A Look At COMWAKE For Use In SNW3

Steve Finch

06-365r1
8/10/06

STMicroelectronics

The Transmitter

\square Transmitters send COMWAKEs with precise timingA COMWAKE is

- Gap
- Burst
- Negation Gap

TOTAL

160 OOBI	$(106.666 \mathrm{~ns})$
160 OOBI	$(106.666 \mathrm{~ns})$
280 OOBI	$(186.666 \mathrm{~ns})$
2200 OOBI	$(1466.666 \mathrm{~ns})$

\square For each "bit window" the transmitter either sends this sequence

Transmitted COMWAKE

Receiver COMWAKE Requirement

\square Detection of a COMWAKE requires detection of 4 consecutive Idle time/Burst time pairs. (Idle first, then Burst)

COMWAKE Detection

\square A receiver "may detect" a Burst with as little as one transition.

- No minimum detected Burst time specified
- Shall at 100 ns
- No maximum Burst time specified
- But transmitter must send it right!
\square A receiver must wait for the next Burst to start to determine if an Idle time is of the proper size.
- There is a maximum Idle Time that must be met to declare the Idle time a valid COMWAKE Idle time.

COMWAKE Detection Uncertainty

\square From the time that the beginning of a COMWAKE appears at the input of the Receiver to the time that the Receiver signals the detection of the COMWAKE is:

Earliest: 1280 OOBI (746.66 ns)
4 Idle times plus 4 Burst times
Latest: 1920 OOBI (1280.00 ns)
Detect at the end of the last Burst.
\square Uncertainty: 640 OOBI (426.66 ns)

Receiving COMWAKE

Not Quite So Uncertain

\square If the COMWAKE is preceded by more 68.67 ns of idle time, then the first Idle time/Burst time pair are disqualified because the Idle time exceeds the "shall not detect" time.

Shall not detect:
Transmitted time

Maximum "pre-idle"
This WILL occur for each "bit time" other than the first.

- The COMWAKE negation time insures it.We can require it before the first COMWAKE

Not Quite So Uncertain

COMWAKE Detection Uncertainty With Long Pre-Idle

\square From the time that the beginning of a COMWAKE appears at the input of the Receiver to the time that the Receiver signals the detection of the COMWAKE is:

Earliest: 1600 OOBI (960.00 ns)
5 Idle times plus 5 Burst times.
Latest: 1920 OOBI (1280.00 ns)
Detect at the end of the last Burst.
\square Uncertainty: 320 OOBI (213.33 ns)

Sampling Is Easy And Accurate

\square Detect the first COMWAKE.
\square Use this as the time reference
\square Generate a Strobe 640 OOBI after the first detect and every 2200 OOBI after that.
\square Generate a Clear 1280 OOBI after the first detect and every 2200 OOBI after that.
Set a flop every time a COMWAKE is detected.
\square Sample the flop on every Strobe
\square Clear the flop on every Clear.

Sampling Is Easy And Accurate

Reference Clock Tolerance

\square We will have to consider the Reference Clock tolerance (+/- 100 ppm).
\square If the transmissions are limited to the 109 usec SNTT time, and we use 2 times the clock tolerance as the difference between the transmitters frequency and the receivers frequency, then the maximum clock delta is less than 33 OOBI.
\square We have nearly 10 times that in window opening

Conclusions

\square It can be done, easily.
\square One simple solution can be shown. Many other implementations are possible.
\square The only requirement is that the transmitter keep the bus Idle for a minimum of 68.67 ns before sending the sequence of bits.
\square If we keep the requirements for RCDT field, this requirement is met.

A Look At The Effect Of SSC

\square Assume SSC is at the slowest modulation rate

- $30 \mathrm{KHz}=$
- 33.33 usec =
- 50,000 OOBls

$$
\text { (33.33 us / . } 666 \text { ps) }
$$

\square Assume a worst case modulation technique of a square wave

- Modulation must be balanced, so only
- 16.66 usec at one extreme, 16.66 at the opposite extreme
- Gives 25,000 OOBls during the extreme period
\square Assume both sides have worst case in opposite directions
\square Assume one side is +2500 ppm , the other -2500 ppm
- 5000 ppm total difference
$\square 25,000$ OOBI * $5000 / 1000000=250$ OOBI maximum drift

A Look At The Effect Of SSC

\square We have a 320 OOBI margin built in using to described solution

- Without trying to optimize the Strobe and Clear positions
\square The selection of the Strobe point was arbitrary
- It could be moved to one clock before the Clear
- And would improve margin
\square Conclusion: NO ISSUES

Another Look At The Effect Of SSC

\square Assume worst case clock difference for the entire 32 bit sequence: 5000 ppm clock difference
\square One COMWAKE is 2200 OOBIs
$\square 32$ COMWAKEs is 70,400 OOBIs
$\square 5000 \mathrm{ppm}$ on $70,400=352$ OOBI
\square We have a built in 640 OOBI optimal margin
\square Results: Over a 200 OOBI actual margin

For The Non-Believers

\square I ran a simulation with two clocks

- Base frequency 1.5 GHz
- Transmitter +2500 ppm fixed
- Receiver -2500 ppm fixed
- And a second simulation with the clocks reversed
\square Generating the Strobe and Clear signals as defined
\square Using a range of initial clock phase relationships
- All relationships in 1 fs steps
\square With All 1's, All 0's and alternating 1's and 0's patterns.
- The exception is that the start bit was 1 in all patterns
\square Verifying the data.
\square Simulation passed.
- Measurement of window margin on $32^{\text {nd }}$ bit confirms that margin is over 200 OOBI

