
07-069r3

Capability based Command Security
SCSI commands standard proposal

IBM Research Lab in Haifa

March 2007

Comment: Sivan: George, can you
please make the appropriate T10 proposal
header. I think the table of content is
good to have although it’s not typically
included in proposals. This one is long
enough to deserve TOC.

07-069r3

ii

Table of Contents

1 Definitions, symbols, abbreviations, and conventions.................................1

1.1 Definitions.. 1

1.1.1 CbCS Capability .. 1

1.1.2 CbCS capability key... 1

1.1.3 CbCS Credential.. 1

1.1.4 CbCS management application client .. 1

1.1.5 CbCS management device server ... 1

1.1.6 CbCS master key... 1

1.1.7 CbCS master authentication key.. 1

1.1.8 CbCS master generation key... 1

1.1.9 CbCS validation tag ... 2

1.1.10 CbCS working key ... 2

1.1.11 Command function..Error! Bookmark not defined.

1.1.12 Integrity check value .. 2

1.1.13 Secret key.. 2

1.1.14 Security token.. 2

2 Capability based Command Security..2

2.1 Overview.. 2

2.2 CbCS management device server ... 3

2.2.1 CbCS management device server overview .. 3

2.2.2 Credentials .. 3

2.3 CbCS management application client .. 4

2.4 Trust assumptions ... 4

2.5 Policy Management ... 6

2.5.1 Capabilities .. 6

2.6 Security Methods ... 8

2.6.1 Overview.. 8

2.6.2 General.. 9

07-069r3

iii

2.6.3 The NOSEC security method... 10

2.6.4 The CAPKEY security method... 10

2.7 Credentials .. 11

2.7.1 Preparing credentials by the CbCS management device server 12

2.7.2 Preparing credentials by the application client ... 13

2.7.3 Validating credentials by the device server .. 13

2.8 Secret Keys ... 14

2.8.1 Overview.. 14

2.8.2 Secret key usage in commands... 15

2.8.3 Computing updated generation keys and new authentication keys............ 16

2.9 CbCS interactions with commands and task management functions......... 17

2.9.1 Association between commands and command functions......................... 17

2.9.2 Task management functions.. 18

2.10 Security attributes .. 18

3 ENCAPSULATION TYPE definitions ...20

4 Capability based Command Security encapsulation21

5 Extended INQUIRY Data VPD page ...21

6 Changes in SECURITY PROTOCOL IN command.......................................22

6.1 CbCS SECURITY PROTOCOL ... 23

6.1.1 Overview.. 23

6.1.2 SECURITY PROTOCOL IN supported CbCS page................................... 23

6.1.3 SECURITY PROTOCOL OUT supported CbCS page 24

6.1.4 Capabilities CbCS page... 25

6.1.5 Attributes CbCS page .. 26

6.1.6 Set Master Key, Seed Exchange CbCS page.. 28

7 Changes in SECURITY PROTOCOL OUT command...................................30

7.1 CbCS SECURITY PROTOCOL ... 30

7.1.1 Overview.. 30

7.1.2 Set attributes CbCS page .. 31

07-069r3

iv

7.1.3 Set Key CbCS page... 32

7.1.4 Set Master Key, Seed Exchange CbCS page.. 33

7.1.5 Set Master Key, Change Master Key CbCS page...................................... 34

8 RECEIVE CREDENTIAL command..36

8.1 RECEIVE CREDENTIAL parameter data .. 37

8.1.1 Capability format.. 38

9 PERFORM TASK MANAGEMENT FUNCTION command42

10 Misc. changes..43

10.1 Change in C.3.5 Variable length CDB service action codes 43

10.2 Change in Table 48 — Commands for all device types 43

11 Issues ...43

12 References ...43

07-069r3

1

Changes to SPC-4
Proposal 07-029 defines ESC (Encapsulated SCSI Command) CDB format. This
proposal is dependent on 07-029r1.

1 Definitions, symbols, abbreviations, and conventions
(These are additions to section 3 of SPC-4.)

1.1 Definitions
(These are additions to section 3.1 of SPC-4.)

[Sivan: This section is almost a complete rewrite from previous version]

1.1.1 CbCS Capability
A data structure that specifies defined access to a logical unit for specific commands.
See 1.6.1.

1.1.2 CbCS capability key
The integrity check value (see 1.1.11) in a CbCS credential (see 1.1.3) returned by the
CbCS management device server (see 1.1.5) in response to the RECEIVE
CREDENTIAL command (see 10). See 1.3.2.

1.1.3 CbCS Credential
A data structure containing a capability that is protected by an integrity check value (see
 1.1.4) that is sent to and used by an application client in order to grant defined access to
a logical unit for specific command functions (see Error! Reference source not found.).
See 1.8.

1.1.4 CbCS management application client
An application client that manages secret keys (see 1.1.12) stored in logical units. See
 1.4.

1.1.5 CbCS management device server
A device server that prepares CbCS credentials (see 1.1.3) that contain CbCS
capabilities (see 1.1.1) in response to application client requests. See 1.3.

1.1.6 CbCS master key
A set of secret keys (see 1.1.12) that consist of a CbCS master authentication key (see
 1.1.7) and a CbCS master generation key (see 1.1.8).

1.1.7 CbCS master authentication key
A secret key (see 1.1.12) used to generate integrity check values (see 1.1.11) for CbCS
credentials (see 1.1.3). See 2.2.

1.1.8 CbCS master generation key
A secret key (see 1.1.12) used to generate new CbCS working keys (see 1.1.10).

07-069r3

2

1.1.9 CbCS validation tag

Allows the device server to validate a credential and determine if the capability has been
tampered with. See 1.3.2.

1.1.10 CbCS working key
A secret key (see 1.1.12) that is used in generating integrity check values (see 1.1.11)
for CbCS credentials (see 1.1.3). See 2.2.

1.1.11 Integrity check value

A value computed using a security algorithm (e.g., HMAC-SHA1), a secret key (see
 1.1.12), and an identified set of data that protects the integrity of that identified set of
data. See 1.8.

1.1.12 Secret key

A cryptographically generated value that is known only to a limited set of authorized
entities. See 2.2.

1.1.13 Security token
A value representing an I_T nexus (see 3.1.17) known to both the application client and
device server. (GP – Still looking to eliminate this are replace it with a I_T nexus ID)

3.2 Acronyms

CbCS Capability based Command Security

2 Capability based Command Security

1.2 Overview
CbCS is a credential-based access control system. The security model is composed of
the following components:

a) A SCSI target device;

b) A security manager consisting of:

a. A CbCS management device server

b. A CbCS management application client

c) Application clients.

(Editors note: This needs a UML class diagram to accurately describe the interaction
of the security classes to the classes we already have. The UML should also include
the CbCS management application client and a CbCS management device server.)

The CbCS management device server manages access control policy. CbCS
Credentials are prepared by the CbCS management device server based on that access
control policy.

Controlling access to a logical unit requires coordination between secret keys and
security attributes set by the CbCS management application client and credentials
generated by the CbCS management device server. The mechanism for coordination
between the CbCS management device server and the CbCS management application
client is not defined in this standard.

Comment: George, can you take a first
crack at that UML? You should know
better how you want it to look…

07-069r3

3

Figure 1 shows the flow of transactions between the components of a CbCS capable
SCSI domain.

Figure 1 - The CbCS security model

S
ecurity M

anager

Application client

Device Server

CbCS management
device server

Authorization request

[CAP, Ckey]
[Request, CAP,

validation_tag]

[key]

CbCS management
application client

1.3 CbCS management device server
1.3.1 CbCS management device server overview

The application client requests capabilities and CbCS capability keys from the CbCS
management device server. A CbCS management device server returns a CbCS
capability key (Ckey) with each CbCS credential giving the application client access to a
specific logical unit. The application client sends the CbCS capability to that logical unit’s
device server as part of a CbCS encapsulated command which allows the device server
to authenticate the CbCS capability with an integrity check value (see 1.8.2, 2.1.1).

The CbCS management device server shall authenticate the application client unless
NOSEC security method is used (see 1.7.3), but secure access between the application
client and device server is provided without requiring authentication of the application
client by the device server. It is sufficient for the device server to verify the CbCS
capabilities and integrity check values sent by the application client.

1.3.2 CbCS Credentials
The RECEIVE CREDENTIAL command is used to request an CbCS credential from the
CbCS management device server (see 10).

If the CAPKEY security method is used, the device server shall validate each command
received from an application client to confirm that:

a) The credential has not been tampered with (i.e., that the CbCS credential was
generated by the CbCS management device server and includes an integrity

07-069r3

4

check value generated using a secret key known only to the CbCS management
device server, the CbCS management application client and the device server);

b) The credential was obtained by the application client from the CbCS
management device server or through delegation by another application client
(i.e., that the application client knows the capability key that is associated with the
credential and has used the CbCS capability key to provide a proper integrity
check value for the command); and

c) The requested SCSI command encapsulated in the received CDB is permitted by
the capability in the credential (see 4.1).

If the NOSEC security method is used, the device server shall validate each command
received from an application client to confirm that the requested SCSI command
encapsulated in the received CDB is permitted by the CbCS capability in the CbCS
credential (see 4.1).

A CbCS credential includes a CbCS capability and an integrity check value. The integrity
check value in a CbCS credential returned by the CbCS management device server in
response to the RECEIVE CREDENTIAL command (see 10) is used as the secret key to
generate the integrity check value in a CbCS credential sent by the application client in a
CbCS encapsulation (see 6).

The integrity check value in a CbCS credential returned by the CbCS management
device server in response to the RECEIVE CREDENTIAL command is the CbCS
capability key. The integrity check value in a CbCS credential sent by the application
client in a CbCS encapsulation is the validation tag.

The validation tag allows the device server to validate an CbCS credential and determine
if the CbCS capability has been tampered with (e.g., an application client that has just
the CbCS capability but not the CbCS capability key is unable to generate CbCS
credentials with a valid validation tag in the integrity check value). Delegation of a CbCS
credential is permitted, if an application client delegates both the CbCS capability and
the CbCS capability key.

1.4 CbCS management application client
The CbCS capability keys are computed using secret keys that are shared between the
CbCS management device server and the device server. The secret keys are managed
by the CbCS management application client in conjunction with the CbCS management
SCSI initiator device. The command integrity check values (i.e. the validation tags) are
computed using CbCS capability keys. This standard includes SCSI commands for the
CbCS management application client to set and manage the secret keys stored in the
logical unit or a well known logical unit (see 8.1, 9.1).

If the secret key is stored in a well known logical unit then the key is shared between all
logical units within the target device but is only used by a logical unit if there has been no
secret key assigned to that logical unit (i.e., a secret key assigned to a logical unit
always overrides any secret key assigned to a well known logical unit).

1.5 Trust assumptions
After the logical unit is a trusted (i.e., after an application client authenticates that it is
communicating with a specific logical unit), the application client trusts the device server
to:

07-069r3

5

a) Provide integrity for stored data;

b) Perform the security protocol and functions defined for it by this standard; and

c) Not be controlled in a way that operates to the detriment of the application client’s
interests. (GP – This item should be deleted as it basicly states the logical unit
should not do bad things)

The CbCS management device server and the CbCS management application client are
trusted after:

a) the CbCS management device server is authenticated by the application client;
and

b) the CbCS management application client is authenticated by the logical unit.

