To: T10 Technical Committee
From: Rob Elliott, HP (elliott@hp.com)
Date: 7 July 2006
Subject: 06-322r0 SAS-2 STP response to abandon-class OPEN_REJECT

Revision history
Revision 0 (7 July 2006) First revision

Related documents
sas2r04a - Serial Attached SCSI - 2 (SAS-2) revision 4a

Overview
If an STP target port receives an abandon-class OPEN_REJECT such as OPEN_REJECT (PROTOCOL NOT SUPPORTED), it needs to stop trying to open that initiator and abort any outstanding commands from that STP initiator port. This is the same as the response to an I_T nexus loss.

If the STP target port is in an STP/SATA bridge (in an expander), the way it aborts commands is by performing a link reset sequence on the phy attached to the SATA device. This is the same as if an I_T nexus loss occurs.

If an STP initiator port receives an abandon-class OPEN_REJECT, it needs to consider all commands to that target as completed with an error.

This is almost handled correctly for SSP connections, but some corrections may be needed. Corrections for SSP will be addressed in another proposal.

Suggested changes

4.5 I_T nexus loss

When a SAS port receives OPEN_REJECT (NO DESTINATION), OPEN_REJECT (PATHWAY BLOCKED), or an open connection timeout occurs in response to a connection request, it shall retry the connection request until:

a) the connection is established;

b) for SSP target ports, the time indicated by the I_T NEXUS LOSS field in the Protocol-Specific Port mode page expires; or

c) the I_T nexus loss timer, if any, expires (see 8.2.2.1, 10.2.7.2, and 10.4.3.13).

I_T nexus loss is handled by the port layer state machines (see 8.2.2.3). In some cases, the I_T nexus loss timer is overridden for connection requests through self-configuring expander devices as described in 4.7.1.

If the I_T nexus loss timer expires in an SSP port, then the port shall send a Nexus Loss event notification to the SCSI application layer (see 10.2.5) and the SCSI device shall perform the actions defined for I_T nexus loss in SAM-3.

If the I_T nexus loss timer expires in an STP target port, then the port shall abort any commands for the lost STP initiator port. If the STP target port is in an STP/SATA bridge, the STP/SATA bridge shall originate a link reset sequence to the SATA device. [this text is already there, just highlighted by this proposal]

If the I_T nexus loss timer expires in an STP initiator port, then the ATA application client shall consider any commands for the lost STP target port to be completed with an error. This serves as a nexus loss event (see ATA8-AAM).

If the I_T nexus loss timer expires in an SMP initiator port, then the port shall stop attempting to establish connections to the lost SMP target port.

If the I_T nexus loss timer expires in an initiator port, then a management application client should cause a link reset sequence on the phy(s) attached to the lost target port (e.g., if directly attached, the phy in the initiator port; if attached via expander device(s), the phy in the expander device closest to and attached to the target port).
7.2.5.12 OPEN_REJECT

OPEN_REJECT specifies that a connection request has been rejected and specifies the reason for the rejection. The result of some OPEN_REJECTs is to abandon (i.e., not retry) the connection request and the result of other OPEN_REJECTs is to retry the connection request.

All of the OPEN_REJECT versions defined in table 1 shall result in the originating port abandoning the connection request.

Table 1 — OPEN_REJECT abandon primitives

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Originator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN_REJECT (BAD DESTINATION)</td>
<td>Expander phy</td>
<td>A connection request arrives through an expander phy using the direct routing or table routing method and the expander device determines the connection request would have to be routed to the same expander port as the expander port through which the connection request arrived (e.g., the destination SAS address equals the source SAS address), and the expander device has not chosen to return OPEN_REJECT (NO DESTINATION) (see 7.12.4.3 and 7.12.4.4).</td>
</tr>
<tr>
<td>OPEN_REJECT (CONNECTION RATE NOT SUPPORTED)</td>
<td>Any phy</td>
<td>The requested connection rate is not supported on some physical link on the pathway between the source phy and destination phy. When a SAS initiator phy is directly attached to a SAS target phy, the requested connection rate is not supported by the destination phy. The connection request may be modified and reattempted as described in 7.12.2.2.</td>
</tr>
<tr>
<td>OPEN_REJECT (PROTOCOL NOT SUPPORTED)</td>
<td>Destination phy</td>
<td>Phy with destination SAS address exists but the destination phy does not support the requested initiator/target role, protocol, initiator connection tag, or features (i.e., the values in the INITIATOR PORT bit, the PROTOCOL field, the INITIATOR CONNECTION TAG field, and/or the FEATURES field in the OPEN address frame are not supported).</td>
</tr>
<tr>
<td>OPEN_REJECT (ZONE VIOLATION)</td>
<td>Zoning expander phy</td>
<td>The connection request is from a zone group that does not have permission to access the zone group that contains the destination phy.</td>
</tr>
<tr>
<td>OPEN_REJECT (RESERVED ABANDON 1)</td>
<td>Unknown</td>
<td>Reserved. Process the same as OPEN_REJECT (WRONG DESTINATION).</td>
</tr>
<tr>
<td>OPEN_REJECT (RESERVED ABANDON 2)</td>
<td>Unknown</td>
<td>Reserved. Process the same as OPEN_REJECT (WRONG DESTINATION).</td>
</tr>
<tr>
<td>OPEN_REJECT (RESERVED ABANDON 3)</td>
<td>Unknown</td>
<td>Reserved. Process the same as OPEN_REJECT (WRONG DESTINATION).</td>
</tr>
<tr>
<td>OPEN_REJECT (STP RESOURCES BUSY)</td>
<td>Destination phy</td>
<td>STP target port with destination SAS address exists but the STP target port has an affiliation with another STP initiator port or all of the available task file registers have been allocated to other STP initiator ports (see 7.17.5). Process the same as OPEN_REJECT (WRONG DESTINATION) for non-STP connection requests.</td>
</tr>
<tr>
<td>OPEN_REJECT (WRONG DESTINATION)</td>
<td>Destination phy</td>
<td>The destination SAS address does not match the SAS address of the SAS port to which the connection request was delivered.</td>
</tr>
</tbody>
</table>
All of the OPEN_REJECT versions defined in table 2 shall result in the originating port retrying the connection request.

