To: T10 Technical Committee
From: Bob Sheffield (Robert.L.Sheffield@intel.com)
Vicky Duerk (vicky.p.duerk@intel.com)

Date: 27 January 2007
Subject: SAS-2: Initiator handling of retransmit read DATA frames

Revision history
Revision 0 (27 October 2006) First revision (This is the first half of the split up proposal: 06-371r0)
Revision 1 (9 January 2007) Incorporate changes from November ’06 SAS WG
Revision 2 (27 January 2007) Incorporate changes from January ’07 SAS WG (replace table with simple text)

Related documents
SAS-2-r08 - Serial Attached SCSI - 2 (SAS-2) revision 08
06-371r0 SAS2: Transport-layer handling of extraneous retransmit DATA frames
06-490r0 SAS-2: Transport layer initiator read data flowchart

Overview
While SAS-2 defines clearly how the transport layer handles (ST_ITS) receipt of retransmitted DATA frames when previous data frames have been lost, it does not specify how the transport layer handles receipt of retransmitted data frames when the original data frames have been received and processed without error (i.e., the ACK was lost). This proposal adds text to the ST_ITS6:Receive_Data_In state to define how this is handled, and allows the ST_ITS to either discard the previously received read DATA frame and replace it with the retry DATA frame, or to discard the retry read DATA frame if the read DATA frame it would replace was received without error.

Suggested changes
Modify subclause 9.2.6.2.3.7.1 as follows:

9.2.6.2.3.7 ST_ITS6:Receive_Data_In state

9.2.6.2.3.7.1 State description
If this state receives a Data-In Arrived message, then this state shall verify the values in the read DATA frame received with the message as defined in table 1.

Table 1 — Reception Complete messages for read DATA frame verification failures

<table>
<thead>
<tr>
<th>Message sent to ST_IFR (^a)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reception Complete (Data Offset Error)</td>
<td>Transport layer retries are disabled, and the DATA OFFSET field in the read DATA frame is not equal to the Data-In Buffer Offset state machine variable.</td>
</tr>
<tr>
<td></td>
<td>The DATA OFFSET field in the read DATA frame is greater than the Data-In Buffer Size state machine argument.</td>
</tr>
<tr>
<td>Reception Complete (Too Much Read Data)</td>
<td>The number of bytes in the DATA field in the read DATA information unit plus the Data-In Buffer Offset state machine variable is greater than the Data-In Buffer Size state machine argument.</td>
</tr>
<tr>
<td>Reception Complete (Incorrect Data Length)</td>
<td>The number of bytes in the DATA field in the read DATA information unit is zero.</td>
</tr>
</tbody>
</table>

\(^a\) If more than one condition is true, then this state shall select which message to send to the ST_IFR state machine using the following order:
1) Reception Complete (Data Offset Error);
2) Reception Complete (Too Much Read Data); or
3) Reception Complete (Incorrect Data Length).
If the verification fails, then this state sends the Reception Complete message specified in table 1 to the
ST_IFR state machine.

If:

a) transport layer retries are enabled;

b) the CHANGING DATA POINTER bit is set to zero;

c) the DATA OFFSET field is not set to the Data-In Buffer Offset state machine variable;

d) the DATA OFFSET field is less than the Data-In Buffer Size state machine argument; and

e) the DATA OFFSET field plus the number of bytes in the DATA field in the read Data information unit is
less than or equal to the Data-In Buffer Size state machine argument;

If:

a) transport layer retries are enabled;

b) the CHANGING DATA POINTER bit is set to zero;

c) the DATA OFFSET field is greater than the Data-In Buffer Offset state machine variable; and

d) verification of the frame as defined in table 1 is successful;

then this state should discard all Data-In Arrived messages until a read DATA frame is received in which the
CHANGING DATA POINTER bit is set to one. This state shall resume processing additional Data-In Arrived
messages when it receives a Data-In Arrived message with the CHANGING DATA bit set to one.

If the verification succeeds or after this state resumes processing Data-In Arrived messages, then this state
shall process the data received in the read DATA frame, and set the Data-In Buffer Offset state machine
variable to the DATA OFFSET field plus the number of bytes in the DATA field in the read Data information unit.

If data received in the read DATA frame overlaps data previously received and verified successfully, this state
may either discard the new overlapping data, or replace the previously received data with the new data. If the
received DATA frame contains data that is not discarded, then this state shall set the Data-In Buffer Offset
state machine variable to the DATA OFFSET field plus the number of bytes in the DATA field in the read Data
information unit.

If this state receives Transmission Status (ACK/NAK Timeout) or Transmission Status (Connection Lost
Without ACK/NAK), then this state shall send a Reception Complete (Command Failed, Connection Failed) to
the ST_IFR state machine.

After this state sends a Reception Complete (Command Failed, Connection Failed) message, this state shall
continue processing messages and confirmations.

NOTE 1 - The application client may determine the command was received and is being processed by the
device server and allow the command to complete.

If this state receives a Cancel message, then this state shall send a Reception Complete (Cancel
Acknowledged) message to the ST_IFR state machine. The Reception Complete message shall include the
tag as an argument.

NOTE 2 - The Cancel message results from a vendor-specific request from the SCSI application layer after
the SCSI application layer has used a task management function to determine that the SAS target port did not
receive the COMMAND frame.

Editor’s Note 1: The remaining subclauses in 9.2.6.2.3.7 remain unchanged.
The flow chart in 06-489r0 should be modified as shown in the following figure: