

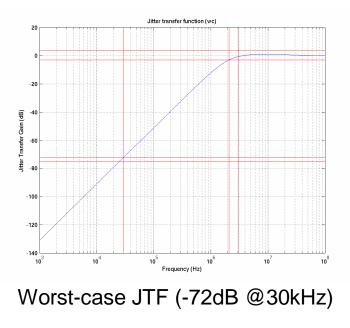
08-027r1 Toward SSC Modulation Specs and Link Budget

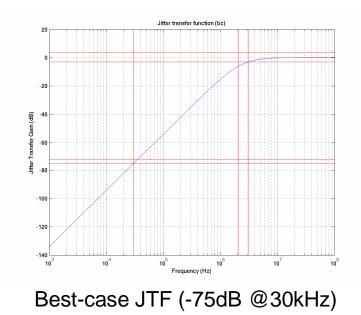
(Spreading the Pain)

Guillaume Fortin, Rick Hernandez & Mathieu Gagnon PMC-Sierra

Overview

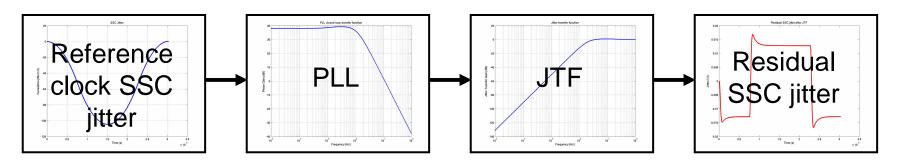
- The JTF as a model of CDR performance
- Using the JTF to qualify SSC modulation
- Simulation Methodology
- Frequency Modulation and Jitter
 - Triangular
 - Hershey Kiss
 - Square Wave
- Limitation of the JTF as CDR model
- Residual SSC Jitter Summary
- Theoretical Value of Residual Jitter
- How much SSC jitter is too much jitter?
 - Tentative Link Budget
- Tentative SSC Specifications



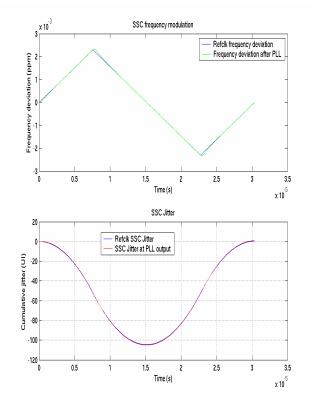

- When measuring jitter on the transmitter signal, the main objective should be to verify that this jitter is low enough to guarantee a robust link.
- Applying the jitter transfer function (JTF) on the transmitter jitter removes jitter components.
- The underlying assumption is that the jitter components that are removed do not impact link robustness
 - In other words, the JTF represents the assumed performance of a CDR in a SAS-2 system.

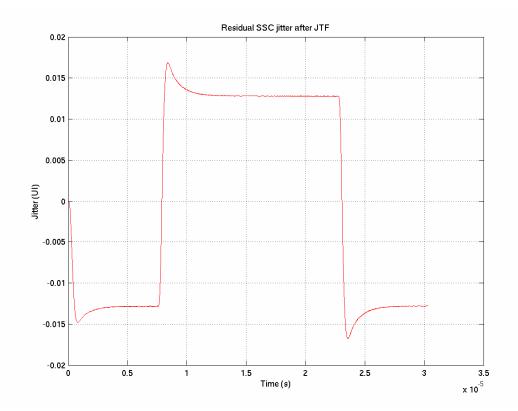
Using the JTF to qualify SSC modulation

- Use the JTF to calculate the residual SSC jitter seen by a baseline SAS-2 CDR
- Simulate with worst-case and best-case matlab models of the JTF



