1 Overview

During the comparison between SAS-2 rev 8 and 06-470r5 there were some differences that need to be addressed. There are also some omissions in 06-470r5 that were discovered during incorporation into SAS-2 that are addressed in this proposal. These were pointed out in SAS-2 rev 8 editor notes 46, 47, and 48. Note that this proposal only addresses the read data path. The write data path is not addressed in this proposal.

2 ST_ITS6: Receive_Data_In state

9.2.6.2.2.2 Processing transport protocol service requests

If this state machine receives a Send SCSI Command transport protocol service request then this state machine shall send a Request (Send Command) message with Command arguments and Buffer arguments to the ST_ITS state machine for the specified tag.

The following is the list of Command arguments:

- a) connection rate;
- b) initiator connection tag;
- c) destination SAS address;
- d) source SAS address set to the SAS address of the SSP initiator port;
- e) tag;
- f) logical unit number;
- g) task priority;
- h) task attribute;
- i) additional CDB length;
- j) CDB; and
- k) additional CDB bytes, if any.

The following is the list of Application Client Buffer arguments:

- a) data-in buffer size;
- b) data-out buffer; and
- c) data-out buffer size.

...
f) ST_ITS6:Receive_Data_In state (see 9.2.6.2.3.7).

This state machine shall start in the ST_ITS1:Initiator_Start state after power on.

If this state machine receives a HARD_RESET Received confirmation, then this state machine shall transition to the ST_ITS1:Initiator_Start state.

This state machine shall maintain the state machine variables defined in table 1.

Table 1 — ST_ITS state machine variables

<table>
<thead>
<tr>
<th>State machine variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data-In Buffer Offset</td>
<td>Current offset in the data-in application client buffer for read data</td>
</tr>
<tr>
<td>Data-Out Buffer Offset</td>
<td>Current offset in the data-out application client buffer for write data</td>
</tr>
<tr>
<td>Previous Requested Offset</td>
<td>Application client data offset from the last XFER_RDY frame received</td>
</tr>
<tr>
<td>Previous Write Data Length</td>
<td>Write data length from the last XFER_RDY frame received</td>
</tr>
</tbody>
</table>

This state machine shall maintain the state machine arguments defined in table 2.

Table 2 — ST_ITS state machine arguments

<table>
<thead>
<tr>
<th>State machine argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Consists of the Command arguments received in the Request (Send Command) message</td>
</tr>
<tr>
<td>Task</td>
<td>Consists of the arguments received in the Request (Send Task) message</td>
</tr>
<tr>
<td>Xfer_Rdy</td>
<td>Consists of the arguments received in the XFER_RDY Arrived message</td>
</tr>
<tr>
<td>Data-Out Buffer</td>
<td>The location of the write-data application client buffer for write data</td>
</tr>
<tr>
<td>Data-Out Buffer Size</td>
<td>The size in bytes of the write-data application client buffer for write data</td>
</tr>
<tr>
<td>Data-In Buffer Size</td>
<td>The size in bytes of the read-data application client buffer for read data</td>
</tr>
</tbody>
</table>

The below editors note suggests that the Data-in Buffer Size needs to be adjusted. But that value should never be adjusted as it is an argument and is only used to make sure none of the read data frames that are received will put data beyond the buffer allocated by the application.

---

Editor’s Note 46: If Buffer Offset is an app client buffer based value, then Data-In Buffer Size needs to be adjusted.

---

The flow chart also needs to be adjusted as there are some errors in it (see figure 1).

10 ST_T state machines
9.2.6.3.3 ST_TTS (target transport server) state machine

9.2.6.3.3.1 ST_TTS state machine overview

The ST_TTS state machine performs the following functions:

a) receives and processes messages from the ST_TFR state machine;
b) sends messages to the ST_TFR state machine;
c) communicates with the port layer using requests and confirmations regarding frame transmission; and
d) receives HARD_RESET Received confirmations from the port layer.

This state machine consists of the following states:

a) ST_TTS1:Target_Start (see 9.2.6.3.3.2) (initial state);
b) ST_TTS2:Target_Send_Frame (see 9.2.6.3.3.3);
c) ST_TTS3:Prepare_Data_In (see 9.2.6.3.3.4);
d) ST_TTS4:Prepare_Xfer_Rdy (see 9.2.6.3.3.5);
e) ST_TTS5:Receive_Data_Out (see 9.2.6.3.3.6); and
f) ST_TTS6:Prepare_Response (see 9.2.6.3.3.7).

This state machine shall start in the ST_TTS1:Target_Start state after power on.

If this state machine receives a HARD_RESET Received confirmation, then this state machine shall transition to the ST_TTS1:Target_Start state.

The state machine shall maintain the state machine variables defined in table 3.

Table 3 — ST_TTS state machine variables

<table>
<thead>
<tr>
<th>State machine variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Data Offset</td>
<td>Offset into the application client buffer for read data</td>
</tr>
<tr>
<td>Balance Point Read Data Offset</td>
<td>Offset into the application client buffer for read data of last point at which the number of Transmission Status (ACK Received) confirmations or arguments was equal to the number of transmitted read DATA frames</td>
</tr>
<tr>
<td>Read Data Frames Transmitted</td>
<td>The number of Transmission Status (Frame Transmitted) confirmations received for read DATA frames</td>
</tr>
<tr>
<td>Read Data Frames ACKed</td>
<td>The number of Transmission Status (ACK Received) confirmations received for read DATA frames</td>
</tr>
<tr>
<td>Requested Write Data Offset</td>
<td>Device server requested offset in the application client buffer for write data</td>
</tr>
<tr>
<td>Requested Write Data Length</td>
<td>Amount of write data requested by the device server from the application client buffer</td>
</tr>
</tbody>
</table>

This state machine shall maintain the state machine arguments defined in table 4.

Table 4 — ST_TTS state machine arguments

<table>
<thead>
<tr>
<th>State machine argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data-In</td>
<td>The Data-In arguments received in the Request (Send Data-In) message (see 9.2.6.3.2.3)</td>
</tr>
<tr>
<td>Data-Out</td>
<td>The Data-Out arguments received in the Request (Receive Data-Out) message (see 9.2.6.3.2.3)</td>
</tr>
</tbody>
</table>
9.2.6.3.3.2 ST_TTS1: Target_Start state

9.2.6.3.3.2.1 State description

This state is the initial state of the ST_TTS state machine.

Upon entry into this state, this state shall:

a) set the Read Data Offset state machine variable to the Data-In Application Client Buffer Offset argument;

b) set the Balance Point Read Data Offset state machine variable to the Data-In Application Client Buffer Offset argument;

c) set the Read Data Frames Transmitted Count state machine variable to zero;

d) set the Read Data Frames ACKed state machine variable to zero; and

e) set the Requested Write Data Offset state machine variable to zero.

If this state was entered without an Enable First Burst argument, then the Requested Write Data Length state machine variable shall be set to the Request Byte Count Data-Out state machine argument.

If this state was entered with an Enable First Burst argument, then the Requested Write Data Length state machine variable shall be set to the First Burst Size argument.

...
If this state is entered without a Retry argument then this state shall:

a) set the CHANGING DATA POINTER bit set to zero;
b) set the DATA OFFSET field to the Read Data Offset state machine variable;
c) set the Read Data Frames Transmitted state machine variable to zero;
d) set the Read Date Frames ACKed state machine variable to zero; and
e) in the information unit, set the DATA field to the information in the Device Server Buffer argument that corresponds to the read data to be transferred. The amount of data in the DATA field shall be the lesser of: that starts at the location in the Data-In Device Server Buffer argument pointed to by the Read Data Offset state machine variable minus the Data-In Application Client Buffer Offset argument, containing the amount of data that is the lesser of:
A) the Data-In Request Byte Count argument minus the Read Data Offset state machine variable; and
B) the maximum size of the read Data information unit for this Data-In request.

If this state is entered with a Retry argument then this state shall either:

a) set the CHANGING DATA POINTER bit in the frame to one;
b) set the DATA OFFSET field to the Balance Point Read Data Offset state machine variable;
c) set the Read Data Offset state machine variable to the Balance Point Read Data Offset state machine variable;
d) set the Read Data Frames Transmitted state machine variable to zero;
e) set the Read Date Frames ACKed state machine variable to zero; and
f) in the information unit, set the DATA field to the information in the Device Server Buffer argument that corresponds to the read data to be transferred. The amount of data in the DATA field shall be the lesser of: that starts at the location in the Data-In Device Server Buffer argument pointed to by the Read Data Offset state machine variable minus the Data-In Application Client Buffer Offset argument, containing the amount of data that is the lesser of:
A) the Data-In Request Byte Count argument minus the Balance Point Read Data Offset state machine variable; and
B) the maximum size of the read Data information unit for this Data-In request;
or:

a) set the CHANGING DATA POINTER bit in the frame to one;
b) set the DATA OFFSET field to the Data-In Application Client Buffer Offset argument;
c) set the Read Data Offset state machine variable to the Data-In Application Client Buffer Offset argument; and
d) in the information unit, set the DATA field to the information in the Device Server Buffer argument that corresponds to the read data to be transferred. The amount of data in the DATA field shall be the lesser of: to the information that starts at the location in the specified device server buffer pointed to by the Balance Point Read Data Offset state machine variable and containing the amount of data that is the lesser of:
A) the Data-In Request Byte Count argument; and
B) the maximum size of the read Data information unit for this Data-In request.
3 ST_ITS transport layer read data flowcharts

DATA OFFSET field = Contains the first offset location into read data buffer for the current DATA information unit
Data-In Buffer Offset = Offset into read data buffer for the last received data frame.
Data-In Buffer Size = The number of bytes to be read as requested by the application client.

Figure 1 — Representation of transport layer (i.e., ST_ITS6) read data operation
4 ST_TTS transport layer read data flowcharts

Read Data Offset = Offset into application client read data buffer
Read Data Frames Transmitted = The number of Transmission Status (Frame Transferred) confirmations received
Read Data Frames ACKed = The number of Transmission Status (ACK Received) confirmation received.
Balance Point Read Data Offset = Offset into the application client read data buffer for last data frame that the number of frames transmitted = number ACKs received
Data-In Request Byte Count = The number of bytes requested to be transferred. Set by the device server.

ST_TTS1

ST_TTS3

Figure 2 — Representation of transport layer (i.e., ST_TTS1 and ST_TTS3) read data operation
Figure 3 — Representation of transport layer (i.e., ST_TTS2) read data operation (part 1 or 2)
ST_TTS2

Note: This part of the flow handles Transmission Status confirmations that indicate an error occurred on the frame transmission or that the nexus failed.

Figure 4 — Representation of transport layer (i.e., ST_TTS2) read data operation (part 2 or 2)