IKEv2-SCSI (06-449) Update

David L. Black
IKEv2-SCSI (06-449) Plans and Status

- **Plan**
 - Revise IKEv2-SCSI draft for approval at this meeting

- **Reality**
 - The best laid schemes o' Mice an' Men ... gang aft FCoE !!
 - More info: Friday T11 FC-BB-5 meeting

- **Status**
 - Significant IKEv2-SCSI editing has been accomplished
 - Editors and reviewers found a few important issues

- **This presentation: A few important issues**
 - Decisions that must be made to finish IKEv2 SCSI
 - Hope: Settle these now, ask for document approval in September
Combined Modes

- **Mode** = How to use an encryption cipher
 - E.g., CBC = Cipher Block Chaining (e.g., AES-CBC, 3DES-CBC)

- **Combined mode**: encryption + cryptographic integrity
 - One cryptographic mechanism does two jobs with one key
 - Example: GCM = Galois Counter Mode
 - Combined modes generating a lot of interest

- **IKEv2-SCSI** needs additional text for combined modes
 - Proposal: support both conventional (e.g., CBC) and combined (e.g., GCM) modes
 - Alternative: Only support combined modes (e.g., GCM)
 - Second combined mode: CCM = Counter with CBC-MAC
Cryptographic Algorithm Negotiation

- **IKEv2-SCSI** negotiates cryptographic algorithms
 - Secure negotiation, signed and linked to Authentication
 - IKEv2-SCSI Authentication step requires encryption

- **SA users** (e.g., SSC-3) need crypto alg. negotiation
 - Would like to use IKEv2-SCSI’s rather than invent their own
 - Works fine when all the same algorithms are used twice.
 - What if they’re not? E.g., How can encryption be omitted?

- **Possibility: Second round of negotiation**
 - Key Exchange phase (first) negotiates IKEv2-SCSI algorithms
 - Authentication phase (second) negotiates SA usage algorithms
 - Complication: **SA_AUTH_NONE**: SA usage algorithms negotiated in Key Exchange phase (details to be worked out).

- **Q: Should this be done?**
Mandatory Algorithms (Tarpit warning)

- **General**: Common requirements for SBC and SSC devices
 - Avoid per-usage requirements.

- **Cryptography I**: Recommend no mandatory elliptic curve
 - Intellectual Property concerns: leave in specification as optional

- **Cryptography II**: Start with 128 bit AES
 - Encryption + Integrity: choose one:
 - AES-CBC + [HMAC-SHA1_96 (96 bits) or HMAC-SHA2_256_128 (128 bits)] or
 - AES-GCM + AUTH_COMBINED
 - PRF: IKEv2 based on SHA1 (160 bits) or SHA2_256
 - D-H group: choose 1
 - 2048 bit mod-p (~ 100 bits) or 3072 bit mod-p (~ 125 bits)
 - Q: Leave 4096 bit mod-p group in specification?
 - Prohibit SHA2_384 HMAC and PRF for simplicity
 - 192 bit AES already prohibited
Mandatory Authentication Mechanisms (Bigger tarpit)

- Mandatory SA_AUTH_NONE - security disaster
 - But, inband device initialization is a concern

- Primary decision: RSA keys vs. shared secret keys
 - RSA Initialization: Public key via any means
 - E.g., label on device and sneaker-net are both secure.
 - Shared secret key (SKMIC) Initialization: Keep the key secret
 - If installed at factory, need secure key management infrastructure.

- 2.5 possibilities
 - RSA mandatory for app client and device server
 - Certificates optional, but may want to mandate certificate verification logic
 - SKMIC mandatory for app client and device server
 - Possible addition (+0.5): SA_AUTH_NONE with physical presence required
 - For device initialization (no design work done on this, yet)
EMC²
where information lives®