The CbCS management device server and the CbCS management application client are
trusted to:

a) Securely store long-lived secret keys;

b) Grant credentials to application clients according to access control policies that
are outside the scope of this standard; and

c) Perform the defined security functions.

The application client is not trusted. However, the CbCS security model is defined so
that the application client receives service from the device server only if it interacts with
both the CbCS management device server and the device server in ways that assure the
propriety of the application client’s actions.

CbCS management application clients and CbCS management device servers are
trusted to protect CbCS capability keys from disclosure to unauthorized entities.

Use of the capability expiration time requires synchronization between the clocks of the
CbCS management device server and the device server.

Communications between the CbCS management application clients, application clients,
CbCS management device servers, and device servers are trusted based on the
requirements shown in Table 1.

Table 1 - Communications trust requirement

Connection Communication trust
requirement

application client <--> device server message integrity
 a

application client <--> CbCS management device server Confidentiality and integrity

CbCS management application client <--> device server message integrity

CbCS management device server <-->
CbCS management application client

Confidentiality and integrity

Confidential communications are protected from eavesdropping by methods outside the
scope of this standard.

Message integrity assures that the message received is the one that was sent (i.e., no
tampering occurred). Messages in which tampering is detected shall be discarded.
a
 Message integrity is sufficient for security of the CbCS access control. Confidentiality of the

07-069r3

6

data transferred between the application client and the device server may be required to
prevent passive network attacks and implemented by other means.

1.6 Policy Management
Policy management shall be performed by the CbCS management application client and
the CbCS management device server as follows:

a) The CbCS management device server provides access policy controls to
application clients using policy-coordinated CbCS capabilities; and

b) The CbCS management application client, in concert with the CbCS
management device server and the device server, prevents unsecured access to
a logical unit.

The policy management is confined to the CbCS management application client and
CbCS management device server. The communication of policy management
information may occur in a manner outside the scope of this standard.

1.6.1 CbCS Capabilities
1.6.1.1 Overview

All CbCS encapsulations contain a CbCS capability descriptor that specifies the
command functions (e.g., read, write, attributes setting, attributes retrieval) that the
device server is allowed to process in response to the encapsulated SCSI CDB.

The device server shall validate that the requested functions are allowed by the CbCS
capability based on:

a) The type of functions; and

b) The logical unit.

The policies that determine which CbCS capabilities are provided to which application
clients are outside the scope of this standard.

The CbCS management device server shall deliver CbCS capabilities to application
clients as follows:

a) If the security method in use for the logical unit is NOSEC (see 1.7.3), then the
CbCS management device server may:

A) Allow application clients to prepare their own CbCS capabilities; or

B) Coordinate the preparation of CbCS capabilities for multiple application
clients in response to requests;

or

b) If a security method in use for the logical unit is CAPKEY (see 1.7.4), then the
CbCS management device server shall prepare of CbCS capabilities by:

A) Requiring application clients to request CbCS credentials and CbCS
capabilities; and

B) Preparing CbCS capabilities only in response to application client requests.

A CbCS capability descriptor is included in an CbCS credential returned by the CbCS
management device server in response to the RECEIVE CREDENTIAL command (see

07-069r3

7

 10), and in CbCS encapsulation parameters (see 6) to enable the device server to verify
that the application client is allowed to perform the command functions requested by the
encapsulated CDB. The capability format is defined in 10.1.1.

The CbCS capability descriptor specifies:

a) the security method to apply in validating the CbCS credential;

b) the cryptographic parameters used in generating the CbCS credential integrity
check value;

c) an expiration time of the CbCS capability;

d) a permission bit mask that specifies which command functions are authorized by
the CbCS capability;

e) a logical unit descriptor which uniquely identifies the logical unit to which the
CbCS capability pertains; and

f) a policy access tag which is used for CbCS credential revocation.

Effective use of the CbCS capability expiration time requires synchronization between
the clocks of the CbCS management device server and the device server. The method
for synchronizing the clocks is outside the scope of this standard. Use of the CbCS
capability expiration time is optional – a value of zero indicates that the capability has no
expiration time. (GP – The information about the zero value needs to be in the field
description not here)

The CbCS capability includes:

a) an audit function, that may be used in a vendor specific manner to limit the
delegation or prevent leakage of the CbCS capability to other application clients; and

b) a designation descriptor (see spc4r09) that uniquely identifies a logical unit. If
the CbCS capability applies to a well-known logical unit, the designation descriptor
applies to the target device in which it resides.

In order to implement CbCS credential based on logical unit unique identifier, the same
identifier type shall be:

a) used in the access control policies set in the policy manager;

b) returned by the device server in Device Identification VPD page (Inquiry page
83h);

c) used by the application client to identify the device and request the
corresponding CbCS credential from the CbCS management device server; and

d) returned by the CbCS management device server in response in the CbCS
capability in response to the application client's CbCS credential request.

A CbCS management application client may block CbCS capability-based access to a
logical unit by:

a) changing the policy access tag attribute associated with a logical unit (see 9.1.2);

or

b) changing or invalidating the secret keys shared with the device server.

07-069r3

8

1.6.1.2 CbCS Capability validation

The device server shall validate the CbCS capability descriptor included in the CbCS
encapsulation (see 6) as follows:

a) Verify that the CAPABILITY FORMAT field value is set to 1h. If the CAPABILITY
FORMAT field value is other than 1h, then the command shall be terminated with
a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST,
and the additional sense code set to INVALID FIELD IN CDB.

b) If the CAPABILITY EXPIRATION TIME field contains a non-zero value, then
compare the CAPABILITY EXPIRATION TIME field to the current time (i.e., the
current number of millisecond passed since midnight, 1 January 1970 UT). If the
CAPABILITY EXPIRATION TIME field value is smaller than the current time
value, then the command shall be terminated with a CHECK CONDITION status,
with the sense key set to ILLEGAL REQUEST, and the additional sense code set
to INVALID FIELD IN CDB.

c) Verify that the designation descriptor matches the addressed logical unit, or the
addressed target device in case a well-known logical unit is addressed. If they
don't match, then the command shall be terminated with a CHECK CONDITION
status, with the sense key set to ILLEGAL REQUEST, and the additional sense
code set to INVALID FIELD IN CDB.

d) If any of the LBA START field or LENGTH field contains nonzero value, verify
that the LBA range affected by the encapsulated command is fully covered by the
LBA range specified by the LBA START field and the LENGTH field (i.e., the
affected LBA range is within the range spanning from [LBA START] to [LBA
START + LENGTH - 1]). (GP – CbCS should be limited to logical units not LBA
ranges of logical units)

e) If the POLICY ACCESS TAG field in the CbCS capability descriptor contains a
non-zero value, then compare the POLICY ACCESS TAG field to the Policy
Access Tag of this logical unit. If they don't match, then the command shall be
terminated with a CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN
CDB.

f) Verify that the encapsulated command is permitted by the PERMISSIONS BIT
MASK field in the CbCS capability descriptor in the CDB. If the requested
command is not permitted, then the command shall be terminated with a CHECK
CONDITION status, with the sense key set to ILLEGAL REQUEST, and the
additional sense code set to INVALID FIELD IN CDB.

1.7 Security Methods
1.7.1 Overview

This standard defines two security methods (see Table 2).

Table 2 - CbCS security methods

Method Description Without a secure channel With a secure channel

07-069r3

9

Method Description Without a secure channel With a secure channel

NOSEC No security
a
 No security Network-level integrity

CAPKEY Access control
b

Verification of credentials,
vulnerable to some network
attacks

Protection from network
attacks

a
 The device server verifies the CbCS capability allows the operation but does not verify the

authenticity of the CbCS capability prior to processing a command.
b
 Access Control Security is based on the protocol presented and analyzed in [ACF+02].

CAPKEY verifies that the application client rightfully obtained the credential it is presenting.

1.7.2 General
If the device server receives a command for a logical unit:

a) that has CbCS enabled:

b) the opcode field is set to 7Eh (i.e. Encapsulated SCSI Command CDB); and

c) the encapsulation type is set to 10h (i.e. CbCS encapsulation),

then the credential shall be validated before any other field in the CDB is validated.

If the device server receives a command for a logical unit:

a) that has CbCS enabled:

b) the opcode is not 7Eh (i.e. not Encapsulated SCSI Command CDB); and

c) the received command requires authorization as described in 4.1,

then the command shall be terminated with a CHECK CONDITION status, with the
sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID
FIELD IN CDB.

If the device server receives a command for a logical unit:

a) that has CbCS enabled;

b) the opcode is 7Eh (i.e. Encapsulated SCSI Command CDB);

c) the encapsulations do not include an encapsulation type set to 10h (i.e. CbCS
encapsulation); and

d) the encapsulated command requires authorization as described in 4.1,

then the command shall be terminated with a CHECK CONDITION status, with the
sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID
FIELD IN CDB.

The validations performed on a command using the NOSEC method are a subset of the
validations performed on a command using the CAPKEY method. Therefore, a
command prepared for the CAPKEY security method may complete without errors
reported by the device server if the NOSEC security method is in use. (GP – I don’t think
this paragraph has any useful information a therefore should be deleted.)

07-069r3

10

1.7.3 The NOSEC security method
The NOSEC security method validates that the CbCS capability authorizes the
encapsulated command for each CDB.

The NOSEC security method does not validate the integrity of the CbCS capability.

Preparing CbCS credentials for the NOSEC security method does not require the
knowledge of any secret keys and may be done by the application client without
coordination with the CbCS management device server. The CbCS capability descriptor
(see 1.6.1, 10.1.1) is set with the SECURITY METHOD field set to NOSEC. The integrity
check value is set to zero.

The device server validates the CbCS capability as described in 1.6.1.2.

1.7.4 The CAPKEY security method
1.7.4.1 Overview

The CAPKEY security method validates the integrity of the CbCS capability information
in each command. It provides security when the service delivery subsystem between the
device server and application client is secured.

The integrity of the CbCS capability shall be validated before any other command
processing is done, including CbCS capability validation.

Given a CbCS credential and a channel, the protocol ties the CbCS credential to the
channel via a validation tag. The validation tag is computed by the client as

()kenSecurityToF pr
Ckey

,

Where:

 SecurityToken identifies the communication channel and is unique to this
combination of initiator port, target port, and the particular I_T nexus on which
they communicate.

(GP – A channelID looks like an I_T nexus ID to me. I would rather define a new
identifier rather the an new name for something that already exists)

Ckey is the CbCS capability key associated with the command (see 1.7.4.2).

SecurityToken is chosen by the device server. An application client may request the value
of the SecurityToken (see 8.1.5). The device server compares the channel on which a
request was received and its SecurityToken, and verifies that the validation tag attached
to the request equals ()kenSecurityToF pr

Ckey
.

To ensure the request is authenticated by the application client who obtained the CbCS
credential, the CbCS capability key (Ckey) with which the validation tag

()kenSecurityToF pr
Ckey

 is computed depends on the CbCS capability.

CbCS capabilities and integrity check values may be reused as follows:

a) The application client may reuse the CbCS capability and Ckey on multiple
commands for the same logical unit(s);

b) The application client is required to calculate the validation tag once per I_T_L
nexus;

Comment: Sivan: OSD says the
security token shall be random. Why?

