
T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 1 of 17

From: Bob Sheffield – LSI Corporation
To: T10 Committee
Subject: T10/08-044r3 SBC-3 Set Pseudo Format Command
Date: 28 July 2008

Related Documents: SBC-3r15

Revision History:
Revision Date Description

r0 1/3/08 Initial version
r1 5/5/08 Clarify justification (4K initiator,…) and add per-command controls
r2 6/10/08 Propose SET PSEUDO FORMAT command
r3 7/28/08 Incorporate recommendations from July 2008 CAP WG:

o Elaborate on model section to detail DIF modes using table
o Provide examples including physical block alignment
o Clarify that SET PSEUDO FORMAT doesn’t require reformatting media
o Make PFID field two bits with only a value of 01b defined
o Clarify the LOGCIAL BLOCK LENGTH IN BYTES field of READ

CAPACITY (16) data returns the value pertaining to the specified
pseudo logical block format as specified in a prior SET PSEUDO
FORMAT command

o Consider: a flag in the FORMAT UNIT command to tell the device server
the intent is to issue a subsequent SET PSEUDO FORMAT command

o Change service action to a MAINTENANCE OUT service action
o Clarify that read/write commands specifying a value in the PFID field

that has not been established by a prior SET PSEUDO FORMAT
command shall return CHECK CONDITION status,…

o Define a LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT field
in the SET PSEUDO FORMAT command to mean to disable the
specified pseudo format

o Misc. corrections and clarifications

Overview
There has been recent momentum in the storage industry to support larger logical blocks. This
offers the opportunity for improved disk reliability and/or other benefits for systems that use larger
logical blocks. Interoperability with existing applications that largely depend on logical blocks
having a size of 512 bytes prompts the need for storage virtualization solutions that emulate 512-
byte logical blocks for the virtual logical units they expose to applications, but use disk drives
formatted with larger logical blocks (e.g., 4096 bytes) as the raw storage for the virtual logical
units.

With the move to larger disk block lengths, applications that access data using matching larger
block lengths (rather than depending upon emulation) may access data more efficiently by
avoiding latencies caused by read-modify-write operations in the emulation layer. So, it stands to
reason that both traditional applications that access media using 512-byte blocks and new
applications that access media using larger blocks (e.g., 4K-byte) will coexist, perhaps in the
same platforms (e.g., virtualized servers).

Likewise, there will be a gradual transition from systems that use 512-byte formatted disks to
larger block length media, and the larger block length media may include both media formatted to
a larger logical block length as well as media formatted to a larger physical block length but that
emulates 512-byte logical blocks.

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 2 of 17

This leads to a complex intermix of application expected block lengths and disk supported block
lengths that, if not appropriately addressed in SCSI standards, leads to a variety of non-
interoperability problems, particularly when protection information (PI) is used. The table below
lists the relevant combinations, and whether interoperability holds for PI-enabled
implementations.

Disk block length Case Application client
block length Logical Physical Comment

1 Ta T T Traditional usage
2 Lb T T
3 T L T

Not interoperable – mismatched PI field
locations and intervals between app and disk.

4 L L T Interoperable, but not defined in SCSI
5 T T L Emulation of traditional block length
6 L T L
7 T L L

Not interoperable – mismatched PI field
locations and intervals between app and disk.

8 L L L Complete agreement on larger block lengths
a T: Traditional block length (i.e., 512-bytes)
b L: Large block length (e.g., 4Kbyte – but could be something else like 2K or 8K)

When protection information is not used, a block virtualization layer may apply a reasonably
straightforward mapping to emulate application block lengths that do not match the logical block
lengths provided by the disks. This poses an insurmountable challenge, however, when
protection information is involved. The reason is that the application expects PI fields to appear at
intervals the disk is incapable of providing without violating SBC-3 (i.e., the requirement that PI
fields must appear at logical block boundaries).

Cases 1 and 8 are interoperable through traditional usage of SPC-3 where the application logical
block length, device logical block length, and the physical block length are all in agreement.

The existing definitions for the LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT and LOWEST
ALIGNED LOGICAL BLOCK ADDRESS fields in READ CAPACITY (16) parameter data provide
interoperability for case 5, albeit with some potential performance impacts due to misalignment of
application accesses with physical block boundaries. Interoperability for the remaining 5 cases is
not addressed.

This proposal provides for interoperability for cases 2 and 6 listed above by defining compatible
DIF usage when the desired application logical block length is larger (by a factor of 2n) than the
formatted logical block length of the block storage device. Cases 3 and 7 remain non-
interoperable, but these are not cases of general interest. Case 4 is also not of general interest as
the trend is to migrate towards larger physical blocks while providing compatibility with smaller
logical blocks.

In virtualized server and external storage environments, block storage devices are likely to
encounter the need to support an intermix of applications that require both traditional 512-byte
access and larger block length access, simultaneously.

Case 6 is of particular interest because it provides a way to align logical blocks for applications
that require larger logical blocks with corresponding larger physical blocks, without subverting
legacy applications that rely on the 512+8 block-size emulation mode of the block storage device.

A solution to this problem should accommodate future increases in block length, and should
provide the framework to establish interoperability with any application, regardless of the block
length expected by the application.

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 3 of 17

The pseudo-format SCSI protocol extensions in this proposal define the framework to allow a disk
to provide interoperability with different applications needing different block lengths, at the same
time, regardless of the physical and logical block lengths provided by the disk.

This proposal defines a method by which a disk may support, in addition to its native logical block
length, one or more pseudo-formats providing larger block lengths for pseudo blocks on media.
Applications may specify, on a per command basis, the pseudo-format that matches the
application block format required. The SET PSEUDO FORMAT command specifies one or more
pseudo-formats to be used to process read and write commands that may (or may not) be
supported by the drive. The SET PSEUDO FORMAT command specifies (as a power of two) the
number of disk logical blocks that correspond to a pseudo-block, and whether protection
information is appended at logical block boundaries or pseudo logical block boundaries.

This document also proposes using two currently reserved bits in the CDBs for read and write
type commands, referred to as the pseudo-format ID or PFID field, in the same byte as the GROUP
NUMBER field, to specify a pseudo-format to be used for processing that command.

The pseudo format defined in this proposal allows the application of protection information to
coincide either with the pseudo logical block boundaries as specified in the CDB, or with the
underlying logical block boundaries, depending on the value of the APIPB bit in the SET PSEUDO
FORMAT command.

When the APIPB bit is set to zero, protection information fields align with logical block boundaries
with the contents set as follows:
o the value of the logical block application tag is not specified in this standard;
o the value in the logical block guard field is the CRC calculated over the user data contained

within the logical block;
o for type-1 data protection, the value in the logical block reference tag for each logical block is

computed as LBA * 2n + m + k, truncated to the least significant four bytes, where the LBA is
the LBA of the pseudo block containing the logical block, n is the value of the LOGICAL BLOCKS
PER PSEUDO BLOCK EXPONENT field established for the specified PFID in a previous SET
PSEUDO FORMAT command, m is the offset (i.e., in logical blocks) of the logical block from
the logical block that aligns with the beginning of the pseudo logical block, and k is the value
of the LOWEST ALIGNED LOGICAL BLOCK ADDRESS field returned in READ CAPACITY (16) data;
and

o for type-2 data protection, the value in the logical block reference tag for each logical block is
computed as x * 2n + m, truncated to the least significant four bytes, where the x is the value
of the EXPECTED LOGICAL BLOCK REFERENCE TAG field provided in the read/write CDB, n is the
value of the LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT field established for the specified
PFID in a previous SET PSEUDO FORMAT command, and m is the offset (in logical blocks)
of the logical block from the logical block that aligns with the beginning of the first pseudo
logical block transferred by the command.

When the APIPB bit is set to one, protection information fields align with pseudo logical block
boundaries with the contents set as follows:
o the value of the logical block application tag is not specified in this standard;
o the value in the logical block guard field is the CRC calculated over the user data contained

within the pseudo logical block;
o for type-1 data protection, the value in the logical block reference tag for each pseudo logical

block is LBA of the pseudo logical block (i.e., as specified in the CDB) truncated to the least
significant four bytes; and

o for type-2 data protection, the value in the logical block reference tag for each pseudo logical
block is the value of the EXPECTED LOGICAL BLOCK REFERENCE TAG field + m where m is the
offset (i.e., in pseudo logical blocks) of the pseudo logical block from the first pseudo logical
block transferred by the command.

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 4 of 17

This addresses both the need to provide raw block capacity for virtual devices emulating legacy
block sizes, and also avoids diluting the effectiveness of the CRC field as logical block sizes
increase.

Figure 1 – Example mappings with the APIPB bit set to one

In the above figure, each X represents an instance of protection information that is present on the
media, but is neither transferred to or from the application client nor checked by the device server
while processing a read or write command with the PFID field set specifying the corresponding
pseudo-format. It is possible to read logical blocks without specifying use of a pseudo-format
even though those blocks were previously written using a pseudo-format. Protection information
fields shown with an X above are written with values that will cause protection information errors if
the blocks are subsequently read using a command that specifies a different value in the PFID
field.

Figure 2 – Example mappings with the APIPB bit set to zero

EDITOR’S NOTE: One requested change from revison-2 of this document that hasn’t yet
been addressed is the request to represent protection information usage with pseudo
blocks as a new type of protection information. The author of this proposal is still working
on the appropriate text.

EDITOR’S NOTE: Need to define service action 0Ch of the MAINTENANCE OUT (A4h)
command as the SET PSEUDO FORMAT command in SPC-4.

2048+32-byte pseudo logical block

4096+64-byte pseudo logical block (PI fields distributed every 512 bytes)

2048+32-byte pseudo logical block

512 512 512 512 512 512 512 512 8 8 8 8 8 8 8 8

1024+16 B pseudoLB 1024+16 B pseudoLB 1024+16 B pseudoLB 1024+16 B pseudoLB

512 512 512 512 512 512 512 512 8 8 8 8 8 8 8 8

512 512 512 512 512 512 512 512 8 8 8 8 8 8 8 8

512 512 512 512 512 512 512 512 X X X 8 X X X 8

2048-byte pseudo logical block 8

4096-byte pseudo logical block 8

8 2048-byte pseudo logical block

512 512 512 512 512 512 512 512 X X X X X X X 8

512 512 512 512 512 512 512 512 X 8 X 8 X 8 X 8

1024-byte pseudoLB 81024-byte pesudoLB8 1024-byte pseudoLB 81024-byte pseudoLB8

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 5 of 17

Suggested Changes to SBC-3
3.1.40 protection information: Fields appended to each logical block or pseudo logical block
that contain a cyclic redundancy check (CRC), an application tag, and a reference tag. See 4.17.

