

Epsilon Point Proposal T11/07-399v0

Adam Healey Mark Marlett July 10, 2007

Contributors and Supporters

- Dean Wallace, QLogic
- Pravin Patel, IBM
- Adam Healey, LSI
- Mike Jenkins, LSI
- Mark Marlett, LSI

LSI 🖧

Executive summary

- Proposal defines the operation of 8.5 Gb/s Fibre Channel in the server blade environment
 - [Enhanced] TWDP-based transmitter device compliance methodology
 - [Enhanced] WDP-based receiver device signal tolerance input
 - Reference receiver with 1 feed-forward, 3 feedback taps (ie. A 3-tap DFE)
- Comprehensive channel analysis, loss and jitter budgets presented to support proposed specifications
- Relevant test procedures from SFF-8431, tailored to 8.5 Gb/s Fibre Channel applications, to be included in Annex A
 - Described in detail in companion document
- Additional detailed modifications to the FC-PI-4 draft also described in companion document T11/07-398v0.

Assumptions

- Epsilon point specifications describe point-to-point links traversing a passive electrical backplane in a modular platform environment
- The Epsilon point differs from the Beta point in that:
 - It considers only fabric topologies (not arbitrated loop)
 - It has more aggressive performance targets (links span longer distances, include more connectors, higher density, e.g. higher loss and crosstalk)
 - Blade server versus JBOD and RAID
- It is desirable to leverage IEEE 802.3ap[™]-2007 (Backplane Ethernet) and OIF Common Electrical Interface
 - However, these are serdes (Alpha point) specifications
 - Work is required to project the methodologies and requirements to Epsilon point

Epsilon Point Reference Model

Switch

Server blade

- Links spans up to 33" of differential trace on FR-4 printed circuit boards with up to three connectors [1]
 - It is an objective to support up to 20 dB of loss, at 4.25 GHz, between ε_T and ε_R [2]
- Interoperability points are the separable connectors closest to the serdes
 - A variety of connectors are currently employed at the mezzanine card and backplane interfaces, so a specific connector is not defined
- The link is assumed to be AC-coupled (may be implemented in the serdes, or on the mezzanine/switch card)

Channel considerations – fitted attenuation

- The fitted attenuation, A(f), is the least mean squares fit of the insertion loss, expressed in dB, to a polynomial function
- The fit is limited to the frequency range DC to 6.375 GHz

Channel considerations – insertion loss deviation

- Insertion loss deviation (ILD) is the error relative to the polynomial fit
- ILD corresponds to tail ripple in the channel impulse response
- The terminations presented by the transmitter and receiver devices will modify ILD

LSI

Channel considerations – step response

- Comparison between the step response generated from the fitted attenuation and the original step response illustrates the impact of ILD
- Much of ripple in the step response can not be compensated by the reference receiver, e.g. more than 3 UI away
- Such ripple is "anecdotal" in nature, e.g. variation in the path delay alters the arrival time of reflections and impacts the performance
- Stressors will be based on the fitted attenuation and the impact of ILD will be rendered as a term in the loss budget

Channel considerations – crosstalk

- Test pattern is JSPAT with VMA_T = 960 mV and $T_{r,f}$ = 40 ps (20-80%)
- Amplitude histograms indicate that the crosstalk amplitude may be reasonably assumed to have Gaussian statistics
 - Truncated of course, with crest factor varying per the aggressor being studied
- It can also be shown that ARBff is only weakly correlated to JSPAT, and that JSPAT itself is "relatively white"
- Observations validate the inclusion of crosstalk as an additive white Gaussian noise term in the TWDP analysis

Transmitter compliance transfer functions

	Unite	TCTF index			
	Units	1	2	3	
a 3	dB/GHz ²	-0.19	-0.06	-0.14	
a 2	dB/GHz	-1.09	-2.91	-3.16	
<i>a</i> ₁	dB/root-GHz	-0.62	-0.42	-2.22	
a ₀	dB	-0.04	-0.23	-0.20	

Scenario 1 – Low loss channel: Loss budget

Scenario 1 – Low loss channel: Jitter budget

NOTE – for link analysis purposes only, not intended to populate FC-PI-4 jitter output or tolerance tables

Scenario 2 – Medium loss channel: Loss budget

Scenario 2 – Medium loss channel: Jitter budget

Scenario 3 – High loss channel: Loss budget

Scenario 3 – High loss channel: Jitter budget

T11/07-399v0

Modifications to the TWDP methodology

- Enhancements introduced in T11/07-344v0, e.g. spectral line timing recovery and horizontal eye opening evaluation (NC-DDJ) [3]
- Electrical stressors described by the transmitter compliance transfer functions
- Assignment of an independent TWDP limit for each stressor
- Assignment of an independent P_{ALLOC} value for each stressor
- Adjustment of P_{ALLOC} based on the calculated VMA
- Electrical signals vs. optical signals, e.g. dB calculated as $20 \log_{10}(x)$ as opposed to $10 \log_{10}(x)$
- Anti-aliasing filter bandwidth scaled to 75% of the signaling speed in contrast to the static 7.5 GHz bandwidth in the current version
- It is expected that transmitter emphasis (pre-cursor and post-cursor) will be necessary to satisfy the requirements
 - For each stressor, the corresponding TWDP limit shall be satisfied for at least one equalization setting of the transmitter device under test

