
T10/06-379r0

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

i

 1

NAND Software Working Group 2

Invitation for Collaboration on Software Interface 3

Standardization 4

Version 1.0 – 04 13 June 2006 5
 6
Copyright © 2004 MIPI Alliance, Inc. All rights reserved. 7
 8
The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled by any of the authors or 9
developers of this material or MIPI. The material contained herein is provided on an “AS IS” basis and to the maximum extent 10
permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this 11
material and MIPI hereby disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited 12
to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or 13
completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence. 14
 15
ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, 16
CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THIS MATERIAL. IN NO EVENT 17
WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR MIPI BE LIABLE TO ANY OTHER PARTY FOR THE COST 18
OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY 19
INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, 20
WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO 21
THIS MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH 22
DAMAGES. 23
 24
Questions pertaining to this document, or the terms or conditions of its provision, should be addressed to: 25

T10/06-379r0

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

ii

 26
MIPI Alliance, Inc. 27
c/o IEEE-ISTO 28
445 Hoes Lane 29
Piscataway, NJ 08854 30
Attn: Board Secretary 31

T10/06-379r0

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

iii

Introduction 32

 33

Contributors List 34

 35
COMPANY NAME

M-Systems Flash Disk Pioneers Avraham Shimor
Micron Technology, Inc. Wanmo Wong

Samsung Electronics Yejin Moon
STMicroelectronics N.V. Antonio Furno
STMicroelectronics N.V. Thierry Vuillaume

Texas Instruments Incorporated Leonardo Estevez
Toshiba Corporation Shuji Takano
Toshiba Corporation Patrick Elzer

T10/06-379r0

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

iv

Contents 36

Draft Version 1.0 – 00 07 March 2006 ...i 37

Introduction ... iii 38

1 Overview ...7 39

1.1 Scope ...7 40

1.2 Purpose ..8 41

2 Terminology ..8 42

2.1 Definitions ...8 43

2.2 Abbreviations ..9 44

2.3 Acronyms ..9 45

3 References ...9 46

4 Problems of the current Hard Disk or block device emulation ...11 47

4.1 Power Loss Robustness ...12 48

4.2 Longevity...12 49

4.3 Flash Media Reliability ...13 50

5 Possible new application domain requirements...13 51

5.1 Digital Rights Management (DRM) ..13 52

5.2 Compression ..14 53

5.3 Encryption/security..15 54

5.4 Data portability..15 55

6 Performance issues ..16 56

6.1 Audio/video streaming requirement .. Error! Bookmark not defined. 57

7 Review of non Block Device oriented alternatives ...16 58

7.1 Journaling Flash File System (JFFS2 and JFFS3)...17 59

7.2 SCSI Object-based Storage Device model (OSD)...17 60

7.3 FTP Storage...19 61

T10/06-379r0

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

v

8 Attributes of the “ideal solution”...19 62

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

7

Invitation for Collaboration on Software Interface 63

Standardization 64

1 Overview 65

1.1 Scope 66

What is MIPI ? 67

 The Mobile Industry Processor Interface (MIPI) Alliance (https://www.mipi.org/) is an open membership 68
organization that includes over 90 leading companies in the mobile industry that share the objective of 69
defining and promoting open specifications for interfaces to mobile application processors. Through these 70
specifications, the MIPI Alliance intends to speed deployment of new services to mobile users by 71
establishing specifications for standard hardware and software interfaces to mobile application processors 72
and encouraging the adoption of those standards throughout the industry value chain. 73
Founded by ARM, Nokia, STMicroelectronics and Texas Instruments, the MIPI Alliance is intended to 74
complement existing standards bodies such as the Open Mobile Alliance and 3GPP, with a focus on 75
microprocessors, peripherals and software interfaces. 76

What is the MIPI NAND SW Working Group ? 77

The NAND SW Working Group has been established by the MIPI Alliance in the end of 2005 to 78
investigate on SW interfaces standardization for a better and faster integration of NAND products into SW 79
platforms. The group is composed of leading NAND flash industry players and in particular mains NAND 80
manufacturers. 81

