To: T10 Technical Committee
From: Rob Elliott, HP (elliott@hp.com)
Date: 17 July 2006
Subject: 06-323r1 SAM-4 SPC-4 et al Multiple service delivery subsystem editorial tweaks

Revision history
Revision 0 (7 July 2006) First revision
Revision 1 (17 July 2006) Incorporated comments from July 2006 CAP WG

Related documents
sam4r06 - SCSI Architecture Model - 4 (SAM-4) revision 6
spc4r05a - SCSI Primary Commands - 4 (SPC-4) revision 5a
sbc3r05 - SCSI Block Commands - 3 (SBC-3) revision 5
ssc3r03 - SCSI Stream Commands - 3 (SSC-3) revision 3
smc3r02 - SCSI Media Changer Commands - 3 (SMC-3) revision 2
adc2r05 - Automation/Drive Interface Commands - 2 (ADC-2) revision 5
ses2r15 - SCSI Enclosure Services - 2 (SES-2) revision 15
sas2r04a - Serial Attached SCSI - 2 (SAS-2) revision 4a
fcp4r00- Fibre Channel Protocol - 3 (FCP-4) revision 0

Overview
If a logical unit is in a target device with multiple target ports, those target ports could be in the same or different SCSI domains. SAM defines *service delivery subsystem* as a subset of *domain*. So, if the target ports are attached to different SCSI domains, then they are attached to different service delivery subsystems.

Several places in SPC-4 refer to a singular service delivery subsystem, using the phrase "the service delivery subsystem." In many cases, "a service delivery subsystem" would be more appropriate.

Other command sets and protocol standards need similar changes (often only to the definitions of "port"s).

Suggested changes to SAM-4
The PDF file for sam4r06 doesn’t allow selecting text, so specific changes are not listed. The editor should inspect every instance of "service delivery subsystem" and change "the" to "a" as appropriate.

Suggested changes to SPC-4
3.1.32 Disconnect-Reconnect mode page: A mode page that provides the application client the means to tune the performance of *thea* service delivery subsystem. See 7.4.8.

3.1.92 SCSI device: A device that contains one or more SCSI ports that are *each* connected to a service delivery subsystem and supports a SCSI application protocol (see [SAM-3] (SAM-4)).

3.1.94 SCSI domain: The interconnection of two or more SCSI devices and a service delivery subsystem. A detailed definition of a SCSI Domain may be found in [SAM-3] (SAM-4).

3.1.96 SCSI initiator port: A SCSI initiator device (see [SAM-3] (SAM-4)) object that acts as the connection between application clients and *thea* service delivery subsystem through which requests and responses are routed.

3.1.97 SCSI port: A port of a SCSI device that connects the application client, device server or task manager to *thea* service delivery subsystem (see [SAM-3] (SAM-4)).

3.1.102 SCSI target port: A SCSI target device (see [SAM-3] (SAM-4)) object that acts as the connection between device servers and task managers and *thea* service delivery subsystem through which requests and responses are routed.

3.1.107 service delivery subsystem: That part of a SCSI I/O system that transmits service requests to a logical unit or SCSI target device and returns logical unit or SCSI target device responses to a SCSI initiator device. See [SAM-3] (SAM-4).

4.3.3 The variable length CDB formats
... If the number of CDB bytes delivered by the service delivery subsystem is not sufficient to contain the number of bytes specified by the ADDITIONAL CDB LENGTH field, then the command shall be terminated with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

... 5.8.1 Target port group access overview

Logical units may be connected to the one or more service delivery subsystems via multiple target ports (see SAM-3,SAM-4).

5.9.1 power conditions overview

No power condition shall affect the supply of any power required for proper operation of the service delivery subsystem.

5.14.1 READ BUFFER command introduction

The READ BUFFER command (see table 126) is used in conjunction with the WRITE BUFFER command as a diagnostic function for testing memory in the SCSI device and the integrity of the service delivery subsystem. This command shall not alter the medium.

5.26 REQUEST SENSE command

Examples of conditions that cause a REQUEST SENSE command to return a CHECK CONDITION status are:

a) An invalid field value is detected in the CDB;
b) The device server does not support the REQUEST SENSE command (see 4.3.1);
c) An unrecovered error is detected by the service delivery subsystem a SCSI target port; or
d) A malfunction prevents return of the sense data.

Editor’s Note 1: that seems leftover from SAM before the multiport changes were made, when the port was considered part of the service delivery subsystem. The service delivery subsystem doesn’t detect anything on its own.

