
07-069r2

Capability based Command Security
SCSI commands standard proposal

IBM Research Lab in Haifa

February 2007

07-069r2

ii

Table of Contents

1 General..1

1.1 Overview.. 1

1.2 The Security Manager.. 2

1.3 Special Considerations .. 3

2 Capability based Command Security ..5

2.1 Overview.. 6

2.2 Trust assumptions.. 8

2.3 Policy Management ... 10

2.3.1 Capabilities .. 10

2.4 Security Methods ... 15

2.4.1 Overview.. 15

2.4.2 General .. 15

2.4.3 The NOSEC security method... 16

2.4.4 The CAPKEY security method ... 16

2.5 Credentials... 18

2.5.1 Preparing credentials by the secure device server... 19

2.5.2 Preparing credentials by the application client ... 20

2.5.3 Validating credentials by the device server .. 20

2.6 Secret Keys ... 21

2.6.1 Overview.. 21

2.6.2 Secret key hierarchy .. 22

2.6.3 Computing updated generation keys and new authentication keys.................. 22

2.7 CbCS interactions with commands and task management functions 23

2.7.1 Association between commands and command functions 23

2.7.2 Specific SPC-4 command authorization requirements 24

2.8 Security attributes .. 24

3 ENCAPSULATION TYPE definitions..26

4 Capability based Commands Security encapsulation.......................................26

07-069r2

iii

5 Standard INQUIRY data...27

6 Changes in SECURITY PROTOCOL IN command ...29

6.1 CbCS SECURITY PROTOCOL ... 29

6.1.1 Overview.. 29

6.1.2 SECURITY PROTOCOL IN supported CbCS page ... 30

6.1.3 SECURITY PROTOCOL OUT supported CbCS page 30

6.1.4 Capabilities CbCS page... 31

6.1.5 Attributes CbCS page ... 33

6.1.6 Set Master Key, Seed Exchange CbCS page .. 35

6.1.7 Controlled Commands CbCS page.. 36

7 Changes in SECURITY PROTOCOL OUT command ...37

7.1 CbCS SECURITY PROTOCOL ... 38

7.1.1 Overview.. 38

7.1.2 Set attributes CbCS page .. 38

7.1.3 Set Key CbCS page... 39

7.1.4 Set Master Key, Seed Exchange CbCS page .. 40

7.1.5 Set Master Key, Change Master Key CbCS page.. 41

8 RECEIVE CREDENTIAL command ..44

8.1 RECEIVE CREDENTIAL parameter data .. 45

9 Misc. changes ..46

9.1 Change in C.3.5 Variable length CDB service action codes............................. 46

9.2 Change in Table 48 — Commands for all device types.................................... 46

10 Issues..46

11 References..46

07-069r2

1

1 General
[This section is to be deleted; I think section 2 now covers all the necessary details of the
CbCS model for the standard (ST).]

1.1 Overview
The Capability based Command Security (CbCS) protocol is a capability-based SCSI protocol
which cryptographically enforces the integrity of the credential and its legitimate use by the
client. It is a proposed extension to the SCSI Primary Commands (SPC) standard. The protocol is
based on the OSD security protocol [ObsSec05] [OSD04], mapping the object access control and
security protocol to logical units of any device type, with appropriate adjustments.

CbCS is a credential-based access control protocol composed of three active entities: an
application client, a device server, and a security manager (see Figure 1). As a capability-based
access control system, all requests to the device server must be accompanied by a capability,
which encodes a set of rights the holder has on a logical unit, and be cryptographically secured.

Figure 1 - CbCS architecture

Application client

Device Server

Security Manager

Authorization request

[CAP, Ckey][Request, CAP, v]

[key]

There are two steps required by the client to access a logical unit via SCSI commands:

• Prior to sending an I/O command to a SCSI target device, the client requests a credential with
certain permissions from the security manager (over a secure channel) and in return the
security manager sends back a pair [CAP, Ckey]. Together, the capability CAP and capability
key Ckey form the credential. Ckey is secret whereas CAP is public.

07-069r2

2

• The client sends to the SCSI target device, together with the request, the capability CAP
along with a validation tag v, namely [Request, CAP, v]. v is computed by the client using
Ckey.

In order to ensure the authenticity and privacy of the commands and the data, the application
client has to communicate with both the security manager and the device server over a secure
channel.

As will be described below, Ckey can be computed from CAP by the device server; hence the
validation tag is also computable by the device server. Based upon the security method, the
device server validates the validation tag and checks whether the operation requested by the
command is indeed permissible by the capability CAP. Note that the device server does not need
to authenticate the client or to have a notion of client identity.

Throughout the protocol there is a need to use a pseudo-random function as a cryptographic
primitive. A field in capability specifies which function is used to compute the validation tag for
the command.

The security manager and the device server share a set of symmetric secret keys that are updated
periodically. A credential is based on one of the keys. When a key is updated, all credentials
based on that key are no longer valid.

The details of the protocol are described and explained inside the following section, which is
intended to be incorporated in SPC-4.

1.2 The Security Manager
The security manager is responsible for (1) key management (both storing and rotating the keys)
across all of the target devices managed by the security manager and (2) composing appropriate
credentials for a client according to a given policy.

To enable flexibility in the upper software layers, the precise security manager policies are not
defined by this protocol. The standard specifies the format of the credential, which is an entity
exchanged between the client, the security manager and the target device; however, the format of
the policies and the methods used for determining and generating credentials based on those
policies are internal to the security manager and are left out of the scope of the standard.1

Issues such as security method, and the type of communications channel between client and
security manager are determined by the upper-layer software. This allows the upper-layer
software to make decisions based on environment (e.g., secured SAN vs. insecure LAN) and
usage models (e.g., sensitive corporate data vs. open web server data).

A protocol for setting and refreshing the keys and controlling security attributes on the target
devices is standardized in by means of SCSI commands. For this purpose the security manager
acts as a target device. It is possible to pass those commands and associated data transfers as
payload of data inside any type of communications channel between the security manager and the
target device, and handle its completion and status via that channel.2

Likewise, a protocol for an application client to authenticate and retrieve credentials from the
security manager is standardized in by means of SCSI commands. Again, it is possible to pass
those commands and associated data transfers as payload of data inside any type of

1 The security manager may communicate with a separate policy manager for access decision making.
2 Using non-SCSI mechanism to exchange the keys may be useful to save having the SCSI stack and/or FC
connectivity in the security manager.

07-069r2

3

communications channel between the security manager and the target device, and handle its
completion and status via that channel.3

To ensure correctness of the security protocol itself, the interactions between the security
manager and the target device are defined using the capability model. Device servers require the
security manager to present a valid capability authorizing the operation. Because security-level
commands such as changing keys require a high degree of security, the security manager must
use the appropriate method of security as specified for the device server with which it is
interacting. This prevents the potential security weakness of attempting to set a key using a
command with the NOSEC security method.

Finally, the capability includes an expiration time that limits the time a compromised capability
can cause damage and helps upper-level distributed software by limiting the time a client can
access a logical unit. Because the security manager encodes the expiration time within the
capability and the device server interprets the expiration time, we require some degree of clock
synchronization between the device server and Security manager. The protocol for synchronizing
the clocks is not specified as part of the protocol, but expects that a standard clock
synchronization protocol is implemented in a secure manner. Unauthorized setting of the target
device's clock could cause denial of service or re-enabling of previously revoked access.

1.3 Special Considerations
Credential Revocation: Rapid revocation of access rights is a very important operation for
distributed systems. Reasons for revocation could be security breach detection and SAN
configuration changes. The protocol recognizes this basic function and enables immediate
revocation via two mechanisms for invalidating a credential.

The first mechanism, key exchange, is a coarse-grained approach that exchanges the key between
the security manager and the device server. By changing the shared key, all previous credentials a
security manager had generated for the logical units of a particular device are now invalid.4

The second mechanism is fine-grained and invalidates all outstanding credentials for a given
logical unit by utilizing the LU policy access tag. This tag is a settable LU attribute (typically by
the security manager only, since it requires a special permission to set). A valid credential must
match the policy access tag of the logical unit; hence, we can invalidate all outstanding
credentials for a logical unit by modifying the value of its policy access tag. In order to avoid re-
validation of revoked credential, policy access tags should not be reused within the lifetime of a
credential.

Bootstrapping: Since a credential includes the policy access tag, which is stored as an attribute
for the logical unit, we may have a problem of bootstrapping, particularly if the security manager
does not have this information in its memory. How does the security manager generate a
credential to read this attribute if it does not know this attribute?

To address this, the security manager has the option to generate a capability with a wild card
(zero) for the policy access tag. In this case, when calculating the capability arguments, the device
server should not take into account the actual value of the policy access tag associated with the
logical unit. This essentially creates a credential which cannot be invalidated during its life-span
other than by a key exchange.

3 Using non-SCSI mechanism to exchange the credentials may be useful to save having the SCSI stack and/or
FC connectivity in the security manager.
4 This is assuming the same set of keys s used for all the logical units. There is also an option to have a separate
set of keys for every logical unit.

07-069r2

4

Similar issue exists for the capability expiration time field, with similar solution. The device
server shall skip validation of the expiration time if tat field is set to zero in the capability.

Delegation: To delegate a credential to another client, a client must transfer both CAP and Ckey
in a private manner (e.g., over an encrypted channel). If desired, such delegation may be
prevented by use of the Audit field. As shown in [HKN05], an appropriate use of the Audit
tag leads to "security confinement" thereby preventing leakage of information to unauthorized
users.

Migration: The protocol has to take in account gradual migration of SANs to using access
controls to logical units. First, host support and storage systems support are likely to be available
at different times from different vendors. Security attributes should be settable and retrievable at
the LU level. Specifically:

• A target port should be able to support both regular and secure LUs at the same time.

• An application client should be able to determine the security access controls applied to any
particular LU.

• Compatibility should be maintained for old application clients such that rejecting their access
to secure LUs is done in a way that allows for graceful failures. Ideally the secure LUs would
not look like usable LUs to back-level application clients. Repeated errors are too much of an
impact for host systems.

07-069r2

5

Changes to SPC-4
Proposal 07-029 defines ESC (Encapsulated SCSI Command) CDB format. This
proposal is dependent on 07-029r1.

2 Definitions, symbols, abbreviations, and conventions
(These are additions to section 3 of SPC-4.)

2.1 Definitions
(These are additions to section 3.1 of SPC-4.)

2.1.1 Capability: Grants defined access to a SCSI logical unit for specific
command functions The contents of capabilities may be managed and
secured in credentials (see 2.1.3) for application clients by a security
device server (see 2.1.5). See 3.5.1.

2.1.2 Command function: One unit of work within a single command (see
3.1.15 [spc4r09]). Typically a single command requests a single
command function, but in some cases multiple command functions are
requested by a single command. (GP – I thought this whole idea was
being dropped)

2.1.3 Credential: A data structure containing a capability that is protected by
an integrity check value that is sent to an application client in order to
grant defined access to a logical unit for specific command functions
(see 2.1.2).. See 3.7.

2.1.4 Integrity check value: A value computed using a security algorithm
(e.g., HMAC-SHA1), a secret key (see 2.1.7), and an array of bytes that
is used to protect the capability and commands. See 3.7.

2.1.5 Security application client: An object that manages secret keys (see
 2.1.7) stored in logical units. See 3.3.

2.1.6 Security device server: An object that prepares secure credentials (see
 2.1.3) containing capabilities (see 2.1.1) in response to an application
client request. See 3.2.

2.1.7 Secret key: A value that is known to only a limited set of at least three
objects (e.g., the device server, the security application client and the
security device server) and serves as input for an integrity check value
(see 2.1.4) computation. See xxxx.

2.1.8 security token: A value representing an I_T nexus (see 3.1.17) known to both the
application client and device server.

Formatted

Formatted: Font color: Auto

Formatted: Bullets and Numbering

Formatted

Formatted: Font color: Blue

Formatted

Formatted: Font color: Auto

Formatted

Formatted

Formatted: Font color: Blue

Formatted

Formatted

Formatted

Formatted: Font color: Blue

Formatted

Formatted

Formatted: Spec body text

Formatted

Formatted: Spec body text

Deleted: .

Inserted: . See

Deleted: The component of a CbCS
configuration (see 3)

Deleted: The component of a CbCS
configuration (see 3)

Deleted: thus granting application
clients specified access to a specified
logical unit

Inserted: thus granting application
clients specified access to a specified
logical unit. See

Deleted: FCP

Deleted: FCP

Deleted: The fields in a CDB that
specify what command functions (see
 2.1.2) the command may request for
a specific logical unit.

Inserted: The fields in a CDB that
specify what command functions (see
 2.1.2) the command may request for
a specific logical unit. The contents of
capabilities may be managed and
secured in credentials (see

Deleted: that is prepared by the

Inserted: that is prepared by the

Deleted: The credential includes a

Deleted: entitie…s

Inserted: s (e.g., the device server,

... [3]

... [5]

... [6]

... [10]

... [9]

... [2]

... [4]

... [8]

... [11]

... [13]

... [1]

... [14]

... [12]

... [15]

... [7]

... [16]

07-069r2

6

3 Capability based Command Security

3.1 Overview
Capability based Command Security (CbCS) is a credential-based access control
system. The security model is composed of the following components:

a) A SCSI target device;

b) A security manager consisting of two SCSI devices:

a. A security device server

b. A security application client

c) Application clients.

