Security Association Creation

David L. Black
November 2006
The Big Picture: Three Proposals

• **Framework: 06-369 specifies Security Associations (SAs)**
 – Connect key generation to key usage (and identify keys)
 – Leverage one key exchange to generate multiple keys
 – Need to revise 06-369 (coming up later in these slides)

• **SA Creation: 06-449 specifies SA creation**
 – Algorithm selection, key exchange and authentication
 – 06-449r0 is not finished yet (see Editor’s Notes in proposal)
 ▪ Revised version will also specify SA destruction

• **SA Usage: 06-225 successor will specify SSC-3 keying**
 – Use SA to key ESP (IPsec) instead of AES key wrap
 – SSC-3 result: IPsec from start to finish (should be ok with NIST)

• 06-103 is dead (next slide ...)

Creating a Security Association: 06-449 replaces 06-103

- **06-103 is dead. Why?**
 1. Need flexible selection of crypto algorithms
 - Too many choices for 06-103’s “just use this” announcements
 2. Need Authentication (including defense vs. man-in-the-middle)
 - Adds significant complexity to 06-103’s unauthenticated key exchange
 3. Desire FIPS 140-n eligibility
 - Strongly favors reuse of existing security technology/protocols

- **06-449 proposes IKEv2-SCSI, a cut-down version of IKEv2**
 1. Device capabilities replace and simplify IKEv2 negotiation
 2. Authentication via shared secret and public key digital signature
 3. IKEv2 (IPsec) techniques should be acceptable to NIST

- **06-449 removes a lot of IKEv2 functionality**
 - Examples: Child SAs, Traffic Selectors, NAT traversal, Compression
SA creation: 3 phases

1. Application client reads device security capabilities
 - Different SCSI Security Protocol value from phases 2 and 3

2. Key exchange and security algorithm selection
 - Diffie-Hellman exchange with nonces (allows exponential reuse)
 - DH group/algorithim selectable, based on phase 1
 - IETF has specifications for elliptic curve (ECC) Diffie-Hellman

3. Authentication
 - Required: Shared Secret (used by iSCSI and Fibre Channel)
 - Same type of authentication secret as iSCSI and Fibre Channel
 - Optional: Public key and certificates (RSA or DSS)
 - IETF has an approved specification for ECDSA authentication
 - Proposal allows omission of authentication by mutual agreement
 - Additional authentication types can be added later
 - Example: Kerberos (makes sense if one thinks about iSCSI)
06-449 Open Issues

- Command Sequencing – what if app. client gives up?
 - How long does device server have to remember in-progress state?

- Minimum parameter data size requirement?
 - Can be longer than typical IP datagrams. Think about certificates.

- Delete vs. timing out SAs? Probably need Delete

- Identity types (what’s a name?)
 - Proposal includes certificate primary identities and opaque identities
 - Opaque identity - integration with directories and the like
 - SCSI-specific identities appear to be problematic

- Certificate formats – restrictions needed (cf. RFC 4718)
 - Should SCSI support HTTP certificate retrieval?

- Security review of progress indications and field pointers
06-449: Key Derivation Function for IKEv2

- Key Derivation Function (KDF)
 - Multiple keys derived from one key + additional inputs (e.g., nonces)
- IKEv2 authentication uses a KDF – may need six(!) keys
 - prf+() KDF family, based on selected pseudo-random function (prf)
- NIST KDF family specified in NIST publication 800-56A
- Problem: NIST KDF family requires identities as inputs
 - IKEv2 authentication KDF used before identities are known
 - Modifying the NIST KDF (e.g., fudging identity inputs) is a bad idea
 - Modifying IKEv2 authentication is an even worse idea.
- Result: Can’t use NIST KDF for IKEv2 authentication
 - IKEv2 authentication needs to use IKEv2 prf+() KDF family
06-369 Issue: Key Derivation Functions for SAs

- What about KDFs in Security Associations?
 - 06-369 currently uses NIST KDFs
 - Will need to add identities to continue using NIST KDFs

- Alternative: Use IKEv2 KDFs in Security Associations
 - Using the same KDF as IKEv2 authentication is simpler
 - For SSC-3, result is full IPsec, should be acceptable to NIST

- NIST and IETF: IETF will not use NIST KDF for TLS
 - NIST considering what to do instead of insisting on its KDFs
 - Issues appear to involve identity binding to derived keys