6.16.1 WRITE BUFFER command introduction

The WRITE BUFFER command (see table 195) is used in conjunction with the READ BUFFER command as a diagnostic function for testing logical unit memory in the SCSI target device and the integrity of the service delivery subsystem. ...

7.2.3 Buffer Over-Run/Under-Run log page

The PARAMETER CODE field for buffer over-run/under-run counters contains a 16-bit value comprised of eight reserved bits, a COUNT BASIS field (see table 216), a CAUSE field (see table 217), and a TYPE bit. These are concatenated to determine the value of the parameter code for that log parameter. (E.g., a counter for parameter code value of 0023h specifies a count basis of 001b, a cause of 0001b, and a type of 1b. This counter is incremented once per command that experiences an over-run due to the service delivery subsystem being busy.)

...
7.2.12.2 General Statistics and Performance log page

The NUMBER OF LOGICAL BLOCKS RECEIVED BY A TARGET PORT field contains the number of logical blocks received from the service delivery subsystem by any SCSI target port for the device server of the logical unit as a result of write commands (see 7.2.12.1).

The NUMBER OF LOGICAL BLOCKS TRANSMITTED BY A TARGET PORT field contains the number of logical blocks delivered to the service delivery subsystem by transmitted by any SCSI target port for the device server of the logical unit as a result of read commands (see 7.2.12.1).

7.12.2.3 Group Statistics and Performance (n) log page

The GROUP N NUMBER OF LOGICAL BLOCKS RECEIVED BY A TARGET PORT field contains the number of logical blocks received from the service delivery subsystem by any SCSI target port for the device server of the logical unit as a result of write commands (see 1.1.2.1).

The GROUP N NUMBER OF LOGICAL BLOCKS TRANSMITTED BY A TARGET PORT field contains the number of logical blocks delivered to the service delivery subsystem by transmitted by any SCSI target port for the device server of the logical unit as a result of read commands (see 1.1.2.1).

Editor’s Note 2: Change the previous four field names in the tables too

7.4.8 Disconnect-Reconnect mode page

The Disconnect-Reconnect mode page (see table 278) provides the application client the means to tune the performance of the service delivery subsystem.

8.3.1.5.1.1 Summary of enrollment states

c) Pending-enrolled: The state for an enrolled initiator port following:
   A) Events in the service delivery subsystem described in 8.3.1.12; or
   B) Successful completion of an ACCESS CONTROL OUT command with MANAGE ACL service action from any initiator port with the FLUSH bit set to one (see 8.3.3.2).

Editor’s Note 3: Those events seems to be power cycles, hard reset, and logical unit reset (see table below). Power cycles and logical unit resets are not related to the service delivery subsystem.

8.3.1.5.1.3 Enrolled state

NOTE 66 - This standard does not preclude implicit enrollments through mechanisms in the service delivery subsystem. Such mechanisms should perform implicit enrollments after identification by TransportID and should fail in the case where there are ACL conflicts as described in 8.3.1.5.2.

8.3.1.8.2.2 The override lockout timer

Maintaining a non-zero override lockout timer value may be accomplished without knowing the management identifier key or transporting the management identifier key on the service delivery subsystem.

8.3.1.12 Access controls information persistence and memory usage requirements

If a SCSI target device supports access controls, then the SCSI target device shall contain an access controls coordinator that shall maintain the following information in nonvolatile memory:

a) Whether access controls are enabled or disabled; and

b) The access controls data that table 365 and table 366 require to persistent across power cycles, hard resets, and logical unit resets.
If the access control coordinator’s nonvolatile memory is not ready and the access controls coordinator is unable to determine that access controls are disabled, then the device servers for all logical units shall terminate all commands except INQUIRY and REQUEST SENSE commands with CHECK CONDITION status, with the sense key set to NOT READY, and the additional sense code set as described in table 192 (see 6.34).

Following an I_T nexus loss, a previously enrolled initiator port shall be placed in the pending-enrolled state, if that initiator port was associated with the lost I_T nexus. Following a logical unit reset, all previously enrolled initiator ports shall be placed in the pending-enrolled state.

The information shown in table 365 shall be maintained by the access controls coordinator.

Table 2 — Mandatory access controls resources

<table>
<thead>
<tr>
<th>Information description</th>
<th>Size (in bits)</th>
<th>Persistent Across Power Cycles, Hard Resets, and Logical Unit Resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Suggested changes to SBC-3

The PDF file for sbc3r06 doesn’t allow selecting text, so specific changes are not listed. The editor should inspect every instance of "service delivery subsystem" and change "the" to "a" as appropriate. Also update SPC-3 to SPC-4 in figure 2, and the references to SAM-3, SPC-3, SAS, and FCP in figure 1.