(Editors note: This needs a UML class diagram to accurately describe the interaction
of the security classes to the classes we already have. The UML should also include
the secure application client and a secure device server.)

(Editors note: The following need to be added to the glossary: credential, capability,
integrity check value, command function, policy, and secure SCSI initiator device.
Then those definitions may be removed from these sections)

Command function is one unit of work within a single command. Commands that are not
bi-direction are single command functions. Bi-directional commands include multiple
command functions (i.e., commands that involve both reading and writing of data).

(GP - Look into the meaning of command function and what it supposed to be. If it is a
list of commands that define certain types of access then just name the types and the
commands that are allowed under those types.)

(GP - There should be a table that defines the relationship of every command and it's
capability.)

The secure device server manages access control policy. Capabilities are prepared by
the secure device server based on that access control policy.

Controlling access to a logical unit requires coordination between key and security
attributes set by the security application client and credentials generated by the security
device server. The mechanism for coordination between the security device server and
the security application client is not defined in this standard.

[Editor's note: In the OSD security model this functionality is performed by a separate
policy manager entity which receives requests for capabilities from the security manager.
In this description the security and policy management are both contained in a single
entity called security manager. This difference does not reflect a difference in the model
itself, merely in its representation.]

Figure 2 shows the flow of transactions between the components of a CbCS capable
SCSI domain.

Formatted: Bullets and Numbering

Deleted: target device

Deleted: initiator device

Comment: George, can you take a first
crack at that UML? You should know
better how you want it to look…

Deleted: The function of the security
device server is to prepare
credentials in response to an
application client request. A credential
is a data structure containing a
capability that protected by an
integrity check value. The credential
has the following properties:¶
Capability (see 2.1.1

Deleted:) that

Deleted: P

Inserted: (see 2.1.1

Deleted: :

Inserted:) that

Deleted: Grants

Deleted: grants defined access to a
SCSI logical unit for specific
command functions; and¶
Integrity check value (see 2.1.4)

Inserted: grants

Inserted: (see 2.1.4)

Inserted: that p

Deleted: :

Deleted: rotects the capability and
commands that include the capability
from various attacks (see 2.4).

Deleted: that p

Comment: I added them (except for
‘policy’ – that’s a tough one) but not sure
about removing the text from here.

Deleted: application client

07-069r2

7

Figure 2 - The CbCS security model

S
ecurity M

anager

Application client

Device Server

Security
device server

Authorization request

[CAP, Ckey]
[Request, CAP,

integrity check]

[key]

Security
application client

3.2 Secure device server
[Editor’s note: We have to decide on the right term – “security” or “secure” device server
(and application client. The reason I don’t like “secure” is that device servers may be
considered “secure” for other considerations. The term should name it rather than
provide an adjective that may be misinterpreted. May we should name it “CbCS device
server”?]

(GP: The difference between a security device server and a secure device server is that
a security device server is a class and a secure device sever is device server class that
has an attribute of secure. The same is true for the application client.)

3.2.1 Secure device server overview
The application client requests capabilities and capability keys from the secure device
server. A secure device server returns a capability key (Ckey) with each credential giving
the application client access to a specific logical unit. The application client sends the
capability to that logical unit’s device server as part of a CbCS encapsulated command
which allows the device server to authenticate the capability with an integrity check value
(see 3.7.2, 3.7.3).

The secure device server shall authenticate the application client unless NOSEC is used
(see x.x.x), but the device server does not authenticate the application client. It is
sufficient for the device server to verify the capabilities and integrity check values sent by
the application client.

Formatted: Font color: Red

Formatted: Spec body text

Formatted: Font color: Red,
Complex Script Font: Times New
Roman

Formatted: Font color: Red

Formatted: Font: Helvetica, Font
color: Auto

Formatted: Body Text

Formatted: Font: Helvetica

Formatted: Font: (Default)
Helvetica, Complex Script Font: Arial

Comment: Why not “capability
server”? Or “credential server”

Deleted: keys

Deleted: units

Deleted: may authenticate the
application client,

07-069r2

8

3.2.2 Credentials
The RECEIVE CREDENTIAL command is used to request a credential from the secure
device server (see 9).

If NOSEC is not used, the device server shall validate each command received from an
application client to confirm that:

a) The credential has not been tampered with (i.e., that the credential was
generated by the secure device server and includes an integrity check value
generated using a secret key known only to the security manager and device
server);

b) The credential was obtained by the application client from the secure device
server or through delegation by another application client (i.e., that the
application client knows the capability key that is associated with the credential
and has used the capability key to provide a proper integrity check value or
values for the command); and

c) The requested SCSI command is permitted by the capability in the credential
(see 3.9).

3.2.3 Capabilities
The capability key allows the device server to validate a credential and determine if the
capability has been tampered with (e.g., an application client that has just the capability
but not the capability key is unable to generate credentials with a valid integrity check
value). Delegation of a credential is permitted, if an application client delegates both the
capability and the capability key.

3.3 Secure application client
The capability keys are computed using secret keys that are shared between the secure
application client and the device server. The secret keys are managed by the secure
application client in conjunction with the secure SCSI initiator device. The command
integrity check values are computed using capability keys. This standard includes SCSI
commands for the secure application client to set and manage the secret keys stored in
the logical unit or a well known logical unit (see 7.1, 8.1).

If the secret key is stored in a well know logical unit then the key is shared between all logical
units within the target device but is only used by a logical unit if there has been no secret key
assigned to that logical unit (i.e., a secret key assigned to a logical unit always overrides the any
securet key assigned to a well known logical unit.

3.4 Trust assumptions
After the logical unit is a trusted (i.e., after an application client authenticates that it is
communicating with a specific logical unit), the application client trusts the device server
to: (Editors note: This opens this up to allowing secure access all logical units with
essentially one key, it that really what is wanted? Sivan: I don’t think so. This is about the
trust of the device server, but for accessing each logical unit the app client needs to have
a specific credential)

a) Provide integrity for stored data;

b) Perform the security protocol and functions defined for it by this standard; and

Deleted: x.x.x

Deleted: target device

Deleted: XXXX

Deleted: SCSI commands

Deleted: credential

Deleted: (Editors note: Is this really
the target device? Or should it be the
logical unit?)

Deleted: target device

Deleted: class

Deleted: target device or a

Deleted: within

Deleted: ithat

Deleted: that target device

Inserted: that

Deleted: using methods inside or
outside the scope of this standard

07-069r2

9

c) Not be controlled in a way that operates to the detriment of the application client’s
interests.

The secure device server and the secure application client are trusted, after the secure
device server is authenticated by the application client and the secure application client
is authenticated by the logical unit. The secure device server and application client are
trusted to:

a) Safely store long-lived secret keys;

b) Grant credentials to application clients correctly according to access control
policies that are outside the scope of this standard; and

c) Perform the defined security functions (see xxx).

d) Not be controlled in a way that operates to the detriment of the application client’s
or logical unit’s interests.

(GP: d) should be deleted as there is nothing in it that has anything to do with a
standard)

The application client is not trusted. However, the CbCS security model is defined so
that the application client receives service from the device server only if it interacts with
both the security device server and the device server in ways that assure the propriety of
the application client’s actions.

Secure application clients and secure device servers are trusted to protect capability
keys from disclosure to unauthorized entities.

Successful use of the capability expiration time requires synchronization between the
clocks of the secure device server, the secure application client and the device server.

Communications between the secure application clients, application clients, secure
device servers, and device servers are trusted based on the requirements shown in
Table 1.

Table 1 - Communications trust requirement

Connection Communication trust requirement

application client <--> device server message integrity
 a

application client <--> secure device server Confidentiality and integrity

secure application client <--> device server message integrity

secure device server <--> secure application client Confidentiality and integrity

Confidential communications are protected from eavesdropping by methods outside the
scope of this standard.

Message integrity assures that the message received is the one that was sent (i.e., no
tampering occurred). Messages in which tampering is detected shall be discarded.
a
 Message integrity is sufficient for security of the CbCS access control. Confidentiality of the

data transferred between the application client and the device server may be required to
prevent passive network attacks and implemented by other means.

Deleted: classes.

Deleted: After

Deleted: target device

Deleted: using methods inside or
outside the scope of this standard, t

Deleted: capability keys and

Deleted: Apply access controls

Deleted: requirements

Deleted: the

Inserted: the

Deleted: defined

Inserted: defined

Deleted: defined for it by this
standard

Deleted: ; and

Deleted: Editor’s note

Deleted: The above list has
problems

Deleted: a

Deleted: class

Comment: George, is this paragraph
intended to replace the one above it? No

Deleted: The application client is not
a trusted class. However, the CbCS
security is defined so that a device
server only accepts SCSI command
from an application client if the
application client interacts with the
secure device server and the device
server as defined in x.x.x.¶

Deleted: some degree of

Deleted: The

Deleted: shall maintain
synchronization between their clocks

Deleted: Confidential

Deleted: security devices <--> policy
manager (if any)

Deleted: required

Deleted: (Ed note: This sentence
does not compute)

... [17]

07-069r2

10

3.5 Policy Management
Policy management shall be performed by the secure application client and the secure
device server:

a) The secure device server provides access policy controls to application clients
using policy-coordinated capabilities; and

b) The secure application client, in concert with the device server, prevents
unsecured access to a logical unit.

The policy management is confined to the secure application client and secure device
server. The communication of policy management information may occur in a manner
outside the scope of this standard.

3.5.1 Capabilities
3.5.1.1 Introduction

All CbCS encapsulated commands shall contain a capability (see 3.5.1.2) that specifies
the functions (e.g., read, write, attributes setting, attributes retrieval) that the device
server is allowed to process in response to the encapsulated SCSI CDB.

The device server shall validate that the requested functions are allowed by the
capability based on:

a) The type of functions; and

b) The logical unit.

The policies that determine which capabilities are provided to which application clients
are outside the scope of this standard.

The secure device server shall deliver capabilities to application clients as follows:

a) If the security method in use for the logical unit is NOSEC (see 3.6.3), then the
secure device server may:

A) Allow application clients to prepare their own capabilities; or

B) Coordinate the preparation of capabilities for multiple application clients in
response to requests;

or

b) If a security method in use for the logical unit is CAPKEY (see 3.6.4), then the
secure device server shall prepare of capabilities by:

A) Requiring application clients to request credentials and capabilities; and

B) Preparing capabilities only in response to application client requests.

3.5.1.2 Capability format

(Editor note: This belongs in the command section not the model section. Sivan: In OSD-
2 it’s part of the model (section 4.9.2.2). This allows us to explain the purpose of each
field next to the capability block format. But as far as I’m concerned, you can move this
table to 5, put a reference here, explain the fields here, and in the command section put
a reference to here. GP: My comment stands. The table and fields are defined in the
command the use of the fields should be defined in the model.)

Formatted: Font color: Blue

Deleted: target device

Deleted: Certain implementations
may offload it to a separate policy
manager entity with communications
between the security manager and
the policy manager to request and
return credentials. (Such
communication would be done in a
vendor specific manner.) This
variation does not affect this
standard, and the policy management
is described in this model as a
security manager function.

Deleted: as if CAPKEY was the
selected security method

Deleted: (Editor note: I don’t see
how this is enforceable by this
standard. Sivan: This is “borrowed”
from OSD-2 section 4.9.2.1. The
intention is that the application clients
are required to request the credential
from the security manager in order to
have valid credentials. We can’t force
them to request, but we can disable
access to clients that don’t request
from the secure device server.);

Inserted: . Sivan: This is “borrowed”
from OSD-2 section 4.9.2.1. The
intention is that the application clients
are required to request the credential
from the security manager in order to
have valid credentials. We can’t force
them to request, but we can disable
access to clients that don’t request
from the secure device server.

07-069r2

11

A capability (see Table 2) is included in a credential returned by the security device
server in response to the RECEIVE CREDENTIAL command (see 9), and in a CbCS
encapsulation parameters (see 5) to enable the device server to verify that the sender is
allowed to perform the command functions requested by the encapsulated CDB.

Table 2 - Capability descriptor format

Bit
Byte 7 6 5 4 3 2 1 0

0 CAPABILITY FORMAT (1h) KEY VERSION

1 SECURITY METHOD

2 (MSB)

5
INTEGRITY CHECK VALUE ALGORITHM

(LSB)

6 (MSB)

11
CAPABILITY EXPIRATION TIME

(LSB)

12

31
AUDIT

32

35
PERMISSIONS BIT MASK descriptor

36 (MSB)

39
POLICY ACCESS TAG

(LSB)

40 Reserved LU DESCRIPTOR TYPE

41 LU DESCRIPTOR LENGTH

42

57
LU DESCRIPTOR

The CAPABILITY FORMAT field (see Table 3) specifies the format of the capability. The
capability format may also be the credential format. This standard only supports the
CAPABILITY FORMAT field being set to 1h (i.e., the format defined by this standard).

