRITE (12);
l) WRITE (16);
m) WRITE (32);
n) WRITE AND VERIFY (10);
o) WRITE AND VERIFY (12);
p) WRITE AND VERIFY (16);
q) WRITE AND VERIFY (32);
r) WRITE SAME (10);
s) WRITE SAME (16);
t) WRITE SAME (32);
u) XDWRITE (10);
v) XDWRITE (32);
w) XDWRITEREAD (10);
x) XDWRITEREAD (32);
y) XPWRITE (10);
z) XPWRITE (32);
aa) XDREAD (10); and
ab) XDREAD (32).

The device server may allow the READ (6) command (see 5.7) and the WRITE (6) command
(see 5.26) regardless of the type of protection to which the logical unit has been formatted.

<…>

4.20 Association between commands and CbCS permission bits

Table 12 defines the Capability based Command Security (i.e., CbCS) permissions required for
each command defined in this standard to be processed by a secure CDB processor. The
permissions shown in table 12 are defined in the PERMISSIONS BIT MASK field in the capability
descriptor of a CbCS extension descriptor (see SPC-4). This standard does not define any
permission specific to block commands.

 08-149r4 15 of 25

Add UNMAP command as follows (DATA WRITE permissions required):

 UMAP v

<…>

5 Commands for direct-access block devices

5.1 Commands for direct-access block devices overview

The commands for direct-access block devices are listed in table 13. Commands with CDB or
parameter data fields that support protection information (see 4.17) or for which protection
information may be a factor in the processing of the command are indicated by the fourth (i.e,
Protection information) column.

 08-149r4 16 of 25

<…>

Add UNMAP command as follows:

 UNMAP 42h O(g) yes 5.x

(g) UNMAP is mandatory if the logical unit supports thin provisioning and optional otherwise.

<…>

5.13 READ CAPACITY (16) command

5.13.1 READ CAPACITY (16) command overview

The READ CAPACITY (16) command (see table 46) requests that the device server transfer
parameter data describing the capacity and medium format of the direct-access block device to
the data-in buffer. This command is mandatory if the logical unit supports protection information
(see 4.17) and is optional otherwise. This command is implemented as a service action of the
SERVICE ACTION IN operation code (see A.2). This command may be processed as if it has a
HEAD OF QUEUE task attribute (see 4.12).

 08-149r4 17 of 25

Table 46 – READ CAPACITY (16) command

 Bit
Byte

 7 6 5 4 3 2 1 0

0
OPERATION CODE (9Eh)

1 Reserved Service Action (10h)

2

9

(MSB)
 LOGICAL BLOCK ADDRESS
 (LSB)

10

13

(MSB)
 ALLOCATION LENGTH
 (LSB)

14 Reserved PMI

15 Control

The OPERATION CODE field and SERVICE ACTION field are defined in SPC-4 and shall be set
to the values defined in table 46.

See the READ CAPACITY (10) command (see 5.12) for definitions of the LOGICAL BLOCK
ADDRESS field and the PMI bit.

The ALLOCATION LENGTH field specifies the maximum number of bytes that the application
client has allocated for returned parameter data. An allocation length of zero indicates that no
data shall be transferred. This condition shall not be considered as an error. The device server
shall terminate transfers to the data-in buffer when the number of bytes specified by the
ALLOCATION LENGTH field have been transferred or when all available data has been
transferred, whichever is less. The contents of the parameter data shall not be altered to reflect
the truncation, if any, that results from an insufficient allocation length.

The contents of the CONTROL byte are defined in SAM-4.

5.13.2 READ CAPACITY (16) parameter data

The READ CAPACITY (16) parameter data is defined in table 47. Any time the READ CAPACITY
(16) parameter data changes, the device server should establish a unit attention condition as
described in 4.7.

 08-149r4 18 of 25

Table 47 – READ CAPACITY (16) parameter data

 Bit
Byte

 7 6 5 4 3 2 1 0

0

7

(MSB)

 RETURNED LOGICAL BLOCK ADDRESS
 (LSB)

8

11

(MSB)

 LOGICAL BLOCK LENGTH IN BYTES
 (LSB)

12

Reserved

P_TYPE

PROT_EN

13

Reserved

LOGICAL BLOCKS PER PHYSICAL BLOCK
EXPONENT

 TPE

14

Reserved

(MSB)

15

(LSB)
 LOWEST ALIGNED LOGICAL BLOCK ADDRESS

16

31

Reserved

The RETURNED LOGICAL BLOCK ADDRESS field and LOGICAL BLOCK LENGTH IN BYTES field of the READ
CAPACITY (16) parameter data are the same as the in the READ CAPACITY (10) parameter
data (see 5.12). The maximum value that shall be returned in the RETURNED LOGICAL BLOCK
ADDRESS field is FFFF_FFFF_FFFF_FFFEh.

The protection type (P_TYPE) field and the protection enable (PROT_EN) bit (see table 48) indicate
the logical unit’s current type of protection.

A TPE (thin provisioning enabled) bit set to one indicates that the logical unit implements thin
provisioning (see 4.4.1.5).

