6G SAS Jitter Definitions T10/07-XXXr0

Mark Marlett - LSI

May 8, 2007

Mark Marlett - LSI 6G SAS Jitter Definitions T10/07-XXXr0

・ロン ・回と ・ヨン ・ヨン

æ

Introduction

SAS TX Jitter Parameters SAS RX Jitter Parameters TX and RX Jitter in need of Reconciliation

Jitter Specification Clarification Proposal

Jitter and EQ combined Specification Table Conclusion

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

SAS TX Jitter Parameters SAS RX Jitter Parameters TX and RX Jitter in need of Reconciliation

SAS TX Jitter Parameters

The current Transmit Jitter parameters from T10/07-063r5 are:

- Random Jitter (1010 pattern, zero-length test load) 0.18 UI or 30 ps.
- Total Jitter (through reference channel, reference receiver, CJTPAT) 0.63 UI or 105 ps.
- Tx Equalization, the recommended TX device setting for interoperability of 2-4dB. (used for the reference transmitter device)

イロト イヨト イヨト イヨト

SAS TX Jitter Parameters SAS RX Jitter Parameters TX and RX Jitter in need of Reconciliation

SAS RX Jitter Parameters

The current Receive Jitter parameters from T10/07-063r5 are:

- Applied sinusoidal jitter at IR or CR (1 UI).
- Deterministic Jitter (DJ) of 0.35 UI
- Total Jitter (TJ) of 0.65 UI.

イロト イヨト イヨト イヨト

SAS TX Jitter Parameters SAS RX Jitter Parameters TX and RX Jitter in need of Reconciliation

SAS RX Reference Receiver

The current Reference Receiver parameter from T10/07-063r5 are:

- 2-Tap DFE with infinite precision taps and 1UI spacing.
- LMSE auto-adapting taps
- ► EQ inner EYE of 100mV vertical
- EQ inner EYE of 0.6 UI horizontal

・ 同 ト ・ ヨ ト ・ ヨ ト

SAS TX Jitter Parameters SAS RX Jitter Parameters TX and RX Jitter in need of Reconciliation

SAS TX and RX jitter reconciliation

How to reconcile

- TX parameters RJ, TJ and EQ, with
- ▶ RX parameters SJ, DJ and TJ? and with
- with the Reference EQ DFE?

イロト イヨト イヨト イヨト

SAS TX Jitter Parameters SAS RX Jitter Parameters TX and RX Jitter in need of Reconciliation

SPEC problems

The TX generation continues to the CR or IR points.

- TX output
- Compliant RX device, and
- Through some compliant channel,

to work in the system.

- 4 回 2 - 4 □ 2 - 4 □

Jitter and EQ two parts of one problem

SAS relies on reference RX definition from MJSQ. This reference RX

- Provides a timebase to sample the data,
- Mimics RX CDR behavior,
- provides jitter budget relief for SSC closed jitter EYES.
- SAS is proposing a DFE reference RX EQ. This reference EQ
 - Provides an open EYE for sampling,
 - Mimics RX EQ behavior, and
 - provides jitter budget relief for amplitude closed jitter EYES.

Need to open the time and amplitude jitter simultaneously.

イロト イポト イヨト イヨト

Combined/Unified signal specifications

A combined specification must include:

- ► A Reference RX CDR PLL definition,
- A Reference RX EQ definition 2 TAP DFE (Enhanced TWDP), and
- ► A EYE MASK opening at 10⁻¹² BER target.
- Further limits on TX and RX Return Loss to permit Channel budgeting and modeling.

A compliant SAS system is one that generates a signal within the specified generation limits, and tolerates a signal at least as large as the tolerance limits.

Jitter and EQ combined Specification Table Conclusion

Why combine EQ and RX CDR?

The RX signal is inter-dependent.

- The reference EQ creates transitions,...
- The reference CDR derives a timebase from the transitions, and
- adaptation changes EQ parameters based on the sampled EYEs.

Thus the RX eye is inter-dependent on the EQ and CDR and adaptation results. This is obviously channel specific.

・ 同 ト ・ ヨ ト ・ ヨ ト

RX EQ analysis

Jitter and EQ combined Specification Table Conclusion

Simple RX EQ analysis requires:

- A spectrally rich signal for the adaptation, (JTSPAT to CJTSPAT)
- A repetitive signal, (The deterministic signal found through averaging)

It creates a NORMALIZED EYE to a reference target. Simulation or software DFE can create any amplitude.

Jitter and EQ combined Specification Table Conclusion

Combined/Unified Spec parameter table

Name	Description	Unit	value	(min/max)
VMA	Signal amplitude	Volts	XXX	min
Y1	normalized inner vertical EYE		XXX	min
X1	Horizontal EYE opening	UI	XXX	max

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

Jitter and EQ combined Specification Table Conclusion

Combined/Unified Spec parameter table (cont)

With the signal measurements from:

- auto-adapted parameters from a scrambled pattern,
- ► EYE generated from the combined reference DFE + CDR.

Combined/Unified Spec parameter table (cont)

Additional table entries can be added to restrict the allowable signals further by adding parameters designed with a channel budget in mind:

Name	Description	Unit	value	(min/max)
TX-TJ	max TX jitter		XXX	max
S21	Nyquist rate channel loss	dB	XXX	max

In all cases the EYE measurement is the same, through a combined DFE+CDR reference EQ after the auto-adaption took place on a scrambled repetitive pattern.

・ロト ・回ト ・ヨト ・ヨト

Jitter and EQ combined Specification Table Conclusion

Reference channel extensions

"Near end" measurements can be performed via

- A reference channel definition set,
- CDR+DFE analysis of the resulting EYE

Thus near and far end measurements are effectively measured "far end".

(4回) (4回) (4回)

3

Conclusions

- Effects of Rj, Dj, Sj etc, are captured by the DFE+DCR and the mask.
- Effects of Channel, + TX EQ are captured by the DFE+CDR and the mask.
- A consistent measurement method has been proposed.
- Detailed interactions are captured by the "far end" analysis method.

Thank you for your time. I Wish I Was in Washington.