
07-069r5

Capability based Command
Security

SCSI commands standard proposal

IBM

July 2007

07-069r5

Table of Contents

1 Definitions, symbols, abbreviations, and conventions 1

1.1 Definitions ..1

1.1.1 CbCS Capability ..1

1.1.2 CbCS capability key...1

1.1.3 CbCS Credential..1

1.1.4 CbCS management application client ...1

1.1.5 CbCS management device server...1

1.1.6 CbCS master key...2

1.1.7 CbCS master authentication key ...2

1.1.8 CbCS master generation key ..2

1.1.9 CbCS validation tag...2

1.1.10 CbCS working key ...2

1.1.11 Integrity check value..2

1.1.12 Secret key..2

1.1.13 Security token ..2

1.2 Acronyms...2

2 Capability based Command Security... 2

2.1 Overview..2

2.2 CbCS management device server...5

2.2.1 CbCS management device server overview ...5

2.2.2 CbCS Credentials ..5

2.3 CbCS management application client ...6

2.4 Trust assumptions ...6

2.5 Access control Management ...7

2.5.1 CbCS Capabilities..7

2.6 Security Methods ...10

2.6.1 Overview..10

2.6.2 General ..10

ii

07-069r5

2.6.3 The BASIC security method ..11

2.6.4 The CAPKEY security method ..11

2.7 CbCS Credentials ..12

2.7.1 Preparing CbCS credentials by the CbCS management device server..........13

2.7.2 Preparing CbCS credentials by the application client14

2.7.3 Validating CbCS credentials by the device server ..14

2.8 Secret Keys ...14

2.8.1 Overview..14

2.8.2 Secret key usage in commands ..15

2.8.3 Computing updated CbCS master generation keys and new CbCS
authentication keys ..16

2.9 CbCS interactions with commands and task management functions17

2.9.1 Association between commands and command functions..............................17

2.9.2 Task management functions ...19

2.10 Security attributes ..19

3 CbCS extension...20

4 Extended INQUIRY Data VPD page ..21

5 Changes in SECURITY PROTOCOL IN command..22

5.1 CbCS SECURITY PROTOCOL...22

5.1.1 Overview..22

5.1.2 SECURITY PROTOCOL IN supported CbCS page..23

5.1.3 SECURITY PROTOCOL OUT supported CbCS page....................................24

5.1.4 Capabilities CbCS page ..24

5.1.5 Attributes CbCS page..26

5.1.6 Set Master Key, Seed Exchange CbCS page...28

6 Changes in SECURITY PROTOCOL OUT command29

6.1 CbCS SECURITY PROTOCOL...30

6.1.1 Overview..30

6.1.2 Set attributes CbCS page..30

iii

07-069r5

6.1.3 Set Key CbCS page...31

6.1.4 Set Master Key, Seed Exchange CbCS page...32

6.1.5 Set Master Key, Change Master Key CbCS page ..33

7 RECEIVE CREDENTIAL command...36

7.1 RECEIVE CREDENTIAL parameter data..37

7.1.1 CbCS capability format ..38

8 PERFORM TASK MANAGEMENT FUNCTION command................................41

9 Misc. changes..41

9.1 Change in C.3.5 Variable length CDB service action codes41

9.2 Change in Table 48 — Commands for all device types42

10 References ...42

iv

07-069r5

1

Changes to SPC-4
Proposal 07-029 defines XCDB (extended CDB) format. This proposal is dependent on 07-029r3.

Legend for the text colors: New text in blue. Removed text in red strikethrough. Proposer’s notes in
green.

Changes in revision 5:

1) Added Discriminator field in the Capability

2) Added optional use of Volume identifier in the capability, for use by SSC devices.

3) Adjusted to the new XCDB revision (07-029r3)

1 Definitions, symbols, abbreviations, and conventions
(These are additions to section 3 of SPC-4.)

1.1 Definitions
(These are additions to section 3.1 of SPC-4.)

[Sivan: This section is almost a complete rewrite from previous version]

1.1.1 CbCS Capability
A data structure that specifies defined access to a logical unit for specific commands. See 2.5.1.

1.1.2 CbCS capability key

The integrity check value (see 1.1.11) in a CbCS credential (see 1.1.3) returned by the CbCS
management device server (see 1.1.5) in response to the RECEIVE CREDENTIAL command (see 7).
See 2.2.2.

1.1.3 CbCS Credential
A data structure containing a capability that is protected by an integrity check value (see 1.1.11) that is
sent to and used by an application client in order to grant defined access to a logical unit for specific
commands. See 2.7.

1.1.4 CbCS management application client

An application client that manages secret keys (see 1.1.12) stored in logical units. See 2.3.

1.1.5 CbCS management device server
A device server that prepares CbCS credentials (see 1.1.3) in response to application client requests.
See 0.

07-069r5

2

1.1.6 CbCS master key
A set of secret keys (see 1.1.12) that consist of a CbCS master authentication key (see 1.1.7) and a
CbCS master generation key (see 1.1.8).

1.1.7 CbCS master authentication key

A secret key (see 1.1.12) used to generate integrity check values (see 1.1.11) for CbCS credentials
(see 1.1.3) that grant access to commands that sets secret keys in logical units. See 2.8.

1.1.8 CbCS master generation key
A secret key (see 1.1.12) used to generate new CbCS working keys (see 1.1.10).

1.1.9 CbCS validation tag

The integrity check value in a credential sent by the application client in a CbCS extension (see 3).
See 2.2.2.

1.1.10 CbCS working key
A secret key (see 1.1.12) that is used in generating integrity check values (see 1.1.11) for CbCS
credentials (see 1.1.3) for commands other than those that sets secret keys in logical units. See 2.8.

1.1.11 Integrity check value

A value computed using an integrity algorithm (see 7.7.3.6.4 in 06-449r6), a secret key (see
 1.1.12), and an identified set of data that protects the integrity of that identified set of data.
See 2.7.

1.1.12 Secret key

A cryptographically generated value that is known only to a limited set of authorized entities. See 2.8.

1.1.13 Security token

Pending definition: Random Nonce of at least 128 (or 256) bits which is generated by the device
server for each I_T nexus at each creation of the I_T nexus.

1.2 Acronyms
CbCS Capability based Command Security

2 Capability based Command Security

2.1 Overview
CbCS is a credential-based access control system. The security model is composed of the following
components:

a) A SCSI target device;

07-069r5

b) A security manager consisting of:

a. A CbCS management device server

b. A CbCS management application client

c) Application clients.

(Editors note: This needs a UML class diagram to accurately describe the interaction of the
security classes to the classes we already have. The UML should also include the CbCS
management application client and a CbCS management device server.)

The CbCS management device server manages access control policy. CbCS Credentials are
prepared by the CbCS management device server based on that access control policy.

Controlling access to a logical unit requires coordination between secret keys and security attributes
set by the CbCS management application client and credentials generated by the CbCS management
device server. The mechanism for coordination between the CbCS management device server and
the CbCS management application client is not defined in this standard.

Figure 1 shows the flow of transactions between the components of a CbCS capable SCSI domain.

Figure 1 - The CbCS security model

S
ecurity M

anager

Application client

Device Server

CbCS management
device server

Authorization request

[CAP, Ckey]
[Request, CAP,

validation_tag]

[key]

CbCS management
application client

The CbCS protocol enables centralized management of access control for multiple application clients
across multiple SCSI initiator devices to multiple logical units across multiple SCSI target devices.

The protocol secures application client access to a logical unit by providing cryptographic integrity of
credentials that are added to commands sent to the logical unit (See 2.7). This cryptographic integrity
is based on mutual trust and secret key exchange between the CbCS management device server,
CbCS management application client, and the logical unit’s device server (see 2.8).

Different levels of protection and security are achieved by using different security methods. Currently
two security methods are defined: The BASIC security method provides protection against errors but
does not prevent unauthorized access caused by means of malicious attacks such as identity spoofing
and network attacks. The CAPKEY security method enforces application client authentication and

3

07-069r5

4

provides cryptographic integrity of credentials. Combined with network-level cryptographic message
integrity, it protects against the following types of unauthorized access attacks:

 Illegal use of credentials beyond their original scope and lifespan;

 Forging or stealing credentials;

 Using malformed credentials;

 Network errors and malicious message modifications;

 Message replay attacks.

The protocol also supports coarse grained (per device) and fine grained (per logical unit) rapid
revocation of credentials.

The device server reports that CbCS is applied to a logical unit by setting the CbCS bit in the
Extended INQUIRY Data VPD page (see 4). If the CbCS bit is set to one, the target device shall
support the following commands and parameters:

a) Extended SCSI command (see 4.3.4.2 [07-029r3]);

b) CbCS extension type (see 3);

c) SECURITY PROTOCOL IN specifying the CbCS security protocol (see 5.1).

d) SECURITY PROTOCOL OUT specifying the CbCS security protocol (see 6.1).

07-069r5

5

2.2 CbCS management device server

2.2.1 CbCS management device server overview
The application client requests capabilities and CbCS capability keys from the CbCS management
device server. A CbCS management device server returns a CbCS capability key (Cap-Key) with each
CbCS credential giving the application client access to a specific logical unit. The application client
sends the CbCS capability to that logical unit’s device server as part of a CbCS extended command
which allows the device server to authenticate the CbCS capability with an integrity check value (see
 2.7.2, 2.7.3).

The CbCS management device server shall authenticate the application client unless BASIC security
method is used (see 2.6.3), but secure access between the application client and device server is
provided without requiring authentication of the application client by the device server. It is sufficient
for the device server to verify the CbCS capabilities and integrity check values sent by the application
client.

2.2.2 CbCS Credentials
The RECEIVE CREDENTIAL command is used to request a CbCS credential from the CbCS
management device server (see 7).

If the CAPKEY security method is used, the device server shall validate each command received from
an application client to confirm that:

a) The credential has not been tampered with (i.e., that the CbCS credential was generated by
the CbCS management device server and includes an integrity check value generated using a
secret key known only to the CbCS management device server, the CbCS management
application client and the device server);

b) The credential was obtained by the application client from the CbCS management device
server or through delegation by another application client (i.e., that the application client knows
the capability key that is associated with the credential and has used the CbCS capability key
to provide a proper integrity check value for the command); and

c) The requested SCSI command encapsulated in the received CDB is permitted by the capability
in the credential (see 2.9).

If the BASIC security method is used, the device server shall validate each command received from
an application client to confirm that the requested SCSI command encapsulated in the received CDB
is permitted by the CbCS capability in the CbCS credential (see 2.9).

A CbCS credential includes a CbCS capability and an integrity check value. The integrity check value
in a CbCS credential returned by the CbCS management device server in response to the RECEIVE
CREDENTIAL command (see 7) is used as the secret key to generate the integrity check value in a
CbCS credential sent by the application client in a CbCS extension (see 3).

The integrity check value in a CbCS credential returned by the CbCS management device server in
response to the RECEIVE CREDENTIAL command is the CbCS capability key. The integrity check
value in a CbCS credential sent by the application client in a CbCS extension is the validation tag.

The validation tag allows the device server to validate a CbCS credential and determine if the CbCS
capability has been tampered with (e.g., an application client that has just the CbCS capability but not
the CbCS capability key is unable to generate CbCS credentials with a valid validation tag in the
integrity check value). Delegation of a CbCS credential is permitted, if an application client delegates
both the CbCS capability and the CbCS capability key.