3.1.xx pseudo logical block: A unit of user data (see 3.1.50) composed of two or more adjacent
logical blocks (see 3.1.26) that may be protected by one or more instances of protection
information (see 3.1.40).

3.1.xx pseudo logical block address (PLBA): The value used to reference a pseudo logical
block (see 3.1.xx).

Add the following to the list of symbols and abbreviations:

PLBA pseudo logical block address (see 3.1.xx)

Modify subclause 4.14.1 Error reporting overview to specify reporting the PLBA
instead of the LBA in the INFORMATION field when applicable.

When a command attempts to access or reference an invalid LBA, the first invalid LBA shall be
returned in the INFORMATION field of the sense data (see SPC-4).

When a command attempts to access or reference an invalid PLBA, the first invalid PLBA shall
be returned in the INFORMATION field of the sense data.

When a recovered read error is reported for a command with the PFID field set to zero, the
INFORMATION field of the sense data shall contain the LBA of the last logical block accessed by the
command on which a recovered read error occurred.

When a recovered read error is reported for a command with the PFID field set to a non-zero
value, the INFORMATION field of the sense data shall contain the PLBA of the last pseudo logical
block accessed by the command on which a recovered read error occurred.

When an unrecovered error is reported for a command with the PFID field set to zero, the
INFORMATION field of the sense data shall contain the LBA of the logical block on which the
unrecovered error occurred.

When an unrecovered error is reported for a command with the PFID field set to a non-zero value,
the INFORMATION field of the sense data shall contain the PLBA of the pseudo logical block on
which the unrecovered error occurred.

Add subclause 4.6 to describe pseudo logical blocks

4.6 Pseudo logical blocks
An application client may read and write logical blocks using a pseudo logical block address
(PLBA) by specifying a non-zero value in the PFID field of the read or write CDB. A PLBA
references a pseudo logical block (see 3.1.xx) that is composed of two or more adjacent logical
blocks, as specified by the SET PSEUDO FORMAT command for the specified pseudo format ID.
The LBA of the first logical block in the pseudo logical block referenced by a PLBA value of zero
shall be the LBA of the logical block indicated in the LOWEST ALIGNED LOGICAL BLOCK ADDRESS field
returned in the READ CAPACITY (16) parameter data. The LBA of the first logical block in the
next pseudo logical block shall be the LBA of the first logical block in the previous pseudo logical
block plus 2n, where n is the value of the LOGICAL BLOCKS PER PSEUDO LOGICAL BLOCK EXPONENT
field specified in the SET PEDUDO FORMAT CDB with the same value in the PFID field.

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 6 of 17

The pattern continues until the number of remaining LBAs, as indicated by the returned LOGICAL
BLOCK ADDRESS field in READ CAPACITY (16) parameter data, is less than 2n.

A non-zero value in the PFID field of a read or write CDB specifies that the application client is
specifying a pseudo logical block address in the LOGICAL BLOCK ADDRESS FIELD. If a non-zero
value is specified in the PFID field, the field in the CDB specifying the number of logical blocks to
process (e.g., the TRANSFER LENGTH field or the NUMBER OF LOGICAL BLOCKS field) shall specify the
number of pseudo logical blocks to be processed by the command.

If the device server does not support pseudo block addressing and the PFID field contains a value
other than zero, the command shall be terminated with CHECK CONDITION status with the
sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN
CDB.

If a read or write command is received with the PFID field set to a value other than zero and the
device server has not successfully processed a SET PSEUDO FORMAT command to establish
the specified pseudo format, the command shall be terminated with CHECK CONDITION status
with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID
FIELD IN CDB.

The relationship between the LBA of a logical block contained within a pseudo logical block and
the PLBA of the pseudo logical block is:

 LBA = 2n * PLBA + m + k,

where n is the value of the LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT field established for the
specified PFID in a previous SET PSEUDO FORMAT command, m is the offset (i.e., in logical
blocks) of the logical block from the logical block that aligns with the beginning of the pseudo
logical block, and k is the value of the LOWEST ALIGNED LOGICAL BLOCK ADDRESS field returned in
READ CAPACITY (16) data.

Figure-x shows an example of the relative alignment of logical blocks and the corresponding
pseudo logical blocks with the LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT field set to 3 and the
LOWEST ALIGNED LOGICAL BLOCK ADDRESS field set to 7.

Figure x – Example of correspondence between LBA and PLBA

Assuming the device server has successfully processed a SET PSEUDO FORMAT command
with the PFID field set to 01b, and the LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT field set to 3;
and the READ CAPACITY (16) command returns a value of 7 in the LOWEST ALIGNED LOGICAL
BLOCK ADDRESS field, the device server would return the data shown in figure-x in response to
either of two READ (12) commands specified as follows:

a) the PFID field set to 00b, the logical block address field set to 15, and the transfer count
field set to 8; or

b) the PFID field set to 01b, the logical block address field set to 1, and the transfer count
field set to 1.

Protection information may be present either at logical block boundaries or at pseudo logical
block boundaries (see 4.17.3).