07-069r3

11

c) The Ckey and validation tag shall be calculated the first time the device server
receives a given CbCS capability on a given I_T_L nexus and may be reused in
processing every command received on the I_T_L nexus; and

1.7.4.2 Computing the CbCS capability key

When preparing CbCS credentials (see 1.8.1) and validating CbCS credentials (see
 2.1.1), the CbCS capability key shall be computed by the CbCS management device
server and the device server using:

a) The algorithm specified in the INTEGRITY CHECK VALUE ALGORITHM field
in the CbCS capability descriptor;

b) If the value of the KEY VERSION field in the CbCS capability descriptor is
nonzero, the secret key to by used is specified by the KEY VERSION field,
otherwise the authentication master key is used as the secret key; and

c) The CbCS capability descriptor as the input data.

The CbCS capability key is placed in the INTEGRITY CHECK VALUE field of the CbCS
credential returned in the RECEIVE CREDENTIAL command.

1.7.4.3 Computing the validation tag

When preparing CbCS credentials (see 1.8.2), the validation tag shall be computed by
the application client using:

1) The algorithm specified in the INTEGRITY CHECK VALUE ALGORITHM field in
the CbCS capability descriptor;

2) The CbCS capability key returned from the RECEIVE CREDENTIAL command in
the INTEGRITY CHECK VALUE field;

3) The security token returned by the device server in the CbCS Attributes page
(see 8.1.5) as the input data.

The validation tag is placed in the INTEGRITY CHECK VALUE field of the CbCS
credential passed by the application client in the CbCS encapsulation (see 6).

1.8 CbCS Credentials
A CbCS credential authorizes specific access to a specific logical unit. It consists of a
CbCS capability and an integrity check value. The CbCS capability descriptor (see 1.6.1)
identifies the logical unit and specifies the specific access rights and parameters
specifying how it shall be validated by the device server. The integrity check value
authenticates the CbCS capability and is used for validation.

There are two types of CbCS credentials used in the CbCS protocol:

a) A CbCS credential is transferred from the CbCS management device server to
an application client over a communications mechanism that meets the requirements
specified in 1.5 with the CbCS credential being returned in response to the RECEIVE
CREDENTIAL command (see 10); and

b) A CbCS credential is transferred from the application client to the device server
over a communications mechanism that meets the requirements specified in 1.5 with
the credential being placed in the encapsulation parameters of the CDB CbCS
encapsulation (see 6).

07-069r3

12

1.8.1 Preparing CbCS credentials by the CbCS management device
server

In response to a request from an application client, the CbCS management device
server shall prepare and return a CbCS credential (see Table 19) as follows:

1) If the access controls policy does not authorize the application client's request,
no CbCS credential shall be returned to the requesting application client, (i.e. the
CRED PRSNT bit (see xx.xx.xx) in the returned parameter data shall be set to
zero;

2) Prepare the CbCS capability and insert it in the CbCS credential as follows:

a. Setting the SECURITY METHOD field to the value of the corresponding
field in the Attributes CbCS page (see 8.1.5) of the logical unit for which
the credential is requested;

b. Setting the KEY VERSION field to the number of the working key secret
key used to compute the credential integrity check value; (GP – what is a
“working key secret key”?)

c. Setting the INTEGRITY CHECK VALUE ALGORITHM field to the value
that specifies the algorithm used to compute all integrity check values
related to this CbCS credential. The algorithm shall be one of those
identified by the supported integrity check value algorithm attributes in the
CbCS capabilities page (see 8.1.4) of the logical unit for which the
credential is requested;

d. Setting the CAPABILITY EXPIRATION TIME field to a value that is
consistent with the CbCS policy;

e. May set the AUDIT field in a vendor specific manner;

f. Setting the PERMISSIONS BIT MASK descriptor to a value that is
consistent with the policy;

g. Setting the POLICY ACCESS TAG field to a value that matches the
POLICY ACCESS TAG attribute in the Attributes CbCS page (see 8.1.5)
of the logical unit for which the CbCS credential is requested. The value
zero may be used to prevent revocation by changing the policy access
tag attribute of the logical unit;

h. Setting the LU DESCRIPTOR TYPE field, LU DESCRIPTOR LENGTH
field, and LU DESCRIPTOR field to those of the logical unit to which the
credential is requested; and

i. If the security method in use is CAPKEY, then compute the CbCS
capability key as described in 1.7.4.2, and place it in the INTEGRITY
CHECK VALUE field in the CbCS credential. If the security method in use
is NOSEC, set the INTEGRITY CHECK VALUE field to zero;

and

3) Return the CbCS credential to the application client with the integrity check value
serving as the CbCS capability key.

Use of the CbCS capability expiration time (see item d in step 2) requires
synchronization between the clocks of the device server, the CbCS management

07-069r3

13

application client, and the CbCS management device server. The protocol for
synchronizing the clocks is not specified in this standard, however, the protocol should
be implemented in a secure manner (e.g., it should not be possible for an adversary to
set the clock in the device server backwards to enable the reuse of expired CbCS
credentials). The REPORT TIMESTAMP command and SET TIMESTAMP command
encapsulated with CbCS encapsulation may be used by the CbCS management
application client for this purpose.

Security management commands issued by the CbCS management application client to
the device server require that the integrity check value is computed using the
authentication CbCS master key rather than a CbCS working key. The list of commands
requiring use of the CbCS master key is in 4.1.1. If the CbCS master key is used to
compute the CbCS credential integrity check value then the KEY VERSION field in the
CbCS capability descriptor shall be set to zero. (GP – there is no entry in the glossary for
CbCS working key. This needs to be fixed.)

For CbCS credentials returned by the CbCS management device server in response to
the RECEIVE CREDENTIAL command (see 10), only CbCS working keys shall be used
in computing the INTEGRITY CHECK VALUE field.

1.8.2 Preparing CbCS credentials by the application client
The client shall prepare the CbCS credential for sending it to the device server in the
CDB CbCS encapsulation parameters as follows:

a) If the CAPKEY security method is enabled, copy the CbCS capability descriptor
received from the CbCS management device server in response to the RECEIVE
CREDENTIAL command into the CbCS capability descriptor parameter of the CDB
CbCS encapsulation. If the NOSEC security method enabled, prepare the CbCS
capability descriptor as described in 1.8.1; and

b) If the CAPKEY security method is enabled, compute the validation tag as described
in 1.7.4.3 and place it in the INTEGRITY CHECK VALUE parameter of the CDB CbCS
encapsulation.

2.1.1 Validating CbCS credentials by the device server
The device server shall validate CbCS credentials as follows:

a) If the CAPKEY security method is enabled and the SECURITY METHOD field in the
CbCS capability descriptor is other than CAPKEY, the command shall be terminated with
a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the
additional sense code set to INVALID FIELD IN CDB; and

b) If the CAPKEY security method is enabled, then:

a. Compute the CbCS capability key as described in 1.7.4.2;

b. Compute the validation tag as described in 1.7.4.3; and

c. Compare the computed validation tag with the INTEGRITY CHECK
VALUE field in the CbCS encapsulation parameters. If they don't match,
the command shall be terminated with a CHECK CONDITION status, with
the sense key set to ILLEGAL REQUEST, and the additional sense code
set to INVALID FIELD IN CDB;

and

07-069r3

14

c) Verify the CbCS capability descriptor as described in 1.6.1.2.

2.2 Secret Keys
1.8.3 Overview

All CbCS credentials are based on a secret key that is shared between the device
server, the CbCS management application client that manages its security attributes,
and the CbCS management device server that grants CbCS credentials to application
clients. Keys shall be refreshed regularly.

Secret key management requirements are as follows:

2 The CbCS management application client should replace the logical unit’s secret
keys in a secure manner even if the channel it has with the logical unit is not secure;

3 The device server shall support multiple CbCS working keys; and

4 The CbCS management application client shall contain a random source for
generating secret keys.

Each logical unit has a CbCS master key and a set of CbCS working keys assigned to it.
A single set of secret keys may be shared among multiple logical units within a target
device.

The CbCS working keys are used to generate the CbCS capability keys that are used by
application clients to access logical units. CbCS working keys should be refreshed
frequently (e.g., hourly). A secret key refresh shall invalidate all CbCS credentials
generated by that secret key. The device server shall support up to 16 refreshed
versions of the secret key as valid (i.e., define multiple secret keys that are concurrently
valid). The secret key version field in the CbCS capability is used to indicate which
secret key shall be used in the validation process (see 10.1.1).

When setting a new secret key, the CbCS management application client assigns the
secret key with a version number. The KEY VERSION field in the CbCS capability
descriptor is set to the version number of the CbCS working key used in computing the
CbCS capability key (see 10.1.1). The device server uses the KEY VERSION field to
determine which secret key to use in validating an CbCS credential in a CbCS
encapsulated command (see 2.1.1).

A CbCS master generation key is used to generate working secret keys. A CbCS master
authentication key is used to generate CbCS credentials for commands to set and
refresh keys, and modify device security attributes. The CbCS master key (i.e., the pair
of CbCS master generation key and CbCS master authentication key) may be refreshed.
Refreshing the CbCS master key is accomplished by a Diffie-Hellman key exchange
algorithm that ensures forward secrecy of the CbCS master key. This algorithm is carried
over a sequence of commands as follows:

1) SECURITY PROTOCOL OUT command specifying the CbCS protocol and the
Set Master Key, Seed Exchange page (9.1.4);

2) SECURITY PROTOCOL IN command specifying the CbCS protocol and the Set
Master Key, Seed Exchange page (8.1.6); and

3) SECURITY PROTOCOL OUT command specifying the CbCS protocol and the
Set Master Key, Change Master Key page (9.1.5).

07-069r3

15

Separate sets of the CbCS master key and the CbCS working keys may be used for
each logical unit, or a single set may be used for all logical units served by a security
protocol well-known logical unit’s device server as follows:

1) A single set of CbCS master keys and CbCS working keys is used by the device
server through the SECURITY PROTOCOL well-known logical unit. This set of
secret keys serves all the logical units within the SCSI target device;

2) A separate set of CbCS master keys and CbCS working keys is used for each
logical unit within the SCSI target device; and

3) A single set of CbCS master keys and CbCS working keys is used by the device
server through the SECURITY PROTOCOL well-known logical unit. In addition, a
separate set of CbCS master key and CbCS working keys may be used for any
logical unit within the SCSI target device. The single set of secret keys serves
any logical unit that does not have its own set of keys.

4.1.1 Secret key usage in commands
Every CbCS credential prepared by the CbCS management device server includes an
integrity check value field containing a CbCS capability key that is computed using either
a CbCS working key or the CbCS master authentication key associated with the logical
unit.

The CbCS authentication master key shall be used in preparing CbCS credentials for
commands that set secret keys. For other commands, the secret key that shall be used
is one of the CbCS working keys associated with the logical unit. The KEY VERSION
field in the CbCS capability descriptor shall be set to a value that identifies that particular
working key (see 10.1.1).