07-069r5

6

2.3 CbCS management application client
The CbCS capability keys are computed using secret keys that are shared between the CbCS
management device server and the device server. The secret keys are managed by the CbCS
management application client in conjunction with the CbCS management SCSI initiator device. The
command integrity check values (i.e. the validation tags) are computed using CbCS capability keys.
This standard includes SCSI commands for the CbCS management application client to set and
manage the secret keys stored in the logical unit or a well known logical unit (see 5.1, 6.1).

If the secret key is stored in a well known logical unit then the key is shared between all logical units
within the target device but is only used by a logical unit if there has been no secret key assigned to
that logical unit (i.e., a secret key assigned to a logical unit always overrides any secret key assigned
to a well known logical unit).

2.4 Trust assumptions
After the logical unit is a trusted (i.e., after an application client authenticates that it is communicating
with a specific logical unit), the application client trusts the device server to:

a) Provide integrity for stored data;

b) Perform the security protocol and functions defined for it by this standard; and

c) Not be controlled in a way that operates to the detriment of the application client’s interests.
[GP – This item should be deleted as it basically states the logical unit should not do bad
things]
[Sivan: In systems security analysis you state your assumptions on which system may be
controlled by an attacker (non-trusted) and which systems may not be (trusted). This statement
just says that the device server is trusted. It covers various undesirable behaviors not covered
by items a-b.]

The CbCS management device server and the CbCS management application client are trusted after:

a) the CbCS management device server is authenticated by the application client; and

b) the CbCS management application client is authenticated by the logical unit.

The CbCS management device server and the CbCS management application client are trusted to:

a) Securely store long-lived secret keys;

b) Grant credentials to application clients according to access control policies that are outside the
scope of this standard; and

c) Perform the defined security functions.

The application client is not trusted. However, the CbCS security model is defined so that the
application client receives service from the device server only if it interacts with both the CbCS
management device server and the device server in ways that assure the propriety of the application
client’s actions.

CbCS management application clients and CbCS management device servers are trusted to protect
CbCS capability keys from disclosure to unauthorized entities.

Communications between the CbCS management application clients, application clients, CbCS
management device servers, and device servers are trusted based on the requirements shown in
Table 1.

07-069r5

7

Table 1 - Communications trust requirement

Connection Communication trust
requirement

application client <--> device server Cryptographic message integrity
 a

application client <--> CbCS management device server Cryptographic confidentiality and
integrity

CbCS management application client <--> device server Cryptographic message integrity

CbCS management device server <-->
CbCS management application client Confidentiality and integrity

Confidential communications are protected from eavesdropping by methods outside the
scope of this standard.

Cryptographic message integrity assures that the message received is the one that was sent
(i.e., no tampering occurred). Messages in which tampering is detected shall be discarded.
a
 Cryptographic message integrity is sufficient for security of the CbCS access control.

Confidentiality of the data transferred between the application client and the device server
may be required to prevent passive network attacks and implemented by other means.

2.5 Access control Management
Access control management shall be performed by the CbCS management application client and the
CbCS management device server as follows:

a) The CbCS management device server provides access policy controls to application clients
using policy-coordinated CbCS capabilities; and

b) The CbCS management application client, in concert with the CbCS management device
server and the device server, prevents unsecured access to a logical unit.

The access control management is confined to the CbCS management application client and CbCS
management device server. The communication of access control management information may
occur in a manner outside the scope of this standard.

2.5.1 CbCS Capabilities

2.5.1.1 Overview

All CbCS extensions contain a CbCS capability descriptor that specifies the command functions (e.g.,
read, write, attributes setting, attributes retrieval) that the device server is allowed to process in
response to the encapsulated SCSI CDB.

The device server shall validate that the requested functions are allowed by the CbCS capability
based on:

a) The type of functions; and

b) The logical unit.

The policies that determine which CbCS capabilities are provided to which application clients are
outside the scope of this standard.

The CbCS management device server shall deliver CbCS capabilities to application clients as follows:

a) If the security method in use for the logical unit is BASIC (see 2.6.3), then the CbCS
management device server may:

07-069r5

8

A) Allow application clients to prepare their own CbCS capabilities; or

B) Coordinate the preparation of CbCS capabilities for multiple application clients in
response to requests;

or

b) If a security method in use for the logical unit is CAPKEY (see 2.6.4), then the CbCS
management device server shall prepare of CbCS capabilities by:

A) Requiring application clients to request CbCS credentials and CbCS capabilities; and

B) Preparing CbCS capabilities only in response to application client requests.

A CbCS capability descriptor is included in a CbCS credential returned by the CbCS management
device server in response to the RECEIVE CREDENTIAL command (see 7), and in CbCS extension
parameters (see 3) to enable the device server to verify that the application client is allowed to
perform the command functions requested by the encapsulated CDB. The capability format is defined
in 7.1.1.

The CbCS capability descriptor specifies:

a) the security method to apply in validating the CbCS credential;

b) the cryptographic parameters used in generating the CbCS credential integrity check value;

c) an expiration time of the CbCS capability;

d) a permission bit mask that specifies which command functions are authorized by the CbCS
capability;

e) a logical unit descriptor which uniquely identifies the logical unit to which the CbCS capability
pertains;

f) a policy access tag which is used for CbCS credential revocation;

g) an audit field, that may be used in a vendor specific manner to limit the delegation or prevent
leakage of the CbCS capability to other application clients;

h) a designation descriptor that uniquely identifies a logical unit. If the CbCS capability applies to
a well-known logical unit, the designation descriptor applies to the target device in which it
resides; and

i) a discriminator field which is used to guarantee uniqueness of credentials.

Use of the CbCS capability expiration time is optional. Effective use of the CbCS capability expiration
time requires synchronization between the clocks of the CbCS management device server and the
device server. The method for synchronizing the clocks is outside the scope of this standard. If
capability expiration time is used, the CbCS management device server should set capability lifetime
that is an order of magnitude larger than the allowed deviation between the clocks. The protocol for
synchronizing the clocks is not specified in this standard, however, the protocol should be
implemented in a secure manner (e.g., it should not be possible for an adversary to set the clock in the
device server backwards to enable the reuse of expired CbCS credentials). The REPORT
TIMESTAMP command and SET TIMESTAMP command extended with CbCS extension may be
used by the CbCS management application client for this purpose.

Use of the CbCS policy access tag is optional. The policy access tag field is used for rapid revocation
of credentials for a logical unit. It is a settable attribute of the logical unit. The value of the field in the
CbCS capability must match the value of the logical unit’s attribute. The CbCS management device
server shall set the CbCS capability field to the current LU attribute value. The CbCS management
application client may change the logical unit attribute value (see 6.1.2) in order to invalidate
outstanding credentials.

07-069r5

9

In order to implement CbCS credential based on logical unit unique identifier, the same identifier type
shall be:

a) used in the access control policies set in the policy manager;

b) returned by the device server in Device Identification VPD page (Inquiry page 83h);

c) used by the application client to identify the device and request the corresponding CbCS
credential from the CbCS management device server; and

d) returned by the CbCS management device server in response in the CbCS capability in
response to the application client's CbCS credential request.

A CbCS management application client may block CbCS capability-based access to a logical unit by:

a) changing the policy access tag attribute associated with a logical unit (see 6.1.2);

or

b) changing or invalidating the secret keys shared with the device server.

The Designation descriptor field may be used in the following ways:

c) uniquely identify a logical unit by specifying a Designation descriptor with the ASSOCIATION
field set to 00b (see 7.6.3.1).

d) uniquely identify a target device by specifying a Designation descriptor with the ASSOCIATION
field set to 10b (see 7.6.3.1). The capability is then used in commands targeted to a well-
known logical unit.

e) uniquely identify a volume by specifying a medium auxiliary memory attribute (see 7.3.1) with
type VOLUME IDENTIFIER. This is intended for access control to volumes in SSC and SMC
commands.

The discriminator field is used by the CbCS management device server to guarantee uniqueness of
credentials. For sake of security best practices, the CbCS management device shall never return the
same credential to two application clients. In case multiple credentials are generated for multiple
application clients, specifying identical values in all other fields (the same logical unit, the same
permissions, the same expiration time and so on) and signed with the same key, the discriminator field
shall be used to discriminate between the credentials. The same discriminator field may be used in
multiple credentials as long as the credential uniqueness requirement is satisfied.

2.5.1.2 CbCS Capability validation

The device server shall validate the CbCS capability descriptor included in the CbCS extension (see
 3) as follows:

a) Verify that the CAPABILITY FORMAT field value is set to 1h. If the CAPABILITY FORMAT
field value is other than 1h, then the command shall be terminated with a CHECK CONDITION
status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set to
INVALID FIELD IN CDB.

b) If the CAPABILITY EXPIRATION TIME field contains a non-zero value, then compare the
CAPABILITY EXPIRATION TIME field to the current time (i.e., the current number of
millisecond passed since midnight, 1 January 1970 UT). If the CAPABILITY EXPIRATION
TIME field value is smaller than the current time value, then the command shall be terminated
with a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the
additional sense code set to INVALID FIELD IN CDB.

c) Verify that the designation descriptor matches the addressed logical unit, or the addressed
target device in case a well-known logical unit is addressed. If they don't match, then the

07-069r5

10

command shall be terminated with a CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

d) If the POLICY ACCESS TAG field in the CbCS capability descriptor contains a non-zero value,
then compare the POLICY ACCESS TAG field to the Policy Access Tag of this logical unit. If
they don't match, then the command shall be terminated with a CHECK CONDITION status,
with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID
FIELD IN CDB.

e) Verify that the encapsulated command is permitted by the PERMISSIONS BIT MASK field in
the CbCS capability descriptor in the CDB. If the requested command is not permitted, then the
command shall be terminated with a CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

2.6 Security Methods

2.6.1 Overview
This standard defines two security methods (see Table 2).

Table 2 - CbCS security methods

Method Description Without a secure channel With a secure channel

BASIC
Protection

against errors
a No protection against attacks Network-level integrity

CAPKEY

Protection
against errors
and malicious

attacks
b

Verification of credentials,
vulnerable to some network
attacks

Verification of credentials
and protection from network
attacks

a
 The device server verifies the CbCS capability allows the operation but does not verify the

authenticity of the CbCS capability prior to processing a command.
b
 Access Control Security is based on the protocol presented and analyzed in [ACF+02].

CAPKEY verifies that the application client rightfully obtained the credential it is presenting.

2.6.2 General
If the device server receives a command for a logical unit:

a) that has CbCS enabled:

b) the opcode field is set to 7Eh (i.e. Extended SCSI Command CDB); and

c) the extension type is set to 00h (i.e. CbCS extension),

then the credential shall be validated before any other field in the CDB is validated.

If the device server receives a command for a logical unit:

a) that has CbCS enabled:

b) the opcode is not 7Eh (i.e. not Extended SCSI Command CDB); and

c) the received command requires authorization as described in 2.9,

07-069r5

11

then the command shall be terminated with a CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

If the device server receives a command for a logical unit:

a) that has CbCS enabled;

b) the opcode is 7Eh (i.e. Extended SCSI Command CDB);

c) the extensions do not include an extension type set to 00h (i.e. CbCS extension); and

d) the encapsulated command requires authorization as described in 2.9,

then the command shall be terminated with a CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

2.6.3 The BASIC security method

The BASIC security method validates that the CbCS capability authorizes the encapsulated command
for each CDB.