The Working Group will focus on: 82
o Identifying a state-of-the-art SW architecture comprising the embedded NAND-like Flash storage 83

management and anticipating coming NAND flash usage. 84

o Standardizing the SW interfaces (functions, parameters, return codes...) between the identified 85
architecture components that would be under responsibility of NAND flash manufacturer, and 86
publishing corresponding specification(s). 87

o Developing additional documentation to help to use and to advertise this interface (white paper, 88
examples...). 89

As a necessary factor for success, the architecture and interfaces defined by the NAND SW Working 90
Group will aim to stay compatible with existing and future Operating Systems architecture. 91

 92
What are the problems ? 93
 94
Traditionally, as the de-facto standard industry practice, NAND Flash devices in embedded and mobile 95
platforms (much like in PC platforms) are used to emulate Hard Disks or block devices. There are two 96
types of problems associated with this contemporary approach: 97

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

8

• The current Hard Disk emulation paradigm is problematic in the sense that it creates performance 98
and reliability problems originating from mismatch between this block device emulation and the 99
unique characteristics of the NAND Flash technology; 100

• But maybe even more significantly, there is a growing awareness in the Flash industry that certain 101
functional topics like security, DRM, compression, etc., are very difficult to implement over the 102
block-device, sector oriented operation of the Hard Disk emulation. 103

 104
The NAND SW WG is seeking solutions to improve the usage of NAND flash on file systems, to fasten 105
integration of NAND into platforms and to integrate emerging mass storage technologies. 106
 107

Scope and Document overview 108

This paper provides a summary/review of the topics related the interface between NAND Flash storage 109
devices and the embedded/mobile computing platforms and the corresponding Operating Systems: 110

o Elaboration of the problems in the current block-device emulation (FAT/FTL) approach. 111

o Overview of the new functional topics of security, DRM, compression and data portability. 112

o Description of associated Performance Issues. 113

o Review of alternative (non block-device or non FAT oriented) storage management methods, 114
focusing on their interfaces with the Operating Systems. 115

o Outline of a “whish list” requirements specification for a new “ideal” solution. 116

. 117

1.2 Purpose 118

The purpose and the intended use of this document is to serve as a background material, to facilitate the 119
interaction between leading Operating System vendors and mobile/embedded computing platform vendors 120
with the MIPI NAND Software Workgroup. The objective of the interaction is to jointly investigate the 121
need and possibility to extend functionality of the NAND Flash management and interface software 122
beyond the current de-facto industry standard practice of block-device disk emulation. The result of this 123
investigation will be used to align future NAND SW WG standardization efforts with OS and platform 124
vendor’s roadmap. 125

Clarification. This document is highlighting some problems related to the current software approach for 126
NAND devices; however this document doesn’t impose any solutions, it’s a starting point for 127
collaboration with leading OS vendors and mobile/embedded computing platform vendors in definition 128
of NAND Flash software interface with the objective of maximizing generality and industry acceptance. 129

2 Terminology 130

2.1 Definitions 131

Module: Coherent group of functions, classes or other software definition handling a specific subject of 132
the software framework. Each Module is identified by a single name and acronym. 133

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

9

 134

2.2 Abbreviations 135

e.g. For example 136

2.3 Acronyms 137

DRM Digital Right Management 138

INCITS InterNational Committee for Information Technology Standards 139

JFFS Journaling Flash File System 140

MIPI Mobile Industry Processor Interface 141

OSD Object-based Storage Device 142

SCSI Small Computer System Interface 143

FTL Flash Translation Layer 144

FAT File Allocation Table 145

LBA Logical Block Address 146

PBA Physical Block Address 147

SW Software 148

HW Hardware 149

API Application Programming Interface 150

LFN Long File Name 151

MMC Multi Media Card 152

SD Secure Digital [Card] 153

 154

3 References 155

 156
[JFFS] The Journaling Flash File System, David Woodhouse, , Red Hat, Inc., 157
dwmw2@cambridge.redhat.com 158
 159
[JFFS2] JFFS : The Journalling Flash File System, David Woodhouse, Red Hat, Inc., 160
dwmw2@cambridge.redhat.com 161
 162
[JFFS3] JFFS3 design issues, Artem B. Bityutskiy, dedekind@infradead.org 163