PLBA = 1

LBA = 15 LBA = 16 LBA = 17 LBA = 18 LBA = 19 LBA = 20 LBA = 21 LBA = 22

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 7 of 17

If the value returned by the device server in the LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT
field of the READ CAPACITY (16) data is the same value as the LOGICAL BLOCKS PER PSEUDO
BLOCK EXPONENT field specified in the SET PSEUDO FORMAT command, then the pseudo logical
block boundaries shall align with physical block boundaries.

4.17.3 Protection information format
Table 7 defines the placement format of protection information in a logical block or pseudo logical
block.

Table a – user data and protection information format
Byte/Bit 7 6 5 4 3 2 1 0

0
n - 1

USER DATA

n
n + 1 LOGICAL BLOCK GUARD
n + 2
n + 3 LOGICAL BLOCK APPLICATION TAG
n + 4
n + 7 LOGICAL BLOCK REFERENCE TAG

The USER DATA field shall contain user data. The contents of the USER DATA field shall be used to
generate and check the CRC contained in the LOGICAL BLOCK GUARD field.

The LOGICAL BLOCK GUARD field contains the CRC (see 4.17.4) of the contents of the USER DATA
field.

The LOGICAL BLOCK APPLICATION TAG field is set by the application client. If the device server
detects a:

a) LOGICAL BLOCK APPLICATION TAG field set to FFFFh and type 1 protection (see 4.17.2.3) or
type 2 protection (see 4.17.2.4) is enabled; or

b) LOGICAL BLOCK APPLICATION TAG field set to FFFFh, LOGICAL BLOCK REFERENCE TAG field
set to FFFF FFFFh, and type 3 protection (see 4.17.2.5) is enabled,

then the device server disables checking of all protection information for the logical block when
reading from the medium. Otherwise, the contents of the logical block application tag are not
defined by this standard.

The LOGICAL BLOCK APPLICATION TAG field may be modified by a device server if the ATO bit is set
to zero in the Control mode page (see SPC-4).

The contents of the LOGICAL BLOCK APPLICATION TAG field shall not be used to generate or check
the CRC contained in the LOGICAL BLOCK GUARD field.

The LOGICAL BLOCK REFERENCE TAG field of the first logical block or pseudo logical block in the
data-in buffer and/or data-out buffer shall contain the value specified in table 8.

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 8 of 17

Table 8 – Content of the LOGICAL BLOCK REFERENCE TAG field of the first logical block or
pseudo logical block in the data-in buffer and/or data-out buffer

Protection Type PFID Content of the LOGICAL BLOCK REFERENCE TAG field of the first
logical block or pseudo logical block in the data-in buffer and/or
data-out buffer

= 0 The least significant four bytes of the LBA contained in the LOGICAL
BLOCK ADDRESS field of the command.

Type-1 protection
(see 4.17.2.3)

≠ 0 See 4.17.4
= 0 The value in the EXPECTED INITIAL LOGICAL BLOCK REFERENCE TAG field

of the command.
Type-2 protection

(see 4.17.2.4)
≠ 0 See 4.17.4

Type-3 protection
(see 4.17.2.5)

n/a Not defined in this standard.

The LOGICAL BLOCK REFERENCE TAG field subsequent logical blocks in the data-in buffer and/or
data-out buffer shall be set as specified in table 9.

Table 9 – Setting of the LOGICAL BLOCK REFERENCE TAG field of the subsequent logical block

in the data-in buffer and/or data-out buffer
Protection Type PFID The content of the LOGICAL BLOCK REFERENCE TAG field of the

subsequent logical block or pseudo logical block in the data-in buffer
and/or data-out buffer

= 0 The logical block reference tag of the previous logical block plus one. Type-1 protection
(see 4.17.2.3) and
Type-2 protection

(see 4.17.2.4)

≠ 0 See 4.17.4

Type-3 protection
(see 4.17.2.5)

n/a Not defined in this standard.

The contents of the LOGICAL BLOCK REFERENCE TAG field shall not be used to generate or check
the CRC contained in the LOGICAL BLOCK GUARD field.

Add subclause 4.17.4 to describe application of protection information with
pseudo logical blocks

4.17.4 Protection information with pseudo logical blocks

4.17.4.1 Overview
For commands specifying a non-zero value in the PFID field, the eight bytes of protection
information are appended either to each pseudo logical block transferred, or to each logical block
within each pseudo logical block, depending on the setting of the APIPB bit for the pseudo format
specified in the PFID field. If the device server supports the SET PSEUDO FORMAT command,
when processing a FORMAT UNIT command with protection information enabled, the media shall
be formatted to accommodate 2n x 8 bytes of protection information per pseudo logical block,
where n is the value of the NUMBER OF LOGICAL BLOCKS IN A PSEUDO LOGICAL BLOCK EXPONENT field
specified in the SET PEDUDO FORMAT CDB (i.e., space is provided on media for one instance
of protection information for each logical block contained within the pseudo logical block).

Note-x: Providing space for one 8-byte protection information field per logical block is sufficient to
meet this requirement since the length of a pseudo logical block is always a multiple of the length of
a logical block. Therefore, a FORMAT UNIT command may be processed prior to processing a
SET PSEUDO FORMAT command.