Table 2 — OPEN_REJECT retry primitives

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Originator</th>
<th>Description</th>
</tr>
</thead>
</table>
| OPEN_REJECT (NO DESTINATION) a | Expander phy | Either:
 a) No such destination phy;
 b) the expander device determines the connection request would have to be routed to the same expander port as the expander port through which the connection request arrived (e.g., the destination SAS address equals the source SAS address) and the expander device has not chosen to return OPEN_REJECT (BAD DESTINATION) (see 7.12.4.3 and 7.12.4.4); or
 c) the SAS address is valid for an STP target port in an STP/SATA bridge, but the initial Register - Device to Host FIS has not been successfully received (see 10.4.3.7). |
| OPEN_REJECT (PATHWAY BLOCKED) b | Expander phy | An expander device determined the pathway was blocked by higher priority connection requests. |
| OPEN_REJECT (RESERVED CONTINUE 0) c | Unknown | Reserved. Process the same as OPEN_REJECT (RETRY). |
| OPEN_REJECT (RESERVED CONTINUE 1) c | Unknown | Reserved. Process the same as OPEN_REJECT (RETRY). |
| OPEN_REJECT (RESERVED INITIALIZE 0) a | Unknown | Reserved. Process the same as OPEN_REJECT (NO DESTINATION). |
| OPEN_REJECT (RESERVED INITIALIZE 1) a | Unknown | Reserved. Process the same as OPEN_REJECT (NO DESTINATION). |
| OPEN_REJECT (RESERVED STOP 0) b | Unknown | Reserved. Process the same as OPEN_REJECT (PATHWAY BLOCKED). |
| OPEN_REJECT (RESERVED STOP 1) b | Unknown | Reserved. Process the same as OPEN_REJECT (PATHWAY BLOCKED). |
| OPEN_REJECT (RETRY) c | Destination phy | Phy with destination SAS address exists but is not able to accept connections. |

- **a** If the I_T Nexus Loss timer is already running, it continues running; if it is not already running, it is initialized and started. Stop retrying the connection request if the I_T Nexus Loss timer expires.
- **b** If the I_T Nexus Loss timer is already running, it continues running. Stop retrying the connection request if the I_T Nexus Loss timer expires.
- **c** If the I_T Nexus Loss timer (see 8.2.2) is already running, it is stopped.

NOTE 1 - Some SAS phys compliant with earlier versions of this standard also transmit OPEN_REJECT (RETRY) if they receive an OPEN address frame while their SL_CC state machines are in the SL_CC5:BreakWait state (see 7.14.4.7).

When a SAS phy detects more than one reason to transmit an OPEN_REJECT, the SL_CC state machine determines the priority in the SL_CC2:Selected state (see 7.14.4.4).

When an expander phy detects more than one reason to transmit an OPEN_REJECT, the ECM determines the priority (see 7.12.4).

See 7.12 for details on connection requests.
7.12.2 Opening a connection

7.12.2.1 Connection request

The OPEN address frame (see 7.8.3) is used to open a connection from a source port to a destination port using one source phy and one destination phy.

To make a connection request, the source port shall transmit an OPEN address frame through an available phy. The source phy shall transmit idle dwords after the OPEN address frame until it receives a response or aborts the connection request with BREAK.