The following commands involve setting secret keys and require using the CbCS master
authentication key for preparing the credential:

a) SECURITY PROTOCOL OUT command specifying the CbCS security protocol and
the Set Key page (see 9.1.3);

b) SECURITY PROTOCOL OUT command specifying the CbCS security protocol and
the Set Master Key, Seed Exchange page (see 9.1.4);

c) SECURITY PROTOCOL IN command specifying the CbCS security protocol and the
Set Master Key, Seed Exchange page (see 8.1.6); and

d) SECURITY PROTOCOL OUT command specifying the CbCS security protocol and
the Set Master Key, Change master Key page (see 9.1.5).

 [Editor’s note (Sivan): Do we want to specify the master key for credential for
SECURITY PROTOCOL OUT command specifying the CbCS security protocol and the
Set attributes CbCS page (see 9.1.2)? I think not…]

If the CbCS encapsulated command is SECURITY PROTOCOL OUT command
specifying the CbCS security protocol and the Set Master Key, Change Master Key
page, then the secret key that shall be used is the next CbCS authentication master key
computed after GOOD status has been returned by the SECURITY PROTOCOL IN
command specifying the CbCS security protocol and the Set Master Key, Seed
Exchange page.

Comment: Sivan: Removed the
sentence that says the CbCS management
application client may use the same set of
keys for a set of LUs. Since it’s based on
DH key exchange, I don’t think it is
possible to generate identical keys.

07-069r3

16

3 Computing updated CbCS master generation keys and new CbCS
authentication keys

When processing the commands that involve setting secret keys (i.e., the Set Key CbCS
page (see 9.1.3) and the Set Master Key CbCS pages (see 9.1.4, 8.1.6, and 9.1.5)), the
device server shall compute new CbCS master generation keys and CbCS working keys
as follows:

a) The algorithm specified in the INTEGRITY CHECK VALUE ALGORITHM field in
the CbCS capability descriptor; [Editor's note: Should we define a separate field
encoding this algorithm rather than using the one used in the credential?]

b) The input secret key value shall be one of the following:

a) For a Set Key CbCS page (see 9.1.3), the CbCS master generation key; or

b) For a CbCS master key computed following the processing of the Set
Master Key, Change Master Key CbCS page (see 9.1.5), the previous
CbCS master generation key shall be used;

and

c) The input data (i.e., seed) shall be one of the following:

a) For a Set Key CbCS page, the contents of the SEED field of the Set Key
CbCS page; or

b) For a Set Master Key, Change Master Key CbCS page, the value
computed after successful completion of the SECURITY PROTOCOL IN
command specifying the Set Master Key, Seed Exchange CbCS page (see
 8.1.6) and updated by the Set Master Key, Change Master Key CbCS page
(see 9.1.5).

When processing the commands for setting the CbCS master key (i.e., the Set Master
Key CbCS pages (see 9.1.4, 8.1.6, and 9.1.5)), the device server shall compute the new
CbCS master authentication key as follows:

a) The algorithm specified in the INTEGRITY CHECK VALUE ALGORITHM field in
the CbCS capability descriptor; [Editor's note: Should we define a separate field
encoding this algorithm rather than using the one used in the credential?]

b) The input key value shall be the CbCS master generation key prior to processing
the command; and

c) The input data shall be the seed value computed (see 8.1.6) with the least
significant bit changed as follows:

a) If the seed value least significant bit is zero, then the least significant bit
shall be set to one; or

b) If the seed value least significant bit is one, then the least significant bit
shall be set to zero.

07-069r3

17

4.1 CbCS interactions with commands and task management
functions

4.1.1 Association between commands and command functions
The PERMISSIONS BIT MASK descriptor in the CbCS capability (see 1.6.1) specifies
which command functions are allowed by this CbCS capability. When processing CbCS
encapsulation commands, the device server shall verify that the bits applicable to the
encapsulated SCSI command are all set to one in the PERMISSIONS BIT MASK
descriptor before processing the request specified by the CbCS encapsulated SCSI
command.

The associations between commands and command functions as specified in this
subclause for commands defined in this standard. Other SCSI command set standards
may specify associations between commands and command functions pertaining to the
specific device type.

If the device server receives a command that requires CbCS encapsulation (see 6)
according to Table 3 or any device specific command set standard pertaining to the
received command, and the command is not encapsulated with CbCS encapsulation,
then the command shall be terminated with a CHECK CONDITION status, the sense key
shall be set to ILLEGAL REQUEST, and the additional sense code shall be set to
INVALID FIELD IN CDB.

If the device server receives a command that does not require CbCS encapsulation (see
 6) according to Table 3 or any device specific command set standard pertaining to the
received command, and the command is encapsulated with CbCS encapsulation, then
the command may be processed by the device server.

Table 3 - Associations between commands and command functions

Permissions (x.x.x) (GP – make this change
elsewhere) Command

DATA
READ

DATA
WRITE

ATTR
READ

ATTR
WRITE

SEC
MGMT

RESRV

Not
allowed

(a)

ACCESS CONTROL IN v
ACCESS CONTROL OUT v
CHANGE ALIASES
EXTENDED COPY v
INQUIRY
LOG SELECT v
LOG SENSE v
MANAGEMENT PROTOCOL IN
MANAGEMENT PROTOCOL OUT
MODE SELECT(6) v
MODE SELECT(10) v
MODE SENSE(6) v
MODE SENSE(10) v
PERFORM TASK MANAGEMENT
FUNCTION

 v

PERSISTENT RESERVE IN v
PERSISTENT RESERVE OUT v
READ ATTRIBUTE v
READ BUFFER TBD TBD TBD TBD TBD TBD TBD

07-069r3

18

READ MEDIA SERIAL NUMBER v
RECEIVE COPY RESULTS v
RECEIVE CREDENTIAL
RECEIVE DIAGNOSTIC RESULTS v
REPORT ALIASES v
REPORT IDENTIFYING
INFORMATION

v

REPORT LUNS
REPORT PRIORITY v
REPORT SUPPORTED
OPERATION CODES

REPORT SUPPORTED TASK
MANAGEMENT FUNCTIONS

REPORT TARGET PORT
GROUPS

REPORT TIMESTAMP v
REQUEST SENSE v
SECURITY PROTOCOL IN

SECURITY PROTOCOL OUT

[Editor’s note: TBD. We have to define associations per
security protocol. For IKEv2-SCSI no encapsulation shall be
required otherwise we get chicken-n-egg problem]

SEND DIAGNOSTIC v
SET IDENTIFYING INFORMATION v
SET PRIORITY v
SET TARGET PORT GROUPS
SET TIMESTAMP v v
TEST UNIT READY
WRITE ATTRIBUTE v
WRITE BUFFER TBD TBD TBD TBD TBD TBD TBD
(a)

 A check mark in this column means that the command shall not be supported for a logical unit
that has the CbCS bit set in the extended inquiry data

4.1.2 Task management functions
If the CbCS bit is set to one in the extended inquiry data, all SAM-4 task management
functions except QUERY TASK shall be ignored and responded to as if they have been
successfully processed. The PERFORM TASK MANAGEMENT FUNCTION command
(see 11) allows SAM-4 task management functions to be processed under the protection
of CbCS.

[Editor’s note (Sivan): CbCS is per LU. Do Task management functions pertain to LU? If
not, do we have an issue here with having both CbCS and non-CbCS LUs in the same
device?]

(GP- This is a very nasty requirement.)

4.2 Security attributes
Device servers supporting CbCS may support one or more of the following security
attributes:

a) SCSI target device based;

b) logical unit based;

c) changeable; or

Comment: Sivan: What’s the impact of
this on existing host systems?!

07-069r3

19

d) non-changeable.

Device servers may support the following security attributes:

a) only SCSI target device based;

b) only logical unit based; or

c) both.

If a device server supports both target based security attributes and a logical unit based
security attributes and receives both target based security attributes and a logical unit
based security attributes, then the logical unit based security attribute overrides the
target based security attribute on that device server.

SCSI target device attributes are queried and modified through the SECURITY
PROTOCOL well-known logical unit (see 8.5 [spc4r09])

Table 4 specifies the CbCS attributes.

Table 4 - CbCS attributes

Security attribute name Length (bytes)
SCSI target

device or logical
unit specific

Application client
settable

Supported security methods n*2 SCSI target device No

Default security method 2 SCSI target device Yes

Security method 2 SCSI target
device/Logical unit

Yes

Supported integrity check
value algorithms n*2 SCSI target device No

Supported DH groups n*2 SCSI target device No

Clock 6 SCSI target device Yes

CbCS master key identifier 8 SCSI target device
/ Logical unit No

 d

CbCS working key identifier 16*8 SCSI target device
/ Logical unit No

 d

LU initial policy access tag 4 SCSI target device Yes

Policy access tag 4 Logical unit Yes

Security token Not defined
 c
 Logical unit

 b
 No

b
 The security token returned by the device server is unique to the I_T nexus on which the

security token is returned.
c
 The security token length is specific to the implementation of secure channel for the I_T

nexus
d
 The secret key identifier is set by the application client when a new secret key is generated

as described in 9.1.3 and 9.1.5. It is not settable by means of setting CbCS security
attributes described in 9.1.2

The supported security methods attribute is used by the device server to report its
supported security methods. See 1.7.

Comment: How does the application
client know how much space to allocate if
this is undefined?

07-069r3

20

The default security method attribute is the security method the device server shall apply
to a newly created CbCS logical unit, if a security method is not specified at logical unit
creation time. The default security method shall be one of the supported security
methods.

The supported integrity check value algorithms security attribute is used by a device
server to report its supported integrity check value algorithms. Integrity check value
algorithms shall be used to compute integrity check values. See [06-449r2 - 7.7.4.11.1.3
Integrity Algorithm (INTEG) identifiers].

The supported DH group security attribute is used by a device server to report the DH
groups it supports for the Diffie-Hellman key exchange with the application client that is
processed as part of setting a new CbCS master key (see 9.1.4). See [06-449r2 -
7.7.4.11.1.4 Diffie-Hellman Group (D-H) identifiers].

The clock security attribute shall contain the current time in use by the device server
represented as the count of the number of milliseconds elapsed since midnight, 1
January 1970 UT.

The LU initial policy access tag security attribute specifies the initial value for the policy
access tag for a newly created logical unit. The initial value for this attribute shall be set
to FFFF FFFFh (see Error! Reference source not found.).

The policy access tag security attribute specifies the expected non-zero contents of the
POLICY ACCESS TAG field in any capability that allows access to this logical unit (see
Error! Reference source not found.).

Setting and querying security attributes are used by the application client by issuing the
SECURITY PROTOCOL IN command and SECURITY PROTOCOL OUT command with
the CbCS security protocol (see 8.1, 9.1).

5 ENCAPSULATION TYPE definitions
Following is a proposed change to table x3 from 07-029r1.

Table x3 — OUTERMOST ENCAPSULATION TYPE field and NEXT ENCAPSULATION TYPE field

Size of encapsulation
parameter descriptors

(bytes)

Code Description Prefix Postfix Reference

00h No next layer n/a n/a 4.3.4.2.1

Prefix and Postfix codes

01h – 07h Reserved

Prefix only codes

xxh CbCS 98 0

xxh - FFh Reserved 0

Comment: Is creation of logical units
defined in any standard?

07-069r3

21

6 CbCS encapsulation
[Editor's note: I'm not sure where exactly this section should be added in SPC-4.]

The CbCS encapsulation allows the application of security to a SCSI command using the
parameters specified in this subclause.