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 9 of 17

4.17.4.2 Protection information alignment with pseudo logical block
Alignment of protection information with pseudo block boundaries is specified using a SET
PSEUDO FORMAT command with the APIPB bit set to one for the specified pseudo format. The
last protection information field available on media contained within a pseudo logical block shall
contain protection information that pertains to the pseudo logical block.

The LOGICAL BLOCK GUARD FIELD shall contain the CRC calculated over all user data contained
within the pseudo logical block.

The LOGICAL BLOCK REFERENCE TAG field of the first logical block or pseudo logical block in the
data-in buffer and/or data-out buffer shall contain the value specified in table 8.

Table 10 – Content of the LOGICAL BLOCK REFERENCE TAG field of the first pseudo logical
block in the data-in buffer and/or data-out buffer

Protection Type Content of the LOGICAL BLOCK REFERENCE TAG field of the first
pseudo logical block in the data-in buffer and/or data-out buffer
The least significant four bytes of the PLBA contained in the LOGICAL
BLOCK ADDRESS field of the command.

Type-1 protection
(see 4.17.2.3)

Type-2 protection

(see 4.17.2.4)
The value in the EXPECTED INITIAL LOGICAL BLOCK REFERENCE TAG field
of the command.

Type-3 protection
(see 4.17.2.5)

Not defined in this standard.

The LOGICAL BLOCK REFERENCE TAG field subsequent logical blocks in the data-in buffer and/or
data-out buffer shall be set as specified in table 9.

Table 11 – Setting of the LOGICAL BLOCK REFERENCE TAG field of the subsequent pseudo
logical block in the data-in buffer and/or data-out buffer

Protection Type The content of the LOGICAL BLOCK REFERENCE TAG field of the subsequent
pseudo logical block in the data-in buffer and/or data-out buffer

Type-1 protection
(see 4.17.2.3) and
Type-2 protection

(see 4.17.2.4)

The logical block reference tag of the previous pseudo logical block plus one.

Type-3 protection
(see 4.17.2.5)

Not defined in this standard.

When a command specifying a nonzero value in the PFID field causes data to be written to media,
the unused protection information fields for each logical block shall be written as follows:

a) the value stored in the LOGICAL BLOCK GUARD field shall be the one’s complement of the
CRC calculated over the data in the corresponding logical block,

b) the value stored in the LOGICAL BLOCK REFERENCE TAG field shall be the one’s complement
of the least significant four bytes of the LBA of the logical block corresponding to that
protection information field, and

c) the value stored in the LOGICAL BLOCK APPLICATION TAG field shall be zero.

When a command reads data from media with the PFID field set to a value that is different from
the value used to write the data to media (i.e., the read uses a different pseudo block format than
the previous write to the same area), if protection information checking is enabled, the device
server detects an error in the protection information and reports CHECK condition status with the
sense key set to ABORTED COMMAND and the additional sense code set to LOGICAL BLOCK
GUARD CHECK FAILED.

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 10 of 17

4.17.4.3 Protection information alignment with logical block
If the APIPB bit is set to zero for a specified non-zero pseudo format ID, the read or write CDB
shall specify data transferred as a range of pseudo logical blocks (i.e., the LOGICAL BLOCK
ADDRESS field specifies the starting PLBA and the TRANSFER LENGTH field specifies a count of
pseudo logical blocks). However, valid protection information shall be present for each logical
block contained within each pseudo block. The contents of the protection information field for
each logical block shall be set as follows:
a) the value of the logical block application tag is not specified in this standard;
b) the value in the logical block guard field is the CRC calculated over the user data contained

within the logical block;
c) for type-1 data protection, the value in the logical block reference tag for each logical block is

computed as PLBA * 2n + m + k, truncated to the least significant four bytes, where the LBA
is the PLBA of the pseudo block containing the logical block, n is the value of the LOGICAL
BLOCKS PER PSEUDO BLOCK EXPONENT field established for the specified PFID in a previous
SET PSEUDO FORMAT command, m is the offset (i.e., in logical blocks) of the logical block
from the logical block that aligns with the beginning of the pseudo logical block, and k is the
value of the LOWEST ALIGNED LOGICAL BLOCK ADDRESS field returned in READ CAPACITY (16)
data; and

d) for type-2 data protection, the value in the logical block reference tag for each logical block is
computed as x * 2n + m, truncated to the least significant four bytes, where the x is the value
of the EXPECTED LOGICAL BLOCK REFERENCE TAG field provided in the read/write CDB, n is the
value of the LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT field established for the specified
PFID in a previous SET PSEUDO FORMAT command, and m is the offset (in logical blocks)
of the logical block from the logical block that aligns with the beginning of the first pseudo
logical block transferred by the command.

4.17.4.4 Protection information and pseudo logical block alignment examples

Figure x shows examples of protection information alignment within pseudo logical blocks when
the APIPB bit for the corresponding pseudo format is set to zero.

Figure x – Example protection information mappings with the APIPB bit set to zero

Cells shown with a value of 8 indicate 8 bytes of valid protection information transferred and/or
checked in the range of data specified by the read or write command specifying use of a pseudo
format.