The BASIC security method does not validate the authenticity of the CbCS capability.

Preparing CbCS credentials for the BASIC security method does not require the knowledge of any
secret keys and may be done by the application client without coordination with the CbCS
management device server. The CbCS capability descriptor (see 2.5.1, 7.1.1) is set with the
SECURITY METHOD field set to BASIC. The integrity check value is set to zero.

The device server validates the CbCS capability as described in 2.5.1.2.

2.6.4 The CAPKEY security method

2.6.4.1 Overview

The CAPKEY security method validates the integrity of the CbCS capability information in each
command. It provides security when the service delivery subsystem between the device server and
application client is secured.

The integrity of the CbCS capability shall be validated before any other command processing is done,
including CbCS capability validation.

Given a CbCS credential and a channel, the protocol ties the CbCS credential to the channel via a
validation tag. The validation tag is computed by the application client as PRF(Cap-Key,
SecurityToken),

Where:

PRF is a pseudorandom function.

Cap-Key is the CbCS capability key associated with the command (see 2.6.4.2).

SecurityToken identifies the communication channel and is unique to this combination of
initiator port, target port, and the particular I_T nexus on which they communicate.

[Pending Security Token definition: Random Nonce of at least 128 (or 256) bits which is
generated by the device server for each I_T nexus at each creation of the I_T nexus.]

An I_T nexus loss event or reset event (see SAM-4) shall cause the security token to change.

SecurityToken is chosen by the device server. An application client may request the value of the
SecurityToken (see 5.1.5). The device server compares the channel on which a request was received

07-069r5

12

and its SecurityToken, and verifies that the validation tag attached to the request equals PRF(Cap-
Key, SecurityToken).

To ensure the request is authenticated by the application client who obtained the CbCS credential, the
CbCS capability key (Cap-Key) with which the validation tag PRF(Cap-Key, SecurityToken) is
computed depends on the CbCS capability.

CbCS capabilities and integrity check values may be reused as follows:

a) The application client may reuse the CbCS capability and Cap-Key on multiple commands for
the same logical unit(s);

b) The application client is required to calculate the validation tag once per I_T_L nexus;

c) The Cap-Key and validation tag shall be calculated the first time the device server receives a
given CbCS capability on a given I_T_L nexus and may be reused in processing every
command received on the I_T_L nexus; and

2.6.4.2 Computing the CbCS capability key

When preparing CbCS credentials (see 2.7.1) and validating CbCS credentials (see 2.7.3), the CbCS
capability key shall be computed by the CbCS management device server and the device server
using:

a) The algorithm specified in the INTEGRITY CHECK VALUE ALGORITHM field in the CbCS
capability descriptor;

b) If the value of the KEY VERSION field in the CbCS capability descriptor is nonzero, the secret
key to by used is specified by the KEY VERSION field, otherwise the authentication master key
is used as the secret key; and

c) The CbCS capability descriptor as the input data.

The CbCS capability key is placed in the INTEGRITY CHECK VALUE field of the CbCS credential
returned in the RECEIVE CREDENTIAL command.

2.6.4.3 Computing the validation tag

When preparing CbCS credentials (see 2.7.2), the validation tag shall be computed by the application
client using:

1) The algorithm specified in the INTEGRITY CHECK VALUE ALGORITHM field in the CbCS
capability descriptor;

2) The CbCS capability key returned from the RECEIVE CREDENTIAL command in the
INTEGRITY CHECK VALUE field;

3) The security token returned by the device server in the CbCS Attributes page (see 5.1.5) as
the input data.

The validation tag is placed in the INTEGRITY CHECK VALUE field of the CbCS credential passed by
the application client in the CbCS extension (see 3).

2.7 CbCS Credentials
A CbCS credential authorizes specific access to a specific logical unit. It consists of a CbCS capability
and an integrity check value. The CbCS capability descriptor (see 2.5.1) identifies the logical unit and
specifies the specific access rights and parameters specifying how it shall be validated by the device
server. The integrity check value authenticates the CbCS capability and is used for validation.

07-069r5

13

There are two types of CbCS credentials used in the CbCS protocol:

a) A CbCS credential is transferred from the CbCS management device server to an application
client over a communications mechanism that meets the requirements specified in 2.4 with the
CbCS credential being returned in response to the RECEIVE CREDENTIAL command (see 7);
and

b) A CbCS credential is transferred from the application client to the device server over a
communications mechanism that meets the requirements specified in 2.4 with the credential
being placed in the extension parameters of the CDB CbCS extension (see 3).

2.7.1 Preparing CbCS credentials by the CbCS management device server

In response to a request from an application client, the CbCS management device server shall
prepare and return a CbCS credential (see Table 19) as follows:

1) If the access controls policy does not authorize the application client's request, no CbCS
credential shall be returned to the requesting application client (i.e. the CRED PRSNT bit (see
 7.1) in the returned parameter data shall be set to zero);

2) Prepare the CbCS capability and insert it in the CbCS credential as follows:

a. Setting the SECURITY METHOD field to the value of the corresponding field in the
Attributes CbCS page (see 5.1.5) of the logical unit for which the credential is
requested;

b. Setting the KEY VERSION field to the number of the working key used to compute the
credential integrity check value;

c. Setting the INTEGRITY CHECK VALUE ALGORITHM field to the value that specifies
the algorithm used to compute all integrity check values related to this CbCS credential.
The algorithm shall be one of those identified by the supported integrity check value
algorithm attributes in the CbCS capabilities page (see 5.1.4) of the logical unit for
which the credential is requested;

d. Setting the CAPABILITY EXPIRATION TIME field to a value that is consistent with the
CbCS policy;

e. May set the AUDIT field in a vendor specific manner;

f. Setting the PERMISSIONS BIT MASK descriptor to a value that is consistent with the
policy;

g. Setting the POLICY ACCESS TAG field to a value that matches the POLICY ACCESS
TAG attribute in the Attributes CbCS page (see 5.1.5) of the logical unit for which the
CbCS credential is requested. The value zero may be used to prevent revocation by
changing the policy access tag attribute of the logical unit;

h. Setting the LU DESCRIPTOR TYPE field, LU DESCRIPTOR LENGTH field, and LU
DESCRIPTOR field to those of the logical unit to which the credential is requested; and

i. If the security method in use is CAPKEY, then compute the CbCS capability key as
described in 2.6.4.2, and place it in the INTEGRITY CHECK VALUE field in the CbCS
credential. If the security method in use is BASIC, set the INTEGRITY CHECK VALUE
field to zero;

and

3) Return the CbCS credential to the application client with the integrity check value serving as
the CbCS capability key.

07-069r5

14

Security management commands issued by the CbCS management application client to the device
server require that the integrity check value is computed using the authentication CbCS master key
rather than a CbCS working key. The list of commands requiring use of the CbCS master key is in
 2.8.2. If the CbCS master key is used to compute the CbCS credential integrity check value then the
KEY VERSION field in the CbCS capability descriptor shall be set to zero.

For CbCS credentials returned by the CbCS management device server in response to the RECEIVE
CREDENTIAL command (see 7), only CbCS working keys shall be used in computing the INTEGRITY
CHECK VALUE field.

2.7.2 Preparing CbCS credentials by the application client

The client shall prepare the CbCS credential for sending it to the device server in the CDB CbCS
extension parameters as follows:

a) If the CAPKEY security method is enabled, copy the CbCS capability descriptor received from the
CbCS management device server in response to the RECEIVE CREDENTIAL command into the
CbCS capability descriptor parameter of the CDB CbCS extension. If the BASIC security method
enabled, prepare the CbCS capability descriptor as described in 2.7.1; and

b) If the CAPKEY security method is enabled, compute the validation tag as described in 2.6.4.3 and
place it in the INTEGRITY CHECK VALUE parameter of the CDB CbCS extension.

2.7.3 Validating CbCS credentials by the device server

The device server shall validate CbCS credentials as follows:

a) If the CAPKEY security method is enabled and the SECURITY METHOD field in the CbCS
capability descriptor is other than CAPKEY, the command shall be terminated with a CHECK
CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense
code set to INVALID FIELD IN CDB; and

b) If the CAPKEY security method is enabled, then:

a. Compute the CbCS capability key as described in 2.6.4.2;

b. Compute the validation tag as described in 2.6.4.3; and

c. Compare the computed validation tag with the INTEGRITY CHECK VALUE field in the
CbCS extension parameters. If they don't match, the command shall be terminated with
a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the
additional sense code set to INVALID FIELD IN CDB;

and

c) Verify the CbCS capability descriptor as described in 2.5.1.2.

2.8 Secret Keys

2.8.1 Overview
All CbCS credentials are based on a secret key that is shared between the device server, the CbCS
management application client that manages its security attributes, and the CbCS management
device server that grants CbCS credentials to application clients. Keys shall be refreshed regularly.

Secret key management requirements are as follows:

1) The CbCS management application client should replace the logical unit’s secret keys in a
secure manner even if the channel it has with the logical unit is not secure;

07-069r5

15

2) The device server shall support multiple CbCS working keys; and

3) The CbCS management application client shall contain a random source for generating secret
keys.

Each logical unit has a CbCS master key and a set of CbCS working keys assigned to it. A single set
of secret keys may be shared among multiple logical units within a target device.

The CbCS working keys are used to generate the CbCS capability keys that are used by application
clients to access logical units. CbCS working keys should be refreshed frequently (e.g., hourly). A
secret key refresh shall invalidate all CbCS credentials generated by that secret key. The device
server shall support up to 16 refreshed versions of the secret key as valid (i.e., define multiple secret
keys that are concurrently valid). The secret key version field in the CbCS capability is used to indicate
which secret key shall be used in the validation process (see 7.1.1).

When setting a new secret key, the CbCS management application client assigns the secret key with
a version number. The KEY VERSION field in the CbCS capability descriptor is set to the version
number of the CbCS working key used in computing the CbCS capability key (see 7.1.1). The device
server uses the KEY VERSION field to determine which secret key to use in validating a CbCS
credential in a CbCS extended command (see 2.7.3).

A CbCS master generation key is used to generate working secret keys. A CbCS master
authentication key is used to generate CbCS credentials for commands to set and refresh keys, and
modify device security attributes. The CbCS master key (i.e., the pair of CbCS master generation key
and CbCS master authentication key) may be refreshed. Refreshing the CbCS master key is
accomplished by a Diffie-Hellman key exchange algorithm that ensures forward secrecy of the CbCS
master key. This algorithm is carried over a sequence of commands as follows:

1) SECURITY PROTOCOL OUT command specifying the CbCS protocol and the Set Master
Key, Seed Exchange page (6.1.4);

2) SECURITY PROTOCOL IN command specifying the CbCS protocol and the Set Master Key,
Seed Exchange page (5.1.6); and

3) SECURITY PROTOCOL OUT command specifying the CbCS protocol and the Set Master
Key, Change Master Key page (6.1.5).

Separate sets of the CbCS master key and the CbCS working keys may be used for each logical unit,
or a single set may be used for all logical units served by a security protocol well-known logical unit’s
device server as follows:

1) A single set of CbCS master keys and CbCS working keys is used by the device server
through the SECURITY PROTOCOL well-known logical unit. This set of secret keys serves all
the logical units within the SCSI target device;

2) A separate set of CbCS master keys and CbCS working keys is used for each logical unit
within the SCSI target device; and

3) A single set of CbCS master keys and CbCS working keys is used by the device server
through the SECURITY PROTOCOL well-known logical unit. In addition, a separate set of
CbCS master key and CbCS working keys may be used for any logical unit within the SCSI
target device. The single set of secret keys serves any logical unit that does not have its own
set of keys.