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

10

[OSD2] Object-Based Storage Devices - 2 (OSD-2) INCITS T10 Technical Committee,: 164
2004/10/04, Rev: 00, Status: Development, Project: 1729-D, File: osd2r00.pdf (1313078 bytes) 165

[OSD DEMO] SEAGATE, EMULEX AND IBM TEAM UP TO DEMONSTRATE 166
INDUSTRY'S FIRST STANDARDS-COMPLIANT OBJECT-BASED STORAGE DEVICES 167

[OSD PROJ1] Seagate Object Based Storage Project 168

[OSD PROJ2] IBM Haifa Labs – Object Store Project 169

[PTP] ISO 15740:2005: Electronic still picture imaging. Picture transfer protocol (PTP) for digital 170
still photography devices. 171

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

11

4 Problems of the current Hard Disk or block device emulation 172

 173

Traditionally, as the de-facto standard industry practice, NAND Flash devices in embedded and mobile 174
platforms (much like in PC platforms) are used to emulate Hard Disks or block devices. The obvious 175
advantage in this practice is that it is leveraging on existing Operating System software components: as far 176
as either the Operating System or even the application software is concerned the actual technology 177
implementation of the NAND Flash devices is totally transparent: for all practical purposes it behaves like 178
yet another Hard Disk Drive.In the context of this paper, by Hard Disk or block device emulation we refer 179
to the abstraction whereby a storage device, independent of the underlying physical storage technology 180
employed (such as magnetic, optical, or flash) is presenting or exporting a simple, yet powerful, atomic 181
interface of allowing the reading and writing a fixed sized information unit or sector, usually addressable 182
by a linear index (so the storage device is logically represented as a linear array of sectors). On top of this 183
simple scheme, the Operating Systems and its storage and file management components implement 184
additional software based layers of abstractions like for example the FAT type file system which was 185
introduced in the 1980s. (FAT is extant in small systems. Microsoft chose FAT as the file system in 186
Windows CE, and FAT is used in Symbian. Furthermore, FAT is the standard file system format for flash 187
cards like MMC and SD.). 188

In all implementations of file systems over block devices some of the sectors are used to store the actual 189
information content associated with files, whereas additional sectors are used to store supporting, 190
addressing and organization information such as allocation tables, directory entries, etc. The important 191
implication of this method for the context of this paper is that most application level storage/disk related 192
operations (transactions) require several sector (or device block) level operations; from the device “point 193
of view” these are unrelated and independent “atomic” operations. 194

NAND Flash storage devices exhibit several functional characteristics which are originating from the 195
essence of this technology: information can be read and written in the form of pages (currently of typically 196
512 or 2048 bytes, with a tendency to increase as the capacity of the devices increases), once a page is 197
written, it cannot be re-written or updated, unless the erase block (consisting a large number of pages) 198
containing the page in question is erased first. Obviously, erasing a block implies moving/copying of all or 199
at least some of the pages to another (“fresh”, yet unwritten) location in order to avoid information loss. 200
Yet another important characteristics of the flash technology is that the number of erase cycles for a given 201
erase block is limited, thus the number of erase operations needs to be minimized in order to prolong the 202
useful life of the device. 203

FAT File System

FTL

NAND Driver

NAND Flash

Application
Application

 204

Figure 1: FAT and FTL Architecture 205

 206

Deleted: ¶
¶

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

12

Due to the above technology specific limitations the block device emulation cannot be directly facilitated 207
by a flash device, thus the common technique is use an intermediate software layer between the Operating 208
System component (usually: the file system) “expecting” to interact with a sector based block device and 209
the physical flash memory (see figure 1). A common name for this block device or disk emulation layer is 210
Flash Translation Layer (FTL). 211
 212
The current practice of the Hard Disk emulation paradigm is problematic in the sense that it creates 213
performance and reliability problems originating from mismatch between this block device emulation and 214
the unique characteristics of the NAND Flash technology; The following sections outline some of these 215
problems. 216

4.1 Power Loss Robustness 217

By Power Loss Robustness in the context of this paper we refer to the capability of a NAND Flash based 218
device with its corresponding FTL to ensure the integrity of the information stored (primarily the file 219
content “payload” information, but also the flash management related metadata) even in the presence of 220
power loss failure events. 221