Logical Blocks

Pseudo LBs

Logical Blocks

Pseudo LBs

Logical Blocks

Pseudo LBs

2048+32-byte pseudo logical block

4096+64-byte pseudo logical block (PI fields distributed every 512 bytes)

2048+32-byte pseudo logical block

512 512 512 512 512 512 512 5128 8 8 8 8 8 8 8

1024+16 B pseudoLB 1024+16 B pseudoLB 1024+16 B pseudoLB 1024+16 B pseudoLB

512 512 512 512 512 512 512 5128 8 8 8 8 8 8 8

512 512 512 512 512 512 512 5128 8 8 8 8 8 8 8

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 11 of 17

Figure y shows examples of protection information alignment within pseudo logical blocks when
the APIPB bit for the corresponding pseudo format is set to one.

Figure 3 – Example protection information mappings with the APIPB bit set to one

Cells shown with an X indicate represents an instance of protection information that is present on
the media, but is neither transferred to or from the application client nor checked by the device
server while processing a read or write command with the PFID field set specifying the
corresponding pseudo-format. It is possible to read logical blocks without specifying use of a
pseudo-format even though those blocks were previously written using a pseudo-format.
Protection information fields shown with an X above are written with values that will cause
protection information errors if the blocks are subsequently read using a command that specifies
a different value in the PFID field (see 4.17.4.2).

Modify the FORMAT UNIT command as follows

5.2 FORMAT UNIT command

5.2.1 FORMAT UNIT command overview

The FORMAT UNIT command (see table 15) requests that the device server format the medium
into application client accessible logical blocks as specified in the number of logical blocks and
logical block length values received in the last mode parameter block descriptor (see 6.3.2) in a
MODE SELECT command (see SPC-4). In addition, the device server may certify the medium
and create control structures for the management of the medium and defects. The degree that
the medium is altered by this command is vendor-specific.

If a device server receives a FORMAT UNIT command before receiving a MODE SELECT
command with a mode parameter block descriptor, then the device server shall use the number
of logical blocks and logical block length at which the logical unit is currently formatted (i.e., no
change is made to the number of logical blocks and the logical block length of the logical unit
during the format operation).

If any deferred downloaded code has been received as a result of a WRITE BUFFER command
(see SPC-4), then that deferred downloaded code shall replace the current operational code.

Any previously established pseudo formats (see 5.x.x) shall be invalidated by processing a
FORMAT UNIT command.

The remainder of the FORMAT UNIT command is unchanged

Logical Blocks

Pseudo LBs

Logical Blocks

Pseudo LBs

Logical Blocks

Pseudo LBs

512 512 512 512 512 512 512 512X X X 8 X X X 8

2048-byte pseudo logical block 8

4096-byte pseudo logical block 8

8 2048-byte pseudo logical block

512 512 512 512 512 512 512 512X X X X X X X 8

512 512 512 512 512 512 512 512X 8 X 8 X 8 X 8

1024-byte pseudoLB 81024-byte pesudoLB8 1024-byte pseudoLB 81024-byte pseudoLB8

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 12 of 17

Modify the READ CAPACITY (16) command as follows

5.13 READ CAPACITY (16) command

5.13.1 READ CAPAICTY (16) command overview

The READ CAPACITY (16) command (see table 46) requests that the device server transfer
parameter data describing the capacity and medium format of the direct-access block device to
the data-in buffer. This command is mandatory if the logical unit supports protection information
(see 4.17) and is optional otherwise. This command is implemented as a service action of the
SERVICE ACTION IN operation code (see A.2). This command may be processed as if it has a
HEAD OF QUEUE task attribute (see 4.12).

Table 46 – READ CAPACITY (16) command
Byte/Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE (9Eh)
1 Reserved SERVICE ACTION (10h)
2 (MSB)
9 LOGICAL BLOCK ADDRESS (LSB)
10 (MSB)
13 ALLOCATION LENGTH (LSB)
14 Reserved PFID Reserved PMI
15 CONTROL

The OPERATION CODE field and SERVICE ACTION field are defined in SPC-4 and shall be set to the
values defined in table 46.

See the READ CAPACITY (10) command (see 5.12) for definitions of the LOGICAL BLOCK ADDRESS
field and the PMI bit. If the PFID field is not set to zero, the LOGICAL BLOCK ADDRESS FIELD specifies
the PLBA of a pseudo block (see).

The ALLOCATION LENGTH field specifies the maximum number of bytes that the application client
has allocated for returned parameter data. An allocation length of zero indicates that no data shall
be transferred. This condition shall not be considered as an error. The device server shall
terminate transfers to the data-in buffer when the number of bytes specified by the ALLOCATION
LENGTH field have been transferred or when all available data has been transferred, whichever is
less. The contents of the parameter data shall not be altered to reflect the truncation, if any, that
results from an insufficient allocation length.

The contents of the CONTROL byte are defined in SAM-4.

A value of zero in the PFID field requests information returned in the READ CAPACITY (16)
parameter data that pertains to the logical block format of the media. A non-zero value in the PFID
field requests information returned in the READ CAPACITY (16) parameter data that pertains to
the specified pseudo logical block format as specified in a previous SET PSEUDO FORMAT
command. The SET PSEUDO FORMAT command (see 5.x.x) defines the encoding of the PFID
field.

5.13.2 READ CAPACITY (16) parameter data

The READ CAPACITY (16) parameter data is defined in table 47. Any time the READ CAPACITY
(16) parameter data changes, the device server should establish a unit attention condition as
described in 4.7.