2.8.2 Secret key usage in commands

Every CbCS credential prepared by the CbCS management device server includes an integrity check
value field containing a CbCS capability key that is computed using either a CbCS working key or the
CbCS master authentication key associated with the logical unit.

07-069r5

16

The CbCS authentication master key shall be used in preparing CbCS credentials for commands that
set secret keys. For other commands, the secret key that shall be used is one of the CbCS working
keys associated with the logical unit. The KEY VERSION field in the CbCS capability descriptor shall
be set to a value that identifies that particular working key (see 7.1.1).

The following commands involve setting secret keys and require using the CbCS master
authentication key for preparing the credential:

a) SECURITY PROTOCOL OUT command specifying the CbCS security protocol and the Set
Key page (see 6.1.3);

b) SECURITY PROTOCOL OUT command specifying the CbCS security protocol and the Set
Master Key, Seed Exchange page (see 6.1.4);

c) SECURITY PROTOCOL IN command specifying the CbCS security protocol and the Set
Master Key, Seed Exchange page (see 5.1.6); and

d) SECURITY PROTOCOL OUT command specifying the CbCS security protocol and the Set
Master Key, Change master Key page (see 6.1.5).

If the CbCS extended command is SECURITY PROTOCOL OUT command specifying the CbCS
security protocol and the Set Master Key, Change Master Key page, then the secret key that shall be
used is the next CbCS authentication master key computed after GOOD status has been returned by
the SECURITY PROTOCOL IN command specifying the CbCS security protocol and the Set Master
Key, Seed Exchange page.

2.8.3 Computing updated CbCS master generation keys and new CbCS
authentication keys

When processing the commands that involve setting secret keys (i.e., the Set Key CbCS page (see
 6.1.3) and the Set Master Key CbCS pages (see 6.1.4, 5.1.6, and 6.1.5)), the device server shall
compute new CbCS master generation keys and CbCS working keys as follows:

a) The algorithm specified in the INTEGRITY CHECK VALUE ALGORITHM field in the CbCS
capability descriptor; [Editor's note: Should we define a separate field encoding this algorithm
rather than using the one used in the credential?]

b) The input secret key value shall be one of the following:

a) For a Set Key CbCS page (see 6.1.3), the CbCS master generation key; or

b) For a CbCS master key computed following the processing of the Set Master Key,
Change Master Key CbCS page (see 6.1.5), the previous CbCS master generation key
shall be used;

and

c) The input data (i.e., seed) shall be one of the following:

a) For a Set Key CbCS page, the contents of the SEED field of the Set Key CbCS page; or

b) For a Set Master Key, Change Master Key CbCS page, the value computed after
successful completion of the SECURITY PROTOCOL IN command specifying the Set
Master Key, Seed Exchange CbCS page (see 5.1.6) and updated by the Set Master Key,
Change Master Key CbCS page (see 6.1.5).

When processing the commands for setting the CbCS master key (i.e., the Set Master Key CbCS
pages (see 6.1.4, 5.1.6, and 6.1.5)), the device server shall compute the new CbCS master
authentication key as follows:

07-069r5

17

a) The algorithm specified in the INTEGRITY CHECK VALUE ALGORITHM field in the CbCS
capability descriptor; [Editor's note: Should we define a separate field encoding this algorithm
rather than using the one used in the credential?]

b) The input key value shall be the CbCS master generation key prior to processing the
command; and

c) The input data shall be the seed value computed (see 5.1.6) with the least significant bit
changed as follows:

a) If the seed value least significant bit is zero, then the least significant bit shall be set to
one; or

b) If the seed value least significant bit is one, then the least significant bit shall be set to
zero.

2.9 CbCS interactions with commands and task management
functions

2.9.1 Association between commands and command functions
The PERMISSIONS BIT MASK descriptor in the CbCS capability (see 2.5.1) specifies which
command functions are allowed by this CbCS capability. When processing CbCS extension
commands, the device server shall verify that the bits applicable to the encapsulated SCSI command
are all set to one in the PERMISSIONS BIT MASK descriptor before processing the request specified
by the CbCS extended SCSI command.

The associations between commands and command functions as specified in this subclause for
commands defined in this standard. Other SCSI command set standards may specify associations
between commands and command functions pertaining to the specific device type.

If the device server receives a command that requires CbCS extension (see 3) according to Table 3 or
any device specific command set standard pertaining to the received command, and the command is
not extended with CbCS extension, then the command shall be terminated with a CHECK
CONDITION status, the sense key shall be set to ILLEGAL REQUEST, and the additional sense code
shall be set to INVALID FIELD IN CDB.

If the device server receives a command that does not require CbCS extension (see 3) according to
Table 3 or any device specific command set standard pertaining to the received command, and the
command is extended with CbCS extension, then the command may be processed by the device
server.

Table 3 - Associations between commands and permissions

Required Permissions

Command DATA
READ

DATA
WRITE

ATTR
READ

ATTR
WRITE

SEC
MGMT

RESRV

Permitt
ed / Not
allowed

(a)

ACCESS CONTROL IN N
ACCESS CONTROL OUT N
CHANGE ALIASES P
EXTENDED COPY N
INQUIRY P
LOG SELECT v
LOG SENSE v
MANAGEMENT PROTOCOL IN

07-069r5

18

Required Permissions

MANAGEMENT PROTOCOL OUT
MODE SELECT(6) v
MODE SELECT(10) v
MODE SENSE(6) v
MODE SENSE(10) v
PERFORM TASK MANAGEMENT
FUNCTION

 v

PERSISTENT RESERVE IN v
PERSISTENT RESERVE OUT v
READ ATTRIBUTE v
READ BUFFER TBD TBD TBD TBD TBD TBD TBD
READ MEDIA SERIAL NUMBER v
RECEIVE COPY RESULTS V
RECEIVE CREDENTIAL P
RECEIVE DIAGNOSTIC RESULTS v
REPORT ALIASES v
REPORT IDENTIFYING
INFORMATION

 v

REPORT LUNS P
REPORT PRIORITY v
REPORT SUPPORTED
OPERATION CODES P

REPORT SUPPORTED TASK
MANAGEMENT FUNCTIONS

 P

REPORT TARGET PORT
GROUPS

 P

REPORT TIMESTAMP v
REQUEST SENSE v
SECURITY PROTOCOL IN (per security protocol)
Security protocol information (00h) v
Defined by TCG (01h – 06h) ?TBD
CbCS (07h) v
Tape Data Encryption (20h) v
Authentication in Host Attachments
of Transient Storage Devices (EEh) v

ATA Device Server Password
Security (EFh)

 v

SECURITY PROTOCOL OUT (per security protocol)
Defined by TCG (01h – 06h) ?TBD
CbCS (07h) v
Tape Data Encryption (20h) v
Authentication in Host Attachments
of Transient Storage Devices (EEh)

 v

ATA Device Server Password
Security (EFh) v

SEND DIAGNOSTIC v
SET IDENTIFYING INFORMATION v
SET PRIORITY v
SET TARGET PORT GROUPS
SET TIMESTAMP v v
TEST UNIT READY
WRITE ATTRIBUTE v
WRITE BUFFER TBD TBD TBD TBD TBD TBD TBD
(a)

 N(ot allowed) – the command shall not be supported for a logical unit that has the CbCS bit set

07-069r5

19

Required Permissions

in the extended inquiry data
P(ermitted) – If the command is supported for the logical unit, no permissions are required for it.

2.9.2 Task management functions

If the CbCS bit is set to one in the extended inquiry data, all SAM-4 task management functions
except QUERY TASK shall be ignored and responded to as if they have been successfully processed.
The PERFORM TASK MANAGEMENT FUNCTION command (see 8) allows SAM-4 task
management functions to be processed under the protection of CbCS.

[Editor’s note (Sivan): What’s the impact of this on existing host systems?!]

(GP- This is a very nasty requirement.)

[Editor’s note (Sivan): CbCS is per LU. Do Task management functions pertain to LU? If not, do we
have an issue here with having both CbCS and non-CbCS LUs in the same device?]

2.10 Security attributes
Device servers supporting CbCS may support one or more of the following security attributes:

a) SCSI target device based;

b) logical unit based;

c) changeable; or

d) non-changeable.

Device servers may support the following security attributes:

a) only SCSI target device based;

b) only logical unit based; or

c) both.

If a device server supports both target based security attributes and a logical unit based security
attributes and receives both target based security attributes and a logical unit based security
attributes, then the logical unit based security attribute overrides the target based security attribute on
that device server.

SCSI target device attributes are queried and modified through the SECURITY PROTOCOL well-
known logical unit (see 8.5 [spc4r09])

Table 4 specifies the CbCS attributes.

Table 4 - CbCS attributes

Security attribute name Length (bytes)
SCSI target

device or logical
unit specific

Application client
settable

Supported security methods n*2 SCSI target device No

Default security method 2 SCSI target device Yes

Security method 2 SCSI target
device/Logical unit Yes

Supported integrity check
value algorithms

n*2 SCSI target device No

07-069r5

20

Security attribute name Length (bytes)
SCSI target

device or logical
unit specific

Application client
settable

Supported DH groups n*2 SCSI target device No

Clock 6 SCSI target device Yes

CbCS master key identifier 8 SCSI target device
/ Logical unit No

 d

CbCS working key identifier 16*8 SCSI target device
/ Logical unit No

 d

LU initial policy access tag 4 SCSI target device Yes

Policy access tag 4 Logical unit Yes

Security token Not defined
 c

Logical unit
 b No

b
 The security token returned by the device server is unique to the I_T nexus on which the

security token is returned.
c
 The security token length is specific to the implementation of secure channel for the I_T

nexus
d
 The secret key identifier is set by the application client when a new secret key is generated

as described in 6.1.3 and 6.1.5. It is not settable by means of setting CbCS security
attributes described in 6.1.2

The supported security methods attribute is used by the device server to report its supported security
methods. See 2.6.

The default security method attribute is the security method the device server shall apply to a newly
created CbCS logical unit, if a security method is not specified at logical unit creation time. The default
security method shall be one of the supported security methods.

The supported integrity check value algorithms security attribute is used by a device server to report
its supported integrity check value algorithms. Integrity check value algorithms shall be used to
compute integrity check values. See 7.7.3.6.4 in 06-449r6.

The supported DH group security attribute is used by a device server to report the DH groups it
supports for the Diffie-Hellman key exchange with the application client that is processed as part of
setting a new CbCS master key (see 6.1.4). See 7.7.3.6.5 in 06-449r6.

The clock security attribute shall contain the current time in use by the device server represented as
the count of the number of milliseconds elapsed since midnight, 1 January 1970 UT.

The LU initial policy access tag security attribute specifies the initial value for the policy access tag for
a newly created logical unit. The initial value for this attribute shall be set to FFFF FFFFh (see 2.5.1).

The policy access tag security attribute specifies the expected non-zero contents of the POLICY
ACCESS TAG field in any capability that allows access to this logical unit (see 2.5.1).

Setting and querying security attributes are used by the application client by issuing the SECURITY
PROTOCOL IN command and SECURITY PROTOCOL OUT command with the CbCS security
protocol (see 5.1, 6.1).

