

External Path Protection Discussion

By Curtis E. Stevens

18-Oct-2007

Agenda

- SCSI Protection Information Overview
- SCSI Protection Information Usage
- SCSI Protection Information Usage Model
- ATA External Path Protection
- Development Questions

SCSI Protection Information Overview

Sector Format Overview

Data Layout

Data	BLK_GRD	APP_TAG	REF_TAG
------	---------	---------	---------

Data - User Data

- BLK_GRD –16-bit CRC on the user data (does not guard the 8 bytes of protection information)
- APP_TAG 16 bits, application client specific, may be adjusted in type 2 protection information
- REF_TAG 32 bits, depends on the protection information (PI) type

Type 1 Protection

- Application Standardized locality and CRC checking in systems where the application client communicates with a single drive or soft RAID
- BLK_GRD 16 bit CRC on the user data
- REF_TAG low order 32 bits of the LBA
- APP_TAG application client specific information
- Protection only available for 6-, 10-, 12-, and 16-byte commands
 - □ 32-byte commands are aborted
 - Protection information for 32-byte commands is type 2 only

Type 2 Protection

- Application Standardized locality and CRC checking in hardware RAID systems that receive an LBA from the host and then pass the data through multiple target/initiators. In this case, the REF-TAG retains its original value and is not necessarily related to the LBA.
- BLK_GRD 16 bit CRC on the user data
- REF_TAG, APP_TAG, APP_TAG MASK provided in CDB
 - REF_TAG may NOT be low order 32 bits of LBA on destination target device
 - □ APP_TAG application client specific information
 - □ APP_TAG MASK may further qualify APP_TAG data
 - Protection only available to 32 byte commands
 - General General General Science in the second strength of the second strengt ot the second strength of the second strength of the seco

Type 3 Protection

- Application Standardized CRC checking in systems where the application client provides additional protection in an application client specific manner
 - Applies to systems where there is a value proposition for only checking BLK_GRD in the device.
 - Allows intermediary target/initiator devices to remap REF_TAG and APP_TAG as command moves through large system to adjust for different views of configuration
 - Provides a way for the host to do 48-bit locality checking
 - Provides a way for the host to do non-standard locality checking
- BLK_GRD 16 bit CRC on the user data

REF_TAG and APP_TAG – Provided by application client and not checked by device

SCSI Protection Information Usage

Discovery

Standard INQUIRY data – the PROTECT bit

Informs the application client that the device is capable of supporting the Protect Information Model

Extended Inquiry VPD page

SPT field – Indicates the protection types supported by the device
Only 4 options: None, Type 1, Type 1 and Type 2, Type 1 and Type 3.
GRD_CHK, APP_CHK, REF_CHK – Indicate which fields the device is capable of checking

READ CAPACITY (16)

- The PROT_EN bit indicates that the device has been formatted with protection
- The P_TYPE field indicates the protection type the target is formatted with

Setting up the Device

FORMAT UNIT

□ FMTPINFO – Enables/Disables protection

- Since SBC-3 limits the combination of protection types the device may report, only 1 bit is needed to turn it on.
- RTO_REQ The Reference Tag Owner distinguishes between Type 1 protection and other types
 - □ If the device owns the reference tag, the host shall supply a correct one and the device can check or generate based on the LBA.
 - If the application client owns the reference tag, the device shall never change the REF_TAG field and may check it for Type 2
- - This initializes the protection information to the escape sequence for all protection types.

Control Mode Page – The ATO bit

When the host performs a User Data only transfer, the ATO bit specifies that the Protection Information be the Escape Sequence or Valid protection information.

