

1

SCSI Communications Security

David L. Black Senior Technologist, EMC

Communications Security Overview

Two types of security goals

- 1. Communications Security = protecting communications
- 2. System Security = protecting systems
 - Including systems that engage in communications
- Pursue these security goals in order
 - First, secure the communications
 - Then provide secure access to systems (over secured channels)
- First SCSI communications security problem is here
 - SSC-3 transfer of encryption keys to tape devices
 - Need an alternative to transfer in the clear
- Two parts to this presentation
 - 1. Communications Security Background
 - 2. Communications Security Framework Security Associations

Communications Security Assumptions (06-388r1)

- 1. Assume end systems involved in communication are ok
 - Ok = Not under attacker's control
 - SCSI end systems = Application Clients and Device Servers
- 2. Assume communication channels are not ok
 - Not Ok = Attacker can read/write/change any communication
 - SCSI communication channels = Service delivery subsystem
 - Includes transport and intermediate SCSI-to-SCSI router/gateway/bridge
- 3. Assume attacker does not know secret keys
 - And cannot learn or discover them
 - Communication Security is based on secrets, especially keys

Communications Security Threats (06-388r1)

- 1. Passive Attacks = Attacker just listens
 - Observe data that should not have been sent in clear
 - Obtain raw material for off-line analysis (e.g., dictionary attack)
- 2. Active Attacks = Attacker does something
 - Address or identity spoofing
 - Replay of previous communication (e.g., install old key)
 - Insertion, deletion, and modification of communications
 - Man-in-the-middle communication is *via* the attacker
- All of these attacks can be countered
 - But "No Free Lunch" principle applies
- See IETF RFC 3552 for a more extensive discussion

Communications Security Countermeasures

- Confidentiality keep information secret
 - Implementation: Encryption
- Cryptographic Integrity Prevent deliberate tampering
 - Implementation Keyed secure hash
 - Anti-Replay is a specific form of Cryptographic Integrity
- Authentication Know (prove) who is talking/listening
 - Implementation Mechanism depends on form of proof
 - Form of proof strongly affects manageability
- Authorization Limit what can be done
 - For communications security this means reachability (e.g., zoning)
- Multiple security services often appropriate/necessary
 - SSC-3 secure tape drive keying confidentiality, cryptographic integrity (including anti-replay) and authentication

SCSI Security Considerations

- Communications Security already in some SCSI transports
 - Transport security not always used or usable
 - Multi-transport interactions (e.g., SCSI to SCSI router)
- SCSI environments often have limited connectivity
 - Physical and logical restrictions
 - LUN mapping and masking
 - Transport zoning
- SCSI security in light of transport security/connectivity
 - Reduces reliance on authentication for SCSI
 - Not authenticating at SCSI level can be acceptable
 - Ability to send command to device server can be implicit "proof"

Security Design Practices

- Reuse existing techniques and practices
 - Leverage security community expertise and interest
 - Ideally make security design "someone else's problem"
- Specify security services, allow usage to be optional
 - Security is available if needed, customer can decide
- Amortize expensive security operations
 - Support SCSI usage in embedded systems

SCSI Security Associations

SCSI should define Security Associations

- Communications security framework
 - First usage example SSC-3 encryption key transfer to tape drives
 - There will be more
 - Multiple key consuming security services are needed
 - Encryption and Cryptographic Integrity
 - Multiple key generating security services are likely
 - Key Exchange and Authentication
 - Key Exchange = create shared secret key (authenticated or unauthenticated)
- Framework can lay groundwork for implementations
 - Coordination is essential to security and usability
 - Mix/match key generation and consumption
 - Common key derivation to support multiple security services
 - Common anti-replay design
 - Support for amortization of expensive crypto operations
 - E.g., public key (asymmetric cryptography) operations and key exchange

What's a Security Association (SA)? (06-369r3)

- Purpose: Security Service Coordination
 - Concept from IETF IP Security (IPsec) architecture
- Key identification (in order to use them) and associated security ops
 - SAI (Security Association Index)
- Prevent Replay Attacks SQN sequence numbers
- Amortization of expensive operations KEY(s) and random NONCEs
 - Key exchange/generation can be **very** expensive (computationally)
 - Generation of multiple symmetric keys is the major advantage
 - Nonces also enable faster rekey based on original key exchange
- Decouple key exchange/generation from key usage KEY_SEED
 - Allow multiple mechanisms for key generation and usage
 - Use any key generation mechanism with any key usage mechanism
- Produce multiple keys (to apply multiple security services)
 - KDF (Key Derivation Function) and resulting KEY(s)

How does a Security Association Help?

- Reduces integration burden for new mechanisms
 - New key exchange mechanism only has to generate SA
 - New key usage mechanism only has to consume SA
 - Avoids m x n integration problems and inconsistencies
 - But more complex if m=n=1
 - Helps others design key exchange mechanisms for SCSI
- Standardizes derivation of multiple keys
 - From single result of key exchange
 - Easy to get wrong in subtle ways
- Standardizes amortization of expensive crypto
 - Generation of symmetric keys from key exchange
 - Rekey based on random nonces only

What if there are no Security Associations?

- Multiple key exchange mechanisms are possible/likely:
 - Unauthenticated Diffie-Hellman (Mod-p and/or Elliptic Curve)
 - Unauthenticated or self-authenticated public key (RSA)
 - PKI (certificate) authentication and key exchange
 - Authenticate via pre-existing key (shared secret)
 - Use TCG protocol(s)
- Key exchange mechanisms intersect at point of usage
 - All key exchanges can work without a Security Association
 - SSC-3: Each new key exchange needs a new key format
 - Even if the actual "bits on the wire" format (e.g., ESP) is the same
- Burden on future designs (beyond SSC-3 encryption keys)
 - Plug-in interface for multiple key exchange mechanisms
 - Redesign key derivation (subtle differences probable)
 - Redesign or lose ability to amortize expensive crypto

Generating a Security Association: How to Authenticate?

- Don't unauthenticated security
 - Explicit/implicit authentication by other means see slide 6
- Strong shared secret (key) Don't send in clear!!
 - Requires pre-installation of secrets
 - Impersonation: Anyone who has X's secret can impersonate X
- Password (weak shared secret) Don't send in clear!!
 - Requires pre-installation of password verifier (avoids impersonation)
 - Need serious security protocol to avoid dictionary attack or generate keys
- Public key (signature based on public/private key pair)
 - Naked public key for authentication is frowned upon
 - Public key authentication can lead to certificate/PKI rathole/adventure
- Kerberos (ticket)
 - Good for user authentication, not so good for machine authentication
- Other mechanisms exist (e.g., h/w token to create strong "password")