Support for CbCS encapsulation type is mandatory if the CbCS bit in extended INQUIRY
data (see 7) is set to one.

The encapsulated CDB may be any any CDB defined in any SCSI standard.

Table 5 - CbCS encapsulation descriptor format

Bit
Byte

7 6 5 4 3 2 1 0

0 NEXT ENCAPSULATION TYPE

1 Reserved

2

81
CbCS capability descriptor

82

145
INTEGRITY CHECK VALUE

The CbCS capability descriptor is defined in 10.1.1.

The CbCS capability descriptor and the INTEGRITY CHECK VALUE field shall be
prepared by the application client as described in 1.8.2.

The device server shall validate the CbCS capability descriptor and the INTEGRITY
CHECK VALUE field as described in 2.1.1.

7 Extended INQUIRY Data VPD page
[Change in 7.6.4 Extended INQUIRY Data VPD page]

The Extended INQUIRY Data VPD page (see table 361) provides the application client
with a means to obtain information about the logical unit.

Table 361 — Extended INQUIRY Data VPD page

Bit
Byte

7 6 5 4 3 2 1 0

0 PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE

1 PAGE CODE (86h)

2 Reserved

3 PAGE LENGTH (3Ch)

4 Reserved SPT GRD_CH
K

APP_CHK REF_CHK

Comment: I wouldn’t add text to rule it
out, but does it make any sense to use
CbCS w/ OSD?

07-069r3

22

Bit
Byte

7 6 5 4 3 2 1 0

5 Reserved GROUP_
SUP

PRIOR_S
UP

HEADSU
P

ORDSUP SIMPSUP

6 Reserved COR_D_S
UP

NV_SUP V_SUP

7 Reserved LUICLR

8 Reserved CbCS

9

63
Reserved

<Unchanged text here>

A Capability based Command Security (CbCS) bit set to one indicates that the logical
unit has CbCS (see 2). A CbCS bit set to zero indicates that the logical unit does not
support CbCS.

(GP – The information in this section below this note belongs in the model not in the
command description)

If the CbCS bit is set to one, the target device shall support the following commands and
parameters:

a) Encapsulated SCSI command (see 4.3.4.2 [07-029r1]);

b) CbCS encapsulation type (see 6);

c) SECURITY PROTOCOL IN specifying the CbCS security protocol (see 8.1).

d) SECURITY PROTOCOL OUT specifying the CbCS security protocol (see 9.1).

8 Changes in SECURITY PROTOCOL IN command
[Changes in section 6.29 SECURITY PROTOCOL IN command]

6.29.1 SECURITY PROTOCOL IN command description

Table 186 — SECURITY PROTOCOL field in SECURITY PROTOCOL IN command

Code Description Reference

00h Security protocol information 6.29.2

01h - 06h Defined by the TCG 3.1.128

07h CbCS 6.29.3

08h - 1Fh Reserved

20h Tape Data Encryption SSC-3

21h - EDh Reserved

EEh Authentication in Host Attachments
of Transient Storage Devices IEEE P1667

07-069r3

23

Code Description Reference

EFh ATA Device Server Password
Security

TBD

F0h - FFh Vendor Specific

8.1 CbCS SECURITY PROTOCOL
(New section in SPC-4: 6.29.3)

8.1.1 Overview
(New section in SPC-4: 6.29.3.1)

The SECURITY PROTOCOL IN command specifying the CbCS protocol requests the
device server to return the security attributes of the:

a) logical unit; or

b) SCSI target device that contains the addressed SECURITY PROTOCOL well-known
logical unit.

The command supports CbCS pages that may be requested one at a time. An
application client requests a CbCS page by using a SECURITY PROTOCOL IN
command with the SECURITY PROTOCOL field set to 07h (CbCS protocol) and the
SECURITY PROTOCOL SPECIFIC field set to the requested CbCS page code.

The SECURITY PROTOCOL SPECIFIC field (see Table 6) specifies the CbCS pages.

Table 6 – SECURITY PROTOCOL SPECIFIC field

Code Description Support Reference

0000h SECURITY PROTOCOL IN supported
CbCS page M 8.1.2

0001h SECURITY PROTOCOL OUT supported
CbCS page M 8.1.3

0002h-000Fh Reserved

0010h Capabilities CbCS page M 8.1.4

0011h Attributes CbCS page M 8.1.5

0012h Set Master Key, Seed Exchange CbCS
page M 8.1.6

0013h – FFFFh Reserved

Support key:
M – Mandatory for device servers that support the CbCS.
O – Optional

8.1.2 SECURITY PROTOCOL IN supported CbCS page
(New section in SPC-4: 6.29.3.2)

Table 7 specifies the format of the SECURITY PROTOCOL IN supported CbCS page.

07-069r3

24

Table 7 - SECURITY PROTOCOL IN supported CbCS page

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0000h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

5
SECURITY PROTOCOL IN supported CbCS page (first)

(LSB)

.
.
.

n-1 (MSB)

n
SECURITY PROTOCOL IN supported CbCS page (last)

(LSB)

The SECURITY PROTOCOL IN supported CbCS page shall contain a list of all of the
CbCS pages the device server supports for the SECURITY PROTOCOL IN command
specifying the CbCS protocol in ascending order beginning with page code 0000h.

8.1.3 SECURITY PROTOCOL OUT supported CbCS page
(New section in SPC-4: 6.29.3.3)

Table 8 specifies the format of the SECURITY PROTOCOL OUT supported CbCS page.

Table 8 - SECURITY PROTOCOL IN supported CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0001h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

5
SECURITY PROTOCOL IN supported CbCS page (first)

(LSB)

.
.
.

n-1 (MSB)

n
SECURITY PROTOCOL IN supported CbCS page (last)

(LSB)

07-069r3

25

The SECURITY PROTOCOL OUT supported CbCS page shall contain a list of all of the
CbCS pages that the device server supports for the SECURITY PROTOCOL OUT
command specifying the CbCS protocol in ascending order.

8.1.4 Capabilities CbCS page
(New section in SPC-4: 6.29.3.4)

Table 9 specifies the format of the Capabilities CbCS page.

Table 9 – Capabilities CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0010h)

(LSB)

2 (MSB)

3
PAGE LENGTH (i*2+j*2+k*2+8)

(LSB)

4 GKS LUKS GSMS LUSMS Reserved

5 Reserved

6

7

Number of supported security methods (i)
 (LSB)

8

9
SUPPORTED SECURITY METHOD (first)

(LSB)

.
.
.

i*2+6

i*2+7

SUPPORTED SECURITY METHOD (last)
 (LSB)

i*2+8

i*2+9
Number of supported integrity check value algorithms (j)

(LSB)

i*2+10

i*2+11

SUPPORTED INTEGRITY CHECK VALUE ALGORITHM
(first) (LSB)

.
.
.

i*2+j*2+8

i*2+j*2+9

SUPPORTED INTEGRITY CHECK VALUE ALGORITHM
(last) (LSB)

i*2+j*2+10

i*2+j*2+11

Number of supported D-H groups (k)
 (LSB)

07-069r3

26

Bit
Byte

7 6 5 4 3 2 1 0

i*2+j*2+12

i*2+j*2+13
SUPPORTED D-H GROUP (first)

(LSB)

.
.
.

i*2+j*2+k*2+10

i*2+j*2+k*2+11
SUPPORTED D-H GROUP (last)

(LSB)

A Global Keys Support (GKS) bit set to one specifies that the device server supports a
single set of the CbCS master key and the CbCS working keys for the SCSI target
device. A Global Keys Support (GKS) bit set to zero specifies that the device server
does not support single set of the CbCS master key and the CbCS working keys for the
SCSI target device.

A Logical Unit Keys Support (LUKS) bit set to one specifies that the device server
supports separate sets of the CbCS master key and the CbCS working keys for each
logical unit. A Logical Unit Keys Support (LUKS) bit set to zero specifies that the device
server does not support separate sets of the CbCS master key and the CbCS working
keys for each logical unit.

A Global Security Method Support (GSMS) bit set to one specifies that the SCSI target
device that contains this logical unit supports global security method (i.e., contains a
SECURITY PROTOCOL well known logical unit). A Global Security Method Support
(GSMS) bit set to zero specifies that the device server requires the security methods to
be assigned to each logical unit.

A Logical Unit Security Method Support (LUSMS) bit set to one specifies that the device
server supports per-logical unit security method. A Logical Unit Security Method Support
(LUSMS) bit set to zero specifies that the device server does not support per-logical unit
security method.

The SUPPORTED SECURITY METHOD fields contain coded values of the security
methods (see 1.7) supported by the device server. The coded values are specified in
Table 22.

The SUPPORTED INTEGRITY CHECK VALUE ALGORITHM fields contain coded
values of the algorithm to compute integrity check values supported by the device server
(see 1.8). The coded values are specified in [06-449r2 – Table K4 – Integrity algorithm
identifiers].

The SUPPORTED DH GROUP attributes contain coded values identifying the supported
values in the DH_GROUP field of Set Master Key, Seed Exchange page (see 9.1.4).
The coded values are specified in [06-449r2 – Table K5 – Diffie-Hellman group
identifiers].

8.1.5 Attributes CbCS page
(New section in SPC-4: 6.29.3.5)

Table 10 specifies the format of the Attributes CbCS page.

07-069r3

27

Table 10 - Attributes CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0010h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

5
SECURITY METHOD

(LSB)

6 (MSB)

9
POLICY ACCESS TAG

(LSB)

10

17
MASTER KEY IDENTIFIER

(LSB)

18

25
WORKING KEY IDENTIFIER 0

(LSB)

.
.
.

138

145
WORKING KEY IDENTIFIER 15

(LSB)

146 (MSB)

151
CLOCK

(LSB)

152 Reserved

153 SECURITY TOKEN LENGTH

154

n
SECURITY TOKEN

(LSB)

If the addressed logical unit is the SECURITY PROTOCOL well-known logical unit:

a) the SECURITY METHOD field is the security method assigned by the W-LUN’s
device manager to all logical units within the SCSI target device;

b) the POLICY ACCESS TAG field is the initial policy access tag assigned by the W-
LUN’s device server to all logical units within the SCSI target device;

c) if the device server does not support global security method (i.e., the GSMS bit is
set to zero in the Capabilities CbCS page), then the SECURITY METHOD field is
undefined; and

07-069r3

28

d) if the device server does not support global keys (i.e., the GKS bit is set to zero in
the Capabilities CbCS page), then the MASTER KEY IDENTIFIER field and all the
WORKING KEY IDENTIFIER fields should contain FFFF FFFFh

If the addressed logical unit is not the SECURITY PROTOCOL well-known logical unit:

a) the SECURITY METHOD field is the current security method used for the
addressed logical unit;

b) the POLICY ACCESS TAG field is the current policy access tag assigned to the
addressed logical unit;

c) if the device server does not support per-logical unit security method (i.e., the
LUSMS bit is set to zero in the Capabilities CbCS page), then the SECURITY
METHOD field is undefined; and

d) if the device server does not support per-logical unit keys (i.e., the LUKS bit is set
to zero in the Capabilities CbCS page), the MASTER KEY IDENTIFIER field and
all the WORKING KEY IDENTIFIER fields should contain FFFF FFFFh.

Security methods are described in detail in 1.7.