3 CbCS extension
[Editor's note: I'm not sure where exactly this section should be added in SPC-4.]

[Editor’s note: This section is based on 07-029r3]

07-069r5

21

The CbCS extension allows the application of security to a SCSI command using the parameters
specified in this subclause.

Support for CbCS extension type is mandatory if the CbCS bit in extended INQUIRY data (see 4) is
set to one.

The extended CDB may be any CDB defined in any SCSI standard.

Table 5 - CbCS extension descriptor format

Bit
Byte

7 6 5 4 3 2 1 0

0 EXTENSION TYPE (00h)

1

3
Reserved

4

94
CbCS capability descriptor

96

159
INTEGRITY CHECK VALUE

The CbCS capability descriptor is defined in 7.1.1.

The CbCS capability descriptor and the INTEGRITY CHECK VALUE field shall be prepared by the
application client as described in 2.7.2.

The device server shall validate the CbCS capability descriptor and the INTEGRITY CHECK VALUE
field as described in 2.7.3.

4 Extended INQUIRY Data VPD page
[Change in 7.6.4 Extended INQUIRY Data VPD page]

The Extended INQUIRY Data VPD page (see table 361) provides the application client with a means
to obtain information about the logical unit.

Table 361 — Extended INQUIRY Data VPD page

Bit
Byte

7 6 5 4 3 2 1 0

0 PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE

1 PAGE CODE (86h)

2 Reserved

3 PAGE LENGTH (3Ch)

4 Reserved SPT GRD_CH
K

APP_CHK REF_CHK

5 Reserved GROUP_
SUP

PRIOR_S
UP

HEADSU
P

ORDSUP SIMPSUP

6 Reserved COR_D_S
UP

NV_SUP V_SUP

7 Reserved LUICLR

07-069r5

22

Bit
Byte

7 6 5 4 3 2 1 0

8 Reserved CbCS

9

63
Reserved

<Unchanged text here>

A Capability based Command Security (CbCS) bit set to one indicates that the logical unit has CbCS
(see 2). A CbCS bit set to zero indicates that the logical unit does not support CbCS.

5 Changes in SECURITY PROTOCOL IN command
[Changes in section 6.29 SECURITY PROTOCOL IN command]

6.29.1 SECURITY PROTOCOL IN command description

Table 186 — SECURITY PROTOCOL field in SECURITY PROTOCOL IN command

Code Description Reference

00h Security protocol information 6.29.2

01h - 06h Defined by the TCG 3.1.128

07h CbCS 6.29.3 (5.1)

08h - 1Fh Reserved

20h Tape Data Encryption SSC-3

21h - EDh Reserved

EEh Authentication in Host Attachments
of Transient Storage Devices

IEEE P1667

EFh ATA Device Server Password
Security TBD

F0h - FFh Vendor Specific

5.1 CbCS SECURITY PROTOCOL
(New section in SPC-4: 6.29.3)

5.1.1 Overview

(New section in SPC-4: 6.29.3.1)

The SECURITY PROTOCOL IN command specifying the CbCS protocol requests the device server to
return the security attributes of the:

a) a) logical unit; or

b) b) SCSI target device that contains the addressed SECURITY PROTOCOL well-known logical
unit.

07-069r5

23

The command supports CbCS pages that may be requested one at a time. An application client
requests a CbCS page by using a SECURITY PROTOCOL IN command with the SECURITY
PROTOCOL field set to 07h (CbCS protocol) and the SECURITY PROTOCOL SPECIFIC field set to
the requested CbCS page code.

The SECURITY PROTOCOL SPECIFIC field (see Table 6) specifies the CbCS pages.

Table 6 – SECURITY PROTOCOL SPECIFIC field

Code Description Support Reference

0000h SECURITY PROTOCOL IN supported
CbCS page

M 5.1.2

0001h SECURITY PROTOCOL OUT supported
CbCS page

M 5.1.3

0002h-000Fh Reserved

0010h Capabilities CbCS page M 5.1.4

0011h Attributes CbCS page M 5.1.5

0012h Set Master Key, Seed Exchange CbCS
page

M 5.1.6

0013h – FFFFh Reserved

Support key:
M – Mandatory for device servers that support the CbCS.
O – Optional

5.1.2 SECURITY PROTOCOL IN supported CbCS page

(New section in SPC-4: 6.29.3.2)

Table 7 specifies the format of the SECURITY PROTOCOL IN supported CbCS page.

Table 7 - SECURITY PROTOCOL IN supported CbCS page

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0000h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

5
SECURITY PROTOCOL IN supported CbCS page (first)

(LSB)

.
.
.

n-1 (MSB)

n
SECURITY PROTOCOL IN supported CbCS page (last)

(LSB)

07-069r5

24

The SECURITY PROTOCOL IN supported CbCS page shall contain a list of all of the CbCS pages
the device server supports for the SECURITY PROTOCOL IN command specifying the CbCS protocol
in ascending order beginning with page code 0000h.

5.1.3 SECURITY PROTOCOL OUT supported CbCS page

(New section in SPC-4: 6.29.3.3)

Table 8 specifies the format of the SECURITY PROTOCOL OUT supported CbCS page.

Table 8 - SECURITY PROTOCOL IN supported CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0001h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

5
SECURITY PROTOCOL IN supported CbCS page (first)

(LSB)

.
.
.

n-1 (MSB)

n
SECURITY PROTOCOL IN supported CbCS page (last)

(LSB)

The SECURITY PROTOCOL OUT supported CbCS page shall contain a list of all of the CbCS pages
that the device server supports for the SECURITY PROTOCOL OUT command specifying the CbCS
protocol in ascending order.

5.1.4 Capabilities CbCS page

(New section in SPC-4: 6.29.3.4)

Table 9 specifies the format of the Capabilities CbCS page.

Table 9 – Capabilities CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0010h)

(LSB)

2 (MSB)

3
PAGE LENGTH (i*2+j*2+k*2+8)

(LSB)

4 GKS LUKS GSMS LUSMS Reserved

5 Reserved

07-069r5

25

Bit
Byte

7 6 5 4 3 2 1 0

6

7

Number of supported security methods (i)
 (LSB)

8

9
SUPPORTED SECURITY METHOD (first)

(LSB)

.
.
.

i*2+6

i*2+7

SUPPORTED SECURITY METHOD (last)
 (LSB)

i*2+8

i*2+9
Number of supported integrity check value algorithms (j)

(LSB)

i*2+10

i*2+11

SUPPORTED INTEGRITY CHECK VALUE ALGORITHM
(first) (LSB)

.
.
.

i*2+j*2+8

i*2+j*2+9

SUPPORTED INTEGRITY CHECK VALUE ALGORITHM
(last) (LSB)

i*2+j*2+10

i*2+j*2+11

Number of supported D-H groups (k)
 (LSB)

i*2+j*2+12

i*2+j*2+13
SUPPORTED D-H GROUP (first)

(LSB)

.
.
.

i*2+j*2+k*2+10

i*2+j*2+k*2+11
SUPPORTED D-H GROUP (last)

(LSB)

A Global Keys Support (GKS) bit set to one specifies that the device server supports a single set of
the CbCS master key and the CbCS working keys for the SCSI target device. A Global Keys Support
(GKS) bit set to zero specifies that the device server does not support single set of the CbCS master
key and the CbCS working keys for the SCSI target device.

A Logical Unit Keys Support (LUKS) bit set to one specifies that the device server supports separate
sets of the CbCS master key and the CbCS working keys for each logical unit. A Logical Unit Keys
Support (LUKS) bit set to zero specifies that the device server does not support separate sets of the
CbCS master key and the CbCS working keys for each logical unit.

A Global Security Method Support (GSMS) bit set to one specifies that the SCSI target device that
contains this logical unit supports global security method (i.e., contains a SECURITY PROTOCOL well

07-069r5

26

known logical unit). A Global Security Method Support (GSMS) bit set to zero specifies that the device
server requires the security methods to be assigned to each logical unit.

A Logical Unit Security Method Support (LUSMS) bit set to one specifies that the device server
supports per-logical unit security method. A Logical Unit Security Method Support (LUSMS) bit set to
zero specifies that the device server does not support per-logical unit security method.

The SUPPORTED SECURITY METHOD fields contain coded values of the security methods (see
 2.6) supported by the device server. The coded values are specified in Table 22.

The SUPPORTED INTEGRITY CHECK VALUE ALGORITHM fields contain coded values of the
algorithm to compute integrity check values supported by the device server (see 2.7). The coded
values are specified in 7.7.3.6.4in 06-449r6.

The SUPPORTED DH GROUP attributes contain coded values identifying the supported values in the
DH_GROUP field of Set Master Key, Seed Exchange page (see 6.1.4). The coded values are
specified in 7.7.3.6.5 in 06-449r6.

5.1.5 Attributes CbCS page
(New section in SPC-4: 6.29.3.5)

Table 10 specifies the format of the Attributes CbCS page.

Table 10 - Attributes CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0010h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

5
SECURITY METHOD

(LSB)

6 (MSB)

9
POLICY ACCESS TAG

(LSB)

10

17
MASTER KEY IDENTIFIER

(LSB)

18

25
WORKING KEY IDENTIFIER 0

(LSB)

.
.
.

138

145
WORKING KEY IDENTIFIER 15

(LSB)

146 (MSB)

151
CLOCK

(LSB)

07-069r5

27

Bit
Byte

7 6 5 4 3 2 1 0

152 Reserved

153 SECURITY TOKEN LENGTH

154

n
SECURITY TOKEN

(LSB)

If the addressed logical unit is the SECURITY PROTOCOL well-known logical unit:

a) the SECURITY METHOD field is the security method that shall be assigned by the W-LUN’s
device manager to a new logical unit within the SCSI target device;

b) the POLICY ACCESS TAG field is the initial policy access tag that shall be assigned by the W-
LUN’s device server to a new logical unit within the SCSI target device;

c) if the device server does not support global security method (i.e., the GSMS bit is set to zero in
the Capabilities CbCS page), then the SECURITY METHOD field is undefined; and

d) if the device server does not support global keys (i.e., the GKS bit is set to zero in the
Capabilities CbCS page), then the MASTER KEY IDENTIFIER field and all the WORKING
KEY IDENTIFIER fields should contain FFFF FFFFh

If the addressed logical unit is not the SECURITY PROTOCOL well-known logical unit:

a) the SECURITY METHOD field is the current security method used for the addressed logical
unit;

b) the POLICY ACCESS TAG field is the current policy access tag assigned to the addressed
logical unit;

c) if the device server does not support per-logical unit security method (i.e., the LUSMS bit is set
to zero in the Capabilities CbCS page), then the SECURITY METHOD field is undefined; and

d) if the device server does not support per-logical unit keys (i.e., the LUKS bit is set to zero in the
Capabilities CbCS page), the MASTER KEY IDENTIFIER field and all the WORKING KEY
IDENTIFIER fields should contain FFFF FFFFh.

Security methods are described in detail in 2.6.

Secret keys are described in 2.8.

