

Beta and Epsilon Point Update

Adam Healey Mark Marlett August 8, 2007

Contributors and Supporters

- Dean Wallace, QLogic
- Pravin Patel, IBM
- Eric Kvamme, LSI
- Tae-Kwang Jeon, LSI
- Bill Fulmer, LSI
- Max Olsen, LSI

Executive summary

- Proposal defines the operation of 8.5 Gb/s Fibre Channel in the server blade environment
- [Enhanced] TWDP-based transmitter device compliance methodology
- [Enhanced] WDP-based receiver device signal tolerance input
- Reference receiver with 1 feed-forward, 3 feedback taps
- Comprehensive channel analysis, loss and jitter budgets presented to support proposed specifications
- Relevant test procedures from SFF-8431, tailored to 8.5 Gb/s Fibre Channel applications, to be included in Annex A
 - Described in detail in companion document T11/07-398v1
- Additional detailed modifications to the FC-PI-4 draft also described in companion document

August 8, 2007 Updates

- Corrected Epsilon point reference model
- Added Beta point requirements to the specification tables
- Introduced transmitter minimum output rise/fall times as a crosstalk control measure
- Increased the VMA_T (min), which yielded a corresponding increase in the minimum receiver VMA_R (min)
 - Influences TWDP targets for the transmitter
- Updated transmitter TWDP requirements to include an allowance for transmitter duty cycle distortion
- Defined a new interference source for receiver signal tolerance test

Assumptions

- Epsilon point specifications describe point-to-point links traversing a passive electrical backplane in a modular platform environment
- The Epsilon point differs from the Beta point in that:
 - It considers only fabric topologies (not arbitrated loop)
 - It has more aggressive performance targets (links span longer distances, include more connectors, higher density, e.g. higher loss and crosstalk)
 - Blade server versus JBOD and RAID
- It is desirable to leverage IEEE 802.3ap[™]-2007 (Backplane Ethernet) and OIF Common Electrical Interface
 - However, these are serdes (Alpha point) specifications
 - Work is required to project the methodologies and requirements to Epsilon point

Epsilon Point Reference Model

Backplane

Server blade

- Links spans up to 33" of differential trace on FR-4 printed circuit boards with up to three connectors [1]
 - It is an objective to support up to 20 dB of loss, at 4.25 GHz, between ε_T and ε_R [2]
- Interoperability points are the separable connectors closest to the serdes
 - A variety of connectors are currently employed at the mezzanine card and backplane interfaces, so a specific connector is not defined
- The link is assumed to be AC-coupled (may be implemented in the serdes, or on the mezzanine/switch card)

Channel considerations – fitted attenuation

- The fitted attenuation, A(f), is the least mean squares fit of the insertion loss, expressed in dB, to a polynomial function
- The fit is limited to the frequency range DC to 6.375 GHz

Channel considerations – insertion loss deviation

- Insertion loss deviation (ILD) is the error relative to the polynomial fit
- ILD corresponds to tail ripple in the channel impulse response
- The terminations presented by the transmitter and receiver devices will modify ILD

Channel considerations – step response

- A comparison of the step response generated from the fitted attenuation and the original step response illustrates the impact of ILD
- Much of ripple in the step response can not be compensated by the reference receiver, e.g. more than 3 UI away
- Such ripple is empirical in nature, e.g. variation in the path delay alters the arrival time of reflections and impacts the performance
- Stressors will be based on the fitted attenuation and the impact of ILD will be rendered as a term in the loss budget

Channel Considerations – crosstalk

- Examination of the crosstalk step responses reveal resonances that span 10's of symbols
- Since the crosstalk is the weighted sum of many symbol amplitudes, it tends toward a Gaussian distribution
- The addition of more aggressors reinforces this trend

Channel considerations – crosstalk from JSPAT

NOTE – V_{P2P} = 1200 mV, VMA_T = 1000 mV, $T_{r,f}$ (20-80%) = 40 ps

- Amplitude histograms indicate that the crosstalk amplitude may be reasonably assumed to have Gaussian statistics
 - Truncated of course, with crest factor varying per the aggressor being studied
- It can also be shown that ARBff is only weakly correlated to JSPAT, and that JSPAT itself is "relatively white"
- Observations validate the inclusion of crosstalk as an additive white Gaussian noise term in the TWDP analysis