The root cause of this problem is the fact that in file system implementation over any Module block device 222
most application level transactions (e.g. create a file, write a new record or data extent to a file, etc) require 223
more than one device/sector level atomic operations (e.g. in order to add a new data extent at least two 224
sector write operation are required: one to update the Allocation table and one to write the data content). 225
These operations cannot be “recognized” by the device as belonging to the same transaction. Consequently, 226
a power failure event encountered when only a part of the atomic operations pertaining to such a 227
transaction were actually executed by the device, can lead to an inconsistency, which may result in an 228
irrecoverable data lost. 229

While, as mentioned, this problem may exist in any block device, it can be more significant and 230
problematic in a NAND Flash device. The reason for this situation is that the management of the NAND 231
Flash device (by FTL) requires additional mapping mechanisms (in addition to the Allocation Tables and 232
directory structures used by the File System) which in turn imply storage and manipulation of additional 233
metadata on the flash media. Furthermore, some of the flash management operations (for example the 234
copying and relocation of sectors mentioned in the previous section, and “garbage collection” operations 235
resulting from the need to prepare for reuse “used” but no longer valid pages and blocks) are significantly 236
time consuming. This might result in increasing the time separation between the actual execution of the 237
composite atomic operations pertaining to an application level transaction, and thus increasing the 238
sensitivity of the process to an eventual power failure. 239

4.2 Longevity 240

NAND flash devices usually wear out as the result of repeated programming and erasing; with the 241
contemporary device technologies the typical device lifetime is limited to about 100,000 program/erase 242
cycles per erase block (even lower for MLC device). 243

To maximize the useful life of the flash, care must be taken by the Flash management algorithms to spread 244
the wear evenly over the device, and in fact the different algorithms employed by different vendors invest a 245
significant effort (and contain significant amount of related Intellectual Property) to address this issue. 246

While this longevity problem is an inherent result of the nature of Flash device technology, its importance 247
and possible severity are intensified by the block device emulation practice: the need to repeatedly update 248
the File Allocation Tables create and represent a potential “hot spot” for the extended wear of the file 249
system related sectors of the flash media. 250

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

13

4.3 Flash Media Reliability 251

An additional peculiarity of the NAND Flash device technology is a problem usually referred to as “bit 252
flipping”, posing a significant reliability problem if not properly handled by the Flash Management 253
algorithms. 254

While in a magnetic disk for example imperfections of the recording surface/media are usually of 255
permanent nature, thus “bad blocks” can be detected, marked and avoided a-priori while formatting a 256
magnetic storage device, in NAND Flash devices there is a phenomenon called bit flipping (manifesting 257
itself by an inconsistency between the content intended to be written and the content actually read later) 258
which can evolve, rather than being permanent. The root cause of the problem may be not only marginal 259
imperfections on the chip but may also be wear resultant. This necessitates further, dynamic measures to 260
be exercised by the Flash management algorithms, implying both additional mapping for dynamic bad 261
block detection and avoidance. 262

Once again, although the bit flipping problems are not a direct result of the block device emulation method, 263
nevertheless, in the situation where application level transactions are split into several independent atomic 264
device/sector level operations, this creates yet another problem spot as a result of the management 265
operations required to handle this problem 266

5 Possible new application domain requirements 267

The practical use of storage devices in complex applications involves the necessity to handle several 268
storage related functional requirements which are of higher level than the basic input/output or 269
read/write/delete transactions. Closer examination of several such functional requirements in the following 270
subsections reveals that the feasibility and/or efficiency of implementing these are dependent and 271
interrelated to the nature and functionality of the interface between the storage device and the host side 272
Operating System. 273

5.1 Digital Rights Management (DRM) 274

There is an increasing need in the industry for implementing controlled access to information content 275
stored on memory/storage devices, i.e. enforcing a DRM scheme with respect to the protected content. The 276
ideal solution for DRM would be the enforcement/implementation of the DRM access rules internally at 277
the storage device itself. 278