Suggested changes to SSC-3

Editor’s Note 4: The CAP WG requested that all SAM-3 references be updated to SAM-4. Also update SPC-2/SPC-3 to SPC-4 (except where referring to classic reservations) and SMC-2 to SMC-3.

2.2 Approved references

ISO/IEC 14776-411, SCSI-3 Architecture Model—standard
ISO/IEC 14776-312, SCSI Primary Commands - 2 (SPC-2) standard [ANSI INCITS 351-2001]

2.3 References under development

ISO/IEC 14776-313, SCSI Primary Commands—3 standard
ISO/IEC 14776-412, SCSI Architecture Model—2 standard
ISO/IEC 14776-352, SCSI Media Changer Commands—2 standard
ISO/IEC 14776-414 SCSI Architecture Model - 4 (SAM-4) [T10/1683-D]
ISO/IEC 14776-454 SCSI Primary Commands - 4 (SPC-4) [T10/1731-D]
ISO/IEC 14776-353 SCSI Media Changer Commands - 3 (SMC-3) [T10/1730-D]

3.1.58 SCSI initiator port: A SCSI initiator device object that acts as the connection between application clients and the service delivery subsystem through which requests, indications, responses, and confirmations are routed. In all cases when this term is used it refers to a SCSI initiator port or a SCSI target/initiator port operating as a SCSI initiator port.

3.1.59 SCSI port: A SCSI device resident object that connects the application client, device server or task manager to the service delivery subsystem through which requests and responses are routed. SCSI port is synonymous with port. A SCSI port is one of: a SCSI initiator port, a SCSI target port, or a SCSI target/initiator port.

3.1.61 SCSI target port: A SCSI target device object that contains a task router and acts as the connection between device servers and task managers and the service delivery subsystem through which indications and responses are routed. When this term is used it refers to a SCSI target port or a SCSI target/initiator port operating as a SCSI target port.
3.1.66 service delivery subsystem: That part of an SCSI I/O system domain that transmits service requests to a logical unit or SCSI target device and returns logical unit or SCSI target device responses to a SCSI initiator device. A detailed definition of a service delivery subsystem may be found in SAM-3 and SAM-4.

Suggested changes to SMC-3

Editor’s Note 5: The CAP WG requested that references be updated, particularly SAM-2 to SAM-4 (those changes are shown). Changes not shown include: SSC-2 to SSC-3, SPC-2 and SPC-3 to SPC-4. Also note that PREVENT ALLOW MEDIUM REMOVAL is being removed from SPC-4 and placed into individual command standards SSC-3, SBC-3, MMC-5.

2.2 Approved references

ISO/IEC 14776-413, SCSI Architecture Model - 3 (SAM-3) [ANSI INCITS.402-2005]
ISO/IEC 14776-452, SCSI Primary Commands - 2 (SPC-2) [ANSI INCITS.351-2001]
ISO/IEC 14776-115, SCSI Parallel Interface - 5 (SPI-5) [ANSI INCITS.367-2003]
ISO/IEC 14776-352, SCSI-3 Media Changer Commands (SMC) [ANSI INCITS.314-1998]
ISO/IEC 14776-331, SCSI-3 Stream Commands (SSC) [ANSI INCITS.335-2000]
ANSI INCITS.382-2004, SCSI Media Changer Commands - 2 (SMC-2)
ANSI INCITS.380-2003, SCSI Stream Commands (SSC-2)
ANSI INCITS.403-2005, Automation/Drive Interface, Commands (ADC)

2.3 References under development

ISO/IEC 14776-414 SCSI Architecture Model - 4 (SAM-4) [T10/1683-D]
T10/1416-D, SCSI Primary Commands - 3 (SPC-3)
ISO/IEC 14776-454 SCSI Primary Commands - 4 (SPC-4) [T10/1731-D]
T10/1414-D, Automation/Drive Interface, Commands - 2 (ADC-2)
ISO/IEC 14776-357 Automation/Drive Interface - Commands - 2 (ADC-2) [T10/1741-D]
T10/1611-D, SCSI Stream Commands - 3 (SSC-3)
ISO/IEC 14776-414 SCSI Stream Commands - 3 (SSC-3) [T10/1611-D]

3.1.2 application client: An object that is the source of SCSI commands. Further definition of an application client may be found in SAM-2 and SAM-4.

3.1.4 command: A request describing a unit of work to be performed by a device server. A detailed definition of a command may be found in SAM-2 and SAM-4.

3.1.8 device service request: A request, submitted by an application client, conveying a SCSI command to a device server. A detailed definition of a device service request may be found in SAM-2 and SAM-4.