Channel considerations – crosstalk from ARBff

NOTE – V_{P2P} = 1200 mV, VMA_T = 1000 mV, $T_{r,f}$ (20-80%) = 40 ps

- Primitive pattern results in significant deviation from Gaussian amplitude distribution
- However, the RMS value does not significantly deviate from JSPAT derived value and peak-to-peak amplitude is less than the JSPAT case

Transmitter compliance transfer functions

	Unite	TCTF index				
	Units	1	2	3		
<i>a</i> ₃	dB/GHz ²	-0.12	-0.15	-0.11		
a 2	dB/GHz	-1.55	-2.26	-3.47		
<i>a</i> ₁	dB/root-GHz	-0.37	-0.85	-1.77		
a ₀	dB	-0.06	-0.18	-0.34		

LSI

Scenario 1 – Low loss channel: Loss budget

Scenario 1 – Low loss channel: Jitter budget

NOTE – for link analysis purposes only, not intended to populate FC-PI-4 jitter output or tolerance tables

Scenario 2 – Medium loss channel: Loss budget

Scenario 2 – Medium loss channel: Jitter budget

[mUI]

Scenario 3 – High loss channel: Loss budget

Scenario 3 – High loss channel: Jitter budget

T11/07-399v1

LSI

Modifications to the TWDP methodology

- Enhancements introduced in T11/07-344v0, e.g. spectral line timing recovery and horizontal eye opening evaluation (NC-DDJ) [3]
- Electrical stressors described by the transmitter compliance transfer functions
- Assignment of an independent TWDP limit for each stressor
- Assignment of an independent P_{ALLOC} value for each stressor
- Adjustment of P_{ALLOC} based on the calculated VMA
- Electrical signals vs. optical signals, e.g. dB calculated as $20 \log_{10}(x)$ as opposed to $10 \log_{10}(x)$
- Anti-aliasing filter bandwidth scaled to 75% of the signaling speed in contrast to the static 7.5 GHz bandwidth in the current version
- It is expected that transmitter emphasis (pre-cursor and post-cursor) will be necessary to satisfy the requirements
 - For each stressor, the corresponding TWDP limit shall be satisfied for at least one equalization setting of the transmitter device under test

Beta T and Epsilon T – signal requirements

• Section 9.3.1, modify Table 26 as shown...

		Units	•••	800-DF-EA S			
Beta T Point							
Rise / Fall Time 20-80%	Max	ps	•••	N/A			
Notes 6, 9	Min	ps	•••	40			
Epsilon T Point							
Rise / Fall Time 20-80%	Max	ps		N/A			
Notes 6, 9	Min	ps		40			

LSI

Beta T and Epsilon T – signal requirements

Section 9.6, add Table XX - Signal requirements at Epsilon T for 800-DF-EA-S variants

			Beta T Point		Epsilon T Point		
		Units	TCTF index		TCTF index		
			1	2	1	2	3
Peak-to-peak differential output voltage	Max	mV	12	00	1200		
VMA (note 1)	Max	mV	1000		1000		
	Min	mV	665		665	665	535
UJ, RMS (note 2)	Max	UI	0.020		0.020		
P_{ALLOC} (note 3)	_	dBe	18.6		18.6	18.6	20.7
TWDP (note 3)	Max	dBe	7.1	10.5	7.1	10.5	15.4
NC-DDJ (note 3)	Max	UI	0.110	0.150	0.110	0.150	0.330
Notes:							

1 Voltage modulation amplitude is measured using the procedure described in annex A.x

2 Uncorrelated jitter is measured using the procedure described in annex A.y.

3 TWDP and NC-DDJ are measured using the procedure described in annex A.z and defined using a reference receiver with 1 feed-forward and 3 feedback taps.