Table 3 – Capability format field

Code Description

0h No capability

1h The format defined by this standard

2h - Fh Reserved

Deleted: described

07-069r2

12

The command shall be terminated with a CHECK CONDITION status, with the sense
key set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN
CDB, if the CAPABILITY FORMAT field contains any value other than 1h.

The KEY VERSION field is specifies which secret key, from the set of working keys, that
is being used to compute the integrity check value.

The SECURITY METHOD field should be set a valid CbCS security method (see Table
4). Valid CbCS security methods are specified in 3.6.

Table 4 specifies the CbCS security methods. CbCS security methods shall be used to
specify the CbCS security methods to be used by SCSI command specified in this CbCS
encapsulated command.

Table 4 – The CbCS Security methods

Code Security Method Description

0000h NOSEC No security (see 3.6.3)

0001h CAPKEY Integrity of capabilities (see 3.6.4)

0002h – 0FFFh Reserved

1000h – FFFEh Vendor specific

FFFFh Reserved

The INTEGRITY CHECK VALUE ALGORITHM field specifies the algorithm used to
compute the integrity check value for this capability (see 3.7). It shall be set to a value
defined in table K4 [06-449r1 - Table K4 – Integrity algorithm identifiers]

The CAPABILITY EXPIRATION TIME field specifies expiration time of the capability.
The time is the number of milliseconds that have elapsed since midnight, 1 January
1970 UT. If the CAPABILITY EXPIRATION TIME field is non-zero and is less than the
current time set in the device server when processing the command, the command shall
be terminated with a CHECK CONDITION status, the sense key set to ILLEGAL
REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

If the CAPABILITY EXPIRATION TIME field contains zero, the capability has no
expiration time.

The method for synchronizing the clocks is outside the scope of the CbCS model.

The AUDIT field contains a vendor specific value.

The PERMISSIONS BIT MASK descriptor (see Table 5) specifies the permissions
allowed by this capability. More than one permissions bit may be set. The device server
shall verify that the bits applicable to the encapsulated command are all set to one in the
PERMISSIONS BIT MASK descriptor before performing the encapsulated SCSI
command. In Table 5 byte 0 and byte 1 specify the permissions for all SCSI commands.
In Table 5 byte 2 and byte 3 may be used by a device type specific command set
standard to specify permissions unique to the device type. However, other command set
standards shall not override the definition of Table 5 byte 0 and byte 1 as defined in this
standard. The associations between the permissions specified in the permissions bit
mask descriptor and SCSI commands are specified in the Controlled Commands CbCS

07-069r2

13

page returned from the SECURITY PROTOCOL IN command specifying the CbCS
security protocol (see 7.1.7).

Table 5 – PERMISSIONS BIT MASK descriptor

Bit
Byte

7 6 5 4 3 2 1 0

0 DATA
READ

DATA
WRITE

ATTR
READ

ATTR
WRITE

SEC
MGMT Reserved

1 Reserved

2

3
For device type specific use

A DATA READ bit set to zero indicates the encapsulated SCSI command has no read
permission. A DATA READ bit set to one indicates the encapsulated SCSI command
has read permission.

A DATA WRITE bit set to zero indicates the encapsulated SCSI command has no write
permission. A DATA WRITE bit set to one indicates the encapsulated SCSI command
has write permission.

A attribute read (ATTR READ) bit set to zero indicates the encapsulated SCSI command
has no attribute read permission. A ATTR READ bit set to one indicates the
encapsulated SCSI command has attribute read permission.

A attribute write (ATTR WRITE) bit set to zero indicates the encapsulated SCSI
command has no attribute write permission. A ATTR WRITE bit set to one indicates the
encapsulated SCSI command has attribute write permission.

A security management (SEC MGMT) bit set to zero indicates the encapsulated SCSI
command has no security management permission. A SEC MGMT bit set to one
indicates the encapsulated SCSI command has security management permission.

If the POLICY ACCESS TAG field contains a value other than zero, the policy access
tag attribute of the logical unit (see 7.1.5) is compared to the POLICY ACCESS TAG
field contents as part of verifying the capability. If the POLICY ACCESS TAG field
contains zero, then no comparison is made to the policy access tag attribute of the
logical unit. The security application client changes the policy access tag to prevent
unsafe or temporarily undesirable accesses to a logical unit (see 3.5.1.3).

If the non-zero value in the CDB POLICY ACCESS TAG field is not identical to the value
in the policy access tag attribute of the logical unit (see 7.1.5), then the command shall
be terminated with a CHECK CONDITION status, the sense key shall be set to ILLEGAL
REQUEST, and the additional sense code shall be set to INVALID FIELD IN CDB.

The LU DESCRIPTOR TYPE field (see Table 6) specifies the format of information in the
LU DESCRIPTOR field.

Table 6 - LU DESCRIPTOR TYPE field

Code Description

0h Vendor specific

07-069r2

14

Code Description

1h – 2h Reserved

3h NAA (see [SPC-4]:7.6.3)

4h – Fh Reserved

In order to implement credential based on logical unit unique identifier, the same
identifier type shall be 1) used in the access control policies set in the policy manager; 2)
returned by the device server in Device Identification VPD page (Inquiry page 83h); 3)
used by the application client to identify the device and request the corresponding
credential from the security device server; 4) returned by the security device server in
response in the capability in response to the application client's credential request.

(Ed note: the above marked paragraph needs to stay in the model)

The LU DESCRIPTOR LENGTH field indicates the length in bytes of the LU
DESCRIPTOR field. If the value of this field is greater than 16, the command shall be
terminated with a CHECK CONDITION status, with the sense key set to ILLEGAL
REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

3.5.1.3 Policy access tags

A secure application client may block capability-based access to a logical unit by:

a. changing the policy access tag attribute associated with a logical unit (see
 8.1.2); or

b. Changing or invalidating the secret keys shared with the device server.

3.5.1.4 Capability validation

The device server shall validate the Capability descriptor included in the CbCS
encapsulation (see 5) as follows:

1) Verify that the CAPABILITY FORMAT field value is 1h. If the CAPABILITY
FORMAT field value is other than 1h, then the command shall be terminated with
a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST,
and the additional sense code set to INVALID FIELD IN CDB.

2) If the CAPABILITY EXPIRATION TIME field contains a non-zero value, then
compare the CAPABILITY EXPIRATION TIME field to the current time (i.e., the
current number of millisecond passed since midnight, 1 January 1970 UT). If the
CAPABILITY EXPIRATION TIME field value is smaller than the current time
value, then the command shall be terminated with a CHECK CONDITION status,
with the sense key set to ILLEGAL REQUEST, and the additional sense code set
to INVALID FIELD IN CDB.

3) Verify that the LU DESCRIPTION field in the CDB Capability, according to the LU
DESCRIPTOR TYPE field and LU DESCRIPTOR LENGTH field, matches this
logical unit. If they don't match, then the command shall be terminated with a
CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and
the additional sense code set to INVALID FIELD IN CDB.

4) If the POLICY ACCESS TAG field in the CDB Capability descriptor contains a
non-zero value, then compare the POLICY ACCESS TAG field to the Policy

07-069r2

15

Access Tag of this logical unit. If they don't match, then the command shall be
terminated with a CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN
CDB.

5) Verify that the encapsulated command is permitted by the PERMISSIONS BIT
MASK field in the Capability descriptor in the CDB. If the requested command is
not permitted, then the command shall be terminated with a CHECK CONDITION
status, with the sense key set to ILLEGAL REQUEST, and the additional sense
code set to INVALID FIELD IN CDB.

3.6 Security Methods
3.6.1 Overview

This standard defines two security methods (see table xx).

 NOSEC (No Security)

The device server verifies the capability allows the operation but does not verify
the authenticity of the capability prior to performing an operation. (GP – add this
as a footnote to table)

 CAPKEY (Integrity of Capability)

Access Control Security is based on the protocol presented and analyzed in
[ACF+02]. CAPKEY verifies that the application client rightfully obtained the
credential it is presenting. (GP – add this as a footnote to table)

All methods use the same basic flow and the same credential structure. (GP –
add this as a footnote to table)

Table 7 - CbCS security methods

Method Description Without a secure channel With a secure channel

NOSEC No security No security Network-level integrity

CAPKEY Access control
Verification of credentials,
vulnerable to some network
attacks

+ Protection from network
attacks

3.6.2 General
If the device server receives a command for a logical unit:

a) that has CbCS enabled:

b) the opcode field is set to 7Eh (i.e. Encapsulated SCSI Command CDB); and

c) the encapsulation type is set to 10h (i.e. CbCS encapsulation),

then the credential shall be validated before any other field in the CDB is validated.

If the device server receives a command for a logical unit:

Formatted: Bullets and Numbering

Formatted: Numbered + Level: 1 +
Numbering Style: a, b, c, … + Start
at: 1 + Alignment: Left + Aligned at:
36 pt + Tab after: 54 pt + Indent
at: 54 pt

Formatted: Bullets and Numbering

Deleted: GP stopped here¶

Deleted: CAPKEY provides a
mechanism to prevent an application
client from forging or otherwise
modifying a credential or replaying a
credential over a different
authenticated channel. In addition, it

Deleted: The security methods are
summarized in Table 7.

Deleted: End-to-end verification of
credentials

Deleted: When

Deleted: for which

Deleted: the

Deleted: bit is set to one in the
standard Inquiry data (see 5) and the
following applies

Deleted: command includes

Deleted: When

Deleted: for which the CbCS bit is
set to one in the standard Inquiry data
(see 5) and the following applies

07-069r2

16

a) that has CbCS enabled:

b) the opcode is not 7Eh (i.e. not Encapsulated SCSI Command CDB); and

c) the received command requires authorization as described in 3.9,

then the command shall be terminated with a CHECK CONDITION status, with the
sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID
FIELD IN CDB.

If the device server receives a command for a logical unit:

a) that has CbCS enabled;

b) the opcode is 7Eh (i.e. Encapsulated SCSI Command CDB);

c) the encapsulation type in not set to 10h (i.e. CbCS encapsulation); and

d) the encapsulated command requires authorization as described in 3.9,

then the command shall be terminated with a CHECK CONDITION status, with the
sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID
FIELD IN CDB.

A command prepared for the CAPKEY security method may complete without errors
reported by the device server if the NOSEC security method is in use.

3.6.3 The NOSEC security method
The NOSEC security method validates that the capability authorizes the encapsulated
command for each CDB.

The NOSEC security method does not validate the integrity of the capability.

Preparing credentials for the NOSEC security method does not require the knowledge of
any secret information and may be done by the application client without coordination
with the security device server. The Capability descriptor (see 3.5.1.2) is set with the
SECURITY METHOD field set to NOSEC. The integrity check value is set to zero.

The device server validates the capability as described in 3.5.1.4.

3.6.4 The CAPKEY security method
3.6.4.1 Overview

The CAPKEY security method validates the integrity of the capability information in each
command. It provides security when the service delivery subsystem between the device
server and application client is secured.

The integrity of the capability shall be validated before any command processing (i.e.,
before verifying that the command function requested in the CDB is permitted by the
capability).

Given a credential and a channel, the protocol ties the credential to the channel via a
validation tag. The validation tag is computed by the client as ()ChannelIDF pr

Ckey
,

(GP – Now comes the question as to what is the difference between a channel and a I_T
nexus. They look the same to me)

Where:

Formatted: Numbered + Level: 1 +
Numbering Style: a, b, c, … + Start
at: 1 + Alignment: Left + Aligned at:
18 pt + Tab after: 36 pt + Indent
at: 36 pt

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Font: Not Bold,
Complex Script Font: Not Bold

Deleted: part of the credential

Deleted: other than

Deleted: When

Deleted: for which the CbCS bit is
set to one in the standard Inquiry data
(see 5) and the following applies

Deleted: command does not include

Deleted: This is because the
CAPKEY security method covers all
the validations covered by the
NOSEC security method.

Deleted: comprehensive

Deleted: via methods specified in
the applicable SCSI transport protocol

Deleted: other

Deleted: actions are undertaken

07-069r2

17

 ChannelID identifies the communication channel and is unique to this
combination of initiator port, target port, and the particular I_T nexus on which
they communicate.

(GP – A channelID looks like an I_T nexus ID to me. I would rather define a new
identifier rather the an new name for something that already exists)

Ckey is the capability key associated with the command (see 3.6.4.2).

ChannelID is chosen in a vendor specific manner by the target device. An application
client may request the value of the ChannelID (see 7.1.5). The device server compares
the channel on which a request was received and its ChannelID, and verifies that the
validation tag attached to the request equals ()ChannelIDF pr

Ckey
. The same validation tag

may be used with all requests for a given credential.

To ensure the request is authenticated by the application client who obtained the
credential the capability key (Ckey) with which the validation tag ()ChannelIDF pr

Ckey
 is

computed depends on the capability.,.