If secret keys are supported for the addressed logical unit, the values of those fields are as follows:

a) The MASTER KEY IDENTIFIER field shall contain the key identifier value from the most recent
successful SECURITY PROTOCOL OUT command specifying the CbCS security protocol and
the Set Master Key, Change Master Key page (see 6.1.5). If that command has never been
processed, then the MASTER KEY IDENTIFIER field shall contain FFFF FFFEh; and

b) Each KEY IDENTIFIER field contains the key identifier value from the most recent successful
SECURITY PROTOCOL OUT command specifying the CbCS security protocol and the Set Key
page, with the KEY VERSION field set to the pertinent key (0-15) (see 6.1.3). If a secret key is
invalid (e.g., never set, invalidated by a Set Master Key, Change Master Key page, or
invalidated by a Set Key page), the pertinent KEY IDENTIFIER field should contain 0000 0000h.

The CLOCK field shall contain the current time in use by the device server represented as the count of
the number of milliseconds elapsed since midnight, 1 January 1970 UT.

07-069r5

28

[Editor’s Note: The clock field may be usable for other purposes. Perhaps it can be moved to a more
generic place, e.g. mode page…]

For the CAPKEY security method, the SECURITY TOKEN field (see 1.1.13) contains a value that is
unique to the I_T nexus or I_T_L nexus on which the SECURITY PROTOCOL IN command was sent.
See 2.6.4.

5.1.6 Set Master Key, Seed Exchange CbCS page

(New section in SPC-4: 6.29.3.6)

Table 11 specifies the format of the Set Master Key, Seed Exchange CbCS page.

Table 11 - Set Master Key, Seed Exchange CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0012h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4

n
DH DATA

If a SECURITY PROTOCOL IN command specifying Set Master Key, Seed Exchange CbCS page is
received and no SECURITY PROTOCOL OUT command specifying Set Master Key, Seed Exchange
CbCS page (see 6.1.4) has been completed successfully on the same I_T_L nexus during the past
ten seconds, the command shall be terminated with a CHECK CONDITION status, the sense key shall
be set to ILLEGAL REQUEST, and the additional sense code shall be set to INVALID FIELD IN CDB.

A device server that receives a SECURITY PROTOCOL OUT command specifying Set Master Key,
Seed Exchange CbCS page on one I_T_L nexus may terminate the command with a CHECK
CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set
to SYSTEM RESOURCE FAILURE if any of the following command processing is incomplete on a
different I_T_L nexus:

a) SECURITY PROTOCOL OUT command specifying Set Master Key, Seed Exchange CsCB
page (see 6.1.4);

b) SECURITY PROTOCOL IN command specifying Set Master Key, Seed Exchange CsCB page
(see 5.1.6); or

c) SECURITY PROTOCOL OUT command specifying Set Master Key, Change Master Key
CbCS page (see 6.1.5).

The DH DATA field contains the device server DH_data computed as follows:

a) A random number, y, is generated having a value between zero and DH_prime minus one
observing the requirements in RFC 1750; and

b) The device server DH_data is equal to DH_generator
y
 modulo DH_prime.

07-069r5

29

The DH_generator and DH_prime values are identified by the Diffie-Hellman group specified in the DH
GROUP field in the most recent SECURITY PROTOCL OUT command specifying the Set Master Key,
Seed Exchange page (see 6.1.4) that was received on the same I_T_L nexus.

After GOOD status has been returned for SECURITY PROTOCOL OUT command and before the
SECURITY PROTOCOL OUT command specifying the Set Master Key, Change Master Key page is
processed, the next CbCS authentication master key and next CbCS generation master key shall be
computed as described in 2.8.3, using a seed value that is the concatenation of the following:

1) DH_generator
xy

 modulo DH_prime; and

2) The whole content of the Device Identification VPD page (83h) returned from the addressed
logical unit for the INQUIRY command (see 7.6.3 [spc4r09]).

The value of [DH_generator
xy

 modulo DH_prime] is computed by the device server using the formula

[(DH_generator
x
 modulo DH_prime)

y
 modulo DH_prime], where [DH_generator

x
 modulo DH_prime] is

the content of the DH DATA field in the last SECURITY PROTOCL OUT command specifying the Set
Master Key, Seed Exchange page (see 6.1.4) that was received on the same I_T_L nexus.

[Editor’s note: Proof for (DH_generator
x
 modulo DH_prime)

y
 modulo DH_prime = DH_generator

xy

modulo DH_prime:

Claim: (g^x mod p)^y mod p = g^xy mod p

Proof:

Denote g^x = a*p + b, where a is in integer and 0 <= b < p

1. Thus, g^x mod p = b, and so (g^x mod p)^y mod p = b^y mod p

2. g^xy mod p = (a*p + b)^y mod p. Ppening (a*p + b)^y we get a list of
addends in which all addends but one are divisible by p. the only addend
which is not divided by p is b^y and so

 g^xy mod p = b^y mod p

]

6 Changes in SECURITY PROTOCOL OUT command
[Changes in section 6.30 SECURITY PROTOCOL OUT command]

<Unchanged text here>

The SECURITY PROTOCOL field (see table 191) specifies which security protocol is being used.

Table 191 — SECURITY PROTOCOL field in SECURITY PROTOCOL OUT command

Code Description Reference

00h Reserved

01h - 06h Defined by the TCG 3.1.128

07h CbCS

08h - 1Fh Reserved

20h Tape Data Encryption SSC-3

21h - EDh Reserved

07-069r5

30

Code Description Reference

EEh Authentication in Host Attachments
of Transient Storage Devices

IEEE P1667

EFh ATA Device Server Password
Security

TBD

F0h - FFh Vendor Specific

6.1 CbCS SECURITY PROTOCOL
(New section in SPC-4: 6.30.1)

6.1.1 Overview
The SECURITY PROTOCOL OUT command specifying CbCS protocol is used to configure the CbCS
secret keys and attributes in the device server.

The command supports CbCS pages that may be sent one at a time. An application client requests to
send a CbCS page by using a SECURITY PROTOCOL OUT command with the SECURITY
PROTOCOL field set to 07h (CbCS protocol) and the SECURITY PROTOCOL SPECIFIC field set to
the CbCS page code requested.

The SECURITY PROTOCOL SPECIFIC field (see Table 12) specifies the type of CbCS page that the
application client is sending.

Table 12 - SECURITY PROTOCOL SPECIFIC field values

Code Description Support Reference

0000h – 0010h Reserved

0011h Set Attributes CbCS page O 6.1.2

0012h Set Key CbCS page M 6.1.3

0013h Set Master Key, Seed Exchange CbCS
page M 6.1.4

0014h Set Master Key, Change Master Key
CbCS page

M 6.1.5

0015h – FFFFh Reserved

Support key:
M – Mandatory for device servers that support the CbCS protocol
O – Optional

If the SECURITY PROTOCOL SPECIFIC field is set to a reserved or unsupported value, the device
server shall terminate the command with CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

6.1.2 Set attributes CbCS page

(New section in SPC-4: 6.30.1.2)

Table 13 specifies the format of the Set Attributes CbCS page.

07-069r5

31

Table 13 – Set Attributes CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0011h)

(LSB)

2 (MSB)

3
PAGE LENGTH (6)

(LSB)

4 (MSB)

5
SECURITY METHOD

(LSB)

6 (MSB)

9
POLICY ACCESS TAG

(LSB)

The PAGE LENGTH field indicates the number of bytes of parameter data to follow. If the page length
value is any value other than 6, the device server shall terminate the command with CHECK
CONDITION status, with the sense key set to ILLEGAL REQUEST and the additional sense code set
to INVALID FIELD IN PARAMETER LIST.

The SECURITY METHOD field specifies the security method to apply to the addressed logical unit
(see 2.6). The SECURITY METHOD field is set to:

a) the reserved value FFFFh to specify no change shall be made to the current security method;

b) a value equal to the current security method shall not be considered an error; and

c) a value that does not match any of the supported security methods reported in the Capabilities
CbCS page (see 5.1.4), shall cause the device server to terminate the SECURITY PROTOCOL
OUT command with CHECK CONDITION status and set the sense key to ILLEGAL REQUEST
and the additional sense code to INVALID FIELD IN PARAMETER DATA.

The list of coded values of security methods is defined in Table 22.

The POLICY ACCESS TAG field specifies a new policy access tag for the addressed logical unit. The
value set to 0000 0000h specifies no change shall be made to the current policy access tag value. If
the addressed logical unit is the SECURITY PROTOCOL well-known logical unit and the POLICY
ACCESS TAG field contains any value other than 0000 0000h, the device server shall terminate the
SECURITY PROTOCOL OUT command with CHECK CONDITION status and set the sense key to
ILLEGAL REQUEST and the additional sense code to INVALID FIELD IN PARAMETER DATA.

This command shall be authorized and shall be sent extended by a CbCS extension (see 3).

6.1.3 Set Key CbCS page

(New section in SPC-4: 6.30.1.3)

Table 14 specifies the Set Key CbCS page format.

Table 14 - Set Key CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB) PAGE CODE (0012h)

07-069r5

32

Bit
Byte

7 6 5 4 3 2 1 0

1 (LSB)

2 (MSB)

3
PAGE LENGTH (30)

(LSB)

4 Reserved

5 Reserved KEY VERSION

6 (MSB)

13
KEY IDENTIFIER

(LSB)

14 (MSB)

33
SEED

(LSB)

The KEY VERSION field specifies the key version to be updated.

The KEY IDENTIFIER field specifies a unique identifier to be associated with the new secret key. The
secret key identifier value shall be associated with the attribute specified in the Attributes CbCS page
(see 5.1.5).

The SEED field contains a random number generated from a good source of entropy (e.g., as
described in RFC 1750).

The updated secret key value shall be computed as described in 2.8.3.

This command shall be authorized and shall be sent extended with CbCS extension (see 3).

6.1.4 Set Master Key, Seed Exchange CbCS page

(New section in SPC-4: 6.30.1.4)

Table 15 specifies the Set Master Key, Seed Exchange CbCS page format.

Table 15 - Set Master Key CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0013h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

5
DH GROUP

(LSB)

6 (MSB)

9
DH DATA LENGTH

(LSB)

10 DH DATA

07-069r5

33

Bit
Byte

7 6 5 4 3 2 1 0

n

A device server that receives a SECURITY PROTOCOL OUT command specifying Set Master Key,
Seed Exchange CbCS page on one I_T_L nexus may terminate the command with a CHECK
CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set
to SYSTEM RESOURCE FAILURE if any of the following command processing is incomplete on a
different I_T_L nexus:

a) SECURITY PROTOCOL OUT command specifying Set Master Key, Seed Exchange CsCB
page (see 6.1.4);

b) SECURITY PROTOCOL IN command specifying Set Master Key, Seed Exchange CsCB page
(see 5.1.6); or

c) SECURITY PROTOCOL OUT command specifying Set Master Key, Change Master Key CsCB
page (see 6.1.5).

The DH GROUP field contains the Diffie-Hellman group (see 7.7.3.6.5 in 06-449r6) that identifies the
DH_generator value and DH_prime value to be used in the seed exchange. If the value in the DH
GROUP field is not listed in one of the SUPPORTED D-H GROUP fields in the Capabilities CbCS
page (see 5.1.4), then the command shall be terminated with CHECK CONDITION status, with the
sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

The DH DATA LENGTH field specifies the number of bytes of the DH DATA field.

The DH_DATA field contains the DH data and is computed as follows:

DH data = DH_generator
x
 modulo DH_prime

Where:

X is a value between zero and DH_prime minus one as defined in RFC
1750;

DH_generator is defined by the DH GROUP field; and

DH_prime is defined by the DH GROUP field.