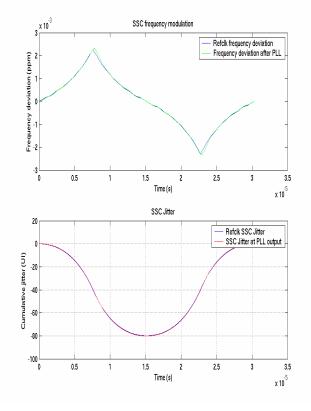
Simulation Methodology

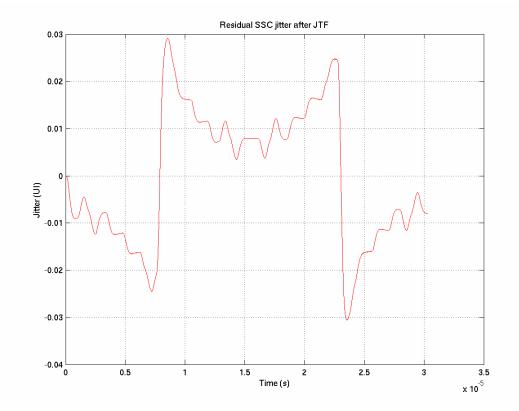

- Created SSC jitter profiles for Triangular, Hershey Kiss and Square Wave modulations.
- SSC-modulated 75MHz reference clock is passed through PLL with ~1.2MHz bandwidth, 40dB/decade roll-off and ~1.3dB peaking.
- Residual jitter is obtained by passing SSC jitter through JTF



Triangular SSC Frequency Modulation and Jitter

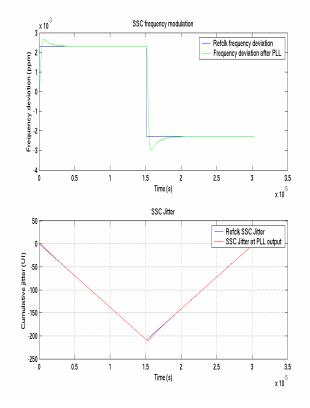
Results for worst-case JTF with triangular modulation

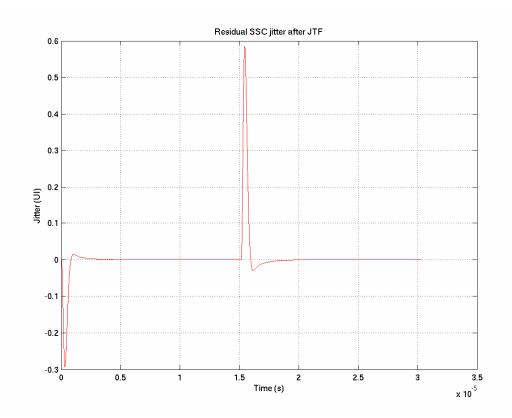




Hershey Kiss SSC Frequency Modulation and Jitter

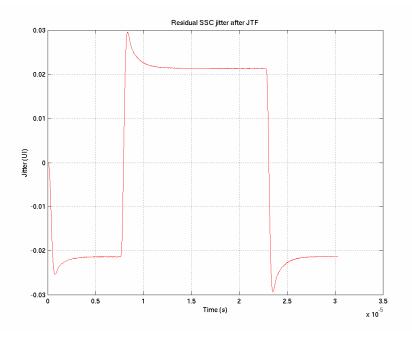
Results for worst-case JTF with HK modulation

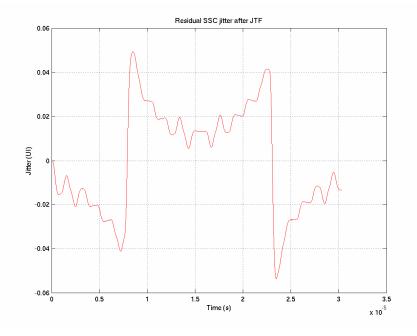




Square Wave SSC Frequency Modulation and Jitter

Results for worst-case JTF with square modulation




- According to the 6G PHY spec (07-339r7), the JTF must be calibrated using D24.3 pattern (110011...). This corresponds to a transition density of 0.5.
- When testing with CJTPAT, the transition density drops to 0.3 in the long low frequency sequences (repeated D30.3)
- In most CDR architectures, gain is proportional to the transition density
 - A CDR that matches the JTF response with D24.3 will have its gain reduced by 40% when receiving D30.3
 - SSC residual jitter will increase by ~70% for CJTPAT