Escape Sequence

Type 1 and Type 2 protection

when the APP_TAG field is FFFFh, the device shall not check the BLK_GRD or REF_TAG fields

Type 3 protection

when the APP_TAG and REF_TAG are FFFFh and FFFF_FFFFh respectivly, the device shall not check the BLK_GRD field

APP_TAG

- This field is normally host vendor specific information and is simply stored by the device with the other protection information fields
- When the application client provides a read/write command that does not transfer protection information what does the device do?
 - The ATO (application tag owner) bit in the Control mode page determines the behavior
 - When the application client owns this field, the device shall insert FFFFh in APP_TAG field. This has the effect of disabling checking for BLK_GRD and REF_TAG
 - When the device owns this field, the device may insert a vendor specific value. This has the effect of allowing the device to place a value other than FFFFh and provide valid BLK_GRD and REF_TAG fields where appropriate.

Protected Media Access

- ORWRITE, WRITE, READ, VERIFY, WRITE AND VERIFY
 - Fieldnames ORPROTECT, WRPROTECT, RDPROTECT, VRPROTECT
- A value of zero invokes a legacy operation
 - Only user data is transferred at the interface, no protection information is transferred
 - Protection Information is generated or stripped as necessary
- A value other than zero indicates that
 - Protection information is transferred, if the target is formatted with protection information
 - The type of checking that the target will perform on the protection information

Protection Information Usage Models

Sample Usage Models

Protects data from the controller through the drive

Protects host memory while the data is controlled by the driver

Remains transparent to the rest of the system

Sample Usage Models

Protects host memory while the data is controlled by the filesystem and driver

Remains transparent to applications

Provides full system round-trip data protection

Differentiating Type 1/3 and Type 2

Type 1 and Type 3 protection

- REF_TAG may be changed in the PI data by target/initiator devices (e.g., RAID controllers) as the data travels through a system
 - For Type 1, the destination target may compare the PI data to the LBA in the CDB
 - For Type 3, the REF_TAG is not checked by the destination target

Type 2 protection

REF_TAG in the CDB remains the same from application client to destination target as the data travels through a system

ATA External Path Protection

Foundational Principles

- Assumes no FORMAT UNIT command
- Assumes devices are pre-formatted with either valid protection information or the escape sequence
- Read and write commands will not be modified
- All changes in protection field transfer, checking and generation will be "modal"

Summary of SCSI Protection Information

- Transfer of protection information may be changed on a command by command basis
- BLK_GRD and REF_TAG checking may be changed on a command by command basis
- APP_TAG is a field only useful to the application client
 - If the protection information is not transferred then ATO may be used to place the device in a mode where an escape sequence is inserted, or valid protection information is inserted.

ATA w/Type 1 and Type 3 protection

Provide SET FEATURES for

- Enable/Disable Protection Information Transfer (following user data)
 - □ Enable/disable Escape Sequence provides functionality of ATO bit
 - Escape Sequence type differentiates between type 3 and other types
- BLK_GRD and REF_TAG checking enable/disable
 - □ Disabling REF_TAG checking is the same as Type 3 operation

SCT Write Same could be used to force valid protection information onto the media.

Escape Sequence

- Follows the same requirements as SCSI
- If BLK_GRD or REF_TAG checking is enabled and the escape sequence is encountered in the protection information, then the BLK_GRD and REF_TAG shall not be checked by the device.
- If Escape Sequence Type is set to APP_TAG=FFFFh then whenever the APP_TAG=FFFFh, the protection information shall not be checked by the device.
- If Escape Sequence Type is set to APP_TAG=FFFFh and REF_TAG=FFFF_FFFh then whenever the APP_TAG=FFFFh and REF_TAG=FFFF_FFFh, the protection information shall not be checked by the device.

Open Items

ATA w/Type 2 Protection

- In SCSI, when the media is formatted with Type 2, the 32 byte media access CDB's work. The other ones (6, 10, 12, and 16) only work in legacy mode
 - This is because the REF_TAG field is provided as a part of the CDB.
- Still studying usage model for mapping into T13 commands
 - Is it reasonable to program in an offset that applies to the entire device until changed?
- How do we deal with APP_TAG and APP_TAG MASK?
 - Since SET FEATURES has 32 bits available, these could be set with SET FEAURES as well.