6.1.5 Set Master Key, Change Master Key CbCS page
(New section in SPC-4: 6.30.1.5)

Table 16 specifies the format of the Set Master Key, Change Master Key CbCS page.

Table 16 - Set Master Key, Change Master Key CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0014h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB) KEY IDENTIFIER

07-069r5

34

Bit
Byte

7 6 5 4 3 2 1 0

11 (LSB)

6 (MSB)

9
APPLICATION CLIENT DATA LENGTH (k-9)

(LSB)

10

k
APPLICATION CLIENT DH DATA

k+1 (MSB)

k+4
DEVICE SERVER DATA LENGTH (n-(k+4))

(LSB)

k+5

n
DEVICE SERVER DH DATA

If a SECURITY PROTOCOL OUT command specifying Set Master Key, Change Master Key CbCS
page is received and no SECURITY PROTOCOL IN command specifying Set Master Key, Seed
Exchange CbCS page has been completed successfully on the same I_T_L nexus during the past ten
seconds, the command shall be terminated with a CHECK CONDITION status, the sense key shall be
set to ILLEGAL REQUEST, and the additional sense code shall be set to INVALID FIELD IN CDB.

A device server that receives a SECURITY PROTOCOL OUT command specifying Set Master Key,
Change master Key CbCS page on one I_T_L nexus may terminate the command with a CHECK
CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set
to SYSTEM RESOURCE FAILURE if any of the following command processing is incomplete on a
different I_T_L nexus:

a) SECURITY PROTOCOL OUT command specifying Set Master Key, Seed Exchange CsCB
page (see 6.1.4);

b) SECURITY PROTOCOL IN command specifying Set Master Key, Seed Exchange CsCB page
(see 5.1.6); or

c) SECURITY PROTOCOL OUT command specifying Set Master Key, Change Master Key CsCB
page (see 6.1.5).

The KEY IDENTIFIER field specifies a unique identifier to be associated with the new CbCS master
key. The secret key identifier value shall be placed into the MASTER KEY IDENTIFIER field in the
Attributes CbCS page (see 5.1.5) before the command completes.

Table 17 specifies special secret key identifiers that shall not be used when setting secret keys. Any
value not listed in the table is permitted for use by the application client when setting secret keys.

Table 17 – Special secret key identifiers

Value Description

0000 0000h A secret key that was never set or was invalidated

FFFF FFFEh An initial secret key set by the device server

FFFF FFFFh Pertinent secret key is not supported by the device server

07-069r5

35

If the value of the KEY IDENTIFIER field contains a value that is listed in Table 17, then the command
shall be terminated with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST,
and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

The APPLICATION CLIENT DATA LENGTH field specifies the number of bytes that follow in the
APPLICATION CLIENT DH DATA field.

The APPLICATION CLIENT DH_DATA field contains the DH_data from the last SECURITY
PROTOCOL OUT command specifying CbCS Set Master Key, Seed Exchange CbCS page on the
same I_T_L nexus on which this command was received.

The DEVICE SERVER DATA LENGTH field contains the length in bytes of the DEVICE SERVER DH
DATA field.

The DEVICE SERVER DH DATA field contains the device server DH_data from the last SECURITY
PROTOCOL IN command specifying Set Master Key, Seed Exchange CbCS page on the same I_T_L
nexus on which this command was received.

If the content of the APPLICATION CLIENT DATA LENGTH field of the SECURITY PROTOCOL OUT
commands Set Master Key, Seed Exchange CbCS page does not match the content of the:

a) DH DATA LENGTH field in a SECURITY PROTOCOL OUT Set Master Key, Seed Exchange
CbCS page that was processed on this I_T_L nexus since a I_T nexus loss event, logical unit
reset event, or reset event (see SAM-4);

b) DH DATA field in a SECURITY PROTOCOL OUT Set Master Key, Seed Exchange CbCS
page that was processed on this I_T_L nexus since a I_T nexus loss event, logical unit reset
event, or reset event;

c) PAGE LENGTH field in a SECURITY PROTOCOL IN Set Master Key, Seed Exchange CbCS
page that was processed on this I_T_L nexus since a I_T nexus loss event, logical unit reset
event, or reset event; or

d) DH DATA field in a SECURITY PROTOCOL IN Set Master Key, Seed Exchange CbCS page
that was processed on this I_T_L nexus since a I_T nexus loss event, logical unit reset event,
or reset event,

then the command shall be terminated with CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

On successful completion of a SECURITY PROTOCOL OUT command specifying the CbCS protocol
and the Set Master Key, Change Master Key CbCS page, the device server shall:

a) Replace the CbCS authentication master key with the next CbCS authentication master key
computed after the return of GOOD status for the most recent SECURITY PROTOCOL IN
command specifying the CbCS protocol and the Set Master Key, Seed Exchange CbCS page
(see 5.1.6);

b) Replace the CbCS generation master key with the next CbCS generation master key
computed after the return of GOOD status for the most recent SECURITY PROTOCOL IN
command specifying the CbCS protocol and the Set Master Key, Seed Exchange CbCS page;
and

c) Invalidate all the CbCS working keys on the logical unit.

For every secret key that is invalidated by this command, the associated key identifier attribute shall
have its attribute set to zero.

The next CbCS authentication master key computed after the return of GOOD status for the most
recent SECURITY PROTOCOL IN command specifying the CbCS protocol and the Set Master Key,
Seed Exchange CbCS page (see 5.1.6) shall be used to compute the capability key for this command.

07-069r5

36

7 RECEIVE CREDENTIAL command
[A new sub-section in section 6 of SPC-4]

The RECEIVE CREDENTIAL command (see Table 18) allows the application client to receive a CbCS
credential for use in the CbCS extension (see 3).

Table 18 - RECEIVE CREDENTIAL CDB format

Bit
Byte

7 6 5 4 3 2 1 0

0 OPERATION CODE (7Fh)

1 CONTROL

2

6
Reserved

7 ADDITIONAL CDB LENGTH (n-7)

8 (MSB)

9
SERVICE ACTION (1800h)

(LSB)

10 (MSB)

11
ALLOCATION LENGTH

(LSB)

12

k
Designation descriptor

k+1

n
MAM Attribute

If a RECEIVE CREDENTIAL command is received before a SECURITY PROTOCOL IN command
has completed successfully on the same I_T_L nexus as the RECEIVE CREDENTIAL command was
received with the following field settings:

a) SECURITY PROTOCOL field set to xxh (i.e., IKEv2-SCSI); and

b) the SECURITY PROTOCOL SPECIFIC field set to 0103h (i.e., Authentication step),

or if before a SECURITY PROTOCOL IN command has completed successfully on the same I_T_L
nexus as the RECEIVE CREDENTIAL command was received with the following field settings:

a) SECURITY PROTOCOL field set to xxh (i.e., IKEv2-SCSI);

b) the SECURITY PROTOCOL SPECIFIC field set to 0102h (i.e., Key Exchange step); and

c) the SCSI Cryptographic Algorithms payload contains a cryptographic algorithm descriptor of
type Encryption Algorithm (ENCR) (i.e., ALGORITHM TYPE 01h) and identifier other than
ENCR_NULL (i.e., ALGORITHM IDENTIFIER other than 0000 000Bh),

then the command shall be terminated with a CHECK CONDITION status, the sense key set to NOT
READY, and the additional sense code set to LOGICAL UNIT NOT READY, INITIALIZING
COMMAND REQUIRED.

[Editor's: note: The above paragraph is based on 06-449 and depends on it. Basically it asserts that a
successful authenticated and encrypted SA has been created.]

07-069r5

37

The ALLOCATION LENGTH field is defined in 4.3.4.6 [spc4r11].

The format of the Designation descriptor field is defined in Table 346 [spc4r11]. The size of the
Designation descriptor shall not exceed 24 bytes.

[Editor’s note: The ESC proposal defines fixed size extensions, so the Capability size must fixed.
Therefore, we have to put an upper bound on the designation descriptor length. 24 bytes allows for
NAA-16 and for SCSI name string format using 16 byte length names concatenated to “naa.”]

The MAM Attribute field is optional and may be omitted. The format of the MAM Attribute field is
specified in 7.3.1 [spc4r11]. If the MAM Attribute field is present and the ATTRIBUTE IDENTIFIER
within the MAM Attribute contains any value other than 0008h (VOLUME IDENTIFIER), this command
shall be terminated with a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST,
and the additional sense code set to INVALID FIELD IN CDB.

7.1 RECEIVE CREDENTIAL parameter data
The RECEIVE CREDENTIAL parameter data is defined in Table 19.

Table 19 - Credential format

Bit
Byte 7 6 5 4 3 2 1 0

0 CRED
PRSNT

Reserved CREDENTIAL FORMAT (1h)

1 Reserved

2 (MSB)

3
CREDENTIAL LENGTH (n-3)

(LSB)

4 (MSB)

5
CAPABILITY LENGTH (k-5)

(LSB)

6

k
CbCS capability descriptor

k+1 (MSB)

k+4
INTEGRITY CHECK VALUE LENGTH (n-(k+4))

(LSB)

k+5

n
INTEGRITY CHECK VALUE

If the Credential Present (CRED PRSNT) bit is set to zero, no CbCS credential shall be returned, and
the rest of the parameter data is undefined. If the Credential Present (CRED PRSNT) bit is set to one,
a CbCS credential is returned in the parameter data.

The CREDENTIAL FORMAT field specifies the format of the CbCS credential. It shall be set to 1h.

[Editor’s note: The intention of this field is to allow for future expansion of the standard to include
multiple credential formats. The rest of the fields will depend on the value of this field. However, since
it is currently the only format, we define the rest of the fields in the general credential form and not in a
format-specific form.]

07-069r5

38

The CREDENTIAL LENGTH field indicates the length in bytes of the rest of the data (i.e. the CbCS
credential) that follows.

The CAPABILITY LENGTH specifies the length in bytes of the CbCS capability descriptor field.

The format of the CbCS capability descriptor is defined in 7.1.1.

INTEGRITY CHECK VALUE LENGTH specifies the length of the INTEGRITY CHECK VALUE field.

The INTEGRITY CHECK VALUE field contains a value that the application client shall use for
preparing CbCS credentials (see 2.7.2).

7.1.1 CbCS capability format

The format of the CbCS capability descriptor is defined in Table 20.

Table 20 - Capability descriptor format

Bit
Byte

7 6 5 4 3 2 1 0

0 DESIGNATION TYPE KEY VERSION

1 SECURITY METHOD

2 (MSB)

5
INTEGRITY CHECK VALUE ALGORITHM

(LSB)

6 (MSB)

11
CAPABILITY EXPIRATION TIME

(LSB)

12

31
AUDIT

32

35
PERMISSIONS BIT MASK descriptor

36 (MSB)

39
POLICY ACCESS TAG

(LSB)

40

75
Designation descriptor

76

91
DISCRIMINATOR

The DESIGNATION TYPE field (see Table 21) specifies the format of the Designation descriptor

Table 21 – DESIGNATION TYPE field

Code Description Reference

0h Reserved

1h Logical unit designation descriptor 7.6.3.1 Table 346

07-069r5

39

2h MAM Attribute descriptor 7.3.1 Table 278

3h - Fh Reserved

If the CAPABILITY FORMAT field contains any value other than the ones defined in Table 21, then
this command shall be terminated with a CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

The KEY VERSION field specifies which secret key, from the set of CbCS working keys, is being used
to compute the integrity check value.