Trade-off between TWDP and VMA_T

- Since the noise environment is not a function of VMA_T , VMA_T in excess of the minimum results in a larger P_{ALLOC}
 - An increase in P_{ALLOC} implies an increase in the permissible TWDP
- Given the measured (estimated) VMA_T, P_{ALLOC} may be adjusted in the TWDP test script, and the TWDP result compared to a limit adjusted by the function shown above

Beta R and Epsilon R – jitter tracking

• Section 9.4.1, modify table 30 as shown...

		Units	•••	800-DF-EA S			
Beta R Point							
Rx jitter tracking test, VMA (note 6)	Max	mV		300			
Rx jitter tracking test, jitter freq. and pk-pk amplitude (note 6)		(kHz, UI)		(510, 1) (100, 5)			
Epsilon R Point							
Rx jitter tracking test, VMA (note 6)	Max	mV		300			
Rx jitter tracking test, jitter freq. and pk-pk amplitude (note 6)		(kHz, UI)		(510, 1) (100, 5)			

LSIポ

Beta R and Epsilon R – signal tolerance

- The ISI filter shall be constructed in such a way that it accurately represents the insertion loss and group delay characteristics of differential traces on an FR-4 printed circuit board
- Random interference (RI), formerly bounded uncorrelated interference (BUI) is added to emulate the Gaussian amplitude distribution observed from crosstalk analysis
- Block diagram intended for illustrative purposes and other implementations possible

Random interference (RI)

- Defined to be broadband additive noise
- Power spectral density shall be flat to within ±3 dB from 100 MHz to 4.25 GHz
- Power spectral density shall have a 3 dB bandwidth of 4.25 GHz
- Specified in terms of the peak-to-peak voltage applied to Epsilon R point, with includes all but 10⁻¹² of the amplitude population

Beta R and Epsilon R – signal tolerance requirements

Section 9.6, add Table YY - Signal requirements at Epsilon R for 800-DF-EA-S variants

		Beta R Point		Epsilon R Point		
	Units	its Test index		Test index		
		1	2	1	2	3
VMA (note 1)	mV	540	470	540	470	300
BUJ (note 2)	UI	0.0)35	0.035		
RJ, peak-to-peak (note 2)	UI	0.1	140	0.140		
RI, peak-to-peak (note 3)	mV	187	109	187	109	50
P _{ALLOC} (note 4)	dBe	16.8	15.7	16.8	15.7	15.7
WDP (note 4)	dBe	7.1	10.5	7.1	10.5	15.4
NC-DDJ (note 4)	UI	0.110	0.150	0.110	0.150	0.330

Notes:

1 Voltage modulation amplitude is measured at the input to the receiver device under test using the procedure defined in annex A.x.

2 Bound uncorrelated jitter (BUJ) and random jitter (RJ) are measured at the input to the ISI filter per the procedure defined in annex A.y. Peak-to-peak RJ includes all but 1E-12 of the amplitude population.

3 Random interference (RI) is applied at the receiver device input per the signal tolerance procedure defined in annex A.z. Peak-to-peak RI includes all but 1E-12 of the amplitude population.

4 WDP and NC-DDJ are measured using the procedure described in annex A.z and defined using a reference receiver with 1 feed-forward and 3 feedback taps.

Conclusions

- Loss and jitter budgets close for each scenario with significant margin
 - Budgets linked through P_{UJ} and "enhanced" TWDP via NC-DDJ
- A portion of this margin will be consumed by the enhancement of ILD caused by the imperfect terminations presented by the transmitter and receiver devices
 - An effect not explicitly included in this study due to time constraints

Future work

- Channel requirements not included, but implied by the TCTF, following the example provided by legacy Beta point specifications
 - However, guidelines on how to verify that a channel has P_{ILD} within the link budget, insertion loss vs. crosstalk trade-offs, etc. may be useful

References

- Koenen, "Channel Model Requirements for Ethernet Backplanes in Blade Servers", May 2004 <u>http://ieee802.org/3/ap/public/may04/koenen_01_0504.pdf</u>
- 2. Wallace et al., "Epsilon Point Document", T11/07-312v1, April 2007
- 3. Healey and Marlett, "Enhancing WDP", T11/07-344v0, April 2007