A TPE bit set to zero indicates that the logical unit implements full provisioning (see 4.4.1.4).

 08-149r4 19 of 25

Should the TPRZ bit be here as well?

The LOWEST ALIGNED LOGICAL BLOCK ADDRESS field indicates the LBA of the first logical block that
is located at the beginning of a physical block (see 4.5).

NOTE 14 - The highest LBA that the lowest aligned logical block address field supports is
3FFFh (i.e., 16383).

<…>

5. x UNMAP command

5. x. 1 UNMAP command overview

The UNMAP command shall be implemented by device servers supporting thin provisioning (see
4.4.1.5). The UNMAP command requests alteration of the medium. The UNMAP command (see
table x.1) provides information to the device server that may be used by the device server to
transition specified ranges of blocks to the unmapped state.

Table x.1 – UNMAP Command

 Bit
Byte

 7 6 5 4 3 2 1 0

0 OPERATION CODE (42h)

1 Reserved IMMED?

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 Reserved GROUP NUMBER(needed?)

7

8

(MSB)

PARAMETER LIST LENGTH

(LSB)

9 Control

The OPERATION CODE field is defined in SPC-4 shall be set to the value defined in table x.1.

See the PRE-FETCH (10) command (see 5.4) and 4.18 for the definition of the GROUP NUMBER
field. Do we need an IMMED bit or Group Number field (modify SPC to add UNMAP to the group
WRITE statistic)?

The PARAMETER LIST LENGTH field specifies the length in bytes of the UNMAP PARAMETER LIST that
shall be transferred from the application client to the device server. A PARAMETER LIST LENGTH of
zero specifies that no data shall be transferred.

The contents of the CONTROL byte are defined in SAM-4.

 08-149r4 20 of 25

5. x. 2 UNMAP parameter list

The UNMAP parameter list (see table x.3) contains an eight-byte parameter list header followed by
a UNMAP DESCRIPTOR LIST containing one or more UNMAP LBA DESCRIPTOR fields.

Table x.3 – UNMAP parameter list

 Bit
Byte

 7 6 5 4 3 2 1 0

0
1

UNMAP DESCRIPTOR LIST LENGH (n-3)

2

7

Reserved

 UNMAP DESCRIPTOR LIST

8
23

UNMAP LBA DESCRIPTOR

… …
n-15

n

UNMAP LBA DESCRIPTOR

The UNMAP DESCRIPTOR LIST LENGTH describes the length of the UNMAP DESCRIPTOR LIST.

The UNMAP DESCRIPTOR LIST contains a list of LBA extents to be operated on. The UNMAP LBA
DESCRIPTOR is described in table x.4. The LBAs in the UNMAP DESCRIPTOR LIST may contain
overlapping extents, and may be in any order. If the number of LBA descriptors exceeds the
allowed number, the command shall be terminated with CHECK CONDITION status, with the
sense key set to ILLEGAL REQUEST, and the additional sense code set to TOO MANY
SEGMENT DESCRIPTORS.

Table x.4 – UNMAP LBA DESCRIPTOR

 Bit
Byte

 7 6 5 4 3 2 1 0

0
7

(MSB)
LBA

(LSB)
8

11

(MSB)
LBA COUNT

(LSB)
12
15

RESERVED

If the LBA plus the count exceeds the capacity of the medium, it shall not be considered an error.

<…>

5.22 VERIFY (10) command

The VERIFY (10) command (see table 66) requests that the device server verify the specified
logical block(s) on the medium. Each logical block includes user data and may include protection
information, based on the VRPROTECT field and the medium format.

 08-149r4 21 of 25

Verify operations that operate on LBAs that are in the unmapped state shall be performed using
user data (see 4.4.1.3) and protection information (see 4.4.1.5.4) that would be returned if a read
operation were performed on that LBA.

<…>

6.4 Vital product data (VPD) parameters

6.4.1 VPD parameters overview

<…>

6.4.3 Block Device Characteristics VPD page

The Block Device Characteristics VPD page contains parameters indicating characteristics of the
logical unit. Table 133 defines the Block Device Characteristics VPD page.

TABLE 133 – Block Device Characteristics VPD Page

 Bit
Byte

7 6 5 4 3 2 1 0

0 PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE

1 PAGE CODE (B1h)

2 Reserved

3 PAGE LENGTH (3Ch)

4
5

MEDIUM ROTATION RATE

6 Reserved

7 Reserved NOMINAL FORM FACTOR

8 Reserved TPRZ

9
10

(MSB)
MAXIMUM UNMAP PARAMETER LIST LENGTH

(LSB)
11
63

Reserved

 08-149r4 22 of 25

The PERIPHERAL QUALIFIER field and the PERIPHERAL DEVICE TYPE field are defined in SPC-4. The
PAGE CODE field and PAGE LENGTH field are defined in SPC-4 and shall be set to the values defined
in table 133.

The MEDIUM ROTATION RATE field is defined in table 134.

The NOMINAL FORM FACTOR field indicates the nominal form factor of the device containing the
logical unit and is defined in table 135.