3.1.12 hard reset: A target response to a reset event or TARGET RESET task management function. A detailed definition of hard reset may be found in SAM-2 and SAM-4. A condition resulting from the events defined by SAM-4 in which the SCSI device performs the hard reset operations described in SAM-4, this standard, and other applicable command standards.

3.1.14 linked command: One in a series of SCSI commands executed by a single task. A detailed definition of a linked command may be found in SAM-2 and SAM-4.

3.1.15 logical unit: An externally addressable entity within a SCSI target device that implements a SCSI device model and contains a device server. A detailed definition of a logical unit may be found in SAM-2 and SAM-4.

3.1.16 logical unit number: An encoded identifier for a logical unit. A detailed definition of a logical unit number may be found in SAM-2 and SAM-4.

3.1.22 protocol-specific: Requirements for the referenced item are defined by a SCSI transport protocol standard. A detailed definition of protocol-specific may be found in SAM-2 and SAM-4.

3.1.23 SCSI device: A device that is connected to a service delivery subsystem and supports a SCSI applica-
A detailed definition of a SCSI device may be found in SAM-2

3.1.24 SCSI domain: The interconnection of two or more SCSI devices and a service delivery subsystem forms a SCSI domain. A detailed definition of a SCSI domain may be found in SAM-2

3.1.25 SCSI initiator device: A SCSI device containing application clients that originate device service requests to be processed in a device server. A detailed definition of a SCSI initiator device may be found in SAM-2

3.1.26 SCSI initiator port: A SCSI initiator device object that acts as the connection between application clients and the service delivery subsystem through which requests and responses are routed. A detailed definition of SCSI target port may be found in SAM-2

3.1.27 SCSI target device: A SCSI device containing one or more logical units that receive and execute commands from an application client. A detailed definition of a SCSI target device may be found in SAM-2

3.1.28 SCSI target port: A SCSI target device object that acts as the connection between device servers and task managers and the service delivery subsystem through which requests and responses are routed. A detailed definition of SCSI target port may be found in SAM-2

3.1.30 service delivery subsystem: That part of a SCSI I/O system domain that transmits service requests to a logical unit and returns logical unit responses to an application client. A detailed definition of a service delivery subsystem may be found in SAM-2

3.1.31 status: One byte of response information sent from a device server to an application client upon completion of each command. A detailed definition of status may be found in SAM-2

3.1.34 task: An object within a logical unit that represents the work associated with a command or a group of linked commands. A detailed definition of a task may be found in SAM-2

3.1.35 task set: A group of tasks within a logical unit, whose interaction is dependent on the queuing, contingent allegiance and auto contingent allegiance rules defined in SAM-2

3.1.36 unit attention condition: A state that a logical unit maintains while it has asynchronous status information to report to one or more SCSI initiator ports. A detailed definition of the unit attention condition may be found in SAM-2

5.2.1 Elements overview

A media changer has an address space separate and distinct from the physical address space of a SCSI-3 service delivery subsystem.

Suggested changes to ADC-2

Editor’s Note 6: The CAP WG requested that all SAM-3 references be updated to SAM-4. Also update SPC-3 to SPC-4 and SSC to SSC-3. Also note that PREVENT ALLOW MEDIUM REMOVAL is being removed from SPC-4 and placed into individual command standards SSC-3, SBC-3, MMC-5.

Suggested changes to SES-2
Editor’s Note 7: The CAP WG requested that all SAM-3 references be updated to SAM-4. Also update SPC-3 to SPC-4.

3.1.25 **SCSI initiator port**: A SCSI initiator device object acts as the connection between application clients and the service delivery subsystem through which requests and responses are routed. See SAM-3SAM-4.

3.1.27 **SCSI target port**: A SCSI target device object that contains a task router and acts as the connection between device servers and task managers and the service delivery subsystem through which requests and responses are routed. See SAM-3SAM-4.

Suggested changes to SAS-2

Editor’s Note 8: The CAP WG requested that all SAM-3 references be updated to SAM-4. Also update SPC-3 to SPC-4.

3.1.12 **ATA domain**: An I/O system consisting of an ATA host and one or more ATA devices that communicate with one another by means of a service delivery subsystem.

3.1.66 **expander device**: A device that is part of the service delivery subsystem and facilitates communication between SAS devices. See 4.1.5.

3.1.68 **expander phy**: A phy in an expander device that interfaces to a service delivery subsystem.

3.1.69 **expander port**: An expander device object that interfaces to the service delivery subsystem and to SAS ports in other devices. See 4.6.2.

3.1.75 **SAS phy**: A phy in a SAS device that interfaces to a service delivery subsystem.

