VITESSE

06-267r0 SAS-2 Spread Spectrum Clocking Options

K. Witt, G. Tabor, A. Robinson SAS-2 Phy Working Group

YOUR PARTNER FOR SUCCESS

Serial

SCSI

Attached

Spread Spectrum Clocking (SSC) Options

Four SSC Options Considered

- 1) No SSC
- 2) Down Spread 5000 ppm
- 3) Center spread +/- 2500 ppm
- 4) Up spread 5000 ppm
- Need to consider the Advantages and Disadvantages of Each Option
- Search Assumptions / Background
 - SSC is Highly Desirable and Beneficial in solving EMI issues (HP 06-064r2)
 - 6G SATA will most likely remain Down Spread 0 → -5000ppm (Infineon 06-192r0)
 - Center Spread has implementation advantages (PMC 06-193r0)
 - Multiplexing Legacy drives and Down Spread SSC of the uplink will not work (May Phy. Meeting Discussion)
 - 6G Links with 5000ppm Down Spread SSC do not have the throughput to support two legacy 3G SAS Devices
 - Expanders will remove and or insert aligns as necessary

📚 Reference Numbers

- SATA SSC Down Spread Fc → Fc 5000ppm
- SATA Align Density 2/256 → Fc 7812ppm
- (Sufficient to support 5000ppm down spread SSC and Rate matching)

(Insufficient to support 5000ppm down spread)

- SAS Align Density 2/4096 → Fc 488ppm
- SAS Reference Clock Fc +/- 100ppm
- SATA Reference Clock Fc +/- 350ppm

VITESSE

Buffer Size Calculations

VITESSE

Solution Worst Case Buffer Sizing w/ Sawtooth SSC

- Largest Buffer required when Rx and Tx are 180 out of phase
- Rx at Highest Data Rate and Tx at Slowest Data Rate
- Integrate the frequency Difference to see the Buffer size

Integrated Frequency Difference over ¹/₂ Period at the worst Alignment $\Delta bits = \Delta F \cdot \Delta T$ $\Delta Words = \frac{\Delta F \cdot \Delta T}{}$ Maximum full rate Clock Interval $T_{\min} = \frac{1}{F_{\circ}(1 + \Delta F)}$ Example: 6G 5000ppm Down Spreading @ 30KHz $F_{c} = 6G - 2500 ppm$ $\Delta F = 2500 \, ppm \cdot (6G - 2500 \, ppm) = 14.96 MHz$ $\Delta T = 1/30K = 33.3us$ $\Delta bits = \Delta F \cdot \Delta T = 249.3 bits$ $\frac{\Delta F \cdot \Delta T}{\Delta T} = 6.23 DW ords$ $\Delta Words =$ Not an Unreasonable Amount

Sompare the Up, Down, Center Spread Buffers

$$T_{\min} = \frac{1}{F_c(1 + \Delta F)} \qquad \Delta bits = \Delta F \cdot \Delta T \qquad \Delta Words = \frac{\Delta F \cdot \Delta T}{40}$$

Spread	Fc (GHz)	Tc min (ps)	Delta Tc (ps)	F SSC (Hz)	# bits =dF*dT	#words
No	6.000	166.67	0.00	0	?	>0
Up	6.015	167.50	0.83	30000	250.63	6.27
Center	6.000	167.08	0.42	30000	250.00	6.25
Down	5.985	166.67	0.00	30000	249.38	6.23

- Bit interval spread is very small (0.83ps)
- Buffer Sized is Basically Independent of SSC Choice and Reasonable in Size

Configuration Management

- SSC Support in the SAS-2 Fabric is a function of the SSC Option
 - No SSC no issue
 - Center or Up spread SSC can be Supported in any Fabric Links
 - Down Spread SSC on the Fabric Links Causes a Management Nightmare

Phy Complexity

VITESSE

Legacy Devices and SSC

- Legacy SAS does Not Support SSC
- SATA may or may not have SSC Enabled
- If SSC is supported on the uplink it will need to be Provisionally on a port-by-port basis because legacy SAS ports cannot have SSC active
- This Precludes Modulating the Reference Clock in a Multiplexing Device

- SSC Range Required to Support 6G SAS and 6G SATA in 20xx?
 - Up Spread 10,000 ppm Range
 - Center Spread 7,500 ppm Range
 - Down Spread 5,000 ppm Range
 - No Spread 5,000 ppm Range (Rx Only)

SSC	EMI	Legacy	Support	Buffer	PHY SSC
Option	Reduction	Support	Multiplexing	Size	Range
				(DWords	PPM
None	No	Yes	Yes	>0	5000
Up	Yes	Yes	Yes	7	10000
Center	Yes	Yes	Yes	7	7500
Down	Yes	No	No	7	5000

Up and Center Spread SSC are the best solutions, Center Spread is Lower Risk

- Recommend That We Support SSC
- Recommend Center Spread SSC of +/- 2500PPM
- Solution Weight Specification to Allow Higher Rates