Should TPRZ be here or in READ CAPACITY?

A TPRZ (thin provisioning read zeros) bit set to one indicates that the data returned for a read
operation of a LBA that is in the unmapped state will return zeros.

A TPRZ bit set to zero indicates that the data returned for a read operation of a LBA that is in the
unmapped state is not defined by this standard.

The MAXIMUM UNMAP PARAMETER LIST LENGTH field indicates the maximum number of bytes that
may be sent to the device server in the UNMAP PARAMETER LIST (see 5.x.2). If the logical unit
implements thin provisioning, then this value shall be greater than or equal to 24.

<…>

 08-149r4 23 of 25

SPC4r16 Changes

6.3 EXTENDED COPY command

6.3.1 EXTENDED COPY command introduction

The EXTENDED COPY command (see table 99) provides a means to copy data from one set of
logical units to another set of logical units or to the same set of logical units. The entity within a
SCSI device that receives and performs the EXTENDED COPY command is called the copy
manager. The copy manager is responsible for copying data from the source devices to the
destination devices. The copy source and destination devices are logical units that may reside in
different SCSI devices or the same SCSI device. It is possible that the copy source device, copy
destination device, and the copy manager are the same logical unit.

<…>

6.3.3 Errors detected during processing of segment descriptors

Errors may occur after the copy manager has begun processing segment descriptors. These
errors include invalid parameters in segment descriptors, invalid segment descriptors, unavailable
targets referenced by target descriptors, inability of the copy manager to continue operating, and
errors reported by source or destination copy target devices. If the copy manager receives
CHECK CONDITION status from one of the copy target devices, it shall recover the sense data
associated with the exception condition and clear any ACA condition associated with the CHECK
CONDITION status.

If it is not possible to complete processing of a segment because the copy manager is unable to
establish communications with a copy target device, because the copy target device does not
respond to INQUIRY, or because the data returned in response to INQUIRY indicates an
unsupported logical unit, then the EXTENDED COPY command shall be terminated with CHECK
CONDITION status, with the sense key set to COPY ABORTED, and the additional sense code
set to COPY TARGET DEVICE NOT REACHABLE.

If it is not possible to complete processing of a segment because the data returned in response to
an INQUIRY command indicates a device type that does not match the type in the target
descriptor, then the EXTENDED COPY command shall be terminated with CHECK CONDITION
status, with the sense key set to COPY ABORTED, and the additional sense code set to
INCORRECT COPY TARGET DEVICE TYPE.

If the copy manager has issued a command other than INQUIRY to a copy target device while
processing an EXTENDED COPY command and the copy target device either fails to respond
with status or responds with status other than RECOVERED ERROR, or one listed in table Q,
then the condition shall be considered a copy target device command failure. In response to a
copy target device command failure the EXTENDED COPY command shall be terminated with
CHECK CONDITION status, with the sense key set to COPY ABORTED, and the additional
sense code set to THIRD PARTY DEVICE FAILURE.

If a copy target device completes a command from the copy manager with a status listed in table
Q, then the copy manager shall either retry the command or terminate the EXTENDED COPY
command as a copy target device command failure. If the copy target device completes a
command from the copy manager with a status of CHECK CONDITION listed in table Q, then the
copy manager should retry the command (see SBC).

 08-149r4 24 of 25

Table Q – Special Copy Target Device Responses

Status Sense Key Additional Sense Code

BUSY n/a n/a

TASK SET FULL n/a n/a

ACA ACTIVE n/a n/a

RESERVATION CONFLICT n/a n/a

CHECK CONDITION NOT READY SPACE ALLOCATION IN PROCESS

CHECK CONDITION UNIT ATTENTION THIN PROVISIONING SOFT
THRESHOLD REACHED

NOTES
23 The copy manager is assumed to employ a vendor specific retry policy that minimizes time

consuming and/or fruitless repetition of retries.
24 RESERVATION CONFLICT status is listed only to give the copy manager leeway in multi-port

cases. The copy manager may have multiple initiator ports that are capable of reaching a copy
target device, and a persistent reservation may restrict access to a single I_T nexus. The copy
manager may need to try access from multiple initiator ports to find the correct I_T nexus.

If a copy target device responds to an input or output operation with a GOOD status but less data
than expected is transferred, then the EXTENDED COPY command shall be terminated with
CHECK CONDITION status, with the sense key set to COPY ABORTED, and the additional
sense code set to COPY TARGET DEVICE DATA UNDERRUN. If an overrun is detected, then
the EXTENDED COPY command shall be terminated with CHECK CONDITION status, with the
sense key set to COPY ABORTED, and the additional sense code set to COPY TARGET
DEVICE DATA OVERRUN.

<…>

 08-149r4 25 of 25

	4.4 Logical Blocks
	4.4.1 Logical Block Provisioning
	4.4.1.1 Provisioning Overview
	4.4.1.2 TP2: Mapped state
	4.4.1.3 TP1: Unmapped state
	4.4.1.4 Full provisioning
	4.4.1.5 Thin Provisioning