As long as the same channel is used:

a) The application client may reuse the capability and Ckey on multiple commands
for the same logical unit(s);

b) The application client is not required to recalculate the validation tag on each
command;

c) The application client is required to recalculate the validation tag once per
credential;

d) The Ckey and ()ChannelIDF pr
Ckey

 shall be calculated the first time the device server

receives a given capability on a given channel and may be reused in processing
every command received on the channel; and

e) The device server is not required to recalculate Ckey and ()ChannelIDF pr
Ckey

 each

time an I_T_L nexus is established.

(GP – Seems to me that d) and e) duplicate a), b), and c) in the above list)

3.6.4.2 Computing the capability key

When preparing credentials (see 3.7) and validating credentials (see 3.7.3), the
capability key shall be computed by the security device server using:

a) The algorithm specified in the INTEGRITY CHECK VALUE ALGORITHM field
in the Capability descriptor;

b) If the value of the KEY VERSION field in the Capability descriptor is nonzero,
the key to by used is specified by the KEY VERSION field, otherwise the
authentication master key is used as the key; and

c) The Capability descriptor as the input data.

The capability key is placed in the INTEGRITY CHECK VALUE field of the credential
returned in the RECEIVE CREDENTIAL command.

Formatted: Font: Not Italic,
Complex Script Font: Not Italic

Formatted: Font color: Pink

Formatted: Bullets and Numbering

Formatted: Numbered + Level: 1 +
Numbering Style: a, b, c, … + Start
at: 1 + Alignment: Left + Aligned at:
36 pt + Tab after: 54 pt + Indent
at: 54 pt

Comment: This is repeated below in
the list two paragraphs below – delete
from one location

Deleted: T

Deleted: ensuring the request is
authenticated by the application client
who obtained the credential

Deleted: Algorithm:

Deleted: Key:

Deleted: working

Deleted: as the key

Deleted: Input data:

Deleted: .

Deleted: from

07-069r2

18

3.6.4.3 Computing the validation tag

When preparing credentials (see 3.7.2), the validation tag shall be computed by the
application client using:

1) The algorithm specified in the INTEGRITY CHECK VALUE ALGORITHM field in
the Capability descriptor;

2) The capability key (see 3.6.4.2) returned from the RECEIVE CREDENTIAL
command in the INTEGRITY CHECK VALUE field;

3) The Security Token returned by the device server in the CbCS Attributes page
(see 7.1.5) as the input data.

The validation tag is placed in the INTEGRITY CHECK VALUE field of the credential
passed by the application client in the CbCS encapsulation (see 5).

3.7 Credentials
A credential authorizes specific access to a specific logical unit. It consists a capability
and a integrity check value (see Table 8). The capability descriptor (see 3.5.1) identifies
the logical unit and specifies the specific access rights and parameters specifying how it
should be validated by the device server. The integrity check value authenticates the
capability and is used for validation.

(GP – Should the should be a shall?)

(GP – the table should be in the command section)

Table 8 - Credential format

Bit
Byte

7 6 5 4 3 2 1 0

0

57
Capability Descriptor

58

121
INTEGRITY CHECK VALUE

[Editor's note: We use this size (64 bytes) for the INTEGRITY CHECK VALUE field to
accommodate the HMAC-SHA-512 algorithm. However, other algorithms consume less
space (HMAC-SHA-1 consumes 20 bytes). We would like to have variable length
parameter but the ESC proposal (07-029r1) does not support variable length
encapsulation parameters.]

There are two types of credentials used in the CbCS protocol:

a) A credential is transferred from the security device server to an application
client over a communications mechanism that meets the requirements
specified in 3.4 with the credential being returned in response to the
RECEIVE CREDENTIAL command (see 9) and

b) A credential is transferred from the application client to the device server over
a communications mechanism that meets the requirements specified in 3.4
with the credential being placed in the encapsulation parameters of the CDB
CbCS encapsulation (see 5).

Formatted: Font color: Pink

Formatted: Bullets and Numbering

Deleted: Key:

Deleted: Algorithm:

Comment: Is this the channel ID from
the prior place – are we using consistent
terminology?

Deleted: Input data:

Deleted: of two parts: A

Deleted: , as well as

Deleted: .

Deleted: The

Deleted: is

Deleted: .

Deleted: .

Deleted: The

Deleted: is

07-069r2

19

3.7.1 Preparing credentials by the secure device server
In response to a request from an application client, the secure device server shall
prepare and return a credential (see Table 26) as follows:

1) If the access controls policy does not authorize the application client's request,
an error shall be returned to the requesting application client;

(GP – this error needs more definition)

2) Prepare the capability and insert it in the credential as follows:

a. Setting the SECURITY METHOD field to the value of the corresponding
field in the Attributes CbCS page (see 7.1.5) of the logical unit for which
the credential is requested;

b. Setting the KEY VERSION field to the number of the working key secret
key used to compute the credential integrity check value;

c. Setting the INTEGRITY CHECK VALUE ALGORITHM field to the value
that specifies the algorithm used to compute all integrity check values
related to this credential. The algorithm shall be one of those identified by
the supported integrity check value algorithm attributes in the CbCS
capabilities page (see 7.1.4) of the logical unit for which the credential is
requested;

d. Setting the CAPABILITY EXPIRATION TIME field to a value that is
consistent with the policy;

e. May set the AUDIT field in a vendor specific manner;

f. Setting the PERMISSIONS BIT MASK descriptor to a value that is
consistent with the policy;

g. Setting the POLICY ACCESS TAG field to a value that matches the
POLICY ACCESS TAG attribute in the Attributes CbCS page (see 7.1.5)
of the logical unit for which the credential is requested. The value zero
may also be set preventing revokation by changing the policy access tag
attribute of the logical unit;

h. Setting the LU DESCRIPTOR TYPE field, LU DESCRIPTOR LENGTH
field, and LU DESCRIPTOR field to those of the logical unit to which the
credential is requested; and

i. If the security method in use is CAPKEY, compute the capability key as
described in 3.6.4.2, and place it in the INTEGRITY CHECK VALUE field
in the credential. If the security method in use is NOSEC, set the
INTEGRITY CHECK VALUE field to zero;

and

3) Return the credential to the application client with the integrity check value
serving as the capability key.

Use of the capability expiration time (see item d in step 2) requires synchronization
between the clocks of the device server, the security application client, and the security
device server. The protocol for synchronizing the clocks is not specified in this standard,
however, the protocol should be implemented in a secure manner (e.g., it should not be
possible for an adversary to set the clock in the device server backwards to enable the

Formatted: Font color: Pink

Formatted: Indent: Before: 54 pt

Deleted: Optionally

Deleted: . That would produce a
credential that cannot

Deleted: be

Deleted: ed

Deleted: s

Deleted: for

Deleted: .

Deleted: thus constructed

Deleted: Successful u

Deleted: some degree of

Deleted: by this model

07-069r2

20

reuse of expired credentials). The REPORT TIMESTAMP command and SET
TIMESTAMP command encapsulated with CbCS encapsulation may be used by the
security application client for this purpose.

Security management commands issued by the security application client to the device
server require that the integrity check value is computed using the authentication master
key rather than a current key. The list of commands requiring use of the master key is in
 3.8.2. If the master key is used to compute the credential integrity check value then the
KEY VERSION field in the Capability descriptor shall be set to zero.

For credentials returned by the security device server in response to the RECEIVE
CREDENTIAL command (see 9), only current keys shall be used in computing the
INTEGRITY CHECK VALUE field.

3.7.2 Preparing credentials by the application client
The client shall prepare the credential for sending it to the device server in the CDB
CbCS encapsulation parameters as follows:

a) If the CAPKEY security method is enabled, copy the Capability descriptor
received from the security device server in response to the RECEIVE
CREDENTIAL command into the Capability descriptor parameter of the CDB
CbCS encapsulation. If the NOSEC security method enabled, prepare the
Capability descriptor as described in 3.7.1; and

b) If the CAPKEY security method is enabled, compute the validation tag as
described in 3.6.4.3 and place it in the INTEGRITY CHECK VALUE
parameter of the CDB CbCS encapsulation.

3.7.3 Validating credentials by the device server
The device server shall validate the credential prior to performing any other validation on
the encapsulated command or any operation requested by the encapsulated command.

(GP – the above has been stated elsewhere. This duplication needs to be eliminated.)

The device server shall validate credentials as follows:

1) Verify the Capability descriptor as described in 3.5.1.4;

2) If the CAPKEY security method enabled and the SECURITY METHOD field in
the Capability descriptor is other than CAPKEY, the command shall be
terminated with a CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN
CDB; and

3) If the CAPKEY security method enabled, then:

a. Compute the capability key as described in 3.6.4.2;

b. Compute the validation tag as described in 3.6.4.3; and

c. Compare the computed validation tag with the INTEGRITY CHECK
VALUE field in the CbCS encapsulation parameters. If they don't match,
the command shall be terminated with a CHECK CONDITION status, with
the sense key set to ILLEGAL REQUEST, and the additional sense code
set to INVALID FIELD IN CDB.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Deleted: working

Deleted: s

Deleted: set

Deleted: working

Deleted: in use

Deleted: is in use

Deleted: .

Deleted: in use

Deleted: is in use

Deleted: .

Deleted: is in use

Deleted: ; and

07-069r2

21

3.8 Secret Keys
3.8.1 Overview

All credentials are based on a secret key that is shared between the device server, the
security application client that manages its security attributes, and the security device
server that grants credentials to application clients. Keys shall be refreshed regularly.

(GP – There are keys, secret keys, current keys, generation key, authentication key,
master keys, authentication master keys, generation master key, master key generation
key, target device keys, and capability keys. But only the secret key is defined in the
glossary. All these types of keys need to be clearly defined. Right now they are not.)

Key management requirements are as follows:

a) The security application client should replace the target device keys in a secure
manner even if the channel it has with the logical unit is not secure;

b) The device server shall support multiple keys; and

c) The security application client shall contain a random source for generating keys;
and

d) A random source to generate keys is required only from the secure application
client, and not from the device server.

(GP – item d is not required as we do not specific what is not require for devices to do.)

Each logical unit has a set of master keys and a set of working keys assigned to it. A
single set of keys may be shared among multiple logical units within a target device.

The working keys are used to generate the capability keys that are used by application
clients to access logical units. Working keys should be refreshed frequently (e.g.,
hourly). A key refresh shall invalidate all credentials generated by that key. The device
server may support up to 16 refreshed versions of the key as valid (i.e., define multiple
keys that are concurrently valid). This option uses the key version field in the capability
to indicate which key should be used in the validation process (see 3.5.1.2).

(GP – Should this should be a shall?)

The number of active key versions used between the device server and the security
application client is outside the scope of this standard,. When setting a new key, the
security application client assigns the key with a version number. The device server uses
the version number to determine which key to use in validating a credential in a CbCS
encapsulated command (see 3.7.3).

A generation master key is used to generate working keys. (GP – This looks like a
glossary entry) An authentication master key is used to generate credentials for
commands to set and refresh keys, and modify device security attributes. (GP – This
looks like a glossary entry) The master key may be refreshed. Refreshing the master key
is accomplished by a Diffie-Hellman key exchange algorithm that ensures forward
secrecy of the master key. This algorithm is carried over a sequence of the following
commands:

1) SECURITY PROTOCOL OUT command specifying the CbCS protocol and the
Set Master Key, Seed Exchange page (8.1.4);

2) SECURITY PROTOCOL IN command specifying the CbCS protocol and the Set
Master Key, Seed Exchange page (7.1.6); and

Formatted: Font color: Pink

Formatted: Bullets and Numbering

Formatted: Font color: Pink

Formatted: Bullets and Numbering

Deleted: ing

Deleted: ion

Comment: I had a hard time following
this section, especially 3.8.2/3. Some
plain English would help

Deleted: <#>Verify the Capability
descriptor as described in 2.3.1.4.¶

Deleted: target device

Deleted: <#>The device server is
may contain a random source for
generating keys; and¶
<#>A device server should not
invalidate valid credentials under any
conditions.¶

Deleted: This standard defines a
two-tier hierarchy of keys: A master
key and a set of working keys.

Deleted: ;

Deleted: however, a

Deleted: individual

Deleted: declare

Deleted: To support t

Deleted: feature

Deleted: ,

Deleted: the protocol defines a

Deleted: that is incorporated

Deleted: is agreed by mechanisms,
outside the scope of this standard,

Deleted: tags

Deleted: this tag

Deleted: There is a pair of two keys
collectively called the master key:

Deleted: three

07-069r2

22

3) SECURITY PROTOCOL OUT command specifying the CbCS protocol and the
Set Master Key, Change Master Key page (8.1.5).

Separate sets of the master key and the working keys may be used for each logical unit,
or a single set may be used for all logical units served by a security protocol well-known
logical unit’s device server as follows :

a) A single set of master keys and working keys is used by the device server
through the well-known security protocol logical unit. This set of keys
serves all the logical units within the target device;

b) A separate set of master keys and working keys is used for each logical
unit within the target device;

c) A single set of master keys and working keys is used by the device server
through the well-known security protocol logical unit. In addition, a
separate set of master key and working keys may be used for any logical
unit within the target device. The single set of keys serves any logical unit
that does not have its own set of keys; and

d) A secure application client may use the same keys for a set of logical
units.