The SECURITY METHOD field should be set a valid CbCS security method (see Table 22). The
CbCS security methods are described in detail in 2.6.

Table 22 – The CbCS Security methods

Code Security Method Description

0000h BASIC No security (see 2.6.3)

0001h CAPKEY Integrity of CbCS capabilities (see 2.6.4)

0002h – 0FFFh Reserved

1000h – FFFEh Vendor specific

FFFFh Reserved

The INTEGRITY CHECK VALUE ALGORITHM field specifies the algorithm used to compute the
integrity check value for this CbCS capability (see 2.7). It shall be set to a value defined in Table x27
in 06-449r6.

The CAPABILITY EXPIRATION TIME field specifies expiration time of the CbCS capability. The time
is the number of milliseconds that have elapsed since midnight, 1 January 1970 UT. If the
CAPABILITY EXPIRATION TIME field is non-zero and is less than the current time set in the device
server when processing the command, the command shall be terminated with a CHECK CONDITION
status, the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID
FIELD IN CDB.

If the CAPABILITY EXPIRATION TIME field contains zero, the capability has no expiration time.

The AUDIT field contains a vendor specific value.

The PERMISSIONS BIT MASK descriptor (see Table 23) specifies the permissions allowed by this
CbCS capability. More than one permissions bit may be set. The device server shall verify that the bits
applicable to the encapsulated command are all set to one in the PERMISSIONS BIT MASK
descriptor before performing the encapsulated SCSI command.

The association of command functions to SCSI commands is defined in 2.9.1 for commands defined
in this standard. Associations for specific command sets are defined in the specific command set
standards.

In Table 23 byte 0 and byte 1 specify the command functions for all SCSI commands. In Table 23 byte
2 and byte 3 may be used by a device type specific command set standard to specify command
functions unique to the device type. Other command set standards shall not override the definition of
Table 23 byte 0 and byte 1 as defined in this standard. The associations between the command
functions specified in the permissions bit mask descriptor and SCSI commands defined in this
standard are specified in 2.9.1.

07-069r5

40

Table 23 – PERMISSIONS BIT MASK descriptor

Bit
Byte

7 6 5 4 3 2 1 0

0 DATA
READ

DATA
WRITE

ATTR
READ

ATTR
WRITE

SEC
MGMT

RESRV Reserved

1 Reserved

2

3
For device type specific use

A DATA READ bit set to zero indicates the encapsulated SCSI command has no read permission. A
DATA READ bit set to one indicates the encapsulated SCSI command has read permission.

A DATA WRITE bit set to zero indicates the encapsulated SCSI command has no write permission. A
DATA WRITE bit set to one indicates the encapsulated SCSI command has write permission.

An attribute read (ATTR READ) bit set to zero indicates the encapsulated SCSI command has no
attribute read permission. A ATTR READ bit set to one indicates the encapsulated SCSI command
has attribute read permission.

An attribute write (ATTR WRITE) bit set to zero indicates the encapsulated SCSI command has no
attribute write permission. A ATTR WRITE bit set to one indicates the encapsulated SCSI command
has attribute write permission.

A security management (SEC MGMT) bit set to zero indicates the encapsulated SCSI command has
no security management permission. A SEC MGMT bit set to one indicates the encapsulated SCSI
command has security management permission.

A reservation (RESRV) bit set to zero indicates the encapsulated SCSI command has no persistent
reservation permission. A SEC MGMT bit set to one indicates the encapsulated SCSI command has
persistent reservation permission.

If the POLICY ACCESS TAG field contains a value other than zero, the policy access tag attribute of
the logical unit (see 5.1.5) is compared to the POLICY ACCESS TAG field contents as part of
verifying the capability. If the POLICY ACCESS TAG field contains zero, then no comparison is made
to the policy access tag attribute of the logical unit. The CbCS management application client changes
the policy access tag to prevent unsafe or temporarily undesirable accesses to a logical unit (see
 2.5.1).

If the non-zero value in the CDB POLICY ACCESS TAG field is not identical to the value in the policy
access tag attribute of the logical unit (see 5.1.5), then the command shall be terminated with a
CHECK CONDITION status, the sense key shall be set to ILLEGAL REQUEST, and the additional
sense code shall be set to INVALID FIELD IN CDB.

The format of the Designation descriptor field is defined by the value of the DESIGNATION TYPE
field. The size of the Designation descriptor shall not exceed 36 bytes.

[Editor’s note: The ESC proposal defines fixed size extensions, so the Capability size must fixed.
Therefore, we have to put an upper bound on the designation descriptor length. 24 bytes allows for
NAA-16 and for SCSI name string format using 16 byte length names concatenated to “naa.”]

The DISCRIMINATOR field is used in a vendor specific way to provide uniqueness of the Capability
descriptor structure (see 2.5.1.1).

07-069r5

41

8 PERFORM TASK MANAGEMENT FUNCTION command
[A new sub-section in section 6 of SPC-4]

(GP – This is a radical change in the way TMFs are sent to SCSI devices)

The PERFORM TASK MANAGEMENT FUNCTION command (see Table 24) allows a SAM-4 task
management function (e.g., ABORT TASK) to be processed.

If this command is received and the CbCS bit in the extended inquiry data is set to zero for the logical
unit, then the command shall be terminated with a CHECK CONDITION status, with the sense key set
to ILLEGAL REQUEST, and the additional sense code set to INVALID COMMAND OPERATION
CODE.

Table 24 - PERFORM TASK MANAGEMENT FUNCTION command format

Bit
Byte 7 6 5 4 3 2 1 0

0 OPERATION CODE (XXh)

1 TASK MANAGEMENT FUNCTION

2

9
TASK TAG

The TASK MANAGEMENT FUNCTION field (see Table 25) specifies the SAM-4 task management
function to be processed.

Table 25 - Task management function values

Value SAM-4 Task Management Function Task Tag
Specified

01h ABORT TASK Yes

02h ABORT TASK SET No

04h CLEAR TASK SET No

08h LOGICAL UNIT RESET No

40h CLEAR ACA No

80h QUERY TASK Yes

The format of the task tag is specified in the applicable SCSI transport protocol standard and the
length of the task tag may be less than eight bytes. Any bytes between the end of the task tag and the
end of the TASK TAG field shall be ignored (e.g., a two-byte task tag occupies the first two bytes of
the TASK TAG field and the remaining six bytes are ignored).

9 Misc. changes

9.1 Change in C.3.5 Variable length CDB service action codes
The variable length CDB service action codes assigned by this standard are shown in table C.8.

07-069r5

42

Service Action
Code Description

1800h RECEIVE CREDENTIAL

1801h – 1FFFh Reserved

9.2 Change in Table 48 — Commands for all device types
In section 6.1, add the RECEIVE CREDENTIAL command to table 48.

10 References
[ObsSec05] Michael Factor, David Nagle, Dalit Naor, Erik Riedel, and Julian Satran. The OSD Security

Protocol, September 2005. http://ieeeia.org/sisw/2005/PreProceedings/04.pdf

[OSD04] R. O. Weber. SCSI Object-Based Storage Device Commands – 2 (OSD-2), Date: 2004/10/04,
Rev: 00. InterNational Committee for Information Technology Standards (formerly NCITS),
October 2004. http://www.t10.org/drafts.htm.

[BCK96] M. Bellare, R. Canetti, and H. Krawczyk. Message authentication using hash functions: The
hmac construction. RSA Laboratories’ Crypto-Bytes, 2(1), Spring 1996.

[FIPS180-02] Federal Information Processing Standards Publication 180-2: SECURE HASH
STANDARD.
Date: August 1, 2002.
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[FIPS198-02] Federal Information Processing Standards Publication 198: The Keyed-Hash Message
Authentication Code (HMAC).
Date: March 6, 2002.
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

[HKN05] Shai Halevi, Paul A. Karger and Dalit Naor. Enforcing confinement in distributed storage and
a cryptographic model for access control, 2005. Cryptology ePrint Archive: Report 2005/169.

[ACF+02] Alain Azagury, Ran Canetti, Michael Factor, Shai Halevi, Ealan Henis, Dalit Naor, Noam
Rinetzky, Ohad Rodeh, and Julian Satran. A two layered approach for securing an object
store network. In Proceedings of the First International IEEE Security in Storage Workshop,
pages 10–23, Greenbelt, MD, 11 December 2002.

http://ieeeia.org/sisw/2005/PreProceedings/04.pdf
http://www.t10.org/drafts.htm
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

	1 Definitions, symbols, abbreviations, and conventions
	1.1 Definitions
	1.1.1 CbCS Capability
	1.1.2 CbCS capability key
	1.1.3 CbCS Credential
	1.1.4 CbCS management application client
	1.1.5 CbCS management device server
	1.1.6 CbCS master key
	1.1.7 CbCS master authentication key
	1.1.8 CbCS master generation key
	1.1.9 CbCS validation tag
	1.1.10 CbCS working key
	1.1.11 Integrity check value
	1.1.12 Secret key
	1.1.13 Security token

	1.2 Acronyms

	2 Capability based Command Security
	2.1 Overview
	2.2 CbCS management device server
	2.2.1 CbCS management device server overview
	2.2.2 CbCS Credentials

	2.3 CbCS management application client
	2.4 Trust assumptions
	2.5 Access control Management
	2.5.1 CbCS Capabilities
	2.5.1.1 Overview
	2.5.1.2 CbCS Capability validation

	2.6 Security Methods
	2.6.1 Overview
	2.6.2 General
	2.6.3 The BASIC security method
	2.6.4 The CAPKEY security method
	2.6.4.1 Overview
	2.6.4.2 Computing the CbCS capability key
	2.6.4.3 Computing the validation tag

	2.7 CbCS Credentials
	2.7.1 Preparing CbCS credentials by the CbCS management device server
	2.7.2 Preparing CbCS credentials by the application client
	2.7.3 Validating CbCS credentials by the device server

	2.8 Secret Keys
	2.8.1 Overview
	2.8.2 Secret key usage in commands
	2.8.3 Computing updated CbCS master generation keys and new CbCS authentication keys

	2.9 CbCS interactions with commands and task management functions
	2.9.1 Association between commands and command functions
	2.9.2 Task management functions

	2.10 Security attributes

	3 CbCS extension
	4 Extended INQUIRY Data VPD page
	5 Changes in SECURITY PROTOCOL IN command
	5.1 CbCS SECURITY PROTOCOL
	5.1.1 Overview
	5.1.2 SECURITY PROTOCOL IN supported CbCS page
	5.1.3 SECURITY PROTOCOL OUT supported CbCS page
	5.1.4 Capabilities CbCS page
	5.1.5 Attributes CbCS page
	5.1.6 Set Master Key, Seed Exchange CbCS page

	6 Changes in SECURITY PROTOCOL OUT command
	6.1 CbCS SECURITY PROTOCOL
	6.1.1 Overview
	6.1.2 Set attributes CbCS page
	6.1.3 Set Key CbCS page
	6.1.4 Set Master Key, Seed Exchange CbCS page
	6.1.5 Set Master Key, Change Master Key CbCS page

	7 RECEIVE CREDENTIAL command
	7.1 RECEIVE CREDENTIAL parameter data
	7.1.1 CbCS capability format

	8 PERFORM TASK MANAGEMENT FUNCTION command
	9 Misc. changes
	9.1 Change in C.3.5 Variable length CDB service action codes
	9.2 Change in Table 48 — Commands for all device types

	10 References