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 13 of 17

Table 46 – READ CAPACITY (16) parameter data

Byte/Bit 7 6 5 4 3 2 1 0
0 (MSB)
7

RETURNED LOGICAL BLOCK ADDRESS
(LSB)

8 (MSB)
11 LOGICAL BLOCK LENGTH IN BYTES (LSB)
12 Reserved P_TYPE PROT_EN
13 Reserved LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT
14 Reserved (MSB)
15 LOWEST ALIGNED LOGICAL BLOCK ADDRESS (LSB)
16 Reserved PFID APIPB LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT

1716
31

Reserved

If the PFID field in the READ CAPACITY (16) command is set to zero, The the RETURNED LOGICAL
BLOCK ADDRESS field and LOGICAL BLOCK LENGTH IN BYTES field of the READ CAPACITY (16)
parameter data are the same as the in the READ CAPACITY (10) parameter data (see 5.12).

If the PFID field in the READ CAPACITY (16) command is set to a value that corresponds to the
PFID of a pseudo format established by a previous SET PSEUDO FORMAT command, then the
The returned logical block address field shall return a PLBA and the logical block length field shall
be set as follows:

a) If the PMI bit is set to zero, then the device server shall set the RETURNED LOGICAL BLOCK
ADDRESS field to the PLBA of the last pseudo logical block on the direct-access block
device.

b) If the PMI bit is set to one, then the device server shall set the RETURNED LOGICAL BLOCK
ADDRESS field to the last PLBA after that specified in the LOGICAL BLOCK ADDRESS field of
the CDB before a substantial vendor-specific delay in data transfer may be encountered.

c) The RETURNED LOGICAL BLOCK ADDRESS shall be greater than or equal to that
specified by the LOGICAL BLOCK ADDRESS field in the CDB.

d) The LOGICAL BLOCK LENGTH IN BYTES field contains the number of bytes of user data in the
pseudo logical block indicated by the RETURNED LOGICAL BLOCK ADDRESS field. This value
does not include protection information or additional information (e.g., ECC bytes)
recorded on the medium.

The maximum value that shall be returned in the RETURNED LOGICAL BLOCK ADDRESS field is
FFFF_FFFF_FFFF_FFFEh.

The protection type (P_TYPE) field and the protection enable (PROT_EN) bit (see table 48) indicate
the logical unit’s current type of protection.

Table 48 – P_TYPE field and PROT_EN bit
PROT_EN P_TYPE Description

0 xxxb The logical unit is formatted to type 0 protection (see 4.17.2.2).
1 000b The logical unit is formatted to type 1 protection (see 4.17.2.3).
1 001b The logical unit is formatted to type 2 protection (see 4.17.2.4).
1 010b The logical unit is formatted to type 3 protection (see 4.17.2.5).
1 011b – 111b Reserved

The LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT field is defined in table 49.

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 14 of 17

Table 49 – LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT field and
Code Description

0 One or more physical blocks per logical block a
n > 0 2n logical blocks per physical block

a The number of physical blocks per logical block is not reported

The LOWEST ALIGNED LOGICAL BLOCK ADDRESS field indicates the LBA of the first logical block that
is located at the beginning of a physical block (see 4.5).

NOTE 14 - The highest LBA that the LOWEST ALIGNED LOGICAL BLOCK ADDRESS field supports is
3FFFh (i.e., 16 383).

The PFID field shall return the same pseudo format ID value as specified in the PFID field of the
READ CAPACITY (16) CDB.

If the PFID field is non-zero, the LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT field indicates the
number of logical blocks contained in each pseudo logical block for the specified pseudo format
ID as specified in a previous SET PSEUDO FORMAT command.

If the PFID field is non-zero, the APIPB field indicates whether protection information is included for
each logical block or for each pseudo logical block for the specified pseudo format ID as specified
in a previous SET PSEUDO FORMAT command.

If the PFID field is zero, the APIPB field and the LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT field
are reserved and shall be set to zero.

Add subclause 5.xx (following 5.18 REASSIGN BLOCKS) describing the SET
PSEUDO FORMAT command

5.xx SET PSEUDO FORMAT command

The SET PSEUDO FORMAT command (see table x) specifies use of an alternate method to
address logical blocks associated with a pseudo format identifier that may be specified in a read
or write command in the PFID field. This command is implemented as a service action of the
MAINTENANCE OUT operation code (see A.2). Support for this command is optional.

Table x – SET PSEUDO FORMAT command

Byte/Bit 7 6 5 4 3 2 1 0
0 OPERATION CODE (A4h)
1 Reserved SERVICE ACTION (0Ch)
2 Reserved
3 Reserved PFID APIPB LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT
4
10 Reserved
11 CONTROL

The OPERATION CODE field and the SERVICE ACTION field are defined in SPC-4 and shall be set to
the values defined in table x.

When processing a read or write command that specifies the corresponding pseudo format
identifier, a non-zero value in the LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT field specifies that
the device server shall:

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 15 of 17

a) calculate the LBA of the first logical block to transfer as the product of the LOGICAL BLOCK
ADDRESS field of the read or write command times 2n, where n is the value in the LOGICAL
BLOCKS PER PSEUDO BLOCK EXPONENT field plus the value of the LOWEST ALIGNED LOGICAL
BLOCK ADDRESS field in the READ CAPACITY (16) parameter data; and

b) calculate the number of logical blocks to transfer as the product of the TRANSFER LENGTH
field of the read or write command times 2n, where n is the value in the LOGICAL BLOCKS PER
PSEUDO BLOCK EXPONENT field for the specified pseudo format.