After transmitting an OPEN address frame, the source phy shall initialize and start a 1 ms Open Timeout timer. Whenever an AIP is received, the source phy shall reinitialize and restart the Open Timeout timer. Source phys are not required to enforce a limit on the number of AIPs received before aborting the connection request. When any connection response is received, the source phy shall reinitialize the Open Timeout timer. If the Open Timeout timer expires before a connection response is received, the source phy shall transmit BREAK to abort the connection request (see 7.12.6).

The OPEN address frame flows through expander devices onto intermediate physical links. If an expander device on the pathway is unable to forward the connection request, it returns OPEN_REJECT (see 7.12.4). If the OPEN address frame reaches the destination, it returns either OPEN_ACCEPT or OPEN_REJECT unless the OPEN address frame passed an OPEN address frame from the destination with higher arbitration priority (see 7.12.3). Rate matching shall be used on any physical links in the pathway with negotiated physical link rates that are faster than the requested connection rate (see 7.13).

7.12.2.2 Results of a connection request

After a phy transmits an OPEN address frame, it shall expect one or more of the results listed in table 3.

<table>
<thead>
<tr>
<th>Result</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive AIP</td>
<td>Arbitration in progress. When an expander device is trying to open a connection to the selected destination port, it returns an AIP to the source phy. The source phy shall reinitialize and restart its Open Timeout timer each time it receives an AIP. AIP is sent by an expander device while it is internally arbitrating for access to an expander port.</td>
</tr>
<tr>
<td>Receive OPEN_ACCEPT</td>
<td>Connection request accepted. OPEN_ACCEPT is transmitted by the destination phy.</td>
</tr>
<tr>
<td>Receive OPEN_REJECT</td>
<td>Connection request rejected. OPEN_REJECT is transmitted by the destination phy or by an expander device in the partial pathway. The different versions are described in 7.2.5.12. See 4.5 for I_T nexus loss handling.</td>
</tr>
<tr>
<td>Receive OPEN address frame</td>
<td>If AIP has been previously detected, this indicates an overriding connection request.</td>
</tr>
<tr>
<td></td>
<td>If AIP has not yet been detected, this indicates two connection requests crossing on the physical link. Arbitration fairness determines which one wins (see 7.12.3).</td>
</tr>
<tr>
<td>Receive BREAK</td>
<td>The destination phy or an expander device in the partial pathway may reply with BREAK indicating the connection is not being established.</td>
</tr>
<tr>
<td>Open Timeout timer expires</td>
<td>The source phy shall abort the connection request by transmitting BREAK (see 7.12.6). See 4.5 for I_T nexus loss handling.</td>
</tr>
</tbody>
</table>

After an OPEN_REJECT (CONNECTION RATE NOT SUPPORTED) has been received by a SAS target port, the SAS target device shall set the connection rate for future requests for that I_T_L_Q nexus to:

a) the last value received in a connection request from the SAS initiator port;
b) 1.5 Gbps; or
 c) the connection rate in effect when the command was received.

7.17.6 Opening an STP connection

If no STP connection exists when the SATA host port in an STP/SATA bridge receives a SATA_X_RDY from
the attached SATA device, the STP target port in the STP/SATA bridge shall establish an STP connection to
the appropriate STP initiator port before it transmits a SATA_R_RDY to the SATA device.

Wide STP initiator ports shall not request more than one connection at a time to an STP target port. Wide STP
target ports shall not request more than one connection at a time to an STP initiator port.

While a wide STP target port is waiting for a response to a connection request or has established a connection
to an STP initiator port, it shall:
 a) reject incoming connection requests from that STP initiator port with OPEN_REJECT (RETRY); and
 b) if affiliations are supported, reject incoming connection requests from other STP initiator ports with
 OPEN_REJECT (STP RESOURCES BUSY).

While a wide STP initiator port is waiting for a response to a connection request to an STP target port, it shall
not reject an incoming connection request from that STP target port because of its outgoing connection
request. It may reject incoming connection requests for other reasons (see 7.2.5.12).

If a wide STP initiator port receives an incoming connection request from an STP target port while it has a
connection established with that STP target port, it shall reject the request with OPEN_REJECT (RETRY).

If an STP target port receives an abandon-class OPEN_REJECT (see table 90 in 7.2.5.12), then the ATA
device server shall abort any commands from the destination STP initiator port. If the STP target port is in an
STP/SATA bridge, the STP/SATA bridge shall originate a link reset sequence to the SATA device.

If an STP initiator port receives an abandon-class OPEN_REJECT (see table 90 in 7.2.5.12), then the ATA
application client shall consider any commands for the STP target port to be completed with an error.

The first dword that an STP phy sends inside an STP connection after OPEN_ACCEPT that is not an ALIGN
or NOTIFY shall be an STP primitive (e.g., SATA_SYNC).