
18 October 2006 06-460r0 SAM-4 Time bounds of task states

1

To: T10 Technical Committee
From: Luben Tuikov, Vitesse Semiconductor (ltuikov@vitesse.com)
Date: 18 October 2006
Subject: 06-460r0 SAM-4 Time bounds of task states

Revision history
Revision 0 (18 October 2006) First revision

Related documents
sam4r07 - SCSI Architecture Model - 4, revision 07
spc4r07a - SCSI Primary Commands -4, revision 07a
06-368r0 - SAM-4 QUERY TASK TMF Extended Response, revision 0 (A)
05-284r3 - SPC-4: Self Describing Command Timeouts, revision 3 (B)

Overview
The SCSI Architecture Model document gives detailed description of task states and task set management in section
8.

Recently, we’ve seen the need for SCSI Targets to be able to convey to Application clients, a command timeout value
such that Application clients can better manage error recovery and avoid error recovery “thrashing”. See Related
documents (A) and (B).

The task states defined in the SCSI Architecture Model are TASK DORMANT, TASK ENABLED, TASK BLOCKED and TASK
ENDED. Task set management is defined in terms of the four task states mentioned here, four task attributes and a
priority attribute which we will not mention here as it is not relevant to the purpose of this proposal.

That is, SAM-4 compliant task servers implementing task management and a task manager as specified in SAM-4,
should at least be able to represent the four task states. In other words, they should be able to map from an internal
(implementation and/or proprietary) task state to one of these SAM-4 defined four states.

Error Recognition and Error Recovery
At the application client, error recognition can happen in one of the following ways:

a) Service response,
b) Task status code, or
c) Application client timed out the task after certain timeout period had been allocated for its execution.

Case c) is particularly interesting as it is the topic of 05-284r3 - SPC-4: Self Describing Command Timeouts.

After the task has timed-out its allocated execution time, the application client would normally issue ABORT TASK
TMF. This isn’t always optimal. Depending on the task state at the device server (target), an application client may
abort a perfectly good task, for example in TASK ENABLED or TASK ENDED state. For this reason, it is encouraged that
application clients first issue QUERY TASK TMF in order to figure out where the task is and what its state is and then
decide whether to issue ABORT TASK TMF or whether to reset their task execution timeout timer and wait again for a
certain amount of retries (finite), thus extending the total execution timeout.

This method works fine for some of the cases but not for all. For example, if the task is in TASK DORMANT state after it
timed out the first time, an application client may wish to abort the task, and notify the system administrator that
external intervention may be required to the logical unit. If, on the other hand, the task is in TASK ENABLED state after
it timed out for the first time, it is advised that application clients reset the timer and let the logical unit complete the
task.

This is where 06-368r0 - SAM-4 QUERY TASK TMF Extended Response, extends the response of QUERY TASK TMF to
optionally to the device server, return the task state of the task being queried, so that application clients can decide
whether to abort the task (e.g. TASK DORMANT) or give it another chance (TASK ENABLED).

This is also where 05-284-r3 - SPC-4: Self Describing Command Timeouts, defines how a device server returns the
appropriate (suggested) task timeout value, that application clients should wait before aborting a task, or, using the
QUERY TASK TMF Extended Response, querying the task’s status before deciding whether to abort it or whether to

06-460r0 SAM-4 Time bounds of task states 18 October 2006

2

give it another chance.

Problem

The problem is that the timeout value(s) returned by the target as described in 05-284r3 currently does not
correspond to any task state. What then does such a timeout value mean in the context of SAM-4 and SPC-4?

Analysis

A task executing at the target device and completing with the application client needs to be represented by at least
two task states (TASK ENABLED and TASK ENDED) at the target. This implies that the timeout value specifies time
spent in at least those two states.

Suggested changes
The suggested changes are that the timeout value specify time spent in the TASK ENABLED and TASK ENDED task
state. This of course implies that TASK ENABLED and TASK ENDED state is bounded in time. This is not a problem since
the time bounds are not specified in the architecture. As far as the architecture is concerned a time bound of 100
million years is just as good as 100 microseconds, for example.

Implications
This would allow application clients to reset their timers if after querying the task, they receive a QUERY TASK TMF
Extended response of TASK ENABLED or TASK ENDED, giving the task time to complete and avoiding error recovery
“thrashing”.

Since application clients do not detect task state transitions, the task timeout timer is already running at the initiator
when the task arrives at the target.

When the timer times out, the application client issues QUERY TASK TMF to query the task’s location and state. If the
task is in the TASK ENABLED or TASK ENDED task state then it would finish in at most the timeout value specified in
05-284r3, plus any transport overhead. Please see the following figure.

If the task is in any other state, it is up to the application client’s discretion what to do next.

Summary

This proposal, if accepted, would greatly improve error recovery both at the target and at the initiator. It would give
more information to the application client to make better decisions regarding aborting a task, thus reducing
transport traffic and unnecessary task abort processing at the target.

Task
dormant

Task
enabled

Send task and
start timer

Timer timeout;
Query task

Task enabled;
reset timer

Task
done

Task
ended

Initiator timeline

Target timeline