3.8.2 Secret key usage in commands
Every credential prepared by the security device server includes an integrity check value
that is computed using either a working key or the authentication master key.

The authentication master key shall be used in preparing credentials for the following
commands:

a) SECURITY PROTOCOL OUT command specifying the CbCS security
protocol and the Set Key page;

b) SECURITY PROTOCOL OUT command specifying the CbCS security
protocol and the Set Master Key, Seed Exchange page;

c) SECURITY PROTOCOL IN command specifying the CbCS security
protocol and the Set Master Key, Seed Exchange page; and

d) SECURITY PROTOCOL OUT command specifying the CbCS security
protocol and the Set attributes CbCS page (see 8.1.2). [Editor's note: not
sure the master key is required here.]

If the CbCS encapsulated command is SECURITY PROTOCOL OUT command
specifying the CbCS security protocol and the Set Master Key, Change Master Key
page, then the key that shall be used is the next authentication master key computed
after GOOD status has been returned by the SECURITY PROTOCOL IN command
specifying the CbCS security protocol and the Set Master Key, Seed Exchange page.

For other commands, the key that shall be used is one of the working keys associated
with the logical unit. The KEY VERSION field in the Capability descriptor shall be set as
specified (see xxxx).

3.8.3 Computing updated generation keys and new authentication keys
When processing the Set Key CbCS page (see 8.1.3) and the Set Master Key CbCS
pages (see 8.1.4, 7.1.6, and 8.1.5), the device server shall compute new generation key
and authentication key as follows:

Formatted: Font: Not Bold,
Complex Script Font: Not Bold

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Deleted: security protocol

Deleted: . The

Deleted: standard supports the
following options

Deleted: and

Deleted: global

Deleted: '

Deleted: .

Deleted: The standard does not
support

Deleted: the following features:¶
A

Deleted: a single set of keys serving
a distinct set of logical units within a
target device. However, a

Inserted: a

Deleted: <#>A global master key is
used to generate logical unit specific
working keys. This feature doesn't
seem to give a significant feature on
top of a single set of working keys.¶

Deleted: hierarchy

Deleted: to use is

Deleted: any

Deleted: to use

Deleted: accordingly

07-069r2

23

a) The input key value shall be one of the following:

A) For a Set Key CbCS page (see 8.1.3), the master key generation key; or

B) For a master key computed following the processing of the Set Master Key,
Change Master Key CbCS page (see 8.1.5), the previous master key generation
key shall be used;

and

b) The seed value shall be one of the following;

A) For a Set Key CbCS page, the contents of the SEED field of the Set Key CbCS
page; or

B) For a Set Master Key, Change Master Key CbCS page, the value computed after
successful completion of the SECURITY PROTOCOL IN command specifying the
Set Master Key, Seed Exchange CbCS page (see 7.1.6) and updated by the Set
Master Key, Change Master Key CbCS page (see 8.1.5).

The updated generation key shall be computed by calculating the integrity check
algorithm as specified in the INTEGRITY CHECK VALUE ALGORITHM field in the
capability in the pertinent page using the following inputs:

a) Input key value; and

b) Seed value.

[Editor's note: Should we define a separate field encoding this algorithm rather than
using the one used in the credential?]

The new authentication key shall be computed by calculating the integrity check
algorithm as specified in the INTEGRITY CHECK VALUE ALGORITHM field in the
capability in the pertinent page using the following inputs:

a) Input key value; and

b) Seed value with the least significant bit changed as follows:

 A) If the seed value least significant bit is zero, then the least significant bit bit shall
be set to one; or

 B) If the seed value least significant bit is one, then the least significant bit bit shall
be set to zero.

3.9 CbCS interactions with commands and task management
functions

3.9.1 Association between commands and command functions
The PERMISSIONS BIT MASK descriptor in the capability (see 3.5.1.2) specifies which
command functions are allowed by this capability. When processing CbCS
encapsulation commands, the device server shall verify that the bits applicable to the
encapsulated SCSI command are all set to one in the PERMISSIONS BIT MASK
descriptor before processing the request specified by the CbCS encapsulated SCSI
command.

The associations between commands and required permissions as specified in the
PERMISSIONS BIT MASK descriptor are not specified by this standard, except as

Formatted: Font color: Pink

Formatted: Font color: Pink

Formatted: Font color: Pink

Deleted: The inputs generation key
and authentication key are as follows:¶

Deleted: is

Deleted: is

Deleted: and

Deleted: performing

Deleted: performing

Deleted: changed

Deleted: changed

Deleted: performing

Deleted: In general, t

Deleted: with the exceptions

07-069r2

24

described in 3.9.2. Other SCSI command set standards may specify required
associations between commands and permissions pertaining to the specific device type.

The associations between commands and permissions in the device server may be
queried by an application client using the SECURITY PROTOCOL IN command
specifying the CbCS protocol and the Controlled Command CbCS page (see 7.1.7).

[Editor's note: Should we define a command for setting the associations reported by
REPORT CBCS CONTROLLED OPERATION CODES?]

If the device server receives a command that is reported by the Controlled Command
CbCS page (see 7.1.7), and the command is not encapsulated with CbCS encapsulation
(see 5), then the command shall be terminated with a CHECK CONDITION status, the
sense key shall be set to ILLEGAL REQUEST, and the additional sense code shall be
set to INVALID FIELD IN CDB.

If the device server receives a command that is not reported by the REPORT CBCS
CONTROLLED OPERATION CODES command as requiring authorization, and the
command is encapsulated with CbCS encapsulation (see 5), then the command may be
processed by the device server.

3.9.2 Specific SPC-4 command authorization requirements
The following commands shall not require CbCS encapsulation:

a) REPORT LUNS;

b) INQUIRY;

c) REQUEST SENSE; and

d) TEST UNIT READY.

The SECURITY PROTOCOL IN and SECURITY PROTOCOL OUT commands
specifying the CbCS protocol shall require CbCS encapsulation (see 5), and shall
require that the SEC MGMT bit is set in the PERMISSIONS BIT MASK descriptor in the
Capability descriptor (see Table 5).

3.10 Security attributes
Device servers supporting CbCS may support one or more of the following security
attributes:

a) target device based;

b) logical unit based;

c) changeable; or

d) non-changeable.

Device servers may support the following security attributes:

a) only target device based;

b) only logical unit based; or

c) both.

If a device server supports both target based security attributes and a logical unit based
security attributes and receives both target based security attributes and a logical unit

Formatted: Numbered + Level: 1 +
Numbering Style: a, b, c, … + Start
at: 1 + Alignment: Left + Aligned at:
0 pt + Tab after: 18 pt + Indent at:
18 pt

Deleted: that are essential for
correct functioning of the CbCS
security model

Deleted: When

Deleted: which

Deleted: ,

Deleted: When

Deleted: which

Deleted: complete without errors
reported

Deleted: REPORT LUNS and
INQUIRY

Deleted: .

Deleted:

Deleted: These commands are used
by an application client to discover
logical units and identify them.

Deleted: The REQUEST SENSE
and TEST UNIT READY commands
shall not require CbCS encapsulation.
These commands may be used by an
application client to recover from
and/or diagnose errors resulting from
unauthorized access attempts to a
CbCS protected logical unit. ¶

Deleted: more than one

Deleted: . Security attributes may be

Deleted: security attributes

Deleted: security attributes

Deleted: is received

07-069r2

25

based security attributes, then the logical unit based security attribute overrides the
target based security attribute on that device server.

Global attributes are queried and modified through the SECURITY PROTOCOL well-
known logical unit (see x.x.x)

Table 9 specifies the CbCS attributes.

Table 9 - CbCS attributes

Security attribute name Length (bytes)
Target device or

logical unit
specific

Application client
settable

Supported security methods n*2 Target device No

Default security method 2 Target device Yes

Security method 2 Target
device/Logical unit Yes

Supported integrity check
value algorithms n*2 Target device No

Supported DH groups n*2 Target device No

Clock 6 Target device No

Master key identifier 8 Target device /
Logical unit No

 d

Working key identifier 16*8 Target device /
Logical unit No

 d

LU initial policy access tag 4 Target device Yes

Policy access tag 4 Logical unit Yes

Security token Not defined
 c
 Logical unit

 b
 No

Command authorization
requirements n*4

 e
 Logical unit No [?]

b
 The security token returned by the device server is unique to the I_T nexus on which the

security token is returned.
c
 The security token length is specific to the implementation of secure channel for the I_T

nexus
d
 The key identifier is set by the application client when a new key is generated as described

in 8.1.3 and 8.1.5. It is not settable by means of setting CbCS security attributes described
in 8.1.2

e
 Where n is the number of command for which CbCS encapsulation is required

The supported integrity check value algorithms security attribute is used by a device
server to report its supported integrity check value algorithms. Integrity check value
algorithms shall be used to compute integrity check values. See 7.7.4.11.3 [06-449r1].

The supported DH group security attribute is used by a device server to report the DH
groups it supports for the Diffie-Hellman key exchange with the application client that is
processed as part of setting a new master key (see 8.1.4). See 7.7.4.11.4 [06-449r1].

Formatted: Font color: Pink

Deleted: performed

Deleted: any

Comment: How is the identity of the
well-know logical unit determined?

Comment: Can the device limit it to be
set to only certain values?

Comment: If it is not settable, how is
the time changed?

Comment: How does the application
client know how much space to allocate if
this is undefined?

Comment: Doesn’t it need more space
if it says what bits to set to allow a
particular command?

Comment: ????

Deleted: The

Deleted: '

Deleted: '

Deleted: in this place stands for

Deleted: provides a means for a

Deleted:

Deleted: the

Deleted: it supports

Comment: I assume this is a reference
to the other document – if so, I think the
word “of” is missing

Deleted: are

Deleted: provides a means for

Deleted: the

07-069r2

26

The clock security attribute shall contain the current time in use by the device server
represented as the count of the number of milliseconds elapsed since midnight, 1
January 1970 UT.

The LU initial policy access tag security attribute specifies the initial value for the policy
access tag for a newly created logical unit. The initial value for this attribute shall be set
to FFFF FFFFh (see 3.5.1.3).

The policy access tag security attribute specifies the expected non-zero contents of the
POLICY ACCESS TAG field in any capability that allows access to this logical unit (see
 3.5.1.3).

Command authorization requirements specify the commands for which the device server
requires CbCS control by means of CbCS encapsulation (see 5) and what permission
bits are required in the PERMISSIONS BIT MASK descriptor (see Table 5) for each
command.

Setting and querying security attributes are used by the application client by issuing the
SECURITY PROTOCOL IN command and SECURITY PROTOCOL OUT command with
the CbCS security protocol (see 7.1, 8.1).

(GP – Stopped here)

4 ENCAPSULATION TYPE definitions
Following is a proposed change to table x3 from 07-029r1.

Table x3 — OUTERMOST ENCAPSULATION TYPE field and NEXT ENCAPSULATION TYPE field

Size of encapsulation
parameter descriptors

(bytes)

Code Description Prefix Postfix Reference

00h No next layer n/a n/a 4.3.4.2.1

Prefix and Postfix codes

01h – 07h Reserved

Prefix only codes

xxh Capability based Commands Security 98 0

xxh - FFh Reserved 0

5 Capability based Commands Security encapsulation
[Editor's note: I'm not sure where exactly this section should be added in SPC-4.]

The Capability based Commands Security (CbCS) encapsulation allows the application
of security to a SCSI command using the parameters specified in this subclause.

Support for CbCS encapsulation type is mandatory if the CbCS bit in standard INQUIRY
data (see 6) is set to one.

07-069r2

27

The encapsulated CDB may be any valid CDB (i.e., any CDB defined in any SCSI
standard).

Table 10 - CbCS encapsulation descriptor format

Bit
Byte

7 6 5 4 3 2 1 0

0 NEXT ENCAPSULATION TYPE

1 Reserved

2

59
Capability descriptor

60

123
INTEGRITY CHECK VALUE

The Capability descriptor is defined in 3.5.1.2.

The Capability descriptor and the INTEGRITY CHECK VALUE field shall be prepared by
the application client as described in 3.7.2.

The device server shall validate the Capability descriptor and the INTEGRITY CHECK
VALUE field as described in 3.7.3.

6 Standard INQUIRY data
Change in 6.4.2 Standard INQUIRY data:

The standard INQUIRY data (see table 85) shall contain at least 36 bytes.

Table 85 — Standard INQUIRY data format

Bit
Byte

7 6 5 4 3 2 1 0

0 PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE

1 RMB Reserved

2 VERSION

3 Obsolete Obsolete NORMACA HISUP RESPONSE DATA FORMAT

4 ADDITIONAL LENGTH (n-4)

5 SCCS ACC TPGS 3PC CbCS Reserved PROTECT

6 Obsolete ENCSERV VS MULTIP Obsolete Obsolete Obsolete ADDR16
a

7 Obsolete Obsolete WBUS16
a
 SYNC

a
 Obsolete Obsolete CMDQUE VS

8 (MSB)

15
T10 VENDOR IDENTIFICATION

(LSB)

16 (MSB) PRODUCT IDENTIFICATION

Comment: I wouldn’t add text to rule it
out, but does it make any sense to use
CbCS w/ OSD?

07-069r2

28

Bit
Byte

7 6 5 4 3 2 1 0

31 (LSB)

32 (MSB)

35
PRODUCT REVISION LEVEL

(LSB)

36

55
Vendor specific

56 Reserved CLOCKING
a
 QAS

a
 IUS

a

57 Reserved

58 (MSB)

59
VERSION DESCRIPTOR 1

(LSB)

.

.

.

72 (MSB)

73
VERSION DESCRIPTOR 8

(LSB)

74

95
Reserved

 Vendor specific parameters

96

n
Vendor specific

a
 The meanings of these fields are specific to SPI-5 (see 6.4.3). For SCSI transport protocols
other than the SCSI Parallel Interface, these fields are reserved.

(GP - Move this bit to the extended inquire VPD page)

A Capability based Command Security (CbCS) bit set to one indicates that the SCSI
target device has CbCS (see 2). A CbCS bit set to zero indicates that the SCSI target
device does not support CbCS.

If the CbCS bit is set to one, the target device shall support the following commands and
parameters:

a) Encapsulated SCSI command (see 4.3.4.2 [07-029r1]);

b) CbCS encapsulation type (see 5);

c) SECURITY PROTOCOL IN specifying the CbCS security protocol (see 7.1).

d) SECURITY PROTOCOL OUT specifying the CbCS security protocol (see 8.1).

Formatted: Bullets and Numbering

Deleted: supports

Deleted: apability

Deleted: ased

Deleted: ommand

Deleted: ecurity

Deleted: Capability based Command
Security

Comment: Do I turn on CbCS for only
some LUs by indicating no cmds on the
LU which don’t need CbCS require
authorization?

Deleted: is required to

Deleted:

07-069r2

29

7 Changes in SECURITY PROTOCOL IN command
[Changes in section 6.29 SECURITY PROTOCOL IN command]

6.29.1 SECURITY PROTOCOL IN command description

Table 186 — SECURITY PROTOCOL field in SECURITY PROTOCOL IN command

Code Description Reference

00h Security protocol information 6.29.2

01h - 06h Defined by the TCG 3.1.128

07h Capability based Command Security 6.29.3

08h - 1Fh Reserved

20h Tape Data Encryption SSC-3

21h - EDh Reserved

EEh Authentication in Host Attachments
of Transient Storage Devices

IEEE P1667

EFh ATA Device Server Password
Security TBD

F0h - FFh Vendor Specific

7.1 CbCS SECURITY PROTOCOL
(New section in SPC-4: 6.29.3)

7.1.1 Overview
(New section in SPC-4: 6.29.3.1)

The SECURITY PROTOCOL IN command specifies the CbCS protocol requests the
device server to return the security attributes of the:

a) logical unit; or

b) target device that contains the addressed well-known SECURITY PROTOCOL logical
unit.

The command supports CbCS pages that may be requested one at a time. An
application client requests a CbCS page by using a SECURITY PROTOCOL IN
command with the SECURITY PROTOCOL field set to 07h (CbCS protocol) and the
SECURITY PROTOCOL SPECIFIC field set to the requested CbCS page code.

The SECURITY PROTOCOL SPECIFIC field (see Table 11) specifies the CbCS pages.

Table 11 – SECURITY PROTOCOL SPECIFIC field

Code Description Support Reference

0000h SECURITY PROTOCOL IN supported
CbCS page M 7.1.2

0001h SECURITY PROTOCOL OUT supported M 7.1.3

Comment: Can’t parse

07-069r2

30

Code Description Support Reference

CbCS page

0002h-000Fh Reserved

0010h Capabilities CbCS page M/O (?) 7.1.4

0011h Attributes CbCS page M 7.1.5

0012h Set Master Key, Seed Exchange CbCS
page M 7.1.6

0013h Controlled Commands CbCS page M 7.1.7

0014h – FFFFh Reserved

Support key:
M – Mandatory for device servers that support the CbCS.
O – Optional

7.1.2 SECURITY PROTOCOL IN supported CbCS page
(New section in SPC-4: 6.29.3.2)

Table 12 specifies the format of the SECURITY PROTOCOL IN supported CbCS page.

Table 12 - SECURITY PROTOCOL IN supported CbCS page

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0000h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

5
SECURITY PROTOCOL IN supported CbCS page (first)

(LSB)

.
.
.

n-1 (MSB)

n
SECURITY PROTOCOL IN supported CbCS page (last)

(LSB)

The SECURITY PROTOCOL IN supported CbCS page shall contain a list of all of the
CbCS pages the device server supports for the SECURITY PROTOCOL IN command
specifying the CbCS protocol in ascending order beginning with page code 0000h.

7.1.3 SECURITY PROTOCOL OUT supported CbCS page
(New section in SPC-4: 6.29.3.3)

Table 13 specifies the format of the SECURITY PROTOCOL IN supported CbCS page.

07-069r2

31

Table 13 - SECURITY PROTOCOL IN supported CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0001h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

5
SECURITY PROTOCOL IN supported CbCS page (first)

(LSB)

.
.
.

n-1 (MSB)

n
SECURITY PROTOCOL IN supported CbCS page (last)

(LSB)

The SECURITY PROTOCOL IN supported CbCS page shall contain a list of all of the
CbCS pages that the device server supports for the SECURITY PROTOCOL OUT
command specifying the CbCS protocol in ascending order.

7.1.4 Capabilities CbCS page
(New section in SPC-4: 6.29.3.4)

Table 14 specifies the format of the Capabilities CbCS page.

Table 14 – Capabilities CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0010h)

(LSB)

2 (MSB)

3
PAGE LENGTH (i*2+j*2+k*2+8)

(LSB)

4 GKS LUKS GSMS LUSMS Reserved

5 Reserved

6

7

Number of supported security methods (i)
 (LSB)

8

9
SUPPORTED SECURITY METHOD (first)

(LSB)

.
.

07-069r2

32

Bit
Byte

7 6 5 4 3 2 1 0

.

i*2+6

i*2+7

SUPPORTED SECURITY METHOD (last)
 (LSB)

i*2+8

i*2+9
Number of supported integrity check value algorithms (j)

(LSB)

i*2+10

i*2+11

SUPPORTED INTEGRITY CHECK VALUE ALGORITHM
(first) (LSB)

.
.
.

i*2+j*2+8

i*2+j*2+9

SUPPORTED INTEGRITY CHECK VALUE ALGORITHM
(last) (LSB)

i*2+j*2+10

i*2+j*2+11

Number of supported D-H groups (k)
 (LSB)

i*2+j*2+12

i*2+j*2+13
SUPPORTED D-H GROUP (first)

(LSB)

.
.
.

i*2+j*2+k*2+10

i*2+j*2+k*2+11
SUPPORTED D-H GROUP (last)

(LSB)

A Global Keys Support (GKS) bit set to one specifies that the device server supports
global keys. A Global Keys Support (GKS) bit set to zero specifies that the device server
does not support global keys.

A Logical Unit Keys Support (LUKS) bit set to one specifies that the device server
supports per-logical unit keys. A Logical Unit Keys Support (LUKS) bit set to zero
specifies that the device server does not support per-logical unit keys.

A device server that supports CbCS shall support either global keys or per-logical unit
keys, and may support both. (Editor note – This requirement belongs in a model section)

A Global Security Method Support (GSMS) bit set to one specifies that the target device
that contains this logical unit supports global security method (i.e., contains a SECURITY
PROTOCOL well known logical unit). A Global Keys Support (GKS) bit set to zero
specifies that the device server requires the security methods to be assigned to each
logical unit.

A Logical Unit Security Method Support (LUSMS) bit set to one specifies that the device
server supports per-logical unit security method. A Logical Unit Keys Support (LUSMS)

07-069r2

33

bit set to zero specifies that the device server does not support per-logical unit security
method.

A device server that supports CbCS shall support either global security method or per-
logical unit security method, and it may support both. (Editor note – This requirement
belongs in a model section)

The SUPPORTED SECURITY METHOD fields contain coded values of the security
methods supported by the device server (see 3.6).

The SUPPORTED INTEGRITY CHECK VALUE ALGORITHM fields contain coded
values of the algorithm to compute integrity check values supported by the device server
(see 3.7).

The SUPPORTED DH GROUP attributes contain coded values identifying the supported
values in the DH_GROUP field of Set Master Key, Seed Exchange page (see 8.1.4).

7.1.5 Attributes CbCS page
(New section in SPC-4: 6.29.3.5)

Table 15 specifies the format of the Attributes CbCS page.

Table 15 - Attributes CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0010h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

5
SECURITY METHOD

(LSB)

6 (MSB)

9
POLICY ACCESS TAG

(LSB)

10

17
MASTER KEY IDENTIFIER

(LSB)

18

25
WORKING KEY IDENTIFIER 0

(LSB)

.
.
.

138

145
WORKING KEY IDENTIFIER 15

(LSB)

146 (MSB) CLOCK

07-069r2

34

Bit
Byte

7 6 5 4 3 2 1 0

151 (LSB)

152 Reserved

153 SECURITY TOKEN LENGTH

154

n
SECURITY TOKEN

(LSB)

If the addressed logical unit is the well-known security protocol logical unit:

a) the SECURITY METHOD field is the security method assigned by the W-LUN’s
device manager to a new logical unit;

b) the POLICY ACCESS TAG field is the initial policy access tag assigned by the W-
LUN’s device server to a new logical unit; and

c) if the device server does not support global security method (i.e., the GSMS bit is
set to zero in the Capabilities CbCS page), then:

A) the SECURITY METHOD field is undefined; and

B) the MASTER KEY IDENTIFIER field and all the WORKING KEY IDENTIFIER
fields should contain FFFF FFFFh

If the addressed logical unit is not the well-known security protocol logical unit:

a) the SECURITY METHOD field is the current security method used for the
addressed logical unit;

b) the POLICY ACCESS TAG field is the current policy access tag assigned to the
addressed logical unit; and

c) if the device server does not support per-logical unit security method (i.e., the
LUSMS bit is set to zero in the Capabilities CbCS page), then:

A) the SECURITY METHOD field is undefined; and

B) the MASTER KEY IDENTIFIER field and all the WORKING KEY IDENTIFIER
fields should contain FFFF FFFFh.

Security methods are described in detail in 3.6.

If keys are supported for the addressed logical unit, the values of those fields are as
follows:

a) The MASTER KEY IDENTIFIER field shall contain the key identifier value from the
most recent successful SECURITY PROTOCOL OUT command specifying the
CbCS security protocol and the Set Master Key, Change Master Key page (see
 8.1.5). If that command has never been processed, then the MASTER KEY
IDENTIFIER field shall contain FFFF FFFEh; and

b) Each KEY IDENTIFIER field contains the key identifier value from the most recent
successful SECURITY PROTOCOL OUT command specifying the CbCS security
protocol and the Set Key page, with the KEY VERSION field set to the pertinent
key (0-15) (see 8.1.3). If a key is invalid (e.g., never set, invalidated by a Set

07-069r2

35

Master Key, Change Master Key page, or invalidated by a Set Key page), the
pertinent KEY IDENTIFIER field should contain 0000 0000h.

The CLOCK field shall contain the current time in use by the device server represented
as the count of the number of milliseconds elapsed since midnight, 1 January 1970 UT.

[Editor’s Note: The clock field may be usable for other purposes. Perhaps it can be
moved to a more generic place, e.g. mode page…]

For the CAPKEY security method, the SECURITY TOKEN field contains a value that is
unique to the I_T nexus on which the SECURITY PROTOCOL IN command was sent.
The security token shall be random as defined by RFC 1750. An I_T nexus loss event or
reset event (see SAM-4) shall cause the security token to change.

7.1.6 Set Master Key, Seed Exchange CbCS page
(New section in SPC-4: 6.29.3.6)

Table 16 specifies the format of the Set Master Key, Seed Exchange CbCS page.

Table 16 - Set Master Key, Seed Exchange CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0012h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4

n
DH DATA

If a SECURITY PROTOCOL IN command specifying Set Master Key, Seed Exchange
CbCS page is received and no SECURITY PROTOCOL OUT command specifying Set
Master Key, Seed Exchange CbCS page has been received on the same I_T_L nexus
during the past ten seconds, the command shall be terminated with a CHECK
CONDITION status, the sense key shall be set to ILLEGAL REQUEST, and the
additional sense code shall be set to INVALID FIELD IN CDB.

