

End-to-end Data Protection and Tapes (07-373r3)

Kevin Butt

End-to-end data protection

• T10 standardized end-to-end data protection for blocks transferred to disk

- This is getting adopted by an increasing number of vendors
- An increasing number of customers are asking for this protection on tape
- Tape solutions are losing to pure disk solutions because of a perceived data integrity advantage by disk systems
- T10 did not standardize end-to-end data protection for blocks transferred to tape
 - During the work on end-to-end for disk, the tape group was told a common solution for disk and tape was not going to happen and if tape wanted end-to-end data protection the tape group needs to do a unique solution for tapes.

_	
_	
_	

Why Disk end-to-end solution does not work for Tapes

- Disk devices
 - measure performance by I/O operations per second
 - uses fixed block transfers

IBM TotalStorage[™]

- DIF information not included in block length
- use 512 byte blocks
- LBAs for blocks are known a priori
- blocks are not expected to have their LBAs change
- Tape devices
 - measure performance by MB/s
 - use both variable length transfers (most common) as well as fixed block transfers
 - Data Protection information adds to the length of the data transferred and if not included in the transfer length for variable length transfers <u>will force changes in Transport Layer</u> <u>Protocols</u> before it can be supported. (e.g. FCP FCP_DL)
 - Performance varies by block size
 - LBA's are not known a priori
 - LBA is determined by where the medium is currently positioned
 - Backup data is expected to be duplicated on multiple copies of media
 - Backup sets are often "refreshed" from one piece of medium to another this may or may not change the LBA at which the data resides

Typical Data Rate vs Block Size (Tape)

IBM TotalStorage[™]

End-to-end data protection is needed on tape devices

- Potential data corruption between the application and the HBA's (same on tape as disk)
- Potential data corruption on the interfaces to the data delivery subsystem on both ends of the wire (same on tape as disk)
- Potential data corruption internal to the device (same on tape as disk)
- Potential data corruption as block is transferred between intermediate devices (e.g., protocol bridges)

Is Protection Embedded by Application Sufficient?

- Many backup applications embed a CRC or other form of protection into their data stream
 - Allows the application to detect bad data stream when the data is read
 - Does not guarantee that the data written to medium is not corrupted
 - Generating this information adversely effects performance because it is done in software

What does end-to-end data protection need to cover?

• Application to HBA

- Needs to be supported same as in disk solution
- Likely will not be supported by applications for a long time
- HBA through service delivery subsystem to tape device
 - Needs to be supported to cover memory buffers in source and destination
- Tape drive interface through internal workings of tape drive and onto medium
 - To get true end-to-end logical block protection the protection information needs to be saved on medium with the logical block

Likelihood of quick adoption

- Tape drives today save protection information with data blocks.
 - ECC

- CRC
- Making the protection information fit into existing schemes in use today would greatly accelerate adoption and increase the likelihood of adoption
- To increase likelihood of adoption, the Protection Information should not cause a change in Transport Layer Protocols

Existing vendor-specific methods

- IBM has been providing end-to-end logical block protection for over twelve years in its enterprise tape drives.
 - Began with 3480 Tape drives

- Continued in 3590 and 3592
- 4-byte CRC placed on logical block and transferred with the block
 - Writes: generated at host; validated at drive and written to medium with logical block
 - Reads: read from medium and validated at the drive; validated at the host and stripped from block for application use
 - Validated at multiple points along the path

Benefits to IBM and the customer with this solution

• Prior to solution

- Data Integrity Issues
- Difficult to find where the problem occurred
- After solution
 - Quickly find where problems occur
 - Data Integrity issues disappeared (Integrity was assured)
 - When there is bad memory or such, it is discovered before host completes its transaction and believes the data is on the medium

Diagram of IBM Solution

IBM TotalStorage[™]

(logical representation)

_	
-	
-	
_	

Proposal – Implement end-to-end logical block protection on tape

- There is a proven method that has been in use for more than twelve years
- Leverage this proven solution

- Make sure that options are available to meet all vendors needs
- For proposal against SSC-3 see (http://www.t10.org/ftp/t10/document.07/07-374r3.pdf)

Issues I was asked to watch for

• Transfer Length

- Written w/o CRC to Read with CRC
- Backward compatibility
- Fixed block transfers
 - Intermediate block failure