The nature of the protected data entity is a “content” object, e.g. a song, a picture, a document – these are 279
usually translatable to data objects, and most frequently to files. Clearly, the “sectors” as used the interface 280
with a block-device (or block-device emulation) based storage device, are well below the natural 281
granularity of the associated “rights” in any DRM scheme, thus the device implementation of trusted and 282
reliable DRM in these type of devices is practically impossible because it’s always possible to by-pass the 283
highest software module (e.g. FAT File System) and access the device trough the FTL layer which has no 284
“knowledge” of DRM rights (figure 2). 285

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

14

 286

Figure 2 Possible attack on FTL based DRM 287

However other, higher level abstraction interface schemes, where the content exchanged between a host 288
and a device represents files or data objects, implementing/enforcing DRM at the device level is feasible. 289

5.2 Compression 290

In order to increase the effective capacity of a storage device, there is a requirement in some mass storage 291
applications to implement transparent compression at the storage device level. This means that the volume 292
of information actually stored/recorded onto the physical storage media is reduced by a compression 293
algorithm implemented at the device on the information to be written, and a complementary decompression 294
is performed on the read from the storage media before transferring it to the host. 295

A possible use case or application example: a handheld computer for use in a “mobile office” type 296
application environment, where the flash disk in the device has to store a heterogeneous mix of file types 297
and sizes, such as word processing documents, presentations, spreadsheets, messages, notes, etc. 298
Obviously, the effective capacity of the flash drive is a factor of critical importance for the usefulness of 299
such a device, so it is expected to be deemed advantageous by the end users if the effective capacity could 300
be increased without paying for extra flash, or requiring increased size and/or power consumption, by 301
employing data compression. File type dependent data compression (for example those well established 302
compressed file types for pictures/video/music) might not be applicable or sufficient in this case, due to the 303
heterogeneous nature of the file types as mentioned above, and the associated need to be compliant (i.e. 304
readable, transparent, usable) with a diverse set of applications. Hence, if such a compression could be 305
provided transparently and seamlessly by the storage device itself, this could be the optimal solution. (By 306
transparency we mean for example that the application program is totally unaware that the 2.3 megabyte 307
document it had just written to the flash disk is actually occupying only 0.68 megabytes of space). 308

In a block-device emulation environment, where the atomic transactions are based upon transparent sectors 309
directly addressable by the host, there is practically very little which can be accomplished by compression 310
decompression, since sectors cannot/must-not be concatenated, thus the efficiency of the is very limited. 311
Another limiting factor is the mapping mechanism from file system sectors to the flash pages. 312

FAT File System

NAND Flash

Application
Application

DRM MODULE

FTL

NAND Driver

Trusted
Communication
Channel

UNTRUSTED
CHANNEL

Malicious
Application

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

15

Another problem related to the compression is that usually multimedia data (e.g. MP3 files) are already 313
compressed and applying the compression algorithm don’t cause a real benefit. With a block emulation 314
schema it’s impossible to avoid this situation because (again) the FTL cannot know what kind of data it’s 315
storing into the device. With a different software architecture that is not based on the Block Emulation 316
approach it could be possible to implement algorithm that (knowing the “nature” of the data) could 317
compress only that data that should be compressed. 318

5.3 Encryption/security 319

This subject is somewhat similar to the DRM issue described above: the implementation of some DRM 320
schemes involves encryption; however the topic of encryption is useful even out of the context DRM. It is 321
sometimes necessary to ensure that the content on a storage device is protected from unauthorized access 322
and use. As an extreme use case, for example, sometimes it is necessary to ensure that actual content stored 323
on the flash is encrypted, so it is incomprehensible without the possession of an encryption key which is 324
not stored on the media itself. The encryption and the corresponding keys are clearly content related: using 325
the traditional directory/file terminology, different files must be able to be encrypted different, user specific 326
keys, some files and/or directory entries needs to remain visible (non-protected, non-encrypted) while 327
others needs to be hidden (protected, encrypted). 328

In a block-device emulation environment, where the atomic transactions across the interface between the 329
storage device and the host are based upon sectors, and where the interpretation of the sectors content as 330
either net, “payload” data or file system structural/support info is only visible to the File System software 331
on the host, there is practically very little possibility to implement the necessary encryption/protection 332
provisions on the device itself, therefore the encryption/decryption must be inevitably done by the 333
application. 334