Secret keys are described in 2.2.

If secret keys are supported for the addressed logical unit, the values of those fields are
as follows:

a) The MASTER KEY IDENTIFIER field shall contain the key identifier value from the
most recent successful SECURITY PROTOCOL OUT command specifying the
CbCS security protocol and the Set Master Key, Change Master Key page (see
 9.1.5). If that command has never been processed, then the MASTER KEY
IDENTIFIER field shall contain FFFF FFFEh; and

b) Each KEY IDENTIFIER field contains the key identifier value from the most recent
successful SECURITY PROTOCOL OUT command specifying the CbCS security
protocol and the Set Key page, with the KEY VERSION field set to the pertinent
key (0-15) (see 9.1.3). If a secret key is invalid (e.g., never set, invalidated by a Set
Master Key, Change Master Key page, or invalidated by a Set Key page), the
pertinent KEY IDENTIFIER field should contain 0000 0000h.

The CLOCK field shall contain the current time in use by the device server represented
as the count of the number of milliseconds elapsed since midnight, 1 January 1970 UT.

[Editor’s Note: The clock field may be usable for other purposes. Perhaps it can be
moved to a more generic place, e.g. mode page…]

For the CAPKEY security method, the SECURITY TOKEN field contains a value that is
unique to the I_T nexus or I_T_L nexus on which the SECURITY PROTOCOL IN
command was sent. The security token shall be random as defined by RFC 1750. An I_T
nexus loss event or reset event (see SAM-4) shall cause the security token to change.

8.1.6 Set Master Key, Seed Exchange CbCS page
(New section in SPC-4: 6.29.3.6)

Table 11 specifies the format of the Set Master Key, Seed Exchange CbCS page.

Comment: Sivan: This is borrowed
from OSD. Why do we need this to be
random?

07-069r3

29

Table 11 - Set Master Key, Seed Exchange CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0012h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4

n
DH DATA

If a SECURITY PROTOCOL IN command specifying Set Master Key, Seed Exchange
CbCS page is received and no SECURITY PROTOCOL OUT command specifying Set
Master Key, Seed Exchange CbCS page has been completed successfully on the same
I_T_L nexus during the past ten seconds, the command shall be terminated with a
CHECK CONDITION status, the sense key shall be set to ILLEGAL REQUEST, and the
additional sense code shall be set to INVALID FIELD IN CDB.

A device server that receives a SECURITY PROTOCOL OUT command specifying Set
Master Key, Seed Exchange CbCS page on one I_T_L nexus may terminate the
command with a CHECK CONDITION status, with the sense key set to ILLEGAL
REQUEST, and the additional sense code set to SYSTEM RESOURCE FAILURE if any
of the following command processing is incomplete on a different I_T_L nexus:

a) SECURITY PROTOCOL OUT command specifying Set Master Key, Seed
Exchange CsCB page (see 9.1.4);

b) SECURITY PROTOCOL IN command specifying Set Master Key, Seed
Exchange CsCB page (see 8.1.6); or

c) SECURITY PROTOCOL OUT command specifying Set Master Key, Change
Master Key CsCB page (see 9.1.5).

The DH DATA field contains the device server DH_data computed as follows:

a) A random number, y, is generated having a value between zero and DH_prime
minus one observing the requirements in RFC 1750; and

b) The device server DH_data is equal to DH_generator
y
 modulo DH_prime.

The DH_generator and DH_prime values are identified by the Diffie-Hellman group
specified in the DH GROUP field in the most recent SECURITY PROTOCL OUT
command specifying the Set Master Key, Seed Exchange page (see 9.1.4) that was
received on the same I_T_L nexus.

After GOOD status has been returned for SECURITY PROTOCOL OUT command and
before the SECURITY PROTOCOL OUT command specifying the Set Master Key,
Change Master Key page is processed, the next CbCS authentication master key and
next CbCS generation master key shall be computed as described in 3, using a seed
value that is the concatenation of the following:

07-069r3

30

1) DH_generator
xy

 modulo DH_prime; and

(GP – what is x?)

2) The whole content of the Device Identification VPD page (83h) returned from the
addressed logical unit for the INQUIRY command (see 7.6.3 [spc4r09]).

9 Changes in SECURITY PROTOCOL OUT command
[Changes in section 6.30 SECURITY PROTOCOL OUT command]

<Unchanged text here>

The SECURITY PROTOCOL field (see table 191) specifies which security protocol is
being used.

Table 191 — SECURITY PROTOCOL field in SECURITY PROTOCOL OUT command

Code Description Reference

00h Reserved

01h - 06h Defined by the TCG 3.1.128

07h CbCS

08h - 1Fh Reserved

20h Tape Data Encryption SSC-3

21h - EDh Reserved

EEh Authentication in Host Attachments
of Transient Storage Devices IEEE P1667

EFh ATA Device Server Password
Security

TBD

F0h - FFh Vendor Specific

9.1 CbCS SECURITY PROTOCOL
(New section in SPC-4: 6.30.1)

9.1.1 Overview
The SECURITY PROTOCOL OUT command specifying CbCS protocol is used to
configure the CbCS secret keys and attributes in the device server.

The command supports CbCS pages that may be sent one at a time. An application
client requests to send a CbCS page by using a SECURITY PROTOCOL OUT
command with the SECURITY PROTOCOL field set to 07h (CbCS protocol) and the
SECURITY PROTOCOL SPECIFIC field set to the CbCS page code requested.

The SECURITY PROTOCOL SPECIFIC field (see Table 12) specifies the type of CbCS
page that the application client is sending.

07-069r3

31

Table 12 - SECURITY PROTOCOL SPECIFIC field values

Code Description Support Reference

0000h – 0010h Reserved

0011h Set Attributes CbCS page O 9.1.2

0012h Set Key CbCS page M 9.1.3

0013h Set Master Key, Seed Exchange CbCS
page

M 9.1.4

0014h Set Master Key, Change Master Key
CbCS page M 9.1.5

0015h – FFFFh Reserved

Support key:
M – Mandatory for device servers that support the CbCS protocol
O – Optional

If the SECURITY PROTOCOL SPECIFIC field is set to a reserved or unsupported value,
the device server shall terminate the command with CHECK CONDITION status, with
the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID
FIELD IN CDB.

9.1.2 Set attributes CbCS page
(New section in SPC-4: 6.30.1.2)

Table 13 specifies the format of the Set Attributes CbCS page.

Table 13 – Set Attributes CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0011h)

(LSB)

2 (MSB)

3
PAGE LENGTH (6)

(LSB)

4 (MSB)

5
SECURITY METHOD

(LSB)

6 (MSB)

9
POLICY ACCESS TAG

(LSB)

The PAGE LENGTH field indicates the number of bytes of parameter data to follow. If
the page length value is any value other than 6, the device server shall terminate the
command with CHECK CONDITION status, with the sense key set to ILLEGAL
REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

07-069r3

32

The SECURITY METHOD field specifies the security method to apply to the addressed
logical unit (see 1.7). The SECURITY METHOD field is set to:

a) the reserved value FFFFh to specify no change shall be made to the current security
method;

b) a value equal to the current security method shall not be considered an error; and

c) a value that does not match any of the supported security methods reported in the
Capabilities CbCS page (see 8.1.4), shall cause the device server to terminate the
SECURITY PROTOCOL OUT command with CHECK CONDITION status and set
the sense key to ILLEGAL REQUEST and the additional sense code to INVALID
FIELD IN PARAMETER DATA.

The list of coded values of security methods is defined in Table 22.

The POLICY ACCESS TAG field specifies a new policy access tag for the addressed
logical unit. The value set to 0000 0000h specifies no change shall be made to the
current policy access tag value. If the addressed logical unit is the SECURITY
PROTOCOL well-known logical unit and the POLICY ACCESS TAG field contains any
value other than 0000 0000h, the device server shall terminate the SECURITY
PROTOCOL OUT command with CHECK CONDITION status and set the sense key to
ILLEGAL REQUEST and the additional sense code to INVALID FIELD IN PARAMETER
DATA.

This command shall be authorized and shall be sent encapsulated by a CbCS
encapsulation (see 6).

9.1.3 Set Key CbCS page
(New section in SPC-4: 6.30.1.3)

Table 14 specifies the Set Key CbCS page format.

Table 14 - Set Key CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0012h)

(LSB)

2 (MSB)

3
PAGE LENGTH (30)

(LSB)

4 Reserved

5 Reserved KEY VERSION

6 (MSB)

13
KEY IDENTIFIER

(LSB)

14 (MSB)

33
SEED

(LSB)

07-069r3

33

The KEY VERSION field specifies the key version to be updated.

The KEY IDENTIFIER field specifies a unique identifier to be associated with the new
secret key. The secret key identifier value shall be associated with the attribute specified
in the Attributes CbCS page (see 8.1.5).

The SEED field contains a random number generated from a good source of entropy
(e.g., as described in RFC 1750).

The updated secret key value shall be computed as described in 3.

This command shall be authorized and shall be sent encapsulated with CbCS
encapsulation (see 6).

9.1.4 Set Master Key, Seed Exchange CbCS page
(New section in SPC-4: 6.30.1.4)

Table 15 specifies the Set Master Key, Seed Exchange CbCS page format.

Table 15 - Set Master Key CbCS page format

Bit
Byte 7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0013h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

5
DH GROUP

(LSB)

6 (MSB)

9
DH DATA LENGTH

(LSB)

10

n
DH DATA

A device server that receives a SECURITY PROTOCOL OUT command specifying Set
Master Key, Seed Exchange CbCS page on one I_T_L nexus may terminate the
command with a CHECK CONDITION status, with the sense key set to ILLEGAL
REQUEST, and the additional sense code set to SYSTEM RESOURCE FAILURE if any
of the following command processing is incomplete on a different I_T_L nexus:

a) SECURITY PROTOCOL OUT command specifying Set Master Key, Seed
Exchange CsCB page (see 9.1.4);

b) SECURITY PROTOCOL IN command specifying Set Master Key, Seed Exchange
CsCB page (see 8.1.6); or

c) SECURITY PROTOCOL OUT command specifying Set Master Key, Change
Master Key CsCB page (see 9.1.5).

07-069r3

34

The DH GROUP field contains the Diffie-Hellman group (see 06-449r2 - 7.7.4.11.1.4
Diffie-Hellman Group (D-H) identifiers) that identifies the DH_generator value and
DH_prime value to be used in the seed exchange. If the value in the DH GROUP field is
not listed in one of the SUPPORTED D-H GROUP fields in the Capabilities CbCS page
(see 8.1.4), then the command shall be terminated with CHECK CONDITION status,
with the sense key set to ILLEGAL REQUEST, and the additional sense code set to
INVALID FIELD IN CDB.

The DH DATA LENGTH field specifies the number of bytes of the DH DATA field.

The DH_DATA field contains the DH data and is computed as follows:

DH data = DH_generator
x
 modulo DH_prime

Where:

X is a value between zero and DH_prime minus one as defined
in RFC 1750;

DH_generator is defined by the DH GROUP field; and

DH_prime is defined by the DH GROUP field.

9.1.5 Set Master Key, Change Master Key CbCS page
(New section in SPC-4: 6.30.1.5)

Table 16 specifies the format of the Set Master Key, Change Master Key CbCS page.