A device server that receives a SECURITY PROTOCOL OUT command specifying Set
Master Key, Seed Exchange CbCS page on one I_T_L nexus may terminate the
command with a CHECK CONDITION status, with the sense key set to ILLEGAL
REQUEST, and the additional sense code set to SYSTEM RESOURCE FAILURE if any
of the following command processing is incomplete on a different I_T_L nexus:

a) SECURITY PROTOCOL OUT command specifying Set Master Key, Seed
Exchange CsCB page (see 8.1.4);

b) SECURITY PROTOCOL IN command specifying Set Master Key, Seed
Exchange CsCB page (see 7.1.6); or

c) SECURITY PROTOCOL OUT command specifying Set Master Key, Change
Master Key CsCB page (see 8.1.5).

07-069r2

36

The DH DATA field contains the device server DH_data computed as follows:

a) A random number, y, is generated having a value between zero and DH_prime
minus one observing the requirements in RFC 1750; and

b) The device server DH_data is equal to DH_generator
y
 modulo DH_prime, where

the DH_generator and DH_prime values are identified by the code value in the
DH GROUP field of the most recent SECURITY PROTOCOL OUT command
specifying Set Master Key, Seed Exchange CbCS page.

After GOOD status has been returned for SECURITY PROTOCOL OUT command and
before the SECURITY PROTOCOL OUT command specifying the Set Master Key,
Change Master Key page is processed, the next authentication master key and next
generation master key shall be computed as described in 3.8.3, using a seed value that
is the concatenation of the following:

1) DH_generator
xy

 modulo DH_prime; and

2) The whole content of the Device Identification VPD page (83h) returned from the
addressed logical unit for the INQUIRY command (see 7.6.3).

7.1.7 Controlled Commands CbCS page
(New section in SPC-4: 6.29.3.7)

The Controlled Commands CbCS page (see Table 17) returns a list of commands for
which the addressed logical unit requires CbCS control using the CbCS command
encapsulation (see 5), and encapsulation requirements for the command.

Table 17 - Controlled Commands CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0012h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n*8)

(LSB)

4

11
Command descriptor 1

.
.
.

n*8-4

n*8+3
Command descriptor n

Each command descriptor (see Table 18) contains information about a single supported
command CDB.

Comment: Where is this defined?

07-069r2

37

Table 18 - Command descriptor format

Bit
Byte

7 6 5 4 3 2 1 0

0 OPERATION CODE

1 Reserved

2 (MSB)

3
SERVICE ACTION

(LSB)

4 (MSB)

7
PERMISSIONS BIT MASK descriptor

(LSB)

The OPERATION CODE field contains the operation code of a command requiring
CbCS encapsulation.

The SERVICE ACTION field contains a service action the operation code indicated by
the OPERATION CODE field, which requires CbCS encapsulation. If the operation code
indicated in the OPERATION CODE field does not have a service action, the SERVICE
ACTION field shall be set to 00h.

The PERMISSIONS BIT MASK descriptor format is defined in Table 5. For each
command function performed by the command indicated by the OPERATION CODE and
the SERVICE ACTION fields, the corresponding bit shall be set to one.

[Editor's note: Should we provide a SECURITY PROTOCOLOUT page for setting
permissions bit masks for a command?]

8 Changes in SECURITY PROTOCOL OUT command
[Changes in section 6.30 SECURITY PROTOCOL OUT command]

<Unchanged text here>

The SECURITY PROTOCOL field (see table 191) specifies which security protocol is
being used.

Table 191 — SECURITY PROTOCOL field in SECURITY PROTOCOL OUT command

Code Description Reference

00h Reserved

01h - 06h Defined by the TCG 3.1.128

07h Capability based Command Security

08h - 1Fh Reserved

20h Tape Data Encryption SSC-3

21h - EDh Reserved

EEh Authentication in Host Attachments
of Transient Storage Devices IEEE P1667

07-069r2

38

Code Description Reference

EFh ATA Device Server Password
Security

TBD

F0h - FFh Vendor Specific

8.1 CbCS SECURITY PROTOCOL
(New section in SPC-4: 6.30.1)

8.1.1 Overview
The SECURITY PROTOCOL OUT command specifying CbCS protocol is used to
configure the CbCS attributes in the device server.

The command supports CbCS pages that may be sent one at a time. An application
client requests to send a CbCS page by using a SECURITY PROTOCOL OUT
command with the SECURITY PROTOCOL field set to 07h (CbCS protocol) and the
SECURITY PROTOCOL SPECIFIC field set to the CbCS page code requested.

The SECURITY PROTOCOL SPECIFIC field (see Table 19) specifies the type of CbCS
page that the application client is sending.

Table 19 - SECURITY PROTOCOL SPECIFIC field values

Code Description Support Reference

0000h – 0010h Reserved

0011h Set Attributes CbCS page O 8.1.2

0012h Set Key CbCS page M 8.1.3

0013h Set Master Key, Seed Exchange CbCS
page M 8.1.4

0014h Set Master Key, Change Master Key
CbCS page

M 8.1.5

0015h – FFFFh Reserved

Support key:
M – Mandatory for device servers that support the CbCS protocol
O – Optional

If the SECURITY PROTOCOL SPECIFIC field is set to a reserved or unsupported value,
the device server shall terminate the command with CHECK CONDITION status, with
the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID
FIELD IN CDB.

8.1.2 Set attributes CbCS page
(New section in SPC-4: 6.30.1.2)

Table 20 specifies the format of the Set Attributes CbCS page.

07-069r2

39

Table 20 – Set Attributes CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0011h)

(LSB)

2 (MSB)

3
PAGE LENGTH (6)

(LSB)

4 (MSB)

5
SECURITY METHOD

(LSB)

6 (MSB)

9
POLICY ACCESS TAG

(LSB)

The PAGE LENGTH field indicates the number of bytes of parameter data to follow. If
the page length value results in the truncation of any field, the device server shall
terminate the command with CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN
PARAMETER LIST.

The SECURITY METHOD field specifies a new security method to apply to the
addressed logical unit (see 3.6). The SECURITY METHOD field is set to:

a) the reserved value (FFFFh) to specify no change shall be made to the current
security method;

b) a value equal to the current security method shall not be considered an error; and

c) a value that does not match any of the supported security methods reported in the
Capabilities CbCS page (see 7.1.4), shall cause the device server to terminate the
SECURITY PROTOCOL OUT command with CHECK CONDITION status and set
the sense key to ILLEGAL REQUEST and the additional sense code to INVALID
FIELD IN PARAMETER DATA.

The POLICY ACCESS TAG field specifies a new policy access tag for the addressed
logical unit. The value set to 0000 0000h specifies no change shall be made to the
current policy access tag value. If the addressed logical unit is the well-known
SECURITY PROTOCOL logical unit and the POLICY ACCESS TAG field contains any
value other than 0000 0000h, the device server shall terminate the SECURITY
PROTOCOL OUT command with CHECK CONDITION status and set the sense key to
ILLEGAL REQUEST and the additional sense code to INVALID FIELD IN PARAMETER
DATA.

This command shall be authorized and shall be sent encapsulated by a CbCS
encapsulation (see 3.9.2).

8.1.3 Set Key CbCS page
(New section in SPC-4: 6.30.1.3)

Table 21 specifies the Set Key CbCS page format.

07-069r2

40

Table 21 - Set Key CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0012h)

(LSB)

2 (MSB)

3
PAGE LENGTH (30)

(LSB)

4 Reserved

5 Reserved KEY VERSION

6 (MSB)

13
KEY IDENTIFIER

(LSB)

14 (MSB)

33
SEED

(LSB)

The KEY VERSION field specifies the key version to be updated.

The KEY IDENTIFIER field specifies a unique identifier to be associated with the new
key. The key identifier value shall be associated with the attribute specified in the
Attributes CbCS page (see 7.1.5).

The SEED field contains a random number generated from a good source of entropy
(e.g., as described in RFC 1750).

The updated key value shall be computed as described in 3.8.3.

This command shall be authorized and shall be sent encapsulated with CbCS
encapsulation (see 3.9.2).

8.1.4 Set Master Key, Seed Exchange CbCS page
(New section in SPC-4: 6.30.1.4)

Table 22 specifies the Set Master Key, Seed Exchange CbCS page format.

Table 22 - Set Master Key CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0013h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

5
DH GROUP

(LSB)

07-069r2

41

Bit
Byte

7 6 5 4 3 2 1 0

6 (MSB)

9
DH DATA LENGTH

(LSB)

10

n
DH DATA

If a device server receives a SECURITY PROTOCOL OUT command specifying Set
Master Key, Seed Exchange CbCS page on one I_T_L nexus and any of the following
command processing is incomplete on a different I_T_L nexus:

c) SECURITY PROTOCOL OUT command specifying the CbCS protocol and the
Set Master Key, Seed Exchange CbCS page (8.1.4);

d) SECURITY PROTOCOL IN command specifying the CbCS protocol and the Set
Master Key, Seed Exchange CbCS page (7.1.6); or

e) SECURITY PROTOCOL OUT command specifying the CbCS protocol and the
Set Master Key, Change Master Key CbCS page (8.1.5),

then the device server may terminate the command with a CHECK CONDITION
status, setting the sense key to ILLEGAL REQUEST and the additional sense code
to SYSTEM RESOURCE FAILURE

Editors note: the above belongs in a model section

The DH GROUP field contains the Diffie-Hellman group (see 7.7.4.11.4 [06-449r1]) that
identifies the DH_generator value and DH_prime value to be used in the seed exchange.
If the value in the DH GROUP field is not listed in one of the SUPPORTED D-H GROUP
fields in the Capabilities CbCS page (see 7.1.4), then the command shall be terminated
with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the
additional sense code set to INVALID FIELD IN CDB.

The DH DATA LENGTH field specifies the number of bytes of the DH DATA field.

The DH_DATA field contains the DH data and is computed as follows:

DH data = DH_generator
x
 modulo DH_prime

Where:

X value between zero and DH_prime minus one as defined
in RFC 1750;

DH_generator defined in the DH GROUP field; and

modulo DH_prime defined in the DH GROUP field.

8.1.5 Set Master Key, Change Master Key CbCS page
(New section in SPC-4: 6.30.1.5)

Table 23 specifies the format of the Set Master Key, Change Master Key CbCS page.

07-069r2

42

Table 23 - Set Master Key, Change Master Key CbCS page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0014h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4 (MSB)

11
KEY IDENTIFIER

(LSB)

6 (MSB)

9
APPLICATION CLIENT DATA LENGTH (k-9)

(LSB)

10

k
APPLICATION CLIENT DH DATA

k+1 (MSB)

k+4
DEVICE SERVER DATA LENGTH (n-(k+4))

(LSB)

k+5

n
DEVICE SERVER DH DATA

The KEY IDENTIFIER field specifies a unique identifier to be associated with the new
master key. The key identifier value shall be placed into the MASTER KEY IDENTIFIER
field in the Attributes CbCS page (see 7.1.5) before the command completes.

Table 24 specifies special key identifiers that shall not be used when setting keys. Any
value not listed in the table is permitted for use by the application client when setting
keys.

Table 24 - Special key identifiers

Value Description

0000-0000h A key that was never set or was invalidated

FFFF-FFFEh An initial key set by the device server

FFFF-FFFFh Pertinent key that is not supported by the device server

If the value of the KEY IDENTIFIER field contains a value that is listed in Table 24, then
the command shall be terminated with CHECK CONDITION status, with the sense key
set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN
PARAMETER LIST.

07-069r2

43

The APPLICATION CLIENT DATA LENGTH field specifies the number of bytes that
follow in the APPLICATION CLIENT DH DATA field.

The APPLICATION CLIENT DH_DATA field contains the DH_data from the last
SECURITY PROTOCOL OUT command specifying Set Master Key, Seed Exchange
CbCS page on the same I_T_L nexus on which this command was received.

The DEVICE SERVER DATA LENGTH field contains the length in bytes of the DEVICE
SERVER DH DATA field.

The DEVICE SERVER DH DATA field contains the device server DH_data from the last
SECURITY PROTOCOL IN command specifying Set Master Key, Seed Exchange CbCS
page on the same I_T_L nexus on which this command was received.

If the content of the APPLICATION CLIENT DATA LENGTH field of the SECURITY
PROTOCOL OUT commands Set Master Key, Seed Exchange CbCS page does not
match the content of the:

a) DH DATA LENGTH field in a SECURITY PROTOCOL OUT Set Master Key, Seed
Exchange CbCS page that was processed on this I_T_L nexus since a I_T nexus
loss event, logical unit reset event, or reset event (see SAM-4);

b) DH DATA field in a SECURITY PROTOCOL OUT Set Master Key, Seed
Exchange CbCS page that was processed on this I_T_L nexus since a I_T nexus
loss event, logical unit reset event, or reset event;

c) PAGE LENGTH field in a SECURITY PROTOCOL IN Set Master Key, Seed
Exchange CbCS page that was processed on this I_T_L nexus since a I_T nexus
loss event, logical unit reset event, or reset event; or

d) DH DATA field in a SECURITY PROTOCOL IN Set Master Key, Seed Exchange
CbCS page that was processed on this I_T_L nexus since a I_T nexus loss event,
logical unit reset event, or reset event,

then the command shall be terminated with CHECK CONDITION status, with the sense
key set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN
PARAMETER LIST.