A value of zero in the LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT field shall cause the device
server to disable the pseudo format specified in the PFID field. Any read or write type commands,
or READ CAPACITY (16) command received with the PFID field set to the specified value shall be
terminated with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and
the additional sense code set to INVALID FIELD IN CDB. A subsequent SET PSEUDO FORMAT
command may establish the same or a new pseudo format associated with the PFID.

The PSEUDO FORMAT IDENTIFIER (PFID) field specifies the pseudo format identifier value the device
server shall associate with the LOGICAL BLOCKS PER PSEUDO BLOCK EXPONENT field and APIPB bit
values specified in the CDB, and the device server shall apply the pseudo format for the specified
pseudo format identifier when that value appears in the PFID field of a read or write command.

Table x defines the encoding of the PFID field.

Table x – PFID field encoding
Code Description

0 Invalid if specified in the SET PSEUDO FORMAT command.
Specifies that a read or write type command or READ CAPACITY
(16) command is to process the LOGICAL BLOCK ADDRESS field and
TRANSFER LENGTH field in reference to logical block addressing.

1 In a SET PSEUDO FORMAT CDB, establishes a pseudo format for
commands specifying a PSID value of 1. For read and write type
commands and the READ CAPACITY (16) command, specifies that
the LOGICAL BLOCK ADDRESS field and TRANSFER LENGTH field refer to
pseudo logical blocks as defined for a PSID value of 1.

2 and 3 Reserved

The ALIGN PROTECTION INFORMATION ON PSEUDO BLOCK (APIPB) bit specifies whether to align
protection information, if present, with logical block boundaries or pseudo block boundaries. An
APIPB bit set to zero specifies that protection information fields align with logical block boundaries.
An APIPB bit set to one specifies that protection information fields align with pseudo logical block
boundaries. The APIPB bit and alignment of protection information fields within pseudo logical
blocks is described in 4.17.4.

Any pseudo format established by successful processing of this command shall remain active
following any reset or power on condition.

Successful processing of a FORMAT UNIT command (see …) shall invalidate all previously
established pseudo formats.

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 16 of 17

Modify the descriptions of the applicable block commands (those that contain a
GROUP NUMBER field) as follows

Table x – 10-byte CDB format
Byte/Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE
1 Command dependent Obsolete
2 (MSB)
5 LOGICAL BLOCK ADDRESS (LSB)
6 Reserved Reserved PFID GROUP NUMBER
7 (MSB)
8 TRANSFER LENGTH (or other length field) (LSB)
9 CONTROL

A non-zero value in the PSEUDO FORMAT ID (PFID) field specifies that the LOGICAL BLOCK ADDRESS
field contains the PLBA of the first pseudo logical block to be transferred, and that the TRANSFER
LENGTH field specifies the number of pseudo logical blocks to transfer, where each pseudo logical
block contains 2n logical blocks, and n is the value in the LOGICAL BLOCKS PER PSEUDO BLOCK
EXPONENT field for the specified pseudo format established by the SET PSEUDO FORMAT
command defining the pseudo format for the specified pseudo format ID.

Table x – 12-byte CDB format
Byte/Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE
1 Command dependent Obsolete
2 (MSB)
5 LOGICAL BLOCK ADDRESS (LSB)
6 (MSB)
9 TRANSFER LENGTH (or other length field) (LSB)

10 Reserved Reserved PFID GROUP NUMBER
11 CONTROL

Table x – 16-byte CDB format

Byte/Bit 7 6 5 4 3 2 1 0
0 OPERATION CODE
1 Command dependent Obsolete
2 (MSB)
9 LOGICAL BLOCK ADDRESS (LSB)

10 (MSB)
13 TRANSFER LENGTH (or other length field) (LSB)
14 Reserved Reserved PFID GROUP NUMBER
15 CONTROL

Editor’s note: Some of the commands show the high-order bit of the VBLE field as “Restricted for
MMC-4” because some MMC-4 commands define it as the “streaming” bit. This bit is available to
direct-access storage devices because MMC devices (e.g., optical media) have no need to use
the streaming bit (which implies tolerance of bit-errors for video applications – not appropriate for
direct-access storage devices).

T10/08-044r3 SBC-3 DIF Granularity 28 July 2008

 17 of 17

Table x – 32-byte CDB format (example)
Byte/Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE
1 CONTROL
2
5 Reserved
6 Reserved Reserved PFID GROUP NUMBER
7 ADDITIONAL CDB LENGTH (18h)
8
9 SERVICE ACTION

10 xxPROTECT DPO FUA Reserved FUA_NV Reserved
11 Reserved
12 (MSB)
19 LOGICAL BLOCK ADDRESS (LSB)
20 (MSB)
23 EXPECTED INITIAL LOGICAL BLOCK REFERENCE TAG (LSB)
24 (MSB)
25 EXPECTED LOGICAL BLOCK APPLICATION TAG (LSB)
26 (MSB)
27 LOGICAL BLOCK APPLICATION TAG MASK (LSB)
28 (MSB)
31 TRANSFER LENGTH (or other length field) (LSB)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