If however the block-device scheme would be replaced by some alternative scheme, where the interface 335
transactions are based on data objects or complete files (see below), then these schemes might enable 336
implementation of the encryption/decryption, if required, at the (future NAND-like) device level, 337
transparent to the application. 338

(The assessment whether device level versus application level implementation of encryption/decryption is 339
required/desirable/beneficial is left open for the discussion). 340

 341

5.4 Data portability 342

One of the most important use cases for NAND Flash devices (and removable storage media and storage 343
devices in general) is their use as vehicles for data/information/content transfer among different platforms 344
(PC to PC, camera to PC, mobile phone to PDA, etc.). Obviously, in order to ensure a seamless flow of 345
content among different platforms, sometimes involving different Operating Systems, both types of the 346
software components involved need to be compatible: the File System on the host side and the data 347
representation on the media side. Within the contemporary block-device emulation scheme the device 348
stores and handles transparent sectors, some of which are data sectors (i.e. carrying the “net” content) 349
while some others are used solely by the host File System (like allocation tables, directory entries etc.). In 350
order to ensure that a computing platform, other than the one used in creating/writing the content, is 351
capable of reading and “comprehending” the stored content, the reading platform must contain a File 352
System which is binary compatible (with respect to the sectors stored on the device/media) with the writing 353
platform. This requirement is a severe and limiting one: while most contemporary platforms support the 354
FAT file system for cross platform data portability, this is obviously sub-optimal, since in this way the 355
advantages of the more advanced native file systems (e.g. NTFS or advanced UNIX/LINUX file systems) 356
are lost. 357

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

16

On the other hand, if an advanced/alternative interface technology is employed, based on data object 358
transactions rather than transparent sectors (see Section 7), then the problem of data portability is 359
automatically solved (or at least significantly diminishes). 360

While the primary focus of the MIPI NAND Software Workgroup is on embedded, i.e. non-removable, 361
applications of NAND Flash storage devices, nevertheless, this subject of data portability is relevant due 362
to the fact that the mobile/embedded hosts including the NAND Flash storage (as an integral non-363
removable component) are frequently used as detachable/removable storage devices in other computing 364
platforms: for example a mobile phone (with embedded NAND Flash storage device) may act as a 365
removable storage device for a PC host when connected to a docking/sync station. 366

6 Performance issues 367

There are emerging streaming multimedia use case scenarios which may highlight performance issues with 368
NAND devices such as simultaneously recording a DVB-H stream at one point while rendering from the 369
same stream at another, advanced video trick plays, and advanced video telephony scenarios. For these use 370
cases, some concurrencies and sequences should be considered. 371

Because the relative performance overhead of the file system for NAND Flash is so small compared to 372
other activities within the system, the performance of the file system is most critical when considering time 373
extended use cases which require very little power for short periods of time. The most common use case 374
today falling into this category is the rendering of MP3/AAC music or audio books with competitive 375
playback times in excess of a hundred hours on a single charge. For use cases like this one, file system 376
performance impact to playback time is largely a function of the data rate. 377

Larger data rates with extended write scenarios might highlight file system for NAND Flash performance 378
even more. An emerging use case for consideration is that of recording a series of digital TV broadcasts. 379
Here again, the amount of time this scenario can be executed is a function of concurrencies implemented 380
between receive and write subsystems. If writes can be successfully executed concurrently with received 381
bursts, the operating frequency required to enable this concurrency may be a minor discriminating factor. If 382
the write subsystem is executed sequentially after reception, the amount of power consumed by the 383
receiver and the relative on time of the application processor in order to complete the write may become 384
discriminating factors. 385

The longevity of the recorded TV series scenario may also be compromised if a limited amount of memory 386
is also used as a circular buffer for data with a short life expectancy (such as concurrent commercial 387
offers). 388