Epsilon T – signal requirements

 Section 9.6, add Table XX - Signal requirements at Epsilon T for 800-DF-EA-S variants

		T 1	TCTF index			
		Units	1	2	3	
Peak-to-peak differential output voltage	Max	mV	1200			
VMA (note 1)	Max	mV	1000			
	Min	mV	450			
UJ, RMS (note 2)	Max	UI	0.020			
P _{ALLOC} (note 3)	_	dB	15.9	15.9	19.2	
TWDP (note 3)	Max	dB	2.3	7.2	13.1	
NC-DDJ (note 3)	Max	UI	0.130	0.180	0.230	

Notes:

1 Voltage modulation amplitude is measured using the procedure described in annex A.x.

2 Uncorrelated jitter is measured using the procedure described in annex A.y.

3 TWDP and NC-DDJ are measured using the procedure described in annex A.z and defined using a reference receiver with 1 feed-forward and 3 feedback taps.

Trade-off between TWDP and VMA_T

- Since the noise environment is not a function of VMA_T , VMA_T in excess of the minimum results in a larger P_{ALLOC}
 - An increase in P_{ALLOC} implies an increase in the permissible TWDP
- Given the measured (estimated) VMA_T, P_{ALLOC} may be adjusted in the TWDP test script, and the TWDP result compared to a limit adjusted by the function shown above

Epsilon R – jitter tracking

• Section 9.4.1, modify table 30 as shown...

		Units	•••	800-DF-EA S		
Epsilon R Point						
Rx jitter tracking test, VMA (note 6)	Max	mV		250		
Rx jitter tracking test, jitter freq. and pk-pk amplitude (note 6)		(kHz, UI)		(510, 1) (100, 5)		

Epsilon R – signal tolerance

- The ISI filter shall be constructed in such a way that it accurately represents the insertion loss and group delay characteristics of differential traces on an FR-4 printed circuit board
- The objective of bounded uncorrelated interference (BUI) is the emulate the truncated Gaussian amplitude distribution observed from crosstalk analysis
- Block diagram intended for illustrative purposed and other implementations
 possible

Interference generation

- Amplitude impairment that is analogous to bounded uncorrelated jitter
- The PRBS generator should use a polynomial between 7 and 11
- Signaling speed of the PRBS generator should be between 1/10 to 1/3 of the signaling speed of the DUT
- A first order low pass filter is used to filter the PRBS sequence
- The filter should have a bandwidth between 1/20 to 1/10 of the PRBS signaling speed

Epsilon R – signal tolerance requirements

 Section 9.6, add Table YY - Signal requirements at Epsilon R for 800-DF-EA-S variants

		Units	Test index		
		Units	1	2	3
VMA (note 1)	Max	mV	370	310	250
UJ (note 2)	RMS	UI	0.020		
BUI (note 3)	RMS	mV	13.1	11.7	6.9
P _{ALLOC} (note 4)	-	dB	15.9	15.9	19.2
WDP (note 4)	Min	dB	2.3	7.2	13.1
NC-DDJ (note 4)	Max	UI	0.130	0.180	0.230

Notes:

1 Voltage modulation amplitude is measured at the input to the receiver device under test using the procedure defined in annex A.x.

2 Uncorrelated jitter is measured at the input to the ISI filter using the procedure defined in annex A.y.

3 Bounded uncorrated interference is applied at the receiver device input per the signal tolerance procedure defined in annex A.z.

4 WDP and NC-DDJ are measured using the procedure described in annex A.z and defined using a reference receiver with 1 feed-forward and 3 feedback taps.

Conclusions

- Loss and jitter budgets close for each scenario with significant margin
 - Budgets linked through P_{UJ} and "enhanced" TWDP via NC-DDJ
- A portion of this margin will be consumed by the enhancement of ILD caused by the imperfect terminations presented by the transmitter and receiver devices
 - An effect not explicitly included in this study due to time constraints

Future work

- Channel requirements not included, but implied by the TCTF, following the example provided by legacy Beta point specifications
 - However, guidelines on how to verify that a channel has P_{ILD} within the link budget, insertion loss vs. crosstalk trade-offs, etc. may be useful
- This proposal provides a framework that may be leveraged for Beta and Delta point (e.g. SFP+ direct attach copper) specifications
 - In fact, Beta point requirements may be based on Epsilon omitting the highloss scenario 3
- Fine tuning of parameters will be required in August after additional study

References

- Koenen, "Channel Model Requirements for Ethernet Backplanes in Blade Servers", May 2004 http://ieee802.org/3/ap/public/may04/koenen 01 0504.pdf
- 2. Wallace et al., "Epsilon Point Document", T11/07-312v1, April 2007
- 3. Healey and Marlett, "Enhancing WDP", T11/07-344v0, April 2007

26