VITESSE

06-419r0 SAS-2 Reference Transmitter and Receiver Specification Proposal

Kevin Witt SAS-2 Phy Working Group 9/12/06

Serial

Attached

YOUR PARTNER FOR SUCCESS

Outline

- Present an Evaluation of all Published SAS-2 Channels
 - Clarify the Definition of Transmit De-Emphasis
- Provide a Basis for the Selection of the Transmit De-Emphasis Specification
- Provide a Basis for the Selection of the Reference Transmitter & Receiver
- Propose Initial Transmitter and Receiver Specifications
- - 06-206R2 SAS-2 Data Eyes vs. De-Emphasis
 - 06-053R0 Roadmap to SAS-2 Physical Layer Specification
 - 06-052R0 Enhanced SFF-8470, SFF-8086 and SATA Cable at 6Gbps
 - 05-204R1 Towards a SAS-2 Physical Layer Specification
 - 05-426R0 SAS-2 Cable Reach Objective and Crosstalk
 - 05-425R1 SAS-2 Channel Model Simulations
 - 05-342R0 SAS-2 Adaptive Equalizer Physical Layer Feasibility
 - 05-341R1 Updated Test and Simulation Results in Support of SAS-2
 - 05-203R0 SAS-2 6Gbps Test Results

SAS-2 Channels Analyzed

- 📚 28 Channels Submitted
- 📚 0→10 dB De-Emphasis
- O→10 Taps DFE
- 3,388 Simulation Cases
- 📚 Behavior Simulation

ID U	sed in	Plots							
	ID	ID T10 Doc # Source Description		Туре					
	1	05-398r0	Molex	0.5m MiniSAS	Measured				
	2	05-398r0	Molex	1 m MimiSAS	Measured				
	3	05-398r0	Molex	3 m MimiSAS	Measured				
	4	05-398r0	Molex	3 m MimiSAS	Measured				
	5	05-398r0	Molex	10 m MimiSAS	Measured				
	6	05-384r0	HP1	3 Connector Board 2 board	Measured				
	7	05-384r0	HP2	3 Connector Board 2 board	Measured				
	8	05-384r0	HP3	3 Connector Board 2 board	Measured				
	9	05-384r0	HP4	3 Connector Board 2 board	Measured				
	10	05-384r0	HP5	3 Connector Board 2 board	Measured				
	11	05-384r0	HP6	3 Connector Board 2 board	Measured				
	12	05-384r0	HP7	3 Connector Board 2 board	Measured				
	13	05-384r0	HP8	3 Connector Board 2 board	Measured				
	14	05-389r0	HP9	4 connector Board to Board	Measured				
	15	05-389r0	HP10	4 connector Board to Board	Measured				
	16	05-389r0	HP11	4 connector Board to Board	Measured				
	17	05-390r0	HP12	Board 1m Cable Backplane Drive	Measured				
	18	05-390r0	HP13	Board 6" Cable Backplane Drive	Measured				
	19	05-390r0	HP14	Board 6" Cable Backplane Drive	Measured				
	20	06-017r0	HP24	4 connector Board to Board	Measured				
	21	06-017r0	HP25	4 connector Board to Board	Measured				
	22	06-017r0	HP26	4 connector Board to Board	Measured				
	23	05-384r2	HP27	Board to board 3 connector	Measured				
	24	05-384r2	HP28	Board to board 3 connector	Measured				
	25	05-393r0	Dell 1	Bottom Trace 19"	Model				
	26	05-393r0	Dell 2	Bottom Trace 8"	Model				
	27	05-393r0	Dell 3	Top Trace 8"	Model				
	28	05-393r0	Dell 4	Top Trace 19"	Model				

Behavior Simulation Methodology

VITESSE

4

Tx De-Emphasis Details

De-Emphasis Can Be Measured From 00000111110000011111 Waveform

Power Penalty is Metric Used For Comparison VITESSE

- The Power Penalty Indicates How Much Additional SNR is Required to Overcome the Residual ISI After Equalization to Operate at the Target BER of 1e-15.
- 📚 Example

Reference: Simulation of Communication Systems Modeling, Methodology and Techniques, M. C. Jeruchim, 2000

Visual Check of Simulation Methodology

- 📚 Simulation vs. Measured
 - 6 Gbps Output Driver Test Chip
 - 6dB 2 Tap De-Emphasis •
- Good Agreement With Measured
 - Eye Opening and Eye Shape
 - Jitter at Zero Crossing

6dB De-Emphasis Simulated Eyes

1m

10m

6dB De-Emphasis Measured Eyes

What is the Optimal De-Emphasis Setting?