On successful completion of a SECURITY PROTOCOL OUT command specifying the
CbCS protocol and the Set Master Key, Change Master Key CbCS page shall:

a) Replace the authentication master key with the next authentication master key
computed after the return of GOOD status for the most recent SECURITY
PROTOCOL IN command specifying the CbCS protocol and the Set Master Key,
Seed Exchange CbCS page (see 7.1.6);

b) Replace the generation master key with the next generation master key computed
after the return of GOOD status for the most recent SECURITY PROTOCOL IN
command specifying the CbCS protocol and the Set Master Key, Seed Exchange
CbCS page; and

c) Invalidate all the working keys on the logical unit.

For every key that is invalidated by this command, the associated key identifier attribute
shall have its attribute set to zero.

The next authentication master key computed after the return of GOOD status for the
most recent SECURITY PROTOCOL IN command specifying the CbCS protocol and the

07-069r2

44

Set Master Key, Seed Exchange CbCS page (see 7.1.6) shall be used to compute the
capability key for this command.

9 RECEIVE CREDENTIAL command
[A new sub-section in section 6 of SPC-4]

The RECEIVE CREDENTIAL command (see Table 25) provides allows the application
client to receive a credential for use in the CbCS encapsulation (see 5).

Table 25 - RECEIVE CREDENTIAL CDB format

Bit
Byte

7 6 5 4 3 2 1 0

0 OPERATION CODE (7Fh)

1 CONTROL

2

6
Reserved

7 ADDITIONAL CDB LENGTH (n-7)

8 (MSB)

9
SERVICE ACTION (1800h)

(LSB)

10 (MSB)

11
ALLOCATION LENGTH

(LSB)

12 Reserved LU DESCRIPTOR TYPE

13 LU DESCRIPTOR LENGTH

14

n
LU DESCRIPTOR

If a RECEIVE CREDENTIAL command is received before a SECURITY PROTOCOL IN
command has completed successfully on the same I_T_L nexus as the RECEIVE
CREDENTIAL command was received with following field settings:

a) SECURITY PROTOCOL field set to xxh (i.e., IKEv2-SCSI); and

b) the SECURITY PROTOCOL SPECIFIC field set to 0103h (i.e., authentication phase),

then the command shall be terminated with a CHECK CONDITION status, the sense key
set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN
CDB.

[Editor's: note: The above paragraph is based on 06-449r1 and depends on it.]

The ALLOCATION LENGTH field is defined in 4.3.4.6.

The LU DESCRIPTOR TYPE field specifies the format of information in the LU
DESCRIPTOR field. If the LU DESCRIPTOR TYPE field is set to a value other than the

07-069r2

45

values specified in Table 6, the command shall be terminated with a CHECK
CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional
sense code set to INVALID FIELD IN CDB.

The LU DESCRIPTOR LENGTH field indicates the length in bytes of the LU
DESCRIPTOR field. If the value of this field is greater than 16, the command shall be
terminated with a CHECK CONDITION status, with the sense key set to ILLEGAL
REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

9.1 RECEIVE CREDENTIAL parameter data
The RECEIVE CREDENTIAL parameter data is defined in Table 26.

Table 26 - Credential format

Bit
Byte 7 6 5 4 3 2 1 0

0 CREDENTIAL FORMAT (1h) Reserved

1 Reserved

2 (MSB)

3
CREDENTIAL LENGTH (n-3)

(LSB)

4 (MSB)

5
CAPABILITY LENGTH (k-5)

(LSB)

6

k
Capability descriptor

k+1 (MSB)

k+4
INTEGRITY CHECK VALUE LENGTH (n-(k+4))

(LSB)

k+5

n
INTEGRITY CHECK VALUE

The CREDENTIAL LENGTH field indicates the length in bytes of the capability that
follow.

The CAPABILITY LENGTH specifies the length of the Capability field.

The format of the Capability is defined in 3.5.1.2.

INTEGRITY CHECK VALUE LENGTH specifies the length of the INTEGRITY CHECK
VALUE field.

The INTEGRITY CHECK VALUE field contains a value that the application client shall
use for preparing credentials (see 3.7.2).

07-069r2

46

10 Misc. changes

10.1 Change in C.3.5 Variable length CDB service action codes
The variable length CDB service action codes assigned by this standard are shown in
table C.8.

Service Action
Code Description

1800h RECEIVE CREDENTIAL

1801h – 1FFFh Reserved

10.2 Change in Table 48 — Commands for all device types
In section 6.1, add the RECEIVE CREDENTIAL command to table 48.

11 Issues

• The OSD standard says that when security method other than NOSEC is used, reservation
commands (including persistent reservations) shall be treated as invalid. Should this apply to
CbCS? What is the impact on working systems?

• The OSD standard says:

If the root object or any partition in the OSD logical unit is using any security method
other than NOSEC, all SAM-3 task management functions except QUERY TASK
shall be ignored and responded to as if they have been successfully processed. The
PERFORM TASK MANAGEMENT FUNCTION command (see 6.16) allows SAM-3
task management functions to be processed under the protection of the current
security method.

Should this apply to CbCS? What is the impact on working systems?

12 References
[ObsSec05] Michael Factor, David Nagle, Dalit Naor, Erik Riedel, and Julian Satran. The

OSD Security Protocol, September 2005.
http://ieeeia.org/sisw/2005/PreProceedings/04.pdf

[OSD04] R. O. Weber. SCSI Object-Based Storage Device Commands – 2 (OSD-2),
Date: 2004/10/04, Rev: 00. InterNational Committee for Information
Technology Standards (formerly NCITS), October 2004.
http://www.t10.org/drafts.htm.

[BCK96] M. Bellare, R. Canetti, and H. Krawczyk. Message authentication using hash
functions: The hmac construction. RSA Laboratories’ Crypto-Bytes, 2(1),
Spring 1996.

[FIPS180-02] Federal Information Processing Standards Publication 180-2: SECURE
HASH STANDARD.

http://ieeeia.org/sisw/2005/PreProceedings/04.pdf
http://www.t10.org/drafts.htm

07-069r2

47

Date: August 1, 2002.
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[FIPS198-02] Federal Information Processing Standards Publication 198: The Keyed-Hash
Message Authentication Code (HMAC).
Date: March 6, 2002.
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

[HKN05] Shai Halevi, Paul A. Karger and Dalit Naor. Enforcing confinement in
distributed storage and a cryptographic model for access control, 2005.
Cryptology ePrint Archive: Report 2005/169.

[ACF+02] Alain Azagury, Ran Canetti, Michael Factor, Shai Halevi, Ealan Henis, Dalit
Naor, Noam Rinetzky, Ohad Rodeh, and Julian Satran. A two layered
approach for securing an object store network. In Proceedings of the First
International IEEE Security in Storage Workshop, pages 10–23, Greenbelt,
MD, 11 December 2002.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

Page 5: [1] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [1] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [2] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [2] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [2] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [3] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [3] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [3] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [4] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [4] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [5] Formatted George Penokie 3/9/2007 8:43 AM

Font: Not Bold, Complex Script Font: Not Bold

Page 5: [5] Formatted George Penokie 3/9/2007 8:43 AM

Font: Not Bold, Complex Script Font: Not Bold

Page 5: [5] Formatted George Penokie 3/9/2007 8:43 AM

Font: Not Bold, Complex Script Font: Not Bold

Page 5: [6] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [6] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [6] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [6] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [7] Formatted George Penokie 3/9/2007 8:46 AM

Font: Not Bold, Complex Script Font: Not Bold

Page 5: [7] Formatted George Penokie 3/9/2007 8:46 AM

Font: Not Bold, Complex Script Font: Not Bold

Page 5: [8] Deleted George Penokie 3/9/2007 8:46 AM

that is prepared by the security device server (see 2.1.5) and protected
by an integrity check value (see 2.1.4)

Page 5: [9] Inserted Sivan Tal 2/27/2007 4:42 PM

that is prepared by the security device server (see 2.1.5) and protected
by an integrity check value (see 2.1.4) that is sent to an
application client in order to grant defined access to a logical unit
for specific command functions (see

Page 5: [10] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [10] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [11] Deleted George Penokie 3/9/2007 8:47 AM

 The credential includes a capability (see 2.1.1) that the application
client copies to each CDB that requests the specified command
functions

Page 5: [12] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [12] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [13] Formatted George Penokie 3/9/2007 8:52 AM

Font: Not Bold, Complex Script Font: Not Bold

Page 5: [13] Formatted George Penokie 3/9/2007 8:52 AM

Font: Not Bold, Complex Script Font: Not Bold

Page 5: [14] Deleted George Penokie 3/9/2007 8:32 AM

entitie

Page 5: [14] Deleted George Penokie 3/9/2007 8:32 AM

s

Page 5: [15] Inserted Sivan Tal 2/27/2007 7:11 PM

s (e.g., the device server, the security application client and the
security device server) and serves as input for an integrity check
value (see

Page 5: [16] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 5: [16] Formatted Sivan Tal 2/27/2007 7:27 PM

Font color: Blue

Page 9: [17] Deleted Sivan Tal 2/28/2007 3:19 PM

security devices <--> policy manager (if any) message integrity (Ed note: This
row should be deleted)

	1 General
	1.1 Overview
	1.2 The Security Manager
	1.3 Special Considerations

	2 Definitions, symbols, abbreviations, and conventions
	2.1 Definitions
	2.1.1 Capability: Grants defined access to a SCSI logical unit for specific command functions The contents of capabilities may be managed and secured in credentials (see ‎2.1.3) for application clients by a security device server (see ‎2.1.5). See ‎3.5.1.
	2.1.2 Command function: One unit of work within a single command (see 3.1.15 [spc4r09]). Typically a single command requests a single command function, but in some cases multiple command functions are requested by a single command. (GP – I thought this whole idea was being dropped)
	2.1.3 Credential: A data structure containing a capability that is protected by an integrity check value that is sent to an application client in order to grant defined access to a logical unit for specific command functions (see ‎2.1.2).. See ‎3.7.
	2.1.4 Integrity check value: A value computed using a security algorithm (e.g., HMAC-SHA1), a secret key (see ‎2.1.7), and an array of bytes that is used to protect the capability and commands. See ‎3.7.
	2.1.5 Security application client: An object that manages secret keys (see ‎2.1.7) stored in logical units. See ‎3.3.
	2.1.6 Security device server: An object that prepares secure credentials (see ‎2.1.3) containing capabilities (see ‎2.1.1) in response to an application client request. See ‎3.2.
	2.1.7 Secret key: A value that is known to only a limited set of at least three objects (e.g., the device server, the security application client and the security device server) and serves as input for an integrity check value (see ‎2.1.4) computation. See xxxx.

	3 Capability based Command Security
	3.1 Overview
	3.2 Secure device server
	3.2.1 Secure device server overview
	3.2.2 Credentials
	3.2.3 Capabilities

	3.3 Secure application client
	3.4 Trust assumptions
	3.5 Policy Management
	3.5.1 Capabilities
	3.5.1.1 Introduction
	3.5.1.2 Capability format
	3.5.1.3 Policy access tags
	3.5.1.4 Capability validation

	Security Methods
	3.6.1 Overview
	3.6.2 General
	3.6.3 The NOSEC security method
	3.6.4 The CAPKEY security method
	3.6.4.1 Overview
	3.6.4.2 Computing the capability key
	3.6.4.3 Computing the validation tag

	3.7 Credentials
	3.7.1 Preparing credentials by the secure device server
	3.7.2 Preparing credentials by the application client
	3.7.3 Validating credentials by the device server

	Secret Keys
	3.8.1 Overview
	Secret key usage in commands
	3.8.3 Computing updated generation keys and new authentication keys

	3.9 CbCS interactions with commands and task management functions
	3.9.1 Association between commands and command functions
	3.9.2 Specific SPC-4 command authorization requirements

	3.10 Security attributes

	4 ENCAPSULATION TYPE definitions
	5 Capability based Commands Security encapsulation
	6 Standard INQUIRY data
	7 Changes in SECURITY PROTOCOL IN command
	7.1 CbCS SECURITY PROTOCOL
	7.1.1 Overview
	7.1.2 SECURITY PROTOCOL IN supported CbCS page
	7.1.3 SECURITY PROTOCOL OUT supported CbCS page
	7.1.4 Capabilities CbCS page
	7.1.5 Attributes CbCS page
	7.1.6 Set Master Key, Seed Exchange CbCS page
	7.1.7 Controlled Commands CbCS page

	8 Changes in SECURITY PROTOCOL OUT command
	8.1 CbCS SECURITY PROTOCOL
	8.1.1 Overview
	8.1.2 Set attributes CbCS page
	8.1.3 Set Key CbCS page
	8.1.4 Set Master Key, Seed Exchange CbCS page
	8.1.5 Set Master Key, Change Master Key CbCS page

	9 RECEIVE CREDENTIAL command
	9.1 RECEIVE CREDENTIAL parameter data

	10 Misc. changes
	10.1 Change in C.3.5 Variable length CDB service action codes
	10.2 Change in Table 48 — Commands for all device types

	11 Issues
	12 References