Table 16 - Set Master Key, Change Master Key CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0014h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

11
KEY IDENTIFIER

(LSB)

6 (MSB)

9
APPLICATION CLIENT DATA LENGTH (k-9)

(LSB)

10

k
APPLICATION CLIENT DH DATA

k+1 (MSB)

k+4
DEVICE SERVER DATA LENGTH (n-(k+4))

(LSB)

k+5

n
DEVICE SERVER DH DATA

07-069r3

35

If a SECURITY PROTOCOL OUT command specifying Set Master Key, Change Master
Key CbCS page is received and no SECURITY PROTOCOL IN command specifying Set
Master Key, Seed Exchange CbCS page has been completed successfully on the same
I_T_L nexus during the past ten seconds, the command shall be terminated with a
CHECK CONDITION status, the sense key shall be set to ILLEGAL REQUEST, and the
additional sense code shall be set to INVALID FIELD IN CDB.

A device server that receives a SECURITY PROTOCOL OUT command specifying Set
Master Key, Change master Key CbCS page on one I_T_L nexus may terminate the
command with a CHECK CONDITION status, with the sense key set to ILLEGAL
REQUEST, and the additional sense code set to SYSTEM RESOURCE FAILURE if any
of the following command processing is incomplete on a different I_T_L nexus:

a) SECURITY PROTOCOL OUT command specifying Set Master Key, Seed
Exchange CsCB page (see 9.1.4);

b) SECURITY PROTOCOL IN command specifying Set Master Key, Seed Exchange
CsCB page (see 8.1.6); or

c) SECURITY PROTOCOL OUT command specifying Set Master Key, Change
Master Key CsCB page (see 9.1.5).

The KEY IDENTIFIER field specifies a unique identifier to be associated with the new
CbCS master key. The secret key identifier value shall be placed into the MASTER KEY
IDENTIFIER field in the Attributes CbCS page (see 8.1.5) before the command
completes.

Table 17 specifies special secret key identifiers that shall not be used when setting
secret keys. Any value not listed in the table is permitted for use by the application client
when setting secret keys.

Table 17 – Special secret key identifiers

Value Description

0000 0000h A secret key that was never set or was invalidated

FFFF FFFEh An initial secret key set by the device server

FFFF FFFFh Pertinent secret key is not supported by the device server

If the value of the KEY IDENTIFIER field contains a value that is listed in Table 17, then
the command shall be terminated with CHECK CONDITION status, with the sense key
set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN
PARAMETER LIST.

The APPLICATION CLIENT DATA LENGTH field specifies the number of bytes that
follow in the APPLICATION CLIENT DH DATA field.

The APPLICATION CLIENT DH_DATA field contains the DH_data from the last
SECURITY PROTOCOL OUT command specifying CbCS Set Master Key, Seed
Exchange CbCS page on the same I_T_L nexus on which this command was received.

The DEVICE SERVER DATA LENGTH field contains the length in bytes of the DEVICE
SERVER DH DATA field.

07-069r3

36

The DEVICE SERVER DH DATA field contains the device server DH_data from the last
SECURITY PROTOCOL IN command specifying Set Master Key, Seed Exchange CbCS
page on the same I_T_L nexus on which this command was received.

If the content of the APPLICATION CLIENT DATA LENGTH field of the SECURITY
PROTOCOL OUT commands Set Master Key, Seed Exchange CbCS page does not
match the content of the:

a) DH DATA LENGTH field in a SECURITY PROTOCOL OUT Set Master Key, Seed
Exchange CbCS page that was processed on this I_T_L nexus since a I_T nexus
loss event, logical unit reset event, or reset event (see SAM-4);

b) DH DATA field in a SECURITY PROTOCOL OUT Set Master Key, Seed
Exchange CbCS page that was processed on this I_T_L nexus since a I_T nexus
loss event, logical unit reset event, or reset event;

c) PAGE LENGTH field in a SECURITY PROTOCOL IN Set Master Key, Seed
Exchange CbCS page that was processed on this I_T_L nexus since a I_T nexus
loss event, logical unit reset event, or reset event; or

d) DH DATA field in a SECURITY PROTOCOL IN Set Master Key, Seed Exchange
CbCS page that was processed on this I_T_L nexus since a I_T nexus loss event,
logical unit reset event, or reset event,

then the command shall be terminated with CHECK CONDITION status, with the sense
key set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN
PARAMETER LIST.

On successful completion of a SECURITY PROTOCOL OUT command specifying the
CbCS protocol and the Set Master Key, Change Master Key CbCS page, the device
server shall:

a) Replace the CbCS authentication master key with the next CbCS authentication
master key computed after the return of GOOD status for the most recent
SECURITY PROTOCOL IN command specifying the CbCS protocol and the Set
Master Key, Seed Exchange CbCS page (see 8.1.6);

b) Replace the CbCS generation master key with the next CbCS generation master
key computed after the return of GOOD status for the most recent SECURITY
PROTOCOL IN command specifying the CbCS protocol and the Set Master Key,
Seed Exchange CbCS page; and

c) Invalidate all the CbCS working keys on the logical unit.

For every secret key that is invalidated by this command, the associated key identifier
attribute shall have its attribute set to zero.

The next CbCS authentication master key computed after the return of GOOD status for
the most recent SECURITY PROTOCOL IN command specifying the CbCS protocol and
the Set Master Key, Seed Exchange CbCS page (see 8.1.6) shall be used to compute
the capability key for this command.

10 RECEIVE CREDENTIAL command
[A new sub-section in section 6 of SPC-4]

07-069r3

37

The RECEIVE CREDENTIAL command (see Table 18) allows the application client to
receive an CbCS credential for use in the CbCS encapsulation (see 6).

Table 18 - RECEIVE CREDENTIAL CDB format

Bit
Byte

7 6 5 4 3 2 1 0

0 OPERATION CODE (7Fh)

1 CONTROL

2

6
Reserved

7 ADDITIONAL CDB LENGTH (n-7)

8 (MSB)

9
SERVICE ACTION (1800h)

(LSB)

10 (MSB)

11
ALLOCATION LENGTH

(LSB)

12

n
Designation descriptor

If a RECEIVE CREDENTIAL command is received before a SECURITY PROTOCOL IN
command has completed successfully on the same I_T_L nexus as the RECEIVE
CREDENTIAL command was received with following field settings:

a) SECURITY PROTOCOL field set to xxh (i.e., IKEv2-SCSI); and

b) the SECURITY PROTOCOL SPECIFIC field set to 0103h (i.e., authentication
phase),

then the command shall be terminated with a CHECK CONDITION status, the sense key
set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN
CDB.

[Editor's: note: The above paragraph is based on 06-449r2 and depends on it.]

The ALLOCATION LENGTH field is defined in 4.3.4.6 [spc4r09].

The format of the Designation descriptor field is defined in Table 338 [spc4r09]. The size
of the Designation descriptor shall not exceed 24 bytes.

[Editor’s note: The ESC proposal defines fixed size encapsulations, so the Capability
size must fixed. Therefore, we have to put an upper bound on the designation descriptor
length. 24 bytes allows for NAA-16 and for SCSI name string format using 16 byte length
names concatenated to “naa.”]

10.1 RECEIVE CREDENTIAL parameter data
The RECEIVE CREDENTIAL parameter data is defined in Table 19.

07-069r3

38

Table 19 - Credential format

Bit
Byte

7 6 5 4 3 2 1 0

0
CRED

PRSNT Reserved CREDENTIAL FORMAT (1h)

1 Reserved

2 (MSB)

3
CREDENTIAL LENGTH (n-3)

(LSB)

4 (MSB)

5
CAPABILITY LENGTH (k-5)

(LSB)

6

k
CbCS capability descriptor

k+1 (MSB)

k+4
INTEGRITY CHECK VALUE LENGTH (n-(k+4))

(LSB)

k+5

n
INTEGRITY CHECK VALUE

If the Credential Present (CRED PRSNT) bit is set to zero, no CbCS credential shall be
returned, and the rest of the parameter data is undefined. If the Credential Present
(CRED PRSNT) bit is set to one, an CbCS credential is returned in the parameter data.

The CREDENTIAL FORMAT field specifies the format of the CbCS credential. It shall be
set to 1h.

[Editor’s note: The intention of this field is to allow for future expansion of the standard to
include multiple credential formats. The rest of the fields will depend on the value of this
field. However, since it is currently the only format, we define the rest of the fields in the
general credential form and not in a format-specific form.]

The CREDENTIAL LENGTH field indicates the length in bytes of the rest of the data (i.e.
the CbCS credential) that follows.

The CAPABILITY LENGTH specifies the length in bytes of the CbCS capability
descriptor field.

The format of the CbCS capability descriptor is defined in 10.1.1.

INTEGRITY CHECK VALUE LENGTH specifies the length of the INTEGRITY CHECK
VALUE field.

The INTEGRITY CHECK VALUE field contains a value that the application client shall
use for preparing CbCS credentials (see 1.8.2).

10.1.1 CbCS capability format
The format of the CbCS capability descriptor is defined in Table 20.

07-069r3

39

Table 20 - Capability descriptor format

Bit
Byte

7 6 5 4 3 2 1 0

0 CAPABILITY FORMAT (1h) KEY VERSION

1 SECURITY METHOD

2 (MSB)

5
INTEGRITY CHECK VALUE ALGORITHM

(LSB)

6 (MSB)

11
CAPABILITY EXPIRATION TIME

(LSB)

12

31
AUDIT

32

35
PERMISSIONS BIT MASK descriptor

36 (MSB)

39
POLICY ACCESS TAG

(LSB)

40

63
Designation descriptor

64 (MSB)

71
LBA START

(LSB)

72 (MSB)

79
LENGTH

(LSB)

The CAPABILITY FORMAT field (see Table 21) specifies the format of the CbCS
capability. The CbCS capability format may also be the CbCS credential format. This
standard only supports the CAPABILITY FORMAT field being set to 1h (i.e., the format
defined by this standard).

Table 21 – Capability format field

Code Description

0h Reserved

1h The format defined by this standard

2h - Fh Reserved

If the CAPABILITY FORMAT field contains any value other than the ones defined in
Table 21, then this command shall be terminated with a CHECK CONDITION status,

07-069r3

40

with the sense key set to ILLEGAL REQUEST, and the additional sense code set to
INVALID FIELD IN CDB,

The KEY VERSION field specifies which secret key, from the set of CbCS working keys,
is being used to compute the integrity check value.

The SECURITY METHOD field should be set a valid CbCS security method (see Table
22). The CbCS security methods are described in detail in 1.7.

Table 22 – The CbCS Security methods

Code Security Method Description

0000h NOSEC No security (see 1.7.3)

0001h CAPKEY Integrity of CbCS capabilities (see 1.7.4)

0002h – 0FFFh Reserved

1000h – FFFEh Vendor specific

FFFFh Reserved

The INTEGRITY CHECK VALUE ALGORITHM field specifies the algorithm used to
compute the integrity check value for this CbCS capability (see 1.8). It shall be set to a
value defined in [06-449r2 – Table K4 – Integrity algorithm identifiers].