The block emulation software solution (File System plus FTL) limits the possibility to achieve the best 389
performance possible and to guarantee a constant or at least a minima value of write and read throughput. 390
In fact the FS plus FTL solution is not a “NAND friendly” solution and it’s not possible to implement 391
dedicated algorithms to manage the write or read operations. As usual FTL is not aware of the object (e.g. 392
file, directory) that the application is managing and it can only manage sectors (usually 512 byte size). In 393
this situation is almost impossible to implement (in a safe a robust way) algorithms that can use all the 394
potentiality of NAND throughput: read/write caching, multiple operations, large page architecture (e.g. 395
2KB, 4KB). 396

7 Review of non Block Device oriented alternatives 397

There are numerous studies conducted by various research, educational and industrial organizations 398
proposing various alternative (non block-device or non FAT oriented) storage organization and 399
management methods. The following sections include overviews of four of these alternatives which are 400
well known and/or covered by publicly available documents. 401

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

17

7.1 Journaling Flash File System (JFFS2 and JFFS3) 402

The Journaling Flash File System [JFFS], especially its advanced derivatives [JFFS2 and JFFS3] represent 403
an industry wide well known attempt to create a non block device emulation based NAND Flash File 404
System, with special attention to LINUX based embedded systems. 405
 406
JFFS is a log-structured file system designed by Axis Communications AB in Sweden specifically for use 407
on flash devices in embedded systems, which is aware of the restrictions imposed by flash technology and 408
which operates directly on the flash devices, thereby avoiding the inefficiency of having two file systems 409
on top of each other. 410

The log-structured design in JFFS/JFFS2 basically means that the whole file system content, as stored on 411
the flash, may be regarded as one large log of changes: any modification to an entity of the host file 412
system (i.e., file change, directory creation, changing file’s attributes, etc) is appended to the log. The log is 413
the only data structure on the flash media. Modifications are encapsulated into small data structures called 414
nodes. In principle, each node in the log contains a data object (file, directory, link) name and meta-data, 415
along with the (variable length) related data content. 416

The technical details related to the implementation and representation of the JFFS2 on the flash are beyond 417
the scope of this paper, however, the importance of this solution and its differentiating characteristics from 418
a block-device emulation based flash file system lays in the semantics difference in the interface with the 419
host: while in the case of the block-device emulation all the high level information regarding the data 420
objects is transparent to the device (i.e. from the device point of view the interaction is based on reading 421
and writing addressed sectors, all sectors are indistinguishable), in the case of the JFFS2, the atomic 422
transactions are changes related to named data objects (e.g. File-name and additional meta-data, data 423
segment offset, data segment length, data segment content). 424

7.2 SCSI Object-based Storage Device model (OSD) 425

 426
The Technical Committee T10 of ANSI INCITS (responsible for the SCSI and related standards) had 427
created a published a working draft specification for Object-Based Storage Device Commands [OSD2]. 428
The Object-Based Storage Device (OBSD) is defined as a device that stores data objects instead of 429
blocks of data. The purpose of this abstraction is to assign to the storage device more responsibility for 430
managing the location and organization of the data within the storage media. 431
 432
Some important definitions, used in the following description, are: 433
 434

OSD object: An ordered set of bytes within an object-based storage device that is associated with 435
a unique identifier. Data in the object is referenced by the identifier and offset information within 436
the object. Objects are allocated and placed on the media by the OSD logical unit. 437
user object: An OSD object that contains user data that is referenced by byte offset within the 438
OSD object. 439
root object: An OSD object that is always present whose attributes contain global characteristics 440
for the OSD logical unit. Each OSD logical unit has one and only one root object. 441
collection: An OSD object in which references to one or more user objects from a single partition 442
may be collected. 443
partition: An OSD object used for creating distinct management domains (e.g., for naming, 444
security, quota management). 445
 446

 447
OSD object abstraction as described in [OSD2]: 448
 449

The OSD object abstraction is designed to re-divide the responsibility for managing the access to 450
data on a storage device by assigning to the storage device additional responsibilities in the area of 451

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

18

space management. Figure 3 shows the relationship between the OSD model and a traditional 452
SBC-based (SCSI Block Commands) model for a file system. 453
 454