SNR Penalty vs. De-Emphasis (no DFE)

- What is the Best De-Emphasis Setting to Minimize SNR Power Penalty
- Look at Average & Max Penalty vs DE Setting

What is the Optimal De-Emphasis Setting?

- Deterministic Jitter vs. De-Emphasis (no DFE)
 - What is the Best De-Emphasis Setting to Minimize Jitter Generation
 - Look at Average & Max Jitter Generation vs. DE Setting

What is the Optimal # DFE Taps?

- SNR Penalty vs. # DFE Taps (With 6 dB De-Emphasis)
 - What is the Best De-Emphasis Setting to Minimize SNR Power Penalty
 - Look at Average & Max Penalty vs. DE Setting

Evok at all 3388 Power Penalty Results as a Family of Curves vs. # DFE Taps

Evok at all 3388 Power Penalty Results as a Family of Curves vs. De-Emphasis

Reference Transmitter and Receiver Architecture Proposal

VITESSE

- Reference Transmitter De-Emphasis
 - Minimum of 2 Tap De-Emphasis
 - 6dB +/- 1dB
 - Examples
 - $V_{pk} = 1200 \text{ mV} \rightarrow \{536 \text{ mV} \le V_{de} \le 675 \text{ mV}\}$
 - V_{pk} = 800 mV → {357 mV <= V_{de} <= 450 mV}

Reference Receiver (1)

- 4 Tap DFE
- 1) Receiver Implementation is Not Limited to a DFE Architecture, However, its' Equalization Capability Shall Be Equivalent to the Reference Receiver.

Vpk mV	Vde mV	DE (dB)	CutBack (%)
1200	850	3	29
1200	757	4	37
1200	675	5	44
1200	601	6	50
1200	536	7	55
1200	478	8	60
800	566	3	29
800	505	4	37
800	450	5	44
800	401	6	50
800	357	7	55
800	318	8	60

VITESSE

📚 Reference Transmitter

	S	SAS-2	
Transmitter	Min	Max	Units
Differential Voltage (pk-pk)	800	1200	mV
Transition Time (20%-80%)	50	90	ps
DC Output Impedance	60	115	ohm
DC Output Impedance Mismatch		5	ohm
Differential Return Loss		see Plot	dB
DC Common Mode Impedance	15	40	ohm
Common Mode Return Loss		see Plot	dB
Max. Intra-Pair Skew		15	ps
Random Jitter		0.15	UI
Deterministic Jitter		0.15	UI
Total Jitter		0.3	UI
# Taps De-Emphasis	2		Taps
De-Emphasis	5	7	dB

Differential Return Loss (Similar to 10G Base-KR)

Common Mode Return Loss Like above but -6dB and TBD Frequency Dependency

What is Missing?

SAS-2 Specification Proposed Numbers

VITESSE

📚 Reference Receiver

Differential Return Loss (Similar to 10G Base-KR)

109

Hz

1010

-10 10⁸

What is Missing?

Notes:

1) Receiver Implementation is Not Limited to a DFE Architecture, However, its' Equalization Capability Must at Least Be Equivalent to the Reference Receiver.

- Evaluation of all Published SAS-2 Channels Provided
 - Definition of Transmit De-Emphasis Clarified.
- Sasis for the Selection of Transmit De-Emphasis Specification Provided
 - 6+/- 1dB
- Basis for the Selection of a Reference Receiver Provided
 - 4 Tap DFE
- Propose Reference Transmitter and Receiver Specifications
 - Starting / Discussion Tables Provided for Development