3.1.183 **SATA device port**: An ATA device object that interfaces to the service delivery subsystem with SATA (analogous to a SCSI target port).

3.1.185 **SATA host port**: An ATA host object that interfaces to the service delivery subsystem with SATA (analogous to a SCSI initiator port).

3.1.186 **SATA phy**: A phy in a SATA device or SATA port selector that interfaces to a service delivery subsystem (analogous to a SAS phy).

3.1.190 **SCSI device**: A device that contains one or more SCSI ports that are connected to a service delivery subsystem and supports a SCSI application protocol. See SAM-3SAM-4.

3.1.191 **SCSI domain**: An I/O system consisting of a set of SCSI devices that communicate with one another by means of a service delivery subsystem. See SAM-3SAM-4.

3.1.193 **SCSI initiator port**: A SCSI initiator device object that acts as the connection between application clients and the service delivery subsystem through which indications and responses are routed. See SAM-3SAM-4.

3.1.196 **SCSI target port**: A SCSI target device object that contains a task router and acts as the connection between device servers and task managers and the service delivery subsystem through which requests and confirmations are routed. See SAM-3SAM-4.

3.1.205 **service delivery subsystem**: The part of a SCSI I/O system that transmits information between a SCSI initiator port and a SCSI target port, or the part of an ATA I/O system that transmits information between an ATA host and an ATA device, or the part of a SAS I/O system that transmits information between a SAS initiator port and a SAS target port.

3.1.211 **SMP initiator port**: A SAS initiator device object in a SAS domain that interfaces to the service delivery subsystem with SMP.
3.1.215 **SMP target port**: A SAS target device object in a SAS domain that interfaces to the service delivery subsystem with SMP.

3.1.230 **STP initiator port**: A SAS initiator device object in a SAS domain that interfaces to the service delivery subsystem with STP.

3.1.235 **STP target port**: A SAS target device object in a SAS domain that interfaces to the service delivery subsystem with STP.

3.1.267 **zoned portion of a service delivery subsystem (ZPSDS)**: A group of expander devices that cooperate to control access between phys. The ZPSDS may include all or part of a service delivery subsystem. See 4.8.

### 4.1.1 Architecture overview

A SAS domain (see 4.1.7) contains one or more SAS devices and a service delivery subsystem. A SAS domain may be a SCSI domain (see SAM-3, SAM-4).

The service delivery subsystem (see 4.1.6) in a SAS domain may contain expander devices (see 4.1.5).

### 4.1.2 Physical links and phys

Phys are contained in ports (see 4.1.3). Phys interface to the service delivery subsystem (see 4.1.6).

### 4.1.5 Expander devices (edge expander devices and fanout expander devices)

Expander devices are part of the service delivery subsystem and facilitate communication between multiple SAS devices. Expander devices contain two or more external expander ports.

### 4.1.6 Service delivery subsystem

The service delivery subsystem is either:

a) a set of physical links between a SAS initiator port and a SAS target port; or

b) a set of physical links and expander devices, supporting more than two SAS ports.

See 4.1.8 for rules on constructing service delivery subsystems from multiple expander devices.

### 4.1.8.1 Expander device topology overview

More than one expander device may be part of a service delivery subsystem.

### 10.2.7.1.1 Disconnect-Reconnect mode page overview

The Disconnect-Reconnect mode page (see SPC-3) provides the application client the means to tune the performance of the service delivery subsystem.

### Suggested changes to FCP-4

Editor's Note 9: The CAP WG requested that all SAM-3 references be updated to SAM-4. Also update SPC-3 to SPC-4.
FCP Port using the Fibre Channel protocol to perform the SCSI target port functions defined by SAM-3 and SAM-4.

4.2 FCP I/O operations

An application client begins an FCP I/O operation when it invokes a Send SCSI Command SCSI transport protocol service request or a Send Task Management Request SCSI transport protocol service request (see SAM-3 and SAM-4). The Send SCSI Command SCSI transport protocol service request conveys a single request or a list of linked requests from the application client to the FCP service delivery subsystem. Each request contains all the information necessary for the processing of one SCSI command or task management function, including the local storage address and characteristics of data to be transferred by the SCSI command. The Fibre Channel Protocol then performs the following actions using FC-FS-2 services to perform the SCSI command or task management function. The processing of the individual steps of the protocol is consistent with the SCSI architectural model as defined by SAM-3 and SAM-4.

10.2.1 Overview and format of Disconnect-Reconnect mode page for FCP

The Disconnect-Reconnect mode page (see table 26) allows the application client to modify the behavior of the FCP service delivery subsystem.