 455
Figure 3: Comparison of traditional and OSD storage models 456

 457
The user component of the file system contains such functions as: 458
 459

a) Hierarchy management; 460
b) Naming; and 461
c) User access control. 462

 463
The storage management component is focused on mapping logical constructs (e.g., files or 464
database entries) to the physical organization of the storage media. In the OSD model, the logical 465
constructs are called user objects. The root object, partitions, and collections provide additional 466
navigational aids for user objects. 467
In addition to mapping data, the storage management component maintains other information 468
about the OSD objects that it stores (e.g., size, and usage quotas, and associated username) in 469
attributes. The user component may have the ability to influence the properties of object data 470
through the specification of attributes (e.g. directing that the location of an object to be in close 471
proximity to another object or to have some higher performance characteristic) via mechanisms 472
that are outside the scope of this standard. 473
In this model, the OBSD makes the decisions as to where to allocate storage capacity for 474
individual data entities and managing free space. 475
 476

While the OSD model as defined by the T10 Committee applies to storage devices in general, it seems 477
exceptionally well adapted to the specific case NAND Flash storage devices. The necessity and complexity 478

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

19

of managing a NAND Flash storage device usually requires the use of an intelligent device controller (the 479
“intelligence” can be software or hardware implemented) significantly more “smart” than what is required 480
to manage a “natural” block device (e.g. a rotating magnetic disk). This SW/HW controller can also be 481
used to implement the added functionality (or intelligence) required for the OSD functions. 482

Similarly to the case of the JFFS above, the interface with the host is based upon the atomic transactions 483
are related to named data objects as opposed to addressed sectors as used in the context of the traditional 484
block-devices. 485

Additional material related to initial industrial OSD projects and implementations can be found in [OSD 486
PROJ1] , [OSD PROJ2] and [OSD DEMO]. [Check for the board approval] 487

7.3 FTP Storage 488

An intelligent storage device can in principle be configured with a functionality equivalent to an ftp (File 489
Transfer Protocol) server: the atomic interface transfer operations on such a device would be file related, 490
i.e. read/write (or get/put) and delete single or multiple files. In a sense this could be considered as a 491
private case of Object-based Storage Device with the “file” being the only object type. 492

For example a related implementation to this concept is the [PTP]. 493

8 Attributes of the “ideal solution” 494

As stated above, the main objectives of the MIPI NAND Software Workgroup, in collaboration with 495
leading Operating Systems vendors and mobile/embedded computing platform vendors is to define/specify 496
a Standardized Software Interface between storage devices based upon the NAND Flash technology, and 497
the OS in embedded/mobile computing platforms. 498

This final paragraph attempts to characterize the intended end product (i.e. the Standardized NAND 499
Software Interface) in terms of a list of desirable attributes (“wish list”). Since the satisfaction of some of 500
these requirements may be mutually contradictory, this list should be considered as representing an “ideal 501
solution”, whereas the actual specification resulting, might involve certain compromises and/or options 502
and/or variations. 503

Thus, the Standardized NAND Software Interface should be: 504

o Technologically Scalable, Extensible and Future Proof: it should take into consideration the 505
foreseeable evolution path of both the NAND-like storage device technology and the evolution of 506
the storage related software technology; 507

o Providing a “soft” migration path, both for Operating Systems currently employing 508
contemporary and pre-standard block-device emulation, and for NAND Flash vendors and their 509
current devices; 510

o Capable of continuing to support “legacy” systems and solutions, employing pre-standard 511
devices and/or Operating Systems (e.g. retain support for the “good old FAT” and bootability 512
feature) 513

NOTE by bootability we mean: enable the loading of the executable Operating System image from 514
the storage device/media to the memory of the embedded application system processor main 515
memory, and facilitate secure and controlled means and methods for storing/updating/replacing 516
the OS image to the storage device/media). 517

NAND Software Working Group Invitation for Collaboration

Copyright © 2004 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

20

o Adequately address the new application domain requirements (like DRM, compression, 518
security/encryption, data portability) as listed in above, and also considering new/additional 519
requirement resulting from the collaboration with the OS vendors; 520

o Versatile, i.e. compatible with, or at least adaptable to, all embedded computing platforms and 521
Operating Systems. 522

o Robust and low-risk, by relying on well founded and established software engineering principles 523
and practices. 524