Limitations of the JTF as model of CDR

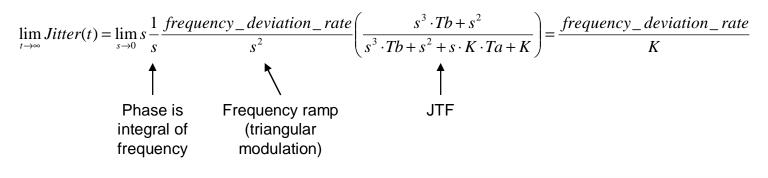
Impact of reduced gain on CDR residual jitter

- Residual jitter increases by 70% pattern density of 0.3
- Illustrated for triangular and Hershey Kiss modulations

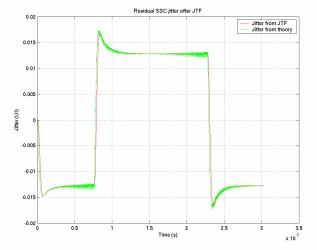
Enabling connectivity. Empowering people.

Summary of SSC residual jitter results

 When taking transition density into account, residual jitter from Hershey Kiss modulation eats up a fair part of the link jitter budget


	Peak-to-Peak Residual SSC Jitter (UI)				
Pattern	Best-case JTF	Worst-case JTF	Worst-case JTF with transition density = 0.3 (to emulate CDR with CJTPAT)		
Triangular	0.024	0.034	0.059		
Hershey Kiss	0.043	0.061	0.107		
Square Wave	0.82	1.17	2.02		

Should we change the JTF to reflect CDR performance with a worst-case pattern?



 Final value of the residual jitter when the jitter produced by a frequency ramp is filtered by the JTF

- Comparing residual jitter for triangular SSC profile
 - Response from JTF (red)
 - Response from above formula with slope averaged over 80 bits to remove refclk spurs (green)

How much SSC jitter is too much jitter?

Enabling connectivity. Empowering people.

• Tentative link budget for discussion

	Source Transmitter &	Reference	Target Receiver &		
	PLL	Channel	PLL	Total	Comments
Random Jitter (RJ)	0.15		0.15	0.21	Total calculated as root sum of squares
					Includes:
					- Residual SSC jitter
					- Duty-cycle distortion
					- Periodic Jitter (from supply noise, etc.)
					- Crosstalk
Bounded					 Common-mode to differential conversion
Non-Compensable					Excludes:
Jitter (BNCJ)	0.15	0.05		0.2	- Data Dependent Jitter
					ISI and reflections that can't be corrected
					by 3-taps DFE
					Simulated with stateye v5:
					 SAS-2 reference channel
Data-Dependent					- 2dB pre-emphasis
Non-Compensable					- No DJ or RJ
Jitter (NCDDJ)		0.38		0.38	- 8b10b encoding
					Includes:
					- Samplers sensitivity
Receiver Margin					- Quantization effects
(RMJ)			0.2	0.2	- Device mismatches
Total Jitter	0.3	0.48	0.35	0.99	

Note: Transmitter jitter measured at near end

Tentative link budget considerations

- Is 0.05 UI (8 ps) a good number for channel noncompensable jitter (BNCJ)?
 - Crosstalk
 - Common-mode to differential conversion
 - Reflections
- Is 0.20 UI (33 ps) a sufficient margin for the receiver?
 - Should we tighten other specs for more receiver margin?
- Can we gain margin by increasing pre-emphasis?
 - How accurate are the stateye results?

Tx Pre-Emphasis (dB)	NCDDJ for 3 taps DFE (UI)
0	0.4
2	0.38
3	0.4
6	0.39

Tentative SSC Specifications

- CDR considerations
 - SSC modulation shall not exceed the +/-2300ppm range
 - SSC modulation shall not cause the transmit jitter to exceed the jitter spec when filtered through the JTF
 - SSC slope has a direct impact on residual jitter and thus does not need to be specified explicitly
- Average frequency shall be within 288 ppm
 - Based on max ALIGNs insertions/deletions in previous versions of SAS (1/2048) minus the max frequency offset between the local and far end crystals (200ppm)
- Average deviation over any 16.67us period is not an issue
 - FIFO depth typically larger than 480 bits (~4800ppm)