The CAPABILITY EXPIRATION TIME field specifies expiration time of the CbCS
capability. The time is the number of milliseconds that have elapsed since midnight, 1
January 1970 UT. If the CAPABILITY EXPIRATION TIME field is non-zero and is less
than the current time set in the device server when processing the command, the
command shall be terminated with a CHECK CONDITION status, the sense key set to
ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

If the CAPABILITY EXPIRATION TIME field contains zero, the capability has no
expiration time.

The AUDIT field contains a vendor specific value.

The PERMISSIONS BIT MASK descriptor (see Table 23) specifies the permissions
allowed by this CbCS capability. More than one permissions bit may be set. The device
server shall verify that the bits applicable to the encapsulated command are all set to
one in the PERMISSIONS BIT MASK descriptor before performing the encapsulated
SCSI command. Every bit corresponds to a command function (Error! Reference
source not found.).

The association of command functions to SCSI commands is defined in 4.1.1 for
commands defined in this standard. Associations for specific command sets are defined
in the specific command set standards.

In Table 23 byte 0 and byte 1 specify the command functions for all SCSI commands. In
Table 23 byte 2 and byte 3 may be used by a device type specific command set
standard to specify command functions unique to the device type. Other command set
standards shall not override the definition of Table 23 byte 0 and byte 1 as defined in this
standard. The associations between the command functions specified in the permissions
bit mask descriptor and SCSI commands defined in this standard are specified in 4.1.1.

07-069r3

41

Table 23 – PERMISSIONS BIT MASK descriptor

Bit
Byte

7 6 5 4 3 2 1 0

0 DATA
READ

DATA
WRITE

ATTR
READ

ATTR
WRITE

SEC
MGMT

RESRV Reserved

1 Reserved

2

3
For device type specific use

A DATA READ bit set to zero indicates the encapsulated SCSI command has no read
permission. A DATA READ bit set to one indicates the encapsulated SCSI command
has read permission.

A DATA WRITE bit set to zero indicates the encapsulated SCSI command has no write
permission. A DATA WRITE bit set to one indicates the encapsulated SCSI command
has write permission.

An attribute read (ATTR READ) bit set to zero indicates the encapsulated SCSI
command has no attribute read permission. A ATTR READ bit set to one indicates the
encapsulated SCSI command has attribute read permission.

An attribute write (ATTR WRITE) bit set to zero indicates the encapsulated SCSI
command has no attribute write permission. A ATTR WRITE bit set to one indicates the
encapsulated SCSI command has attribute write permission.

A security management (SEC MGMT) bit set to zero indicates the encapsulated SCSI
command has no security management permission. A SEC MGMT bit set to one
indicates the encapsulated SCSI command has security management permission.

A reservation (RESRV) bit set to zero indicates the encapsulated SCSI command has no
persistent reservation permission. A SEC MGMT bit set to one indicates the
encapsulated SCSI command has persistent reservation permission.

If the POLICY ACCESS TAG field contains a value other than zero, the policy access
tag attribute of the logical unit (see 8.1.5) is compared to the POLICY ACCESS TAG
field contents as part of verifying the capability. If the POLICY ACCESS TAG field
contains zero, then no comparison is made to the policy access tag attribute of the
logical unit. The CbCS management application client changes the policy access tag to
prevent unsafe or temporarily undesirable accesses to a logical unit (see Error!
Reference source not found.).

If the non-zero value in the CDB POLICY ACCESS TAG field is not identical to the value
in the policy access tag attribute of the logical unit (see 8.1.5), then the command shall
be terminated with a CHECK CONDITION status, the sense key shall be set to ILLEGAL
REQUEST, and the additional sense code shall be set to INVALID FIELD IN CDB.

The format of the Designation descriptor field is defined in Table 338 [spc4r09]. The size
of the Designation descriptor shall not exceed 24 bytes.

[Editor’s note: The ESC proposal defines fixed size encapsulations, so the Capability
size must fixed. Therefore, we have to put an upper bound on the designation descriptor

07-069r3

42

length. 24 bytes allows for NAA-16 and for SCSI name string format using 16 byte length
names concatenated to “naa.”]

The LBA START field and the LENGTH field specify a range of logical block addresses
to which the capability applies. If the value of the LENGTH field is zero, then the
capability applies to the range of logical blocks starting at the address specified in LBA
START and ending at the last block of the device. If logical block addresses are not
applicable for the addressed logical unit type, then both the LBA START field and the
LENGTH field shall be set to zero.

(GP – Security should only be logical unit based not LBA based. This option should be
deleted)

11 PERFORM TASK MANAGEMENT FUNCTION command
[A new sub-section in section 6 of SPC-4]

(GP – This is a radical change in the way TMFs are sent to SCSI devices)

The PERFORM TASK MANAGEMENT FUNCTION command (see Table 24) allows a
SAM-4 task management function (e.g., ABORT TASK) to be processed.

If this command is received and the CbCS bit in the extended inquiry data is set to zero
for the logical unit, then the command shall be terminated with a CHECK CONDITION
status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set
to INVALID COMMAND OPERATION CODE.

Table 24 - PERFORM TASK MANAGEMENT FUNCTION command format

Bit
Byte 7 6 5 4 3 2 1 0

0 OPERATION CODE (XXh)

1 TASK MANAGEMENT FUNCTION

2

9
TASK TAG

The TASK MANAGEMENT FUNCTION field (see Table 25) specifies the SAM-4 task
management function to be processed.

Table 25 - Task management function values

Value SAM-4 Task Management Function Task Tag
Specified

01h ABORT TASK Yes

02h ABORT TASK SET No

04h CLEAR TASK SET No

08h LOGICAL UNIT RESET No

40h CLEAR ACA No

07-069r3

43

Value SAM-4 Task Management Function Task Tag
Specified

80h QUERY TASK Yes

The format of the task tag is specified in the applicable SCSI transport protocol standard
and the length of the task tag may be less than eight bytes. Any bytes between the end
of the task tag and the end of the TASK TAG field shall be ignored (e.g., a two-byte task
tag occupies the first two bytes of the TASK TAG field and the remaining six bytes are
ignored).

12 Misc. changes

12.1 Change in C.3.5 Variable length CDB service action codes
The variable length CDB service action codes assigned by this standard are shown in
table C.8.

Service Action
Code Description

1800h RECEIVE CREDENTIAL

1801h – 1FFFh Reserved

12.2 Change in Table 48 — Commands for all device types
In section 6.1, add the RECEIVE CREDENTIAL command to table 48.

13 Issues

• The OSD standard says that when security method other than NOSEC is used, reservation
commands (including persistent reservations) shall be treated as invalid. Should this apply to
CbCS? What is the impact on working systems?

14 References
[ObsSec05] Michael Factor, David Nagle, Dalit Naor, Erik Riedel, and Julian Satran. The

OSD Security Protocol, September 2005.
http://ieeeia.org/sisw/2005/PreProceedings/04.pdf

[OSD04] R. O. Weber. SCSI Object-Based Storage Device Commands – 2 (OSD-2),
Date: 2004/10/04, Rev: 00. InterNational Committee for Information
Technology Standards (formerly NCITS), October 2004.
http://www.t10.org/drafts.htm.

[BCK96] M. Bellare, R. Canetti, and H. Krawczyk. Message authentication using hash
functions: The hmac construction. RSA Laboratories’ Crypto-Bytes, 2(1),
Spring 1996.

http://ieeeia.org/sisw/2005/PreProceedings/04.pdf
http://www.t10.org/drafts.htm

07-069r3

44

[FIPS180-02] Federal Information Processing Standards Publication 180-2: SECURE
HASH STANDARD.
Date: August 1, 2002.
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[FIPS198-02] Federal Information Processing Standards Publication 198: The Keyed-Hash
Message Authentication Code (HMAC).
Date: March 6, 2002.
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

[HKN05] Shai Halevi, Paul A. Karger and Dalit Naor. Enforcing confinement in
distributed storage and a cryptographic model for access control, 2005.
Cryptology ePrint Archive: Report 2005/169.

[ACF+02] Alain Azagury, Ran Canetti, Michael Factor, Shai Halevi, Ealan Henis, Dalit
Naor, Noam Rinetzky, Ohad Rodeh, and Julian Satran. A two layered
approach for securing an object store network. In Proceedings of the First
International IEEE Security in Storage Workshop, pages 10–23, Greenbelt,
MD, 11 December 2002.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

	1 Definitions, symbols, abbreviations, and conventions
	1.1 Definitions
	1.1.1 CbCS Capability
	1.1.2 CbCS capability key
	1.1.3 CbCS Credential
	1.1.4 CbCS management application client
	1.1.5 CbCS management device server
	1.1.6 CbCS master key
	1.1.7 CbCS master authentication key
	1.1.8 CbCS master generation key
	1.1.9 CbCS validation tag
	1.1.10 CbCS working key
	1.1.11 Integrity check value
	1.1.12 Secret key
	1.1.13 Security token

	2 Capability based Command Security
	1.2 Overview
	1.3 CbCS management device server
	1.3.1 CbCS management device server overview
	1.3.2 CbCS Credentials

	1.4 CbCS management application client
	1.5 Trust assumptions
	1.6 Policy Management
	1.6.1 CbCS Capabilities
	1.6.1.1 Overview
	1.6.1.2 CbCS Capability validation

	1.7 Security Methods
	1.7.1 Overview
	1.7.2 General
	1.7.3 The NOSEC security method
	1.7.4 The CAPKEY security method
	1.7.4.1 Overview
	1.7.4.2 Computing the CbCS capability key
	1.7.4.3 Computing the validation tag

	1.8 CbCS Credentials
	1.8.1 Preparing CbCS credentials by the CbCS management device server
	1.8.2 Preparing CbCS credentials by the application client
	2.1.1 Validating CbCS credentials by the device server

	2.2 Secret Keys
	1.8.3 Overview
	4.1.1 Secret key usage in commands
	3 Computing updated CbCS master generation keys and new CbCS authentication keys

	4.1 CbCS interactions with commands and task management functions
	4.1.1 Association between commands and command functions
	4.1.2 Task management functions

	4.2 Security attributes

	5 ENCAPSULATION TYPE definitions
	6 CbCS encapsulation
	7 Extended INQUIRY Data VPD page
	8 Changes in SECURITY PROTOCOL IN command
	8.1 CbCS SECURITY PROTOCOL
	8.1.1 Overview
	8.1.2 SECURITY PROTOCOL IN supported CbCS page
	8.1.3 SECURITY PROTOCOL OUT supported CbCS page
	8.1.4 Capabilities CbCS page
	8.1.5 Attributes CbCS page
	8.1.6 Set Master Key, Seed Exchange CbCS page

	9 Changes in SECURITY PROTOCOL OUT command
	9.1 CbCS SECURITY PROTOCOL
	9.1.1 Overview
	9.1.2 Set attributes CbCS page
	9.1.3 Set Key CbCS page
	9.1.4 Set Master Key, Seed Exchange CbCS page
	9.1.5 Set Master Key, Change Master Key CbCS page

	10 RECEIVE CREDENTIAL command
	10.1 RECEIVE CREDENTIAL parameter data
	10.1.1 CbCS capability format

	11 PERFORM TASK MANAGEMENT FUNCTION command
	12 Misc. changes
	12.1 Change in C.3.5 Variable length CDB service action codes
	12.2 Change in Table 48 — Commands for all device types

	13 